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Abstract

Psychological theories of similarity are typically defined
over very limited classes of representations. Geometric
models represent objects as points in a multidimensional
space. Set-theoretic models represent objects as sets of
features. We have recently developed an account of
similarity, representational distortion, which can deal with
arbitrary representations, and which includes geometric and
set-theoretic accounts as special cases. The similarity
between two representations is defined by the amount of
distortion required to transform one representation into the
other. This can be quantified by using the mathematical
theory of Kolmogorov complexity (Li & Vitanyi, 1993).
This theory has a range of psychologically interesting
properties. In particular, we show that the Universal Law of
Generalization can be derived.

Introduction

Similarity is a central notion throughout cognitive science.
In perception, the similarity between sets of visual or
auditory stimuli influences the way in which they are
grouped. In speech recognition, the similarity between
different phonemes determines how easily confused they are.
In classification, the category assigned to a new instance may
be influenced by the similarity of an new instance to past
instances or a stored prototype. In memory, it has been
suggested that retrieval from a cue depends on the similarity
of past memory traces to the representation of the cue.
Similarity also appears fundamental to learning and
development: Because no situation, object or event is the
same in all respects to any previously encountered situation,
object or event, using past experience to guide future
behavior requires generalizing from previous to new
instances. It is widely assumed, in behaviorist as well as
cognitive theories of learning, that this generalization is
based, to some degree at least, on similarity. Similarity
appears also to have an important role to play in problem
solving, inference and scientific reasoning, especially if
analogy is viewed as a special case of similarity.

Current theories treat similarity as a relation between
mental representations. The two leading accounts, the
geometric and featural views, differ on the nature of the
representations, and the nature of the relation. The geometric
view (Shepard, 1987) assumes that objects are represented as
points in an internal space. The similarity between two
objects is inversely related to the distance between their
representations in this space. By contrast, the featural view
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(Tversky, 1977) assumes that objects are represented as sets
of features. The similarity between two objects depends on
the amount of overlap between their sets of features.

Both of these theories are limited in scope in that they
define similarity over very specific kinds of representation:
Points in space or feature sets. It would be attractive to have,
instead, an account which applied to any representation
whatever, whether a structural description of perceptual
input, a parsed sentence, a schema encoding general
knowledge, a pictorial represention or a sequence of motor
commands. We might hope that such a framework would
include geometric and set-theoretic accounts of similarity as
special cases. We shall see that these goals are met by the
account outlined below.

In this paper, we discuss a new theory of similarity which
does apply to any representation whatever, based on the
following intuition: Two representations are similar to the
extent that there is a simple transformation which distorts
one representation into the other. We call this measure of
(dis)similarity representational distortion.

Making this intuitive notion precise requires (1) specifying
what transformations the cognitive system can apply and (2)
defining a simplicity measure over these transformation. We
shall see that relatively general specifications of (1) and (2)
suffice to develop a rich theory of similarity.

Transforming representations
Representational ~ distortion  assumes that  similarity
assessments involve estimating the complexity of the
transformation between two representations. Exactly this
process of assessing transformation complexity is at the core
of an influential approach in a different area of cognitive
science, perceptual organization (e.g., Palmer, 1983). We
therefore begin our discussion with examples from
perception, and explain how these can be related to
similarity. We then consider how the approach may be
applied more generally.

Figure 1 shows a pattern in which simple transformations
are evident. The left and right parts of the figure are related
by the geometric transformation of translation; moreover,
this transformation also relates the left and right halves of
these two parts of the figure.

Figure 1. A structure generated by the transformation of
repeating the same pattern.
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In the study of perceptual organization, the presence of these
transformational relations is said to give the stimulus a sense
of cohesion or “goodness!.” But according to the theory of
representational distortion, these transformations can also be
viewed as establishing the similarity between parts of the
stimulus.

Figure 2 illustrates a case where the goodness of a figure
derives from the composition of two transformations:
symmetry and black-white inversion. The two halves of the
stimulus are perceived as highly similar.

Figure 2. Symmetry and black-white inversion.

According to the transformational viewpoint concerning
perceptual organization, the transformations that can be
found in a stimulus determine its goodness. We have noted
that simple transformations also correspond to strong
similarity relations within the stimuli. This supports our
suggestion that the representational distortion measures
(dis)similarity.

A theory of similarity based on transformations depends,
of course, on the transformations that the cognitive system
can find. These are relatively easy to study in perception,
where transformations correspond to manipulations of an
external  stimulus. But both  representations  and
transformations over them are more difficult to study in
higher level aspects of cognition—we do not have access to a
person's representation of, say, “robin” or “blackbird,” or the
putative transformations (e.g., adding/deleting a red breast,
complex deformations of shape, adding/deleting facts about
behavior, and so on). This difficulty is, of course, analogous
to that faced by geometric and featural views: There is no
direct access to the location of objects in a putative mental
space, or to the putative set of features associated with an
object.

The representational distortion account has the following
advantage with respect to other theories, however: It can be
developed in very general mathematical terms, providing an
account to which the operation of the cognitive system will
approximate. This general formulation provides the basis of
a powerful psychological theory of similarity.

Framework for representational distortion
We make the most general possible assumption concerning
the set of allowable transformations (compatible with the

! The intuitive notion of goodness may be operationalized in
terms of a number of empirical measures: detectability,
discriminability, and resistence to noise.
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computational view of mind): that it is the set of
computable functions. We also define the complexity of a
computable function in a very general and standard way, by
its Kolmogorov complexity? (see Li & Vitanyi, 1993).
Informally, the Kolmogorov complexity of a function is the
length of the shortest computer program that computes that
function. Thus, the intuition is that complex transformation
are those that can only be expressed by long programs;
simple transformation can be expressed by short programs
(see Li & Vitanyi’s excellent textbook for proofs that
Kolmogorov complexity is language-independent and
generally well-defined).

Putting these ideas together, the representational distortion
between two representations, A and B, is determined by the
length of the shortest program which distorts A into B>.
This is expressed symbolically by the notation: K(BIA). This
formulation is both straightforward and technically
attractive—it allows the rich theory of Kolmogorov
complexity developed within mathematics and computer
science to be exploited; and more specifically, it relates
directly to specific proposals for a mathematical account of
similarity advanced by Li & Vitanyi (1993), who define a
natural family of measures of “information distance™ between
representations* (also see Chater, 1996 for a related
application of Kolmogorov complexity).

We stress again that representational distortion, like the
geometric and featural views, is defined over mental
representations. To see why this is crucial, consider the
psychological similarity of two unrelated bursts of white
noise. At an acoustic level of description, where the bursts
are considered as amplitudes varying over time, a very long
set of instructions would be required to transform one of
these bursts into the other. But the two noises may,
nonetheless, be judged to be similar, even to the point that
the auditory system cannot distinguish the two. According to
our account, this is because the mental representation of the
two bursts does not include minute detail of each aspect of
the noise. Instead, they are concemed with a more general
description, perhaps concerning the duration, loudness,
location and so on of the burst. These properties may be
largely or completely matched between stimuli, so that the
mental representations of the two sounds are identical, or
differ only slightly. We may assume that the information
distance between these representations is small and this is
reflected in the high psychological similarity between the
two noises.

We stress also that the representational distortion found by
the cognitive system will not comrespond exactly to

2 Related ideas are discussed under the heads minimum message
length, minimum description length, and algorithmic
complexity theory.

3 This length of program transforming from A to B is not
necessarily the same as that transforming between B to A. We
discuss this asymmetry further below.

4 We do not have space here to summarize Li & Vitanyi’s
elegant analysis, but it provides a promising general framework
for a psychological theory of representational distortion.
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information distance. Discovering a short transformation
between one representation and another may require arbitrary
amounts of computation. For example, the sequences 1537
23906and 307447 8 1 2 are very simply related—if
they are interpreted as base 10 numbers, the second is double
the first. Hence the representational distortion between the
two sequences is small; however, the cognitive system may
not find this short transformation. Hence the system’s
estimate of representational distortion will be higher than the
true representational distortion; and the similarity between
the two representations may be underestimated. We assume
therefore only that the cognitive system can approximate
representational distortion to some degree. Indeed, finding the
representational distortion between arbitrary representations
is known to be an uncomputable function, and hence must
necessarily be approximated (Li & Vitanyi, 1993).
Moreover, note that this approach does not rely on a
symbolic model of cognition—indeed, a recent connectionist
model of metaphor and similarity (Thomas & Mareschal,
1996) can be viewed as a partial implementation of this
approach.

As we have noted, this account applies to representations
of all kinds, whether they are spatial, feature-based or,
crucially, structured representations. We now note that
spatial and featural models can be seen as special cases of
representational distortion. The mathematical details have
been omitted for brevity (see Chater & Hahn, in preparation).

Spatial model. Representations are limited to vectors of
numbers. Transformations are limited to sequence of
“nudges” of unit length (this length can be thought of as a
limit of resolution in the space) and a “program” consists of
a sequence of such nudges. If nudges can be in any direction,
then the simplest transformation between two points is
given by the distance of the straight line path between the
points (this is the length of the “program” of concatenated
nudges)’. This gives the Euclidean version of the spatial
model. Restrictions to nudge direction to the axes gives a
city-block version; allowing non-orthogonal axes derives the
general Euclidean scaling model (Ashby & Townsend, 1986).

Featural model. Representations are limited to sets of
features. Transformations are limited to the deletion and
addition of features one by one. Thus a program consists of a
sequence of deletions and additions. Assuming differential
length for deletion and addition (specifically, deletion has the
shorter code, because additions require specifying whar is to
be added), program length is then determined a weighted sum
of the number of features that object A has and object B does
not (which must be deleted) and that B has but A does not
(which must be added). The length of this program is a close
variant of Tversky’s (1977) theory of similarity.

Aside from including existing accounts as special cases,
the current approach applies quite generally, to mental
representations and transformations of any kind. This general
idea has been little explored in cognitive psychology. A rare
exceptions is Franks and Bransford (1975), whose

5 we ignore the cost of specifying the direction of a nudge for
simplicity.
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experiments suggest that category typicality may be related
to the number of steps required to transform representations
from the prototype.

We now briefly consider some basic properties of
representational distortion that imply that it is a promising
starting point for a psychological theory of similarity,
before showing how it can be used to derive the Universal
Law of Generalization.

Flexibility. The fact that similarity is defined over
general representations takes account of the great flexibility
of human similarity judgements (e.g., Medin, Goldstone &
Gentner, 1993), because similarity is defined over
representations of objects, and the goals and knowledge of
the subject may affect the representations which are formed.
As with the feature-based models (Tversky, 1977), this
flexibility has both advantages, in terms of accounting for
the flexibility of people's similarity judgements, and
disadvantages, from the point of view of deriving testable
empirical predictions.

Self-similarity is maximal, because no program at all
is required to transform an object into itself.

Asymmetry. Representational distortion allows for
asymmetry in similarity judgements: K(xly) is not in general
equal to K(ylx). This asymmetry is particularly apparent
when the representations being transformed differ
substantially in complexity. Suppose that a subject knows a
reasonable amount about China, but rather little about
Korea, except that it is ““rather like" China in certain ways.
Then transforming the representation of China into the
representation of Korea will require a reasonably short
program (which simply deletes large amounts of information
concerning China which is not relevant to Korea), while the
program transforming in the reverse direction will be
complex, since the minimal information known about Korea
will be almost no help in constructing the complex
representation of China.  Thus, we would predict that
K(ChinalKorea) should be greater than K(KorealChina). This
is observed experimentally (Tversky, 1977). In some
contexts, such as Shepard’s Universal Law of Generalization
below, similarity judgements are required to be symmetrical.
This can also be modelled naturally by the average of the
distances in either direction: D(x,y) = 1/2(K(xly)+K(ylx)).
Background knowledge can be taken into account by
assuming that this forms an additional input to the program
which must transform one object into another. For example,
if the arabic number system is part of your background
knowledge, then you may perceive similarities between
otherwise dissimilar patterns (i.e., dissimilar as mere patterns
of dots), because numerical transformations will be available.

The Universal Law of Generalization
Shepard (1987) observes what he suggests may be a
“Universal Law of Generalization,” which applies across a
wide range of stimuli, and applies to both people and
animals. Shepard suggests that this is one of the most
important regularities in the study of cognition, and that
explaining it is therefore a central theoretical goal for
psychological research. He proposes a derivation from the
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perspective of the spatial model of similarity, in terms of a
set of assumptions about the “shape” and “size” of categories
in an internal mental space. Here we aim to provide a
simpler and more general explanation of the Universal Law,
which can apply to mental representations of all types.

First, what is the Universal Law of Generalization?
Suppose that a subject is trained to identify a set of stimuli.
They are then tested and their errors used to compile a
confusability matrix representing the probability that each
stimulus is misidentified as each of the others. These
confusion probabilities can be viewed as measures of
similarity between mental representations of the stimuli, on
the assumption that similar representations are more likely
to be confused with each other. These probabilities are
asymmetrical: i.e., the probability that stimulus x is
idenified as stimulus y, written P(“y"lx), is not, in general,
equal to the probaility that y is identified as x, P(“x"ly).
Symmetry is imposed by using the measure:

1
"Ln " 2
gen(x,y)=|:Pr("x"ty)Pr("y"|x):|
Pr("x"lx)Pr("y"ly)
This measure is used as a proximity measure between
representations of  the stimuli, and non-metric
multidimensional scaling (MDS) can then be applied. MDS
locates the stimuli in a multidimensional space, so that
distances between pairs of stimuli, d(x,y) in the space
preserves the rank order of the proximity measure between
pairs of stimuli as far as possible. Shepard’s Universal Law
of Generalization is the remarkable empirical generalization
that confusability is an exponentially decaying function of
distance in the underlying “internal” space:

M

gen{x' y) = z—dfx,n {2}
We now consider how this can be derived using
representational distortion. Let us assume that confusability
arises because internal “noise” N degrades the representation
of the remembered stimuli. We label the n training stimuli
§1...5;...5, and the noise degraded representations of these
stimuli D1...D;...Dy (Figure 3). The cognitive system must
compare the fresh presentation 7 (which is actually identical

to the jth stimulus) to the degraded stimuli, and assess the
probability that Tj is identical to each of the n stimuli,
P(?}:i) (Figure 4).

First, we assume that subjects respond using “matching”,
as in standard models of choice (e.g., Luce, 1963) used to
explain confusion data; that is, they choose responses in
proportion to their probabilities of being correct, rather than
always choosing the most probable response. This means
that the probability, p(“i"’lj) that a subject responds “i” to a
test stimulus Tj is subject’s estimate of probability that that
the stimulus has that identity, P(T, =1).
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Figure 3. Stimuli, §;, degraded by noise.

~D7
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Figure 4. The target is presented (the square blob). The
cognitive system must decide how likely it is to have
generated each of the degraded representations D;.

Conditional on the locations of the Di, the probability that
each of the D; is the degraded version of the target T; is

given by.

P(N(T,)=D)
;P(N(Tﬂ.): D,)
The D; will be randomly generated from the original S; by

the application of noise N. Therefore, the probability of
responses given by (3) must be weighted by the probability
that the D; have these particular values (i.e., that the §;

degraded into these D;). Calculating this quantity exactly is
difficult, because the denominator involves all the Dy, and

therefore the probability of each possible configuration of all
the Dy must be considered. But we can approximate the

denominator by assuming that P(T; degraded to Sy) is a
reasonable approximation to P(7; degraded to Dy).
Sometimes noise will move the Sy towards T}, so that it is
more probable; sometimes it will move the §; away from

P(TJ =i|D|...D,|)='

3
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Tj, so that it is less probable. We assume that, to a

reasonable approximation, these cases balance out®, This
approximation to the denominator is independent of i, so that
it can replaced by a constant. Therefore, (3) therefore can be
rewritten:

P(T,=ilD,)=CxP(N(T;)= D)) (E))
where C™' = Z P(N(T,)= S,). The expression (4) gives the
k

probability of identifying the target as stimulus S;, given
that the noisy version of §j, i.e., Dj, is given. But the D; is
not given—instead, it has a distribution (over the entire
"space," Sp, of computable objects) which is determined by
the noise operating on §;. Specifically,
P(T, = i)=Cx XP(N(S )= D)P(N(T,)= D) (5)
D e Sp

To evaluate these probabilities we need to specify the
nature of the noise. Rather than make specific assumptions
about the character of this noise (e.g., that representations
consist of binary strings, whose “bits” are flipped with some
probability), we make the much more general assumption
that representations are distorted by the action of an arbitrary
“noise” program which acts on the representation as input,
and produces a corrupted representation as output. For
convenience, we make the psychologically unrealistic
assumption that programs are written as binary strings on an
arbitrary Universal Turing Machine, U. Fortunately, the
theory of Kolmogorov complexity guarentees that the
calculations below are independent of the choice of
programming language or machine, so that no such
unrealistic assumption concerning the computational
processes which can corrupt internal representations in the
cognitive system need be made. We assume that the
probability that noise has degraded the original presentation
of T; into the degraded stimulus D; is given by the
probability that the noise program, prog, which is a
randomly generated binary string, when used as a program for
U will take Tj as input and produce D; as output’. We also
assume that, at each flip, there is a probability g that the
flipping process is stopped®. If g is high, the noise programs
will typically be short, and hence have relatively little effect;
if g is low, programs will typically be long, and hence has a
greater effect. Thus g is a parameter controlling the noise
level.

The probability of generating any particular program prog
as a random binary string is clearly:

6 These will not balance perfectly, because random
displacements will more often move the §; away from the T,
since we are in a high dimensional spaee.

7 Normalization is required to deal with the binary strings
which are not well-formed programs. We ignore this
complexity.

8 The metaphor of generating programs by random coin flips
is one way of motivating Universal A Priori Probability, see Li
& Vitanyi, (1993).
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P(prog) = [1—;—“’-) ©)

where Il(prog) is the length of prog. The probability that a
particular prog will transform 7j into Dj is:

P(N(T)=D)= Y Pr(prog)

prog:Utprog. T, 1=D,
2 ]—Ilmgz

prog:Ut prog. T, 1= D, ( 1- q

A fundamental theorem of Kolmogorov complexity, the
conditonal coding theorem (Li & Vitanyi, 1993), implies
that, to an approximation, only the most probable (i.e., the
shortest) program which transforms 7; into Dj , whose
length is defined K(Djl?}), must be taken into account:

o)

2—J(p| = 2-Kw,|r,1 {8)
prog:Uiprog. T 1=D,

and we can adapt this to the present case, where the exponent

is not 2, but has the larger value 2/(1-g), because here the

smaller terms corresponding to longer programs fall off even

more rapidly. Thus, we can replace (7) by:

) -K{(D,IT,}
P(N(T,)=D) = (—] ©)
1~q

Using this trick for the two noise terms in (5), we obtain:
b3

-K{(D 1§ )-K(D IT )
2 i LS|
[__) (10
l1-g¢
D eSp

We further assume that K(D;l5) is approximately equal to
K(SjlD;), so that the exponent becomes K(SjlD;) +K(D,~Ii’}-)
(this will be true on the reasonable assumption that D; and
Sj) have approximately equal complexity). Thus (10) is now
a weighted sum of ways of distorting 7; into S;), via D;,
summed over all possible intermediate points D;:

(% ¥

[ 2 ]—(K{.’FJ.ID‘ Ve R(DT, :)
D e Sp

1~

This can be simplified by the following observation (see
Figure 5). Notice that we can define a universal
programming language which operates in two phases,
corresponding to two separate pieces of the program: first it
turns its input into an intermediate form; and then it turns
the intermediate form into the output. We assume that
programs are generated by a sequence of random bit flips,
with a probability 1-g of each flip being the last, as described
for the noise process above. The probability of randomly

P(T,=i)=Cx

(1n
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generating a program that distorts 7j into Si can be expressed

D8?
DS§?
T
S8
D8? Dg?  D8?

Figure 5. The target (the square blob) can be distorted into
the stimulus S8 by an intermediate distortion to D8—the
location of which is unknown. Summing probability over
all possible routes (the thin arrows) turns out to be the
effectively the same as considering only the shortest direct
route, shown by the thick arrow.

in two ways. First, we can sum over -all the possible
intermediate representations D;, which yields (11)%; second
we can note that the only path which need be considered is
the shortest path, which has length K(S;Tj). This means
that (11) is equivalent to:
~(Kkis,1T,1)

I-q
Putting our analysis together, this means that the probability
of confusing S; with a previously encountered S;, P(Tj=i), is
given by:

2 -(ki5,17,))
P(T.=1)e [—] (13)
J 1-g
Substituting into (1) gives
-K(515,) -K(5,15,) %
s e
1- 1=

gen(i, j)=| ~—2 Z (14)

2 K05, 13, ) 2 ~K(3,15,)
l-g \1-¢

Note that K(xlx) is O, because the null program is sufficient
to “distort” a representation into itself. Therefore

27K = 2% =1 for all x, and hence we can simplify:

-Ki(5,15,) -Ki515) é
;i 2 ) 2 S
l-gq 1—-4g

2 —%ems,u, 1+ K0S, 15,1
[1 - ‘?J

9 Note that in considering the probability of generating a
subprogram which makes either of the two steps, we need only
consider the length of the shortest such program, i.e., the
Kolmogorov complexity of the step.
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-D(S,.5,)
2
o (15)
I-¢

where D is the symmetric measure of representational
distortion introduced above. Thus generalisation is an
exponentially decaying function of distance in an internal
space, if distance is measured in terms of representational
distortion. That 1is, Shepard’s Universal Law of
Generalization can be viewed as naturally following from the
representational distortion theory of similarity.

Conclusions

We have outlined a new psychological theory of similarity,
based on the distortion between representations. This
distortion can be quantified by the length of the shortest
program which converts one representations into the other.
This theory has a number of interesting psychological
properties, and provides a derivation of Shepard’s (1987)
Universal Law of Generalization.
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