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The generalized universal law of generalization
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Abstract

It has been argued by Shepard that there is a robust psychological law that relates the distance between a pair of items in

psychological space and the probability that they will be perceived as similar. Specifically, this probability is a negative exponential

function of the distance between the pair of items. In experimental contexts, distance is typically defined in terms of a

multidimensional space—but this assumption seems unlikely to hold for complex stimuli. We show that, nonetheless, the Universal

Law of Generalization can be derived in the more complex setting of arbitrary stimuli, using a much more universal measure of

distance. This universal distance is defined as the length of the shortest program that transforms the representations of the two items

of interest into one another: The algorithmic information distance. It is universal in the sense that it minorizes every computable

distance: It is the smallest computable distance. We show that the Universal Law of Generalization holds with probability going to

one—provided the probabilities concerned are computable. We also give a mathematically more appealing form of the Universal

Law.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Shepard (1987) has put forward a ‘Universal Law of
Generalization’ as one of the few general psychological
results governing human cognition. The law states that
the probability of perceiving similarity or analogy
between two items, a and b; is a negative exponential
function of the distance dða; bÞ between them in an
internal psychological space. A large body of empirical
data, from a variety of psychological domains, has been
collected in support of the Universal Law, and
theoretical derivations have been provided to support
it, in specific mathematical settings. Shepard emphasizes
that the structure of the mental spaces in which items are

represented may have a variety of different forms,
depending on the nature of the items that are being
represented. Such spaces can range from spaces with
Euclidean or Minkowski metrics, to tree structures
(Pruzansky, Tversky, & Carroll, 1982). In practice,
though, both empirical evidence and theoretical justifi-
cations (Shepard, 1987; Tenenbaum & Griffiths, 2001)
generally focus on cases where stimuli can be embedded
in a Euclidean space. This focus on traditional metric
spaces raises two interesting issues, one empirical and
one theoretical.
The empirical issue concerns whether the Universal

Law applies where confusability data is best modelled
by non-standard metrics. Evidence on this question
appears to be sparse, perhaps because scaling techniques
that embed items in Euclidean spaces are particularly
well-developed and widely used. One piece of evidence
that the law may extend to other metrics is given in
(Cunningham & Shepard, 1974). Confusability data for
Morse Code signals collected by (Rothkopf, 1957) was
analysed by a very general scaling method, which makes
only the metric assumptions. This data shows qualita-
tively the same pattern as in conventional non-metric
multidimensional scaling analysis, consistent with the
Universal Law. Below, we shall follow Shepard in
assuming that the Universal Law does hold good, using
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whatever metric is most appropriate for representing the
data.
This assumption then raises the theoretical issue of

how the Universal Law is to be explained. Current
theoretical proposals focus, quite appropriately, on the
Euclidean case (Shepard, 1987; Tenenbaum & Griffiths,
2001). But if the Universal Law applies to a range of
different metrics, then likely as not for each metric, a
separate explanation of why the Universal Law holds in
that metric appears to be required. And if it turns out
that, indeed, the law is universal, it is not clear how this
fact can be explained, aside from as a remarkable co-
incidence. Thus, if we are to provide a unified
explanation of the Universal Law of generalization
which applies to stimuli which come from different
underlying spaces, it seems that a more general analysis
will be required. The present article attempts to provide
such an analysis.
Specifically, we note that there exists a universal

cognitive metric, the ‘information metric’ (Bennett,
Gács, Li, Vitányi, & Zurek, 1998), that accounts for
all possible similarities that can be perceived. It assigns
nearly as small a distance between two objects as any
cognitive distance will do. Thus, while the positive and
negative of the same picture are far away from each
other in terms of Euclidean distance, they are at almost
zero distance in terms of universal distance because
interchanging the black and white pixels transforms one
picture into the other. The universal cognitive metric,
also called ‘information distance’, is a mathematical
notion derived from mathematical logic, computer
science, information theory, and the theory of random-
ness. It is an ‘ideal’ notion in the sense that it ignores the
limitations on processing capacity, or the evolutionarily
acquired goal-driven restrictions of the cognitive system.
Nonetheless, we show the following concrete general-
ization of the Universal Law (of generalization): if we
randomly pick items a and b; where we allow the most
complex objects, then with overwhelming probability
the Universal Law of Generalization holds with the
internal psychological space, where the metric of that
space is a specific, very general, metric, the ‘information’
metric.

1.1. Level of abstraction of the analysis

It is reasonable to ask whether an ‘ideal’ notion such
as information distance, which idealizes away from
processing details of the cognitive system, is too abstract
to be of use in explaining specific psychological data. We
suggest the following viewpoint: (i) The new treatment
marks the ultimate limits of the validity of the Universal
Law of Generalization; (ii) the Universal Law arises
from very general features of the cognitive system, and
hence is appropriately explained at an abstract level; and
(iii) the theoretical results, although requiring unlimited

computing power and computing time in worst-case
scenarios, are relevant in practical situations where the
problem instances are often simple and, moreover,
where only approximate and non-optimal answers are
required.
Let us expand on this a little. In (Feldman, 2000) the

question of the subjective difficulty of learning a
Boolean concept (that is, a formula in elementary
mathematical logic) is analysed, with the purpose of
giving a more fundamental underpinning of classifica-
tion of Boolean concepts by their ease of learning by
humans, presented in (Shepard, Hovland, & Jenkins,
1961). The empirical result described is that the
subjective difficulty experienced by humans appeared
to be directly proportional to the length of the shortest
equivalent logical formula (Feldman, 2000). These
results suggest that the cognitive system compresses
the Boolean concept to its smallest equivalent Boolean
formula, and learns that at a rate that is related to its
length. Yet, according to basic results from computer
science, compression of Boolean concepts to its smallest
equivalent Boolean formula by any general method in
human or machine, is out of the question. The problem
is NP-hard (Garey & Johnson, 1979), which means that
to solve even moderate size instances of the problem will
require more than the life time of the universe for all
contemporary and future computing machines (and
humans) alike—at least, according to universally ac-
cepted assumptions in mathematics. Yet in the experi-
mental situation of (Feldman, 2000) this problem was
apparently resolved both explicitly by the experimenters
and implicitly by the cognitive system of the subjects.
How can that be? The answer, as in many such practical
cases, is that the actual problem instances were
extremely simple. In real life, even for mathematically
hard (NP-hard) problems, the actual instances one
meets are simple or regular enough to be amenable to
fast cognitive solution, either optimally or approxi-
mately. By the same token, even though our analysis
seems to rely on unlimited capabilities by the cognitive
system, in the real-life situations, which are mostly
regular, the cognitive system can get by with pedestrian
and plausible capabilities and fully satisfy the results of
the kind of abstract analysis presented here.
The level of abstraction that we use may nonetheless

raise concerns among psychologists and cognitive
scientists. For example, in using the very notion of
algorithmic, or Kolmogorov, complexity, introduced
below, we will be considering a quantity that is
uncomputable. Assuming that the cognitive system is
limited to the computable, this implies that Kolmogorov
complexities are not, in general, calculated by people (or
for that matter by computers). Nonetheless, it turns out
that the general theoretical framework can be ‘scaled-
down’ to provide computationally concrete and useful
computational and statistical methods (Gao, Li, &
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Vitányi, 2000; Rissanen, 1986, 1989; Wallace & Boulton,
1968; Wallace & Freeman, 1987), and that some of these
have been used as the basis for models in cognitive
science (Brent & Cartwright, 1996; Goldsmith, 2001;
Pothos & Chater, 2002).
This situation seems to us a common one in science. If

we are interested in gaining insight into some complex
system, it is common to attempt to formulate a radical
(and knowingly unrealistic) idealization, that one hopes
capture the minimal assumptions needed to make
theoretical progress. In filling out more detailed and
concrete models that will ultimately be required to apply
the account to specific circumstances, one hopes that, at
least reasonably often, the general findings from the
simplified general case will hold good. Almost invari-
ably, while the level of formal rigor in the highly
abstract analysis may be reasonably high, there will be
little in the way of rigorous formal justification that the
approach will still work well, even when its sweeping
assumptions are replaced with a more detailed concrete
model. For example, in physics, highly complex
processes are routinely modelled with deliberately
simplified assumptions—e.g., the Ising model, models
of laser function, or almost any model in the ‘complexity
theory’ in physics (Bak, 1997; Cartwright, 1983).
Equally, in economics, human behaviour is routinely
modelled as an aggregate of decisions by agents
following the prescriptions of decision theory, which is
computationally intractable, requires an unrealistic
amount of information to be available to the reasoner,
and which is known to be a poor model of the
psychology of human decision processes (Akerlof &
Yellen, 1985; Friedman, 1953; Kreps, 1990; Simon,
1959). Nonetheless, by making such assumptions, these
disciplines, and science in general, have been able to
make non-trivial progress. We hope that the high level
of abstraction involved in the analysis given may at least
potentially support such progress—but we grant that the
degree to which these results can ultimately be scaled-
down to build theories that make detailed psychological
predictions about similarity and confusability (rather
than merely capturing high level generalizations, as
here) remains a project for further research.

1.2. The Universal Law of Generalization

Although intended to have broader application, the
Universal Law of Generalization is primarily associated
with a specific experimental paradigm—the identifica-
tion paradigm. In this paradigm, humans or animals are
repeatedly presented with stimuli concerning a (typically
small) number of items. We denote items as a; b;y; the
representations of the corresponding perceptual stimuli
as Sa;Sb;y; and the representation of the correspond-
ing responses as Ra;Rb;y : So, for example, suppose
that the experimental paradigm requires identifying

English phonemes. Then the representations a; b;y;
stand for the representation of the individual phonemes
of English. The representations Sa;Sb;y stand for
representations of the specific perceptual stimuli asso-
ciated with these phonemes-e.g., the acoustic and/or
phonetic representations of the particular instantiations
of those phonemes that are used in the experiment.
Finally, the representations Ra;Rb;y encode the
responses (which might be vocal or manual, depending
on the experimental set-up) corresponding to each type
of phoneme. We assume that in every specific situation
there is an appropriate stimulus–response space.
In the identification paradigm, experimental partici-

pants are required to associate a specific, and distinct,
response with each item—a response that can be viewed
as ‘identifying’ the item concerned. The stimulus Sa is
associated with item a and is supposed to evoke
response Ra: With some probability, stimulus Sa can
evoke a response Rb with baa: This means that item b is
‘confused’ with item a; although the use of this term is
purely descriptive. We leave open, for now, the question
of whether these responses arise from confusion of
perception, or memory, or through deliberate general-
ization from one item to another.
The matrix of PrðRajSbÞ values is known as the

confusability matrix. In these terms, the Universal Law
can be written as

PrðRajSbÞ is proportional to e�dða;bÞ;

although we shall see below that the precise formulation
is somewhat more complex. The law is not straightfor-
ward to test, because psychological distance dð�; �Þ can
only be inferred by indirect means. Moreover, even for
the simplest sets of stimuli, such as pure tones differing
in frequency, the nature and even existence of the
corresponding internal psychological space, in terms of
which distance can be defined, is highly controversial.
Shepard has, nonetheless, provided an impressive case
for the universal law.

1.3. The empirical case for the Universal Law

Shepard has shown that the technique of non-metric
multidimensional scaling, of which he is a pioneer, can
be used to derive an underlying metric psychological
space from the confusability data itself. Specifically, the
confusability data are used to derive a rank ordering of
the distances between items on the basis of the relations
between corresponding stimuli and responses (imposing
certain assumptions, for example, to ensure that the
‘distance’ between two points is symmetrical, so that for
all a; b; we have dða; bÞ ¼ dðb; aÞ: This rank ordering is
fed into a non-metric multidimensional scaling proce-
dure, which aims to find a way of embedding the items
in a low dimensional Euclidean space. The goal is that
the rank ordering of distances between the points should
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correlate as well as possible with the rank ordering of
confusabilities between items. The underlying rationale
for this procedure is that the embedding of the items in a
low-dimensional Euclidean space can be viewed as a
model of the underlying psychological space used by the
experimental participants. The probability with which
two items are confused will be determined by the
distance between them in this psychological space—the
closer together they are, the more likely they are to be
confused with each other. Given that we have a model of
the putative psychological space, and hence can measure
the distance dða; bÞ between items in that space, we can
therefore assess whether the rate at which the prob-
ability of confusion decays is a negative exponential of
the distance between that pair of items in psychological
space, as stated by the Universal Law.
Shepard has amassed a large and diverse body of

empirical data that, when analysed in this way, are
consistent with the Universal Law. The diverse set of
data that conforms to the law includes confusions
between linguistic phonemes (Miller & Nicely, 1955),
sizes of circles (McGuire, 1961), and spectral hues, in
both people (Ekman, 1954) and pigeons (Guttman &
Kalish, 1956), and spatial generalization by honeybees
(Cheng, 2000). This evidence builds an impressive case
for the Universal Law. There are, though, a number of
points on which the case might be challenged.
The first challenge concerns the ‘universality’ of the

Universal Law. We have already noted that, with few
exceptions, there is little direct evidence that the
Universal Law holds for stimuli whose confusability
matrices cannot be readily embedded into a Euclidean
space. As we have said, we set this issue aside
throughout this paper, and assume that the Universal
Law does apply in general. But, perhaps more worrying,
is that there appear to be large numbers of data sets
(Nosofsky, 1985, 1988a, 1988b) from identification
paradigms which provide prima facie counterexamples
to the Universal Law. Specifically, in these cases,
confusability appears to be a Gaussian, rather than a
negative exponential, function of psychological distance:

PrðRajSbÞ is proportional to e�dða;bÞ2 :

Indeed, the Gaussian generalization function is so
successful empirically that it is central to a widely used
class of exemplar models of categorization (Nosofsky,
1985; Medin & Schaffer, 1978).
The empirical picture is complex, but Shepard (1987)

notes that one plausible reconciliation of the Universal
Law with apparent examples of Gaussian confusability
is that the Gaussian confusability originates from
problems of perceptually distinguishing the stimuli
(indeed, stochastic measurement errors almost always
have a Gaussian distribution), whereas the Universal
Law applies when perceptual discrimination is not the
limiting factor in performance. From the present

perspective, then, the Universal Law applies where the
determining factor in confusability might be confusion
of representations in memory; or, from Shepard’s
interpretation of the data, the Universal Law applies
where the critical variable may be judgments concerning
what we calls ‘consequential regions.’ Elaborating on
this viewpoint, Ennis (1989) provides a useful mathe-
matical analysis of how perceptual noise might interact
with non-perceptual confusability in accordance with
the Universal Law.
A second possible challenge concerns the difficulties

of curve-fitting. Comparing different classes of model
for fit with a set of data is a controversial and subtle
matter and fits are frequently surprisingly inconclusive,
even when very large sets of data are available (Myung,
Forster, & Browne, 2000b). Moreover, Myung, Pitt, and
colleagues (Myung, Balasubramanian, & Pitt, 2000a;
Myung & Pitt, 1997; Pitt, Myung & Zhang, 2002) have
recently argued that comparisons between models are
frequently systematically biassed because one class of
models is less restrictive than the other with respect to
the class of data sets that it can model. This can lead to
the counterintuitive consequence that, using standard
statistical methods, one may be likely to conclude that
the data were generated by model class A rather than B;
irrespective of whether it was generated by model class
A or B: Fortunately, however, the exponential fares
relatively well from the point of view of this kind of
analysis, at least in relation to the natural comparison
with the power law which, in this context, would hold
that for some positive constant c;

PrðRajSbÞ is proportional to dða; bÞ�c:

One would expect to be able to distinguish the two
possibilities for large sample sizes. As far as we are
aware, though, recent model comparison techniques
such as those suggested by Myung and Pitt have not
been applied to confusability data.
A third possible concern, which we have touched on

above, is that pinning down the structure of internal
psychological spaces is a notoriously difficult matter,
and one that can be tackled from a range of theoretical
perspectives, differing from that which Shepard adopts.
Indeed, the problem of mapping magnitudes, such as
sound pressure, onto a one-dimensional internal sensory
scale (perceived loudness) has occupied the attention of
psychophysicists for a century and a half without
apparent resolution. Most famously, Fechner (1966/
1860) Fechner (1966) argued for a logarithmic relation-
ship between physical intensity and internal magnitude,
whereas Stevens (1961) argued for a power-law re-
lationship. Not all theorists will be confident in relying
on non-metric multidimensional scaling of confusability
matrices as the solution to all these difficulties
(see Falmagne, 1986, for a review of the complexities
of this area). Moreover, some theorists have even
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doubted the coherence of internal scales of any form
(Laming, 1997).
A fourth kind of concern, and one which the present

paper seeks to address, is that it is not clear whether or
how distance metrics can be applied at all to representa-
tions that the cognitive system may use for many kinds
of complex stimuli. It is typically assumed that the
cognitive representation formed of a visually presented
object, a sentence or a story, will involve structured

representations (e.g., Biedermam, 1987; Fodor, Bever, &
Garrett, 1974; Fodor & Pylyshyn, 1988; Marr, 1982;
Minsky, 1977; Schank & Abelson, 1977; Ullman, 1996).
Structured representations can describe an object not
just as a set of features, or as a set of numerical values
along various dimensions, but in terms of parts and their
interrelations, and properties that attach to those parts.
Thus, in describing a bird, it is important to specify not
just the presence of a beak, eyes, claws, and feathers, but
the way in which they are spatially and functionally
related to each other. Equally, it is important to be able
to specify that the beak is yellow, the claws orange and
the feathers white—to tie attributes to specific parts of
an object. Although many distance metrics between
structured representations can be envisaged (and we
shall describe just such a metric below), it may appear
that each metric will have to be specifically tailored to
the particular stimuli concerned, and moreover, that
there may be no non-arbitrary way of deciding on an
appropriate metric for particular classes of structured
representation. Thus, the principles for determining the
similarity between the appearance of different kinds of
bird, different Shakespearian speeches, or different
court cases, might appear necessarily beyond a single
style of analysis. And without an agreed metric for
determining distance between items, we cannot even
apply the Universal Law, let alone empirically confirm
it.
This line of argument raises the possibility that the

Universal Law may be restricted in scope to stimuli
which are sufficiently simple to have a simple multi-
dimensional representation—perhaps those that have no
psychologically salient part-whole structure. We shall
argue, however, that the Universal Law may nonetheless
be applicable quite generally, since all these aspects are
taken into account by the algorithmic information
theory approach. This leads to a more generalized form
of the Universal Law, as well as to a mathematically
more appealing and less arbitrary form. We will suggest
below that the universal cognitive distance that we
describe can serve as an appropriate metric for compar-
ing representations of all kinds, including structured
representations.
The fifth, and final, concern that we consider is more

fundamental. This is that the Universal Law presup-
poses that the confusability between items can be
properly captured by a metric. A metric must have

three properties (we state these precisely below):
distances must be symmetrical (the distance from
Warwick to Amsterdam is the same as the distance
from Amsterdam to Warwick); distances must obey
the triangle inequality—the distance from Warwick to
Amsterdam via Paris must be no greater than the
direct distance between Warwick and Amsterdam;
and distances must obey the identity axiom, which
implies that the distance between Warwick and
Warwick is 0.
Do these properties hold in relation to confusability

data generated in psychological experiments? Each has
been challenged as unjustified, from a psychological
point of view (Tversky, 1977)—the strongest challenges
have concerned symmetry and the triangle inequality.
Let us consider first the case of symmetry. The problem
for this axiom is that, in the psychological data, there
seem to be genuine and systematic asymmetries across
many ways of measuring confusability. For example,
complex things tend to be confused with simple things;
but simple things are less often confused with complex
things. Thus, people misremember complex shapes and
simple, wobbly street plans in terms of straight lines and
right angles, unusual colors in terms of ‘focal colours’
(e.g., ‘mauve’ becomes ‘bright red’) (Bartlett, 1932). For
now, we shall leave this systematic asymmetry in
confusability aside, although we note that it may be
explicable within the mathematical framework that we
describe below. Roughly, we shall suggest that an
asymmetry may arise because it is, in a precise sense,
easier to delete rather than to add, information in
memory. Note that, while of considerable theoretical
interest, these concerns over symmetry are not immedi-
ately relevant in the context of the empirical data
relevant to the Universal Law, because symmetry is
enforced by the nature of the data analysis, as we shall
see below. Hence, we set concerns about symmetry aside
henceforth.
The triangle inequality can also be undermined by

examples of the following kind. Before the fall of
communism, people typically judged Russia and Cuba
to be highly similar counties; and moreover people
typically judged Cuba and Jamaica to be highly similar.
Hence it appears that Russia and Cuba should lie
nearby in psychological space, as should Cuba and
Jamaica. But Russia and Jamaica are typically judged to
be highly dis-similar—and hence are presumed to be
very distant in psychological space. So, in psychological
terms, it may appear that the direct ‘distance’ between
Russia and Jamaica, via Cuba, is shorter than the
distance between Russia and Jamaica direct—and hence
that the triangle inequality is violated.
As Peter van der Helm (personal communication) has

pointed out to us, there are elegant perceptual analogs
of this kind of case, which help clarify the origin of this
kind of phenomenon, illustrated in Fig. 1.
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We see that A and B appear highly similar. A can be
transformed into B, or vice versa, simply by a
translation of the diagonal line. Equally, A and C
appear highly similar. A can be transformed into C, or
vice versa, simply by a translational movement of one of
the triangles, relative to the other. But B and C appear
to be quite dissimilar. It appears that the route from B to
C via A may be shorter, in psychological terms, that the
direct route from B to C, in contravention of the triangle
inequality.
A possible response to this kind of case is that the case

against the triangle inequality is still unproven, because
it is not clear how the intuitive sense of similarity maps
on quantitatively to psychological distance. If the
relationship is highly non-linear, then the apparent
counterexamples might break down, when expressed in
terms of psychological distance, rather than in terms of
intuitive similarity. But this response, while defensible,
seems somewhat unsatisfactory, because there appears
to be a systematic cognitive force at work, which stands
in need an explanation. Specifically, where a stimulus
can be represented in more than one way, the choice of
‘foil’ stimuli can bias the perceptual system towards one
interpretation or the other. This bias then modifies
judgments of similarity (and hence of psychological
distance). Thus, when Cuba is presented in the context
of Russia, the cognitive system focuses on political
attributes; by contrast, when Cuba is presented in the
context of Jamaica, the cognitive system focuses on
geographical and cultural attributes (more generally,
factors that are ‘aligned’ between two items tend to
receive more attention than factors that are not aligned
(Goldstone, 1990; Goldstone, Medin & Gentner, 1991;
Hahn, Chater, & Henley, 1996). But this suggests that
the apparent violation of the triangle inequality can be
explained merely by assuming that the representation of
the ambiguous item is different, depending on the
comparison stimulus. Then the apparent violation of
the triangle inequality vanishes. To continue the
geographical analogy, it is simply not puzzling that
Warwick is near Cambridge and Boston is near Cam-
bridge, but that Warwick and Boston are very distant,

once one realizes that there are two distinct places,
Cambridge, Massachusetts, and Cambridge, England.
This line of explanation relies, of course, on the

assumption that similarity (and presumably confusa-
bility data) is defined over interpreted images, rather
than, for example, images represented as raw arrays of
pixels. Only from this point of view does it makes sense
to say that the same visual input can be assigned to very
different representations, which may have very different
properties when entered into a similarity comparison, or
in relation to confusability. A satisfactory cognitive
theory of confusability, judged similarity, or related
notions would, of course, be required to specify a
particular level and style of representation as a starting
point for an analysis. The fact that similarity is defined
not over ‘raw’ perceptual inputs but rather over
representations is, of course, common to any theory of
similarity. One advantage of the present approach, as we
have noted, is that the same formal machinery can apply
over representations of any kind (rather than being
limited to, say, spatial locations or bundles of features).
This means that we can provide a formal analysis that
has the potential to generalize over aspects of similarity
and confusability involving different kinds of represen-
tations; and we can proceed without being committed to
specific, and potentially controversial, representational
assumptions.3,4

1.4. Theoretical perspectives on the Universal Law

We have so far described the Universal Law as
capturing regularities in the confusability between
stimuli, in a particular experimental set-up, the identi-
fication paradigm. The term ‘confusability’ is standard
in this area, but masks a crucial theoretical issue: are
cases where the response does not identify the stimulus
appropriately viewed as ‘mere’ error, as the term
‘confusability’ suggests; or should they, rather, be
viewed as deliberate acts of generalization?
To clarify the difference, imagine that you are

presented with an identification paradigm, where the
stimuli are colored blobs, and the responses are color
words from a language that you do not know. Suppose
that a pale red shade has previously been labelled BLIB;

A

B C

Fig. 1. Cognitive example apparently violating triangle inequality.

3 In particular, we do not have to make any specific assumptions

about the ‘space’ of stimuli and responses in our analysis below—or

even whether the representational format of these stimuli and

responses is usefully thought of as contained within a space at all.
4Note, also, that allowing that information distance operates on

interpreted images, rather than raw images, does not in any way imply

that algorithmic information theory may not have an important role to

play as a theoretical framework for understanding how raw images are

mapped to interpretations. In particular, it may be that, in accordance

with the ‘simplicity principle’ in perception, discussed below, that the

interpretation that provides the shortest encoding of the ‘raw’ data is

preferred (Chater, 1996), or some variant of this idea (van der Helm,

2000).
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and a bright, focal red has previously been labelled
GILP. You are then presented with the pale red shade
again, and respond GILP. The ‘confusion’ interpreta-
tion of this response is that you simply made a
mistake—you should have said BLIB, but mis-remem-
bered (or mis-perceived) the relevant stimuli or re-
sponses (or the association between them). But the other
‘generalization’ interpretation is that your perceptual
and memory processes are entirely intact—it is
simply that you have generalized from focal red being
GILP to other red colors also being GILP. On this
interpretation, you might very well be able to report that
the pale red shade can also be called BLIB, and even
that this is how it is labelled in the training that you
have received; but you nonetheless chose to use a
different, generalized, response that you also believe to
be appropriate.
Clearly, the confusion and generalization interpreta-

tions are not mutually exclusive: making a deliberate
attempt to generalize is quite compatible with the
additional influence of memory or perceptual lapses. A
key question is which factors are most influential.
Shepard (1987) suggests that confusability data may

often arise principally from deliberate generalization.
Thus, for Shepard, a critical question arises concerning
the degree to which such generalization is justified. He
provides an elegant mathematical derivation that shows
that, given specific assumptions, items that are repre-
sented as nearby in psychological space can be expected
to have similar properties. Moreover, Shepard is able to
derive the conclusion that the probability that such
generalization is correct decays exponentially with
distance in psychological space, just as exhibited in
empirically collected confusability data. It is from this
basis of viewing confusability as arising from deliberate
generalization that Shepard describes his law as the
Universal Law of Generalization, rather than, for
example, the Universal Law of Confusability. This type
of analysis has been followed up in more recent work
(Myung & Shepard, 1996; Tenenbaum & Griffiths,
2001).
We suggest, however, that the emphasis on general-

ization may not always be appropriate. One reason is
that, in most experimental paradigms, human partici-
pants are instructed to follow identification instructions.
Hence, to indulge in deliberate generalization would
seem to directly flout what appear to be clear experi-
mental instructions. Moreover, the experimental tasks
from which confusability data are collected typically
generate substantial numbers of errors, even if partici-
pants do attempt to follow the instructions correctly. As
the personal experience of anyone unlucky enough to
have spent many hours performing identification judg-
ments will testify, such tasks are typically quite
challenging, and cannot be performed perfectly. This
suggests that plain error is certainly one factor in

confusion responses; and perhaps in some settings it is
the dominant factor.
Let us suppose, then, for a moment, that errors and

generalization both play a role in generating confusion
responses, in the kinds of experimental paradigms that
have been widely used to test the Universal Law (the
relative importance of the two factors might be quite
uneven). Suppose that some participants can be
persuaded to follow the task instructions reasonably
closely, and not engage in unsolicited generalization—
then we should obtain a relatively pure data concerning
genuine errorful confusability, and effects of general-
ization should be eliminated. Does the Universal Law
hold for such data sets? We suggest that the answer must
be ‘yes’ because so many data sets for which the law has
been tested seem likely to approximate such ‘pure’
conditions reasonably closely.
What would happen, instead, if participants were

instructed not to feel obliged to make the response that
identified the stimulus during the training phase of the
experiment, but to engage in deliberate acts of general-
ization, whenever they felt appropriate? This would be
the crucial empirical test for the Universal Law, as a law
of generalization. Experimental conditions of this kind
have not, to our knowledge, been tried. But there is
circumstantial evidence that suggests that the resulting
behaviour might not be highly lawful. The reason to
suspect this is that, across many experimental para-
digms, where performance is mediated by deliberate
decision, performance tends to be highly variable in
tasks that appear quite ill-defined from the point of view
of participants. This may be, perhaps because people
deploy all manner of strategies and background knowl-
edge in a flexible and unpredictable way. For example,
Stewart and Chater (2002) investigated generalization to
novel stimuli intermediate between two categories that
differ in variability. The effect of the variability of the
categories differed greatly between participants—some
participants classified intermediate stimuli into the more
similar, less variable category, others classified the
intermediate stimuli into the less similar, more variable
category. Further, altering the variability of the training
categories had large effects on individual participants’
generalization. When the difference in variability
between the two categories was increased, some people
increased generalization to the more variable category,
and some increased generalization to the less variable
category. Existing exemplar (e.g., Nosofsky, 1988a) and
parametric/distributional (e.g., Ashby & Townsend,
1986) models of generalization in categorization cannot
predict the large variation between participants. This
individual variation in performance suggests that there
may be no single law governing human generalization,
and therefore that performance may not fit easily into a
lawful theoretical analysis, although it is too early to
draw firm conclusions on this issue. If this is correct, we
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might expect that, empirically, the Universal Law may
apply more accurately to confusions resulting from
genuine error than from confusions resulting from
deliberate generalization.
In view of these considerations, here we shall not treat

confusion data as representing generalization; and hence
we shall not attempt to provide any justification for such
generalization. Instead, we shall adopt a neutral frame-
work, which makes quite minimal assumptions concern-
ing the relationship between representations of stimuli
and representations of the corresponding responses. We
stress, though, that while we suspect that confusions
may be the main factor in the identification paradigm
data that has primarily been used to support the
Universal Law, we expect that these confusions are
typically due to lapses in memory, rather than to the
difficulties in perceptual discriminability. Indeed, as we
noted above, for stimuli where perceptual discrimina-
tion appears to limit performance, generalization
typically follows Guassian, rather than exponential,
decay.

2. Mathematical preliminaries

Shepard’s (1987) article raises the question whether
psychological science has any hope of formulating a law
that is comparable in scope and possibly accuracy to
Newton’s universal law of gravitation. The Universal
Law of Generalization for psychological science is a
tentative candidate. In the Principia (Newton, 1687),
Newton gives a few rules governing scientific activity.
The first rule is ‘We are to admit no more causes of
natural things than such as are both true and sufficient
to explain the appearances. To this purpose the
philosophers say that Nature does nothing in vain,
and more is in vain when less will serve; for Nature is
pleased with simplicity, and affects not the pomp of
superfluous causes.’ Here, we generalize the ‘Universal
Law of Generalization’ by essentially using Newton’s
maxim.
We have noted that the empirical analysis of internal

psychological spaces from experimental data has proved
extremely contentious. Here, we take a complementary
approach and derive the Universal Law from first
principles using the novel notion of the information
contents of individual objects. That is, we motivate a
measure of distance between representations of objects
on a priori grounds, drawing on recent advances in
Algorithmic Information Theory (a mathematical theo-
ry based on Kolmogorov complexity, Li & Vitányi,
1997). It turns out that there is a very natural, and
general, measure of the ‘distance’ between representa-
tions, of whatever form: the information distance. Using
this very general measure, the Universal Law of
Generalization still holds, subject to quite minimal

restrictions on the process by which the experimental
participant maps stimuli onto responses in the identifi-
cation paradigm.
The presentation of this section has three parts. First,

we provide some general background and also describe
some basic results in Kolmogorov complexity theory.
Second, we introduce and motivate the notion of
‘information distance,’ which we shall use as a funda-
mental measure of psychological distance. Third, we
consider the nature of the probabilitistic process by
which the participant maps stimuli to responses, which
generates the confusion matrix in the identification
paradigm—we shall need to make only very weak
assumptions about this probabilistic process. In the next
section, we show that, given these notions, the Universal
Law holds: confusability is a negative exponential
function of distance between representations.

2.1. Algorithmic information theory

This subsection gives general background concerning
algorithmic information theory (also known as Kolmo-
gorov complexity theory). We begin by providing a very
brief intuitive sketch, and relating algorithmic informa-
tion theory to similar ideas that have a long history in
perceptual psychology. We then run through the formal
machinery required to outline the elements of the theory
that we shall draw on below.
We begin, then, with the core idea: algorithmic

information theory provides a measure of the complex-
ity of an individual (formal) object. Roughly, the
complexity an object is given by the length of the
shortest (effective) description or computer program
that generates that object—the precise meaning of this is
described below. This has led to a rich mathematical
theory of simplicity, that has been used, in particular, as
a foundation for inductive inference (Solomonoff, 1964,
1978). According to this approach, inductive inference
involves finding the shortest description of, or program
that generates, the available data. This is a formal
version of an idea with a long intellectual history, from
the Greeks, through William of Ockham, to, as we have
seen, Newton (Li & Vitányi, 1997).
From the point of view of the psychological and

cognitive science literatures, a particularly interesting
advocate of this viewpoint was the physicist, philoso-
pher, and perceptual theorist Mach (1959/1886) Mach
(1959). According to Mach, the goal of science and the
goal of perception is the same: providing an economical
(i.e., brief) description of sensory data. Mach’s views on
the philosophy of science can be seen as feeding into the
intellectual project of attempting to build a formal
inductive logic for scientific inference, which requires a
formal notion of simplicity (Carnap, 1952; Kemeny,
1953). This project was a key source of impetus for
the development of algorithmic information theory
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(Solomonoff, 1964). But Mach’s views on perception
can also be viewed as feeding into a rich tradition in
perceptual theory, running through Gestalt psychology
(e.g., Koffka, 1962/1935) to the present day. This
tradition argues that perception is governed by a
simplicity principle: this is the hypothesis that the
perceptual system chooses between the multiple possible
interpretations of a perceptual stimulus by choosing the
simplest.
This long tradition of perceptual research has had a

parallel evolution to the formal work on algorithmic
information theory that we use in this article. Whereas
the focus in algorithmic information theory has been on
establishing and applying a very general measure of
simplicity/complexity, the focus in perceptual research
has been focussed on devising particular coding schemes
for specific kinds of experimental stimuli, to make the
simplicity principle concrete, and to allow it to be
subject to direct empirical test. Specifically, there have
been a great number of proposals for encodings of
patterned sequences, where perceptual complexity is
then defined in terms of those encodings (see for
example the survey in Simon, 1972). This general
approach has been applied in a variety of contexts,
from the organization of simple sequences (Leeuwen-
berg, 1969, 1971; Restle, 1970; Simon, 1972; Simon &
Kotovsky, 1963; Vitz & Todd, 1969), to judgments of
‘figural goodness’ (Hochberg & McAlister, 1953), the
analysis of (Johansson, 1950) experiments on the
perception of motion configurations (Restle, 1979),
and figural completion (Buffart, Leeuwenberg, & Restle,
1981). It has also been advanced as a general framework
for understanding perceptual organization (Attneave &
Frost, 1969; Leeuwenberg, 1971; Leeuwenberg &
Boselie, 1988), and even cognitive processes more
generally (Chater, 1997, 1999). Although, as we have
noted, this strand of perceptual research has developed
independently of the mathematical methods of algo-
rithmic information theory that we shall describe and
employ below, recently, some initial formal connections
have been developed between the two approaches
(Chater, 1996; van der Helm, 2000).
Now let us turn to outlining the formal core of

algorithmic theory. We have said that algorithmic
information theory aims to measure the complexity of
individual formal objects. This immediately raises the
question of what kind of formal objects we are
concerned with. We take the viewpoint that the set of
objects we are interested in may be finite or infinite but
must be countable, just like the natural numbers. We
also assume that each such object can be described by
using, for example, English. That means we can describe
every object by a finite string in some fixed finite
alphabet. By encoding the different letters of that
alphabet in bits (0’s and 1’s) we reduce every description
or representation of the object to a finite binary string. A

similar argument presumably holds for the physical
manner by which an object is represented in an agent’s
cognitive system. In this way we reduce the representa-
tion of all objects that are relevant in this discussion to
finite binary strings. In the unlikely case that there are
relevant objects that cannot be so represented, we simply
agree that they are not subject of this discussion.
From the abstract mathematical perspective used in

this article, we need not consider the details of the
various perceptual codes that have been proposed, and
mentioned above: we note merely that all these codes are
special types of computable codes, which means that all
of them can be decoded by appropriate machines or
programs. Mathematically, one says that every such
code can be decoded by an appropriate Turing machine:
a convenient model introduced by A.M. Turing in a
celebrated paper (Turing, 1936) to formally capture the
intuitive notion of ‘computation’ in its greatest general-
ity.
How does a ‘Turing machine’ work? Fig. 2 (taken

from Li & Vitányi, 1997) shows a Turing machine,
which consists of a finite program, called a finite control,
capable of manipulating a linear list of cells, called a
tape, at a particular location, called the head. The device
can write and delete cells at the current location of the
head; and it can shift the head one step at a time along
the tape. The device follows a list of rules, which
determine from the current state of the finite control and
the symbol contained in the cell that is currently being
scanned. The rules determine the next operation of the
finite control (e.g., shifting the head, or writing or
deleting a symbol), given only the current state of the
control and the symbol on the cell of the tape that is
currently being scanned. The possible rules are restricted
so that the behaviour of a Turing machine is determi-
nistic: a particular computational state of the machine
can only continue in a specified way. One state of the
control can be designated as the ‘halt’ state, from which
no further operations can be performed. If a Turing
machine halts, the symbols on the tape encode the result
of its computation; if it does not halt, and continues
computing indefinitely, the computation is viewed as
having no determinate result.

q5

q4

q3

q2

q1

q0

finite control

head

... ...BBBB B 1 0 110 0 0 1

tape

Fig. 2. Turing machine.
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It has turned out that all different mathematical
proposals to formulate a more general notion of
computability turned out to be equivalent to the Turing
machine. The so-called Church-Turing thesis states that
the Turing machine captures the most universal and
general notion of effective computability, and is the
formal equivalent of our intuitive notion of what is
calculable. The Turing machine model of computation is
universally used in formal arguments. There is no need
to go into details here, as they can be found in any
textbook on computable functions and effective pro-
cesses, for example, Odifreddi (1989) or Section 1.7 in Li
and Vitányi (1997). What is important here is that there
is a general code that subsumes all computable codes
mentioned above. This is the code decodable by a so-
called ‘universal’ Turing machine. In effect, such a
machine works with a code book that enumerates all
computable codes. By prefixing an encoded item with
the index in the enumeration of the particular code that
has been used, the universal Turing machine can decode
that item. Clearly, this universal encoding need not be
longer than the shortest two-part code consisting of the
index of a particular code used plus the length of the
resulting encoding. Stating that the universal code can
be decoded by a universal Turing machine (which is
assumed to have an infinite tape) is equivalent to that it
is a program in a universal programming language like
C++ or Java (running on a machine with no unlimited
memory). For example, we can now formulate the
length of the shortest code for Tolstoy’s War and Peace.
These considerations led the Russian mathematician
Kolmogorov (1965) to propose a general theory of the
information content in individual objects. In this paper
we keep the discussion informal; an introduction,
epistimology and rigorous treatment of the theory is
given in Li and Vitányi (1997).
The Kolmogorov complexity KðxÞ of a finite object x;

is defined as the length of the shortest binary computer
program that produces x as an output.5 Thus, objects
such as a string of one billion ‘1’s, or a binary code for a
digitized picture of an untextured rectangle, or the first
billion digits of p ¼ 3:1415y are reasonably simple,
because there are short programs that can generate these
objects. On the other hand, a typical binary sequence
generated by tossing a coin is complex—the sequence is
its own shortest program, because there is no hidden

structure in such a sequence that can be used to find a
shorter code. The Kolmogorov complexity is an
absolute measure of the amount of information in an
individual object. It has been applied to resolve a long-
standing debate on the proper definition of individual
random sequences and an objective formulation of the
notion of ‘simplicity’ in the inductive principle known as
‘Occam’s Razor.’ Kolmogorov complexity contrasts
with standard (probabilistic) information theory (Cover
& Thomas, 1991), which is only concerned with the
average information of a random source. This algorith-
mic notion of information should be contrasted with
Shannon’s statistical notion of information (Shannon,
1948; Cover & Thomas, 1991), from standard (prob-
abilistic) information theory, which deals with the
average number of bits required to communicate a
message from a random source.
From a psychological point of view, Kolmogorov

complexity may seem unsatisfactory, because it takes no
account of whether an extant, in principle computable,
regularity will in fact be detected by the limited
computing power, or evolutionary bias of attention, of
the cognitive system. For example, an array of pixels
that corresponded to a binary encoding of p would have
a low Kolmogorov complexity, because p can be
generated by a short program; and a random array of
pixel values would have a high Kolmogorov complexity,
because, in virtue of its randomness, there would no
short program that could generate it. But, from a
perceptual point of view, these arrays of pixels would
seem indistinguishable to most human observers. we
shall see below, however, that the approach is still
applicable, even when we are concerned with agents with
limited abilities to find regularities.
The definition of Kolmogorov complexity may appear

to be rather specific. But this appearance is misleading.
For example, the restriction to a binary coding alphabet
can easily be dispensed with—switching to an alphabet
with n letters amounts merely to rescaling all Kolmo-
gorov complexities by a multiplicative constant,6 but has
no other impact. The binary alphabet is used by
convention, to provide a fixed measuring standard.
More interestingly, it might appear that the length of the
shortest program that generates a specific code must
inevitably be relative to the choice of programming
language. But a central result of Kolmogorov complex-
ity theory, the Invariance Theorem (Li & Vitányi, 1997),
states that the shortest description of any object is
invariant (up to a constant) between different universal
languages. Therefore, it does not matter whether the
universal language chosen is C++, Java or Prolog—the
length of the shortest description for each object will be
approximately the same. Let us introduce the notation

5Strictly, it is important that the program is a prefix program—that

is, that no initial segment of the binary string comprising the program

itself defines a valid program; and, equally, that no non-trivial

continuation of the binary string comprising the program defines a

valid program. The restriction to prefixes ensures that, for example,

given a binary string that corresponds to a concatenation of programs,

there is no ambiguity concerning how the string should be divided into

discrete programs. Although tangential to the discussion here, the use

of prefix complexity is of considerable technical importance (Li &

Vitányi, 1997; Vitányi & Li, 2000).

6Specifically, this constant is log n: All logarithms in this paper are

binary logarithms unless otherwise noted.
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KCþþðxÞ to denote the length of the shortest C++
program which generates object x; and KJavaðxÞ to
denote the length of the shortest Java program. The
Invariance Theorem implies that KCþþðxÞ and KJavaðxÞ
will only differ by some constant, c; (which may be
positive or negative) for all objects x; including, of
course, all possible perceptual stimuli. Formally, there
exists a constant c such that for all objects x:

jKCþþðxÞ � KJavaðxÞjpc:

Thus, in specifying the complexity of an object, it is
therefore possible to abstract away from the particular
language under consideration. Thus the complexity of
an object, x; can be denoted simply as KðxÞ—referring
to the Kolmogorov complexity of that object.
Why is Kolmogorov complexity language invariant?

To see this intuitively, note that any universal language
can be used to encode any other universal programming
language. This follows from the preceding discussion
because a programming language is just a particular
kind of computable mapping, and any universal

programming language can encode any computable
mapping. For example, consider two universal computer
languages which we call ‘C++’ and ‘Java.’ Starting
with C++, we can write a program, known in
computer science as a compiler, which translates any
program written in Java into C++. Suppose that this
program has length has length c1: Suppose that we know
KJavaðxÞ; the length of the shortest program which
generates an object x in Java. What is KCþþðxÞ; the
shortest program in C++ which encodes x? Notice that
one way of encoding x in C++ works as follows—the
first part of the program translates from Java into
C++ (of length c1), and the second part of the
program, which is an input to the first, is simply the
shortest Java program generating the object. The length
of this program is the sum of the lengths of its two
components: KJavaðxÞ þ c1: This is a C++ program
which generates x; if by a rather roundabout means.
Therefore KCþþðxÞ; the shortest possible C++ pro-
gram must be no longer than this: KCþþðxÞpKJavaðxÞ þ
c1: An exactly symmetric argument based on translating
between languages in the opposite direction establishes
that: KJavaðxÞpKCþþðxÞ þ c2: Putting these results
together, we see that KJavaðxÞ and KCþþðxÞ are the same
up to a constant, for all possible objects x: This is the
Invariance Theorem, that Kolmogorov complexity is
language invariant.
The implication of the Invariance Theorem is that the

functions Kð�Þ (and Kð�j�Þ; that we introduce below),
though defined in terms of a particular programming
language, are language-independent up to an additive
constant and acquire an asymptotically universal and
absolute character through the Church–Turing thesis,
i.e., from the ability of universal machines to simulate
one another and execute any effective process. The

Kolmogorov complexity of a string can be viewed as an
absolute and objective quantification of the amount of
information in it, giving a rigorous, formal and highly
general notion corresponding to our intuitive notion of
shortest effective description length. This may be called
Kolmogorov’s thesis. This leads to a theory of absolute

information contents of individual objects in contrast to
classical information theory which deals with average

information to communicate objects produced by a
random source. Since the former theory is much more
precise (there are no issues of quantities being defined
only up to a constant, depending on the programming
language chosen), it is perhaps surprising that analogs of
many central theorems in classical information theory
nonetheless hold for Kolmogorov complexity, although
in a somewhat weaker form.
We have mentioned that shortest code length is

invariant for universal programming languages. How
restrictive is this? The constraint that a system of
computation is universal turns out to be surprisingly
weak—all manner of computation systems, from a
simple automaton with under 100 states supplied with
unlimited binary tape on which it can read and write, to
numerous word processing packages, spreadsheet and
statistical packages, turn out to define universal
programming languages. Therefore, it seems that uni-
versality is likely to be obeyed by a computational
system as elaborate as that involved in cognition.
The basic notion of Kolmogorov complexity has been

elaborated into a rich mathematical theory, with a wide
range of applications in mathematics and computer
science. It has also been applied in a range of contexts in
psychology, from perceptual organization (see Chater,
1996, or van der Helm, 2000, for different uses of the
theory), to psychological judgements of randomness
(Falk & Konold, 1997), to providing the basis for a
theory of similarity (Chater & Hahn, 1997; Hahn,
Chater, & Richardson, 2003). Indeed, the idea that
cognition seeks the simplest explanation for the avail-
able data, inspired by results in Kolmogorov complex-
ity, has even been suggested as a fundamental principle
of human cognition (Chater, 1997, 1999).

2.2. Information distance

In this section, we introduce the notion of informa-
tion distance, that will be central to the argument that
we develop below. Informally, information distance may
be viewed as the most general and most neutral measure
of the cognitive distance between two items. It is
maximally general, because it applies to items which
can have any representational format whatever—
roughly, information distance is determined by the
length of programs that are required to transform the
representation of one item into the representation of the
other. This is clearly well-defined, whether the items
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concerned are bundles of features, specifications of
locations in a multidimensional space, syntactic trees,
structured representations of an image, or whatever. On
the other hand, most cognitive distance measures
discussed in the psychological literature have much
narrower scope—they are applicable only to a particular
representational format. Information distance is also
maximally neutral, as a measure of cognitive distance, in
the following sense—if, according to any ‘reasonable’
cognitive distance (and we will see below that the specific
assumptions concerning reasonableness are quite mod-
est), two items are judged to be close, then these items
will also be close according to information distance.
That is, information distance captures similarities that
are recognized by any reasonable cognitive distance—
and hence is maintains a maximal level of neutrality
between specific cognitive distances. In view of the fact
that, from a psychological point of view, we frequently
do not have a good analysis either of the structure of the
underlying representations used by the cognitive system,
or reason to favour a specific distance measure between
such representations, information distance is an attrac-
tive notion. It allows us to make progress in analysing
cognitive distance and related notions, without having
to take firm stands on these contentious issues. More-
over, as we have already discussed, the generality of the
arguments that we can frame using notions of this kind
allows the possibility of providing a general explanation
for phenomena such as the universal law, across many
types of stimulus materials, rather than having to frame
a more specific explanation for each case.
Kolmogorov complexity is defined for a single object,

x: But an immediate generalization, conditional Kol-
mogorov complexity, KðyjxÞ provides a measure of the
degree to which an object y differs from another object
x: KðyjxÞ is defined as the length of the shortest program
(in a universal programming language, as before) that
takes x as input, and produces y as output. The intuitive
idea is that if items are distant from each other, then it
should require a complex program to turn one into the
other. At this point one may wonder about how large
KðxÞ is? As stated before, we require that the set of
programs be prefix-free, no program being a proper
prefix of another one. This restricts the set of binary
strings that are available as proper programs, and,
therefore, has the consequence that for some strings x

the shortest programs that describe them are somewhat
longer than the literal description of x which has length

lðxÞ; the number of bits in x: How bad can this get? It
turns out that KðxÞ can be as large as lðxÞ þ KðlðxÞÞ: If
we consider x as the integer described by the binary
numeral ‘1x’, then lðxÞElog x: Repeated substitution of
the expression for the largest value of KðxÞ shows that it
can rise to about l�ðxÞ ¼ log x þ log log x þ
log log log x þ?þ (all positive terms ending with a
small additive constant). It is not difficult to see that

KðxÞ never exceeds l�ðxÞoþ 2 log log x by more than a
couple of bits. On the other hand, the shortest program
to compute x when it has lðxÞ as input can be shown to
be not larger than about lðxÞ; and therefore KðxjlðxÞÞ is
upper bounded by about log x: In Fig. 3 (taken from Li
& Vitányi, 1997) we have given an ‘artist’s impression’
of the graphs of KðxÞ and KðxjlðxÞÞ; viewed as integer
functions. The graphs closely ‘hug’ the graph of log x;
for the random or irregular x’s, but sometimes have
deep indentations. Those indentations correspond to x’s
having lots of regularity. Note that KðxÞ rises to infinity
with x; both its upper bound which slightly exceeds
log x; and its lower bound that rises very, very, slowly.
In fact, while the bottoms of the dips eventually rise to
infinity (because at some x0 all programs of a given
length pk are in use for some xpx0 and consequently
KðxÞ4k for all x4x0) this increase is slower than that
of any unbounded computable function. In contrast, the
graph of KðxjlðxÞÞ has dips down to a fixed constant
level forever. For example, there is a fixed constant k

such that, for every n with xn ¼ 00y0 (a string of n

zeros), we have KðxnjnÞpk:
We are now ready to turn to the notion of

information distance itself. It is useful to recall the
mathematical formulations of the notions of ‘distance’
and ‘metric.’ A distance function D with nonnegative
real values, defined on the Cartesian product X 	 X of a
set X ; is called a metric on X if, for every x; y; zAX :

* Dðx; yÞ ¼ 0 iff x ¼ y (the identity axiom);
* Dðx; yÞ þ Dðy; zÞXDðx; zÞ (the triangle inequality);
* Dðx; yÞ ¼ Dðy; xÞ (the symmetry axiom).

(Recall that we informally discussed the import of
these axioms in the context of psychological theories of
similarity above). A set X provided with a metric is
called a metric space. For example, every set X has the
trivial discrete metric Dðx; yÞ ¼ 0 if x ¼ y and Dðx; yÞ ¼
1 otherwise. All information distances in this paper are
defined on the set X ¼ f0; 1g� (that is, the set of all finite
strings composed of 0’s and 1’s) and satisfy the metric

K(x)

K(x/l(x))

l(x)

x

l (x)*

Fig. 3. The graph of the function KðxÞ and Kðx j lðxÞÞ—here we

consider x to be the integer index of the string x in the length-

increasing lexicographical order.

N. Chater, P.M.B. Vit !anyi / Journal of Mathematical Psychology 47 (2003) 346–369 357



conditions up to an additive constant or logarithmic
term while the identity axiom can be obtained by
normalizing.
The conditional complexity function KðyjxÞ trivially

obeys identity, because no program at all is required to
transform an item into itself.7 Conditional complexity
also obeys the triangle inequality: KðxjzÞpKðxjyÞ þ
KðyjzÞ: This follows immediately from considering the
concatenation of a program mapping z into y (with
minimum length KðyjzÞ), and a program mapping y into
x (with minimum length KðxjyÞ). Using this concatena-
tion, it is clearly possible to map z to x using a program
of length no more than the sum of these individual
programs: KðxjyÞ þ KðyjzÞ: This sum must therefore be
at least as great as the length of the shortest program
mapping from z to x; that is KðxjzÞ; where KðxjzÞ is
typically smaller, by there being shorter programs which
perform this mapping without going through the
intermediate stage of generating y: Thus, the triangle
inequality holds for Kð�j�Þ:
But, as it stands, KðyjxÞ is not appropriate as a

distance measure, because it is asymmetric. Consider the
null string e: KðejxÞ is small, for every x; because to map
the input x onto the null string simply involves deleting
x; which is a simple operation. Conversely, KðxjeÞ ¼
KðxÞ; can have any value whatever, depending on the
complexity of x: More generally, the length of program
required to turn a complex object into a simpler object is
shorter than the length of program required to turn the
simple object back to the complex object. Interestingly,
this systematic asymmetry appears to map, qualitatively,
onto the empirically observed asymmetry in confusa-
bility, that we mentioned above: that a complex object is
more likely to be confused with a similar, but simpler,
object, than the reverse. This observation may be useful
in applying Kolmogorov complexity to understanding
confusability data, but we will not pursue it further here.
This is because, in the context of the present article,

we need a measure that is symmetric, because, as we
have already noted above, symmetry is enforced on the
data against which the Universal Law is tested.
Symmetry can be restored by, for example, taking the
sum of the complexities in both directions: KðxjyÞ þ
KðyjxÞ; or alternatively, the maximum of both complex-
ities maxfKðxjyÞ;KðyjxÞg: It is easy to verify that the
resulting measures, known as sum distance and max

distance, respectively, qualify as distance metrics (Ben-
nett et al., 1998; Li & Vitányi, 1997). For example, the
sum distance and the max distance between x and the

null string e are given by KðxjeÞ þ KðejxÞ ¼ KðxÞ ¼
maxfKðxjeÞ;KðejxÞg:
Max and sum-distances are close but not necessarily

equal. Denoting sum and max distance respectively by
Dsum and Dmax; it is easy to verify that, for every x; y:

Dmaxðx; yÞpDsumðx; yÞÞp2Dmaxðx; yÞ: ð1Þ

For the present purpose of putting the Universal Law
on a formal mathematical footing, it is important to
consider the epistimological motivation of these dis-
tances. The information distance is defined in Bennett
et al. (1998) as the length of a shortest binary program
that computes x from y as well as computing y from x:
Being the shortest such program, it should take
advantage of any redundancy between the information
required to go from x to y and the information required
to go from y to x: The program functions in a catalytic
capacity in the sense that it is required to transform the
input into the output, but itself remains present and
unchanged throughout the computation. Note that
while a program of length KðxjyÞ þ KðyjxÞ by definition
can compute from y to x (a subprogram of length
KðxjyÞ) and from x to y (a subprogram of length
KðyjxÞ), it is by no means clear (and happens to be false)
that such a program is necessarily the shortest that
performs both the mapping from x to y and the mapping
from y to x: A ðKðxjyÞ þ KðyjxÞÞ-length program is not
minimal if the information required to compute y from x

can be made to overlap with that required to compute x

from y:
In some simple cases, complete overlap can be

achieved, so that the same minimal program suffices to
compute x from y as to compute y from x: We first need
an additional notion. A binary string x of n bits is called
incompressible if KðxÞXn: A simple argument suffices to
show that the overwhelming majority of strings is
incompressible (Li & Vitányi, 1997). We continue the
main argument. For example if x and y are independent
incompressible binary strings of the same length n (up to
additive constants we have KðxjyÞ;KðyjxÞXn), then
their bitwise exclusive-or x"y serves as a minimal
program for both computations. (If x ¼ 01011 and y ¼
10001; then z ¼ x"y ¼ 11010: Since z"y ¼ x and
z"x ¼ y we can use z as a program both to compute
from y to x and to compute from x to y:)
Similarly, if x ¼ uv and y ¼ vw where u; v; and w are

independent incompressible strings of the same length,
then u"w along with a way to distinguish x from y is a
minimal program to compute either string from the
other. Now suppose that more information is required
for one of these computations than for the other, say,

KðyjxÞ4KðxjyÞ:

Then the minimal programs cannot be made identical
because they must be of different sizes. In some cases it
is easy to see that the overlap can still be made complete,

7Note that, throughout, due to language invariance, Kolmogorov

complexities are only specified up to an additive constant. So, in a

particular language, KðxjxÞ could be non-zero—if, for example, some

instructions are required to implement the ‘null’ operation (this is

typically true of real programming languages, in which the null string

is not treated as a valid program). But the length of this program will,

by language invariance, be bounded by a constant, for all possible x:
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in the sense that the larger program (for y given x) can
be made to contain all the information in the shorter
program, as well as some additional information. This is
so when x and y are independent incompressible strings
of unequal length, for example u and vw above. Then
u"v serves as a minimal program for u from vw; and
ðu"vÞw serves as one for vw from u:
A principal result of Bennett et al. (1998) shows that,

up to an additive logarithmic error term, the informa-
tion required to translate between two strings can be
represented in this maximally overlapping way in every

case. That is, the minimal program to translate back and
forth between x; y has length not larger than
maxfKðxjyÞ;KðyjxÞg: It is straightforward that the
minimum length program to do this back and forth
translation cannot be shorter, since by the definition of
Kolmogorov complexity, the translation in direction x

to y requires a program of length at least KðyjxÞ and the
translation in the direction of y to x requires a program
of length at least KðxjyÞ: Therefore, the length of the
shortest binary program that translates back and forth
between two items is called the information distance

between the two items, and it is equal to Dmaxðx; yÞ—to
be precise, up to an additive logarithmic term which we
ignore in this discussion.
Max-distance has a particularly attractive universal

quality: it is, in a sense, the minimal distance measure, in
a broad class of distance measures that might be termed
‘computable,’ as we now see.
We say that a function from a discrete domain to the

reals (for example a distance metric) is semicomputable

from above if it can be approximated from above by
some computable process. This is a very weak condition.
For example, it is weaker than the assumption that a
function is computable. It requires merely that there is
some computable process that outputs a sequence of
successive approximations to the function value, that are
successively decreasing, and which converge to be as
close as desired to the distance metric, given sufficient
computation.8 If we assume the Church–Turing thesis,
which implies that human cognition can encompass only
computable processes, then it seems that this assump-
tion follows automatically.
To make sense of the notion of a ‘minimal’ distance

measure, we need some normalization condition, to fix
the ‘scale’ of the distances. Without such a condition, we
could simply divide the values given by a distance metric
by an arbitrarily large constant c to get a more ‘minimal’
distance metric.
For a cognitive similarity metric the metric require-

ments do not suffice: a distance measure like Dðx; yÞ ¼ 1

for all xay must be excluded. For each x and d; we
want only finitely many elements y at a distance d from
x: Exactly how fast we want the distances of the strings y

from x to go toN is not important: it is only a matter of
scaling. In analogy with Hamming distance in the space
of binary sequences, it seems natural to require that
there should not be more than 2d strings y at a distance
d from x: This would be a different requirement for each
d: With prefix complexity, it turns out to be more
convenient to replace this double series of requirements
(a different one for each x and d) with a single
requirement for each x:X
y:yax

2�Dðx;yÞo1:

We call this the normalization property since a certain
sum is required to be bounded by 1.
We consider only distances that are computable in

some broad sense. This condition will not be seen as
unduly restrictive. As a matter of fact, only upper-
semicomputability of Dðx; yÞ will be required. This is
reasonable: as we have more and more time to process x

and y we may discover more and more similarities
among them, and thus may revise our upper bound on
their distance. The upper-semicomputability means
exactly that Dðx; yÞ is the limit of a computable
sequence of such upper bounds.

Definition 1. An admissible distance Dðx; yÞ is a total
nonnegative function on the pairs x; y of binary strings
that is 0 if and only if x ¼ y; is symmetric, satisfies the
triangle inequality, is upper-semicomputable and nor-
malized, that is, it is an upper-semicomputable, normal-
ized, metric. An admissible distance Dðx; yÞ is universal

if, for every admissible distance D0ðx; yÞ; we have
Dðx; yÞpD0ðx; yÞ þ cD; where cD may depend on D but
not on x or y:

In Bennett et al. (1998), a remarkable theorem shows
that Dmax is a universal (that is, optimal in the sense of
being minimal) admissible distance. Formally, every
admissible distance metric D has an associated constant
c such that

Dmaxðx; yÞpDðx; yÞ þ c;

for every x and y:
As already discussed above, the universal distance

Dmax happens also to have a ‘physical’ interpretation
as the approximate length of the smallest binary
program that transforms x into y and vice versa. That
is, for all the infinitely many x; y; and hence the infinite
number of distances between them, the Dmax distance is
never more than a finite additive constant term greater
than the corresponding D-distance with respect to any
admissible distance metric D; where the additive

8It does not require, for example, that it is possible to actually

output the ‘correct’ distance values—or, indeed, to announce the

degree of approximation that has been achieved after a given amount

of computation.
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constant may depend on D; but is independent of x and
y:9

Intuitively, the significance of this is that the universal
admissible distance minorizes all admissible distances: if
two pictures are d-close under some admissible distance,
then they are a fortiori d-close up to a fixed additive
constant under this universal admissible distance. That
is, the latter discovers all effective feature similarities or
cognitive similarities between two objects: it is the
universal cognitive similarity metric. The remarkable
thing about information distance measures such as Dmax

is that, with respect to the class of computable distance
measures (subject to the normalization condition
described above), they are minimal. That is, if any
computable measure treats two items as near, then
information distance measures will also treat the items
as ‘reasonably’ near.
The typical distance measures considered in psychol-

ogy, artificial intelligence or mathematics are not

universal. This is because they favour some regularities
among the items that consider, but entirely ignore other
regularities—and some of these regularities may be the
basis of computable (and hence allowable) distance
measures. Let us look at some examples. Identify
digitized black-and-white pictures with binary strings.
There are many distances defined for binary strings. For
example, the Hamming distance and the Euclidean
distance. The Hamming distance between two n-bit
vectors is the number of positions containing different
bits; the Euclidean distance between two n-bit vectors is
the square root of the Hamming distance. Such
distances are sometimes appropriate. For instance, if
we take a binary picture, and change a few bits on that
picture, then the changed and unchanged pictures have
small Hamming or Euclidean distance, and they do look
similar. However, this is not always the case. The
positive and negative prints of a photo have the largest
possible Hamming and binary Euclidean distance, yet
they look similar to us. Also, if we shift a picture one bit
to the right, again the Hamming distance may increase
by a lot, but the two pictures remain similar. As another
example, a metric of similarity based on comparing
overlap of features (Tversky, 1977) will treat items that
have precisely opposite patterns of features as very
distant. But, of course, with respect to the Dmax measure
such items are very close since the program saying ‘take
the opposite of every feature’ suffices to change one item
into the other. Hence, such a feature-based metric is not
a minimal distance. Similarly, if items are represented as
real-valued vectors, and the Euclidean distance metric is
used, then items corresponding to vectors v and 2v will
have distance equal to the Euclidean length of v; while
Dmax is small.

We believe that, in the present context, the minimality
of information distance is a substantial virtue, because
minimal distance measures make the least commitment
to the specific similarity metric used by the cognitive
system. This is because, if two items are similar
according to any computable (strictly, upper-semicom-
putable) metric, then they are similar according to
information distance; and we have assumed that the
cognitive system is restricted to computable metrics.
Thus, we stress that we adopt information distance as
our measure not because we assume that the cognitive
system uses information distance: clearly, it does not,
because many computable regularities between stimuli
are not apparent to the perceptual system, and indeed,
the regularities that are readily apparent to the
perceptual system appear to be quite limited (van der
Helm & Leeuwenberg, 1996; Palmer, 1982; Wagemans,
1995). Instead, we adopt information distance because,
as we have just described, it captures any relations of
nearness that may actually be used by the cognitive
system. That is, if any computable (strictly, upper-
semicomputable) metric used by the cognitive system
treats two objects as close together, then these objects
will also be close together according to the information
distance metric. Note, though, that the converse does
not hold. Information distance may, however, put two
objects close together, while the cognitive system, which
cannot take all computable similarities into account, will
put them at a distance. In sum, then, information
distance can be viewed as an ‘amalgam’ of all
computable distance metrics (and hence, as taking
account of any psychologically plausible distance
metrics); it therefore seems an ideal starting point for
our analysis, because it appears to require the minimum
in the way of specific psychological assumptions.
We have considered some technical reasons why

measures based on information distance are attractive
general distance measures. These measures gain some
additional psychological interest because of their rela-
tion to the recently proposed Representational Distor-
tion theory of psychological similarity (Hahn, Chater, &
Richardson, 2001, 2003). According to Representation
Distortion, the psychological similarity of two items
depends on the complexity of the transformation
required to ‘distort’ the representation of one of the
items into a representation of the other item. The notion
of complexity is then assumed to be related to the notion
of conditional Kolmogorov complexity, as described
here. According to this viewpoint, the flexibility of
measures like information distance is appropriate
because it reflects the flexibility of the cognitive
system—to choose arbitrary ways of interrelating,
aligning and connecting representations, rather than
being constrained to use a fixed similarity measure. This
account of similarity, although early in its development,
has received some empirical support. For example,

9By (1, Dsumðx; yÞp2Dðx; yÞ þ 2c; because the two measures Dmax

and Dsum are within a factor of 2 of each other.
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Hahn et al. (2001, 2003) constructed various stimuli,
which could be transformed into each other via
sequences of elementary operations. One set of stimuli,
for example, were different configurations of children’s
‘lego’ building bricks. The number of elementary
transformations required to turn one stimulus into
another was used as a crude measure of the complexity
of the process of distorting the representation of one
stimulus to the representation of the other stimulus.
They found that (dis)similarity judgments for pairs of
stimuli were strongly correlated with this measure of
transformational complexity, in line with the predictions
of the Representational Distortion account. To choose a
very different example, an experiment by Reznikova and
Ryabko (1986) (also reported in Li & Vitányi, 1997) on
the information transmission rate and message-com-
pressing capabilities of ants showed evidence that ants
could communicate simple alternations of left- and
right-turns in a maze, like LLLLLL or LRLRLR, faster
than more random alternations. This seems to indicate
that the ants compress the information before transmit-
ting it. Similarly, as mentioned above, the subjective
difficulty of learning a Boolean concept (that is, a
formula in elementary mathematical logic) by humans
appears to be directly proportional to the length of the
shortest equivalent logical formula, Feldman, 2000),
giving a more theoretical underpinning of a well-known
stimulus classification of the order of empirical difficulty
of learning Boolean concepts (Shepard, Hovland &
Jenkins, 1961).

2.3. How items are confused

We assume a very general, and weak, model of
similarity—based on information distance. We next
need a general model of the how items are confused with
each other. Fortunately, only a very weak assumption is
required. First, we assume that there is a discrete set of
items a; stimuli Sa; and responses Ra: Moreover, these
are associated with one another in the sense that there is
a fixed program that on input x computes y where x and
y are choosen from among Sa;Ra: Secondly, for each
stimulus Sa; the probability distribution PrðRbjSaÞ over
the different responses, Sb; is itself semicomputable from
below. That is, it can be approximated from below by a
computable process that produces a monotonically
increasing series of approximations to PrðRbjSaÞ which
approach arbitrarily if closely, given sufficient comput-
ing time. This is a weaker condition, of course, than the
condition that the probability distribution can be
actually be computed exactly by some computable
process—which is equivalent to the distribution being
both semicomputable from above and from below.
Recall that the celebrated Church–Turing thesis, see for
example Odifreddi (1989), states that everything which
is intuitively computable can be computed formally by a

Turing machine, or, equivalently, a standard computer
supplied with a large enough memory. Assuming the
Church–Turing thesis implies that processes executed by
the cognitive system are computable functions. In
particular, therefore, this condition will include any
computational account of the process by which stimuli
Sa are mapped onto responses Rb:

3. The generalized Universal Law of Generalization

We have now outlined the notion of information
distance. Moreover, we have made the modest assump-
tion that the process by which the cognitive system
confuses one item with another must be a mixture of
computable and random factors. We are now in a
position to show how the generalized ‘algorithmic’
version of the Universal Law can be derived from first
principles.
In intuitive terms, the logic of the argument is as

follows. We assume only that the confusion probabilities
are semicomputable. That is, we need make no specific
further assumptions about the particular cognitive
algorithms or random processes that lead one item to
be mis-identified as another. Standard results in
Kolmogorov complexity theory can then be applied,
showing that the negative log-probability of mis-
labelling stimulus a with response b; � log PrðRbjSaÞ;
is close to the conditional Kolmogorov complexity from
a to b; KðRbjSaÞ: We can then apply this key result to
link together Shepard’s specific measure of the confu-
sability between a pair of items (which is defined in
terms of probabilities) and information distance (which
is defined in terms of Kolmogorov complexity). This
allows us to derive Shepard’s universal law, where the
distance measure between items is information distance.

3.1. Optimal codes and entropy

For technical reasons, we recall some notions from
information theory (Cover & Thomas, 1991). Suppose
we have a random source emitting letters from the
alphabet with certain frequencies. Our task is to encode
messages consisting of many letters in binary in such a
way that, on average, the length of the encoded message
is as short as possible. It is evident that by assigning the
few shortest binary sequences to the most common
letters and the longer sequences to the rare ones, the
expected length of a message is less than if we assigned
equal length codes to all letters. Thus, the Morse code in
telegraphy is adapted to the frequency of letter-
occurrences in English. It assigns short sequences of
dots and dashes to more frequently occurring letters: ‘a’
is encoded as ‘. -’ and ‘t’ is encoded as ‘-’. Long
sequences of dots and dashes are assigned to less
frequently occurring letters such as ‘z’ which is encoded
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as ‘- - . .’. A prefix code has the property that no code
word starts with another code word as proper initial
segment (prefix). This property makes it possible to
parse an encoded message into the sequence of code
words from which it is composed in only one way: We
can unambiguously retrieve the encoded message. Note
that the Morse code is not a prefix-code. A prefix code
for the letters a; b;y; z is, for example, to encode ‘a’ by
‘.-’, the letter ‘b’ by ‘. .-’, and so on. This example is not
very efficient; it is essentially a tally code. It is easy to
design more efficient prefix-codes. Nonetheless, since
prefixes are excluded, it is clear that prefix-codes cannot
be as concise as general codes. But prefix-codes have a
very general and central property that makes them more
practical than other codes: for every code that is
uniquely decodable there is a prefix-code that has
precisely the same lengths of code words. Thus, when
we want unambiguous codes then we can as well restrict
ourselves to prefix-codes: they are uniquely decodable
and have the additional advantage that we can parse
them in one pass going left-to-right. Moreover, it is well-
known that there is a tight connection between prefix
codes, probabilities, and notions of optimal codes: Call
the letters to be encoded by the name ‘source words’.
Consider an ensemble of source words with source word
x having probability PðxÞ: Assign code words with code
word length lPðxÞ to source word x: The so-called
Noiseless Coding Theorem of Shannon states that
among all prefix codes the minimal average code word
length, the average taken with respect to the distribution
P; satisfies

HðPÞp
X

x

PðxÞlPðxÞpHðPÞ þ 1;

where HðPÞ ¼ �
P

x PðxÞ log PðxÞ is called the entropy

of P: This minimum is reached by the so-called
Shannon–Fano code (the details of which do not matter
here) where we assign a code word of length
�Jlog PðxÞn to source word x: Intuitively, this code is
optimally ‘adapted’ to the probability distribution P of
the source words.

3.2. The Kolmogorov code

A trivial application of this result, generalized to
conditional probability, is that using a code that is well-
adapted to probability distribution Prð�jSaÞ; the Shan-
non–Fano code length of Rb; given Sa; is
�log PrðRbjSaÞ: This allows us to quantify the code
length of a particular way of mapping Sa onto Rb: First,
specify the probability distribution Pr—this can be done
using a computer program of length KðPrÞ (the existence
of such a computer program is guaranteed by the
condition that Pr is computable). Then specify Rb; given
Sa using the probability distribution Pr; which takes
length �log PrðRbjSaÞ using the Shannon–Fano code.

Thus, the total length of this way of mapping from Sa to
Rb is: KðPrÞ � log PrðRbjSaÞ: Obviously, every compu-
table code that maps Sa to Rb must be at least as long as
the shortest computable code which does this, the length
of which is, by definition, KðRbjSaÞ: Thus, we can infer
that

KðRbjSaÞpKðPrÞ � log PrðRbjSaÞ;

which, when rearranged, provides an upper bound on
PrðRbjSaÞ:

PrðRbjSaÞp2KðPrÞ�KðRbjSaÞ:

In the following it is convenient to use a special
notation for (in)equality up to an additive constant.
From now on, we will denote by o

þ
an inequality to

within an additive constant, and by ¼þ the situation when
both o

þ
and 4

þ
hold.

We derive a lower bound: Suppose we sample from a
distribution Pr; and encode the outcomes using an
optimally adapted code, as described above. We can
then write down the expected code length as

EPrð�log Prð�ÞÞ ¼þ
X

x

PrðxÞð�log PrðxÞÞ

¼þ �
X

x

PrðxÞ log PrðxÞ:

Here EPr f ð�Þ ¼ �
P

x PrðxÞf ðxÞ is called the expecta-

tion of f ðxÞ with respect to Pr: With f ðxÞ ¼ �log PrðxÞ
this is the above expression for the entropy of Pr: Now
suppose that we consider, instead, the expected value of
the Kolmogorov complexity of x—the shortest code
length for x; in a universal programming language. In
general, of course, this will be at least as great as the
entropy—because the entropy reflects the shortest
expected code length for x; using a code which is
optimally adapted to Pr: So this means that

EPrð�log PrðxÞÞpEPrKðxÞ:

Nonetheless, though, there will typically be individual
values of x for which Kolmogorov complexity is
significantly less than the code length ðE� log PrðxÞÞ
optimized to Pr: For example, suppose that Pr is an
extremely simple distribution over binary strings, such
that 0 and 1 values both have a probability of 0.5, and
are independent—as if, for example, the string were
generated by a series of fair coin flips. Consider the
string that consists of a million consecutive 1s. Accord-
ing to Pr; the probability of this string is 2�1;000;000; and
the code length according to the code optimally adapted
to Pr is �log 2�1;000;000 ¼ 1; 000; 000: Indeed, this same
code length will be assigned for every binary string of
1,000,000 characters generated by Pr; because according
to Pr all such strings have the same probability of
occurring. However, the Kolmogorov complexity of this
particular string will, of course, be considerably less
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than 1,000,000 bits—because a short computer program
can print a million 1’s and then halt.
The reason that this particular string generated by Pr

has a smaller Kolmogorov complexity that is associated
with the optimal code for Pr; is that the string has some
additional structure, that is unexplained by Pr: The
existence of this additional structure (such as being a
sequence of repeated items, or alternating items, or
encoding p ¼ 3:14y in binary, or whatever it may be)
can therefore be used to provide an unexpectedly short
code for the string. Intuitively, though, it seems that
strings generated by Pr with such additional useful
structure must be rare—it would seem likely that the
overwhelming majority of strings generated by Pr will
merely be typical of the distribution, and hence will not
contain any useful ‘unexpected’ structure. The Kolmo-
gorov complexity of these items will, therefore, be at
least as great as the code length according to the code
optimally adapted to Pr: This intuition is indeed correct.
It can be shown that the probability that an item, x;
drawn from Pr; is such that

�log PrðxÞpKðxÞ

goes to 1 as the length of x grows unboundedly (Li &
Vitányi, 1997, 2001). That is, almost all probability is
concentrated on items x satisfying this inequality—and,
if the probability is not dramatically skewed this implies
that the overwhelming majority of x’s do so. Items for
which this inequality holds are known as Prð�Þ-random,
indicating that they do not have sufficient ‘unexpected’
structure to support an shorter coding than would be
expected from Pr:10

A straightforward generalization of this result to
conditional probability, and its application in the
present context yields the result that, for the Rb that
are Prð:jSaÞ-random (and the probability of sampling

such an item from Prð�jSaÞ will be almost 1), then
�log PrðRbjSaÞpKðRbjSaÞ:

This equation can be rearranged to give a lower
bound on PrðRbjSaÞ:
2�KðRbjSaÞpPrðRbjSaÞ:

Putting the upper and lower bounds together, we can
conclude that, for Prð�jSaÞ-random items:

2�KðRbjSaÞpPrðRbjSaÞp2KðPrÞ�KðRbjSaÞ:

This result implies that, for almost all items (the
Prð�jSaÞ-random items), PrðRbjSaÞ is close to 2�KðRbjSaÞ;
to within a multiplicative factor, 2KðPrÞ: Since KðPrÞ is
constant, independent of the items a and b we can
simplify the formulas, using the earlier introduced
notation ‘¼þ ’, to

log PrðRbjSaÞ¼
þ �KðRbjSaÞ; ð2Þ

for almost all items b (the Prð�jSaÞ-random items), with
respect to every item a: That is, (2) holds for almost all
pairs of items a; b; with Prð�jaÞ-probability going to 1 for
b increasing with every fixed a:

3.3. Formal derivation of the law

Now we are in a position to directly relate Shepard’s
Universal Law to information distance. Shepard uses a
specific measure, Gða; bÞ; as a measure of what he terms
the ‘generalization’ between items a and b:Here Sa is the
stimulus related to item a with the correct corresponding
response Ra: Possibly, the stimulus Sa elicits another
response Rb ðbaaÞ: The probability of this happening is
PrðRbjSaÞ:

Gða; bÞ ¼ PrðRajSbÞPrðRbjSaÞ
PrðRajSaÞPrðRbjSbÞ

� �1
2

ð3Þ

To express Gða; bÞ in terms of Kolmogorov complex-
ity, observe the following. We have assumed at the
outset that there is a simple fixed program, of length say
C bits, that maps Sx to Rx for all x’s. This means that
KðRajSaÞ and KðRbjSbÞ are upper bounded by a fixed
constant C independent of variable items a and b:
Moreover, KðRajSaÞ and KðRbjSbÞ are strictly positive,
as a consequence of the definition of Kolmogorov
complexity (the Universal Turing Machine must have
some program to do the transformation). Therefore, the
denominator in (3) can be replaced by a positive
constant independent of a and b: Taking this into
account, and substituting (2) into (3) we obtain that, for
almost all a; b (the almost all Prð�jSaÞ-random items b

with respect to every item a; in the above sense of
concentration of Pr-probability,

log Gða; bÞ¼þ 1

2
½�KðRajSbÞ � KðRbjSaÞ�: ð4Þ

10Here, we touch on the more general idea that the randomness of a

string may be assessed by considering its Kolmogorov complexity. This

idea has been developed into a deep mathematical theory of

‘algorithmic’ randomness. The common meaning of a ‘random object’

is an outcome of a random source. Such outcomes have expected

properties but particular outcomes may or may not possess these

expected properties. In contrast, we use the notion of randomness of

individual objects. This elusive notion’s long history goes back to the

initial attempts by von Mises (1919), to formulate the principles of

application of the calculus of probabilities to real-world phenomena.

Classical probability theory cannot even express the notion of

‘randomness of individual objects.’ Following almost half a century

of unsuccessful attempts, the theory of Kolmogorov complexity

(Kolmogorov, 1965), and Martin-Löf tests for randomness (Martin-

Löf, 1966), finally succeeded in formally expressing the novel notion of

individual randomness in a correct manner, see Li and Vitányi (1997).

Every individually random object possesses individually all effectively

testable properties that are only expected for outcomes of the random

source concerned. It will satisfy all effective tests for randomness—

known and unknown alike. Details are beyond the scope of this

treatment, but see the discussions in Martin-Löf (1966) and Li and

Vitányi (1997).
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We have also assumed at the outset that there are
fixed length programs that compute Sa from a; Ra from
a; Sa from Ra; and so on, for every item a: Therefore,
KðRbjSaÞ¼þ KðbjaÞ and KðRajSbÞ¼þ KðajbÞ: Earlier,
we defined the ‘sum’-information distance Dsumða; bÞ
between a and b as the sum KðbjaÞ þ KðbjaÞ of the
conditional complexities between the two items.
Therefore, Dsumða; bÞ ¼ KðbjaÞ þ KðajbÞ¼þ KðRbjSaÞ þ
KðRajSbÞ; which can be substituted into (4) to give

log Gða; bÞ¼þ �1
2

Dsumða; bÞ

or equivalently, shifting to base e;

ln Gða; bÞ¼þ �ln 2
2

Dsumða; bÞ; ð5Þ

for almost all a and b (in the above sense of
concentration of Pr-probability).
This means that Gða; bÞ is a negative exponential

function of information distance Dsum; which is She-
pard’s Universal Law. This is a surprising result. It
indicates that Gða; bÞ; a measure of the confusability
between the items a and b; has a specific functional
relationship with a general measure of distance, subject
only to the mild assumption that the probability
distribution determining confusability is computable.
Two points concerning this result are worth noting.

The first is that it might appear that the result is
somewhat too precise. Shepard’s Universal Law allows
two free parameters, A and B:

Gða; bÞ ¼ Ae�B�Dða;bÞ

whereas (5) has no apparent free parameters. But this
disparity is deceptive: The ¼þ -symbol hides the para-
meter A; because it gives equality—but only up to an
additive constant term (which translates into an multi-
plicative constant factor since (5) gives the logarithmic
version of the relation). Moreover, the units for Dsum are
arbitrary, because they depend on the choice of a binary
alphabet for measuring Kolmogorov complexity. Shift-
ing to an alphabet with a different number of elements
(which can be viewed as having any real value), or to a
different computable correspondence between object
and binary representation, values of Dsum will change by
a multiplicative constant, which can be interpreted as
parameter B:
Moreover, of course, our generalization of the

Universal Law of Generalization does not hold for all

items a and b but for almost all items a and b (in the
sense of concentration of Pr-probability).11

The second point is that it might appear that the
outcome of this result provides some reason to prefer
Dsum over Dmax as a preferred measure of information
distance in psychological contexts. But note that they
give the same values up to a multiplicative factor 2, since
we have noted above (1) that DmaxpDsump2Dmax: But
even so, this apparent preference between the two
measures is merely a consequence of the specific way
in which Shepard defined G:

3.4. An alternative Universal Law of Generalization

It turns out that there are mathematical reasons to
choose a slightly different measure of the confusability
between items a; b than initially chosen by Shepard.
Define a new measure of confusability as

G0ða; bÞ ¼ minfPrðRbjSaÞ;PrðRajSbÞg
maxfPrðRajSaÞ;PrðRbjSbÞg

;

where we consider the ratio of (i) to (ii), such that (i) is
the minimum of the two probabilities that the stimulus
for a elicits the response for b or the stimulus for b elicits
the response for a; and (ii) is the maximum of the two
probabilities that the stimulus for a elicits the response
for a and the stimulus for b elicits the response for b:
Then analogous analysis to that above leads to a similar
result. Thus, from the earlier analysis argument we have
�log PrðRbjSaÞ¼

þ
KðbjaÞ (by noting KðPrÞ¼þ 0). And

moreover KðbjaÞ¼þ 0 for b ¼ a so that the precise form
of the denominator—whether min; max; square root of
product—does not matter since it will be a constant
independent of a and b: The important part of the
formula is the numerator: note that the minimum for the
conditional probabilities in the formula translates into
the maximum for the related conditional Kolmogorov
complexities. Thus, for almost all a; b; in the sense of
concentration of Pr-probability, we obtain
log G0ða; bÞ¼þ �Dmaxða; bÞ; and therefore

ln G0ða; bÞ¼þ �ðln 2ÞDmaxða; bÞ:

Straightforward substitution of the log-expressions
of G and G0 in the relation (1) yields
�log G0ða; bÞo

þ
�2 log Gða; bÞo

þ
�2 log G0ða; bÞ: That

is, there are positive constants C1;C2 independent of
a; b such that

G0ða; bÞpC1Gða; bÞpC2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ða; bÞ

q
:

for almost all a; b; in the sense of concentration of Pr-
probability.12 It seems likely that the two measures
G0ða; bÞ and Gða; bÞ will be so strongly positively
correlated, in the empirical data, that the empirical fits
derived by Shepard for the Universal Law using ‘G’

11 It is, of course, logically possible that the very subset of items for

which our generalization does not hold just happens to correspond to

representations of items that naturally occur in the environment. If this

were the case, then this would pose problems for the present result. In

the absence of any reason to suppose that this is the case, however, we

do not consider this further. We thank Peter van der Helm for noting

this point. 12Note that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ða; bÞ

p
4G0ða; bÞ since 0oG0ða; bÞo1:
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would be roughly equally strong using ‘G0’, although we
do not assess this directly.
There is a formal reason to prefer the G0ða; bÞ-version

as the proper measure of confusability over the Gða; bÞ
version, since it appeared above that the negative
logarithm of the G0ða; bÞ is precisely (up to the ¼þ
relation) the information distance Dmaxða; bÞ: As we
observed above, the latter has been shown in Bennett
et al. (1998) to be the universal (that is, optimal)
cognitive distance. Viewing a cognitive distance D as
defined in Bennett et al. (1998) as a code-length this
means the following: If we fix b and let a run over the
possible items, we can then define the probability PðajbÞ
of a given b by PðajbÞ ¼ 2�Dða;bÞ:
It was shown in Bennett et al. (1998) thatP
a:aab 2

�Dða;bÞp1 so that PðajbÞ is a proper probability.
In fact, the cognitive distance code of length Dða; bÞ; the
shortest binary program that serves to compute a from b

and also to compute b from a; is length-equivalent to the
Shannon–Fano code associated with PðajbÞ; and hence
achieves the optimal (minimal) expected code word
length (the entropy of P; by Shannon’s Noiseless Coding
Theorem (Cover & Thomas, 1991) among all prefix-
codes.
Now let us go to the punch line: Since Dmaxða; bÞ is the

minimal cognitive distance, minorizing all other cogni-
tive distances, up to a constant additive term, its
associated probability distribution PG0 ðajbÞ :¼
G0ða; bÞ ¼ 2�Dmaxða;bÞ; with b fixed, majorizes, up to a
constant multiplicative factor, every probability distri-
bution PDðajbÞ ¼ 2�Dða;bÞ with Dða; bÞ a cognitive
distance. This follows because if Dmaxða; bÞ is smaller
than any other Dða; bÞ up to an additive constant, where
D is a cognitive distance, then 2�Dmaxða;bÞ is larger than
2�Dða;bÞ up to a multiplicative constant.
That is, if we fix b and consider the probability of

confusing any item a with item b; according to some
semi-computable cognitive similarity criterion, as the
negative exponent of the cognitive distance according to
that similarity criterion, then the confusion measure
G0ða; bÞ is the largest such probability incorporating
confusability according to all semi-computable (includ-
ing all computable) cognitive similarity criteria. It is
particularly attractive that the universal law can be
demonstrated when the underlying distance measure
between items is information distance—because, as we
have stressed, information distance captures similarities
between items that are similar in any other semi-
computable cognitive distance. Moreover, unlike many
specific cognitive distances, which are typically only
defined over specific representational formats such as
sets of features or locations in a multidimensional space,
information distance is well-defined over any type of
representation. Hence, information distance provides a
maximally general, and maximally neutral measure of
the distance between items.

3.5. Normalized Universal Law

The universal laws above are formulated in terms of
absolute information distance. But, from a psychologi-
cal point of view, this might seem to be inappropriate. If
two enormously complex images, each containing 109

bits of information, are separated by an information
distance of 1000, then this would seem to indicate that
they are remarkably similar, because they share almost
all of their structure (although the nature of the bits that
differed would, of course, determine whether this
similarity is perceptually salient or not). But if two
much simpler images, each containing 1000 bits of
information are separated by an information distance of
1000, then this indicates that they share essentially no
important structure at all. Therefore, it would seem that
we should classify them as highly dissimilar.
This suggests that, from a psychological point of view,

that we may need some kind of relative measure of the
information distance between objects, normalized for
the absolute complexity of the objects involved. We do
this by dividing it by the greater of the two lengths of the
shortest programs that compute the strings concerned
from scratch. Define a new measure of normalized G0-
confusability by

gða; bÞ ¼
minfPrðRbjSaÞ;PrðRajSbÞg
max fPrðRajSaÞ;PrðRbjSbÞg

� 	�1=minflog PrðSaÞ;log PrðSbÞg
:

Then, a quite analogous analysis to that above leads to
the following result. For almost all a; b; in the sense of
concentration of Pr-probability, we obtain
�log gða; bÞ¼þ Dmaxða; bÞ=maxfKðaÞ;KðbÞg and there-
fore

�ln gða; bÞ¼þðln 2Þ Dmaxða; bÞ
maxfKðaÞ;KðbÞg:

Write dða; bÞ ¼ Dmaxða; bÞ=maxfKðaÞ;KðbÞg: This
dða; bÞ is a normalized information distance, satisfies the
metric requirements, is always in between 0 and 1, and
can be viewed as a ‘percentage-wise similarity’. It turns
out that dðx; yÞ is universal (always gives the smallest
distance) in a wide class of sensible and computable
normalized similarity metrics.
This measure (or at least a close variant) has been

used to in non-psychological, but somewhat related
contexts of text analysis and bioinformatics (Li et al.,
2001; Li & Vitányi, 2001). Just as in the psychological
context the percentage of shared information may
be the important measure, it is a convenient way to
measure English text or DNA sequence similarity.
In those areas normalized information distance
(or rather, the less perfect close relative based on
the sum distance) has been experimentally applied.
Using a compression program called GenCompress we

N. Chater, P.M.B. Vit !anyi / Journal of Mathematical Psychology 47 (2003) 346–369 365



heuristically approximate KðxÞ and KðxjyÞ: With the
caveat that the program is ‘heuristic’, that is, without
mathematical closeness-of-approximation guarantees
(C.H. Bennett, M. Li, B. Ma, in an article to appear
in Scientific American) took 33 chain letters—collected
by Charles Bennett from 1980 to 1997—and approxi-
mated their pairwise distance dðx; yÞ: Then, we used
standard phylogeny building programs from bioinfor-
matics research to construct a tree of these chain letters.
The resulting tree gives a perfect phylogeny for all
notable features, in the sense that each notable feature is
grouped together in the tree (so that the tree is
parsimonious). This fundamental notion can be applied
in many different areas. One of these concerns a major
challenge in bioinformatics: to find good methods to
compare genomes. Traditional approaches of comput-
ing the phylogeny use so-called ‘multiple alignment.’
They would not work here since chain letters contain
swapped sentences and genomes contain translocated
genes and noncoding regions. Using the chain letter
method, a more serious application in Li et al. (2001)
and Li and Vitányi (2001) automatically builds correct
phylogenies from complete mitochondrial genomes of
mammals. This work corroborated a biological con-
jecture that ferungulates—placental mammals that are
not primates, including cats, cows, horses, whales—are
closer to the primates—monkeys, humans—than to
rodents.

4. Discussion

We have shown that Shepard’s Universal Law of
generalization can be derived, if we assume that
psychological distance is modelled as information
distance. We have also indicated that information
distance is a highly general notion of distance, which
may be of broader psychological interest. Thus, we have
here addressed the specific relationship evident in the
data that Shepard (1987) encapsulates as the Universal
Law. But an interesting open question is whether the
notion of information distance can be used to address
the question of generalization, as tackled by the results
in Shepard (1987) and Tenenbaum and Griffiths (2001).
Given the rich mathematical connections between the
theory of Kolmogorov complexity and inductive in-
ference and statistics (e.g., Rissanen, 1986, 1989, 1996;
Solomonoff, 1964, 1978; Wallace & Boulton, 1968;
Wallace & Freeman, 1987), it may be hoped some
relationship between information distance and general-
ization might be established. On the other hand, as we
noted earlier, in tasks where people deliberately make
generalizations from examples, it is possible that wide
variation in people’s strategies and background knowl-
edge may mean that there are few robust regularities in
the empirical data (Stewart & Chater, 2002).

The high level of abstraction used to derive the results
above is in some ways attractive, because it allows
progress to be made, without having to rely on detailed
proposals about the nature of the representations and
processes used by the cognitive system. But, of course,
developing a quantitative and detailed model of which
confusions people do make, and which they do not,
would required specifying such proposals. An account
of this kind would, at minimum, be able predict that
people would not detect a regularity between, say, an
random ‘chequerboard’ providing a binary encoding of
the initial digits of p and a binary encoding of the initial
digits of p2; even though the information distance
between these two stimuli is small. On such an account,
the failure to detect the regularity might arise either
because of the representations used, or the available
processes defined over those representations. For
example, a low level (e.g., retinal level) representation
of these stimuli might preserve the detailed information
that allows the short program to be constructed between
them. But it seems inconceivably unlikely that the
cognitive system has an operation for squaring large
binary numbers that could possibly transform one
representation to the other—and hence the regularity,
although present, will be cognitively irrelevant. On the
other hand, a higher level representation may throw
away such details. For example, such a representation
might convey merely the pattern: ‘random chequer-
board’. If so, then all random arrays of pixels will seem
equally similar to each other, and again the special
relationship between the binary encodings of p and p2

will be lost—hence the regularity is lost in the very
choice of representation, whatever processes might
subsequently act upon those representations.
The possibility of representing the same stimulus at

various levels of representation also raises interesting
psychological issues. For example, two random chequer-
boards (or, more extremely, two TV screens with white
noise on them) are likely to be quite confusable, even
though the information distance between a detailed
representation of those stimuli is very large (because
they share no useful structure, the length of a program
to transform one into the other will be long). In the
present framework, this indicates that the representa-
tions that are cognitive relevant in determining such
confusability might be quite high-level. Formally, such
problems may be related to notions of ‘Kolmogorov
sufficient statistic’ as treated in Gács, Tromp, and
Vitányi (2001), where one may choose the level of
representation by selecting the model class. But we do
not pursue that issue here.
Finally, note that the specific representations and

processes employed by the cognitive system may be
highly selective. In particular, we might expect that,
through pressures of either learning and/or evolution,
these representations and processes will be geared to
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finding the regularities that are actually typically present
in the natural world (it seems safe to assume that
regularities concerning the squaring of binary numbers
are not of this kind), and also regularities that are
relevant to that person’s actions and goals. One might
reasonably suspect, therefore, that a detailed psycholo-
gical account of confusability would reveal, for example,
that items which differ on some matter of great
importance to survival (e.g., two animals which differ
regarding their teeth or claws) might be less frequently
confused than items which differ on some matter of
marginal importance to survival (e.g., two clouds that
differ in some aspect of shape). The present analysis,
however, is sufficiently abstract that it does not need to
make any commitment on such issues.
Overall, we note that the generalization of the

Universal Law that we have outlined in this paper is
attractive, because it applies in such a general setting.
Specifically, it does not presuppose that items corre-
spond to points in an internal multidimensional
psychological space. But, as we have noted, there is
presently relatively little empirical evidence for the truth
of the Universal Law outside this context. Thus, the
present analysis suggests that there is a need for
empirical research to determine whether the Universal
Law does indeed hold in these more general circum-
stances. Such research might investigate whether the
Universal Law still holds, as we would predict, even for
stimuli, such as complex visual or linguistic material,
that seems unlikely to embed naturally into a multi-
dimensional psychological space. We hope that the
present paper will serve as a stimulus to empirical
research of this kind.
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