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CHAPTER 11

Neural networks:
the new statistical models of mind

Nick Chater

Introduction

Neural network, connectionist or parallel distributed processing models of
cognition have rapidly become dominant in many areas of cognitive science (e.g.
McClelland & Rumelhart 1986, Rumelhart & McClelland 1986a, Gluck &
Bower 1988, Seidenberg & McClelland 1989, Elman 1990, Hinton & Shallice
1991). Yet the scope and power of neural network models, and their relation to
other approaches to modelling cognition, have been controversial (Fodor &
Pylyshyn 1988, Pinker & Prince 1988, Fodor & McLaughlin 1990). At one
extreme, there is a hope, frequently expressed by cognitive scientists informally
but rarely put down in print, that neural network models will sweep away other
approaches to modelling cognition, and in particular the symbolic models that
have until recently dominated cognitive psychology and artificial intelligence. At
the other extreme is the view that cognitive or psychological explanation is nec-
essarily pitched at a symbolic level, and that neural networks are hence irrel-
evant to such explanation (Fodor & Pylyshyn 1988, but see Chater & Oaksford
1990). Advocates of this view argue that neural networks are simply a rediscov-
ery of old-style statistical methods, with well known limitations, in reaction to
which the symbolic model of mind (Fodor 1975, Newell & Simon 1976) was
originally developed.

In this chapter, I review theoretical work which shows that there is a close
relationship between various kinds of neural network and statistical models. This
work has been developed within the technical literature on neural networks, but
has not received wide attention within the cognitive modelling community.
Within this literature, neural networks are viewed as statistical models, although
they are models of a novel and powerful kind. The connection with the familiar
territory of statistics helps to clarify the status and power of neural network
models in cognitive science. It should not, I will argue, be taken to suggest that
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neural network models are simply reinventions of failed models of the past.
Rather, I suggest they should be seen as a new development within a rich and
varied history of statistical models of cognition. Furthermore, the connection
with statistics helps clarify the relationship between neural network and symbolic
models of cognition, and makes it clear that they have separate concerns, rather
than standing in competition. I shall be concerned almost exclusively with infer-
ential statistics as opposed to purely descriptive statistics (i.e. not statistics as
mere collection of numbers, or as tools for conveniently displaying data).

The structure of this chapter is as follows. I begin by outlining the scope of
statistics in very broad terms, stressing the generality of statistical methods. I
then turn to the relationship between statistical methods and neural networks,
concentrating on neural network learning methods, and dealing with supervised
and unsupervised methods in turn, Finally, I draw conclusions for the place of
neural network models in the history of psychology and their relationship with
other modelling approaches, in particular the symbolic approach.

What is statistical inference?

The elements of probability theory and statistics (I shall sometimes use “statis-
tics” to refer to both of these, but distinguish the two when context requires it)
are familiar to researchers in cognitive psychology and the cognitive sciences
generally. However, statistics are frequently encountered in their role as tools
for data analysis, rather than in their broader context as method for inference. It
is in this latter context that statistical methods can plausibly be viewed as models
of cognition (and we shall consider some aspects of the psychological tradition of
statistical modelling, in relation to neural network models below). Moreover,
because of the dominance of a limited “data analysis” view of statistics in certain
areas of the cognitive sciences, the claim that neural networks might be just
statistical models is sometimes viewed with incredulity. Hence, we begin by
sketching the broader view of statistics as very general mathematical methods
for uncertain inference, within which statistical methods as used in data analysis
in the cognitive sciences form only a small part.

Statistical inference is founded upon the mathematical theory of probability,
and the distinct statistical traditions differ on how this theory is understood. The
interpretation of probability theory has been controversial since its very begin-
nings. Nonetheless, the most usual early interpretation of probability theory was
as a tool for formalizing rational thought concerning uncertain situations, such as
gambling, insurance and the evaluation of court-room testimony (Gigerenzer et
al. 1989). Indeed, the very choice of the word “probability”, which referred to
the degree to which a statement was supported by the evidence at hand, embod-
ied this interpretation - that is, “probability” originally signified “rational
degree of belief”. Jakob Bernoulli explicitly endorsed this interpretation when he
entitled his definitive book Ars conjectandi, or the Art of conjecture (Bernoulli
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1713). This “subjectivist” conception ran through the eighteenth and into the
nineteenth centuries (Daston 1988), frequently without clear distinctions being
drawn between probability theory as a model of actual thought (or more usually,
the thought of “rational”, rather than common, people (Hacking 1990)) or as a
set of normative canons prescribing how uncertain reasoning should occur. In a
sense, then, early probability theory itself was viewed as a model of mind.

As the distinction between normative and descriptive models of thought be-
came more firmly established, probability theory was primarily seen as having
normative force, as characterizing rationality; whether or not people actually
followed such normative dictates was seen as a secondary question. A wide vari-
ety of arguments that purport to show that individual degrees of beliefs should
obey the laws of probability calculus have been developed, based on betting
quotients and “Dutch book” arguments (Ramsey 1931, de Finetti 1937, Skyrms
1977), theories of preferences (Savage 1954), scoring rules (Lindley 1982) and
derivation from minimal axioms (Good 1950, Cox 1961, Lucas 1970). Although
each argument can be challenged individually, the fact that so many different
lines of argument converge on the very same laws of probability has been taken
as powerful evidence for the view that degrees of belief can be interpreted as
probabilities (e.g. see Howson & Urbach (1989) and Earman (1992) for discus-
sions). The suggestion that probability theory can be viewed as a normative
theory of uncertain reasoning sets the bounds of probability theory much wider
than the confines in which it is frequently encountered in introductory textbooks.
According to this view, probability theory is not just concerned with reasoning
about coins, dice and accident rates, but is a calculus for rational thought.

Many inferential problems concern the relationship between models or
hypotheses, and observation or data. Some of these problems are concerned with
inferring the probability of various kinds of observation, given that the structure
of the underlying model is known. So, for example, the model might be a fair
coin, and the question of interest might be the probability that 50 heads or more
will be obtained in 200 throws. Statistical inference, by contrast, applies in the
opposite direction, using observed data to infer the structure of the underlying
model. For example, given the observation of 50 heads in 200 throws, assessing
whether the coin is unbiased, what its likely bias might be, and with what confi-
dence the bias can be estimated, all involve statistical inference, since observed
data are used to infer aspects of the underlying model.

The problem of inductive or statistical inference is very general, and arises,
in different guises, in a variety of domains. In epistemology and the philosophy
of science, the problem is that of choosing the hypothesis or theory which is best
supported by a given body of empirical observations: this is the problem of
induction. A particular approach to statistics, the Bayesian approach, is by far
the most well developed formal account of inductive reasoning (e.g. see
Horwich 1982, Howson & Urbach 1989, Earman 1992). In the context of psy-
chology, cognitive science and artificial intelligence, machine learning, pattern
recognition and the study of neural networks, statistical inference corresponds to
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the problem of learning underlying structure from experience. It is with this
broad sense of the scope of statistics in view that the claim that the mind is an
intuitive statistician (Gigerenzer & Murray 1987), or that cognitive processes
can be viewed as statistical processes, can be understood. The claim is not
merely that the mind performs f tests or ANOVAs (although this has been pro-
posed (Kelley 1967)). It is that the dictates of statistical theory concerning induc-
tive inference are descriptive, not just prescriptive, regarding certain aspects of
thought.

The project of characterizing statistics is complicated by the variety of differ-
ent statistical schools, many of whose differences stem, as noted above, from
different interpretations of the probability calculus. So far, we have considered
the subjectivist interpretation, according to which probabilities are primarily
interpreted as concerning rational updating of degrees of belief. This viewpoint
sees no fundamental distinction between inference from beliefs about hypotheses
to beliefs about data (the standard probabilistic case), and statistical inference in
the reverse direction. Bayes (1764) showed that inference in the two directions
can be related by a simple corollary of the axioms of probability:

_p(DIH))P(H;)
3. P(D|H,)P(H,) (11.1)

i=|

P(H/D) =

This result is the foundation of Bayesian statistics, which allows the probability
of a model or hypothesis H; given data D to be estimated, given the probability of
the data given each possible model or hypothesis H;, and the prior probability of
each H;. By the application of Bayes’s theorem, the normal laws of probability
can be used to infer how probable each of a range of hypotheses is, given a data
set, simply by mechanical calculation. Notice that the denominator is the same
whatever hypothesis is under consideration, and acts as a normalization factor
which ensures that the probabilities P(H;|D) sum to 1. It is often treated as
a constant, and Bayes’s theorem is then expressed, as above, by stating that
P(H;| D) is proportional to P(H;| D)P(H,).

According to a subjectivist interpretation, the prior probability P(H;) can be
interpreted as an initial degree of belief in the hypothesis H;. But for alternative
views of probability, such as the frequentist interpretation (according to which
probabilities are the limits of relative frequencies of repeated events (e.g. Fisher
1922, von Mises 1939)) and objectivist interpretation (according to which prob-
abilities are objective properties of the world (Mellor 1971)), it is difficult to see
how any sense can be made of such probability statements. For this reason,
among others, various alternatives to Bayesian statistics have since been derived.
The principal alternative schools are those of Fisher (1956, 1970) and Neyman
and Pearson (e.g. Neyman 1950), and most standard statistical tests within the
behavioural sciences (e.g. the  test, the ANOVA, %7 test) were developed by these
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schools (though the standard discussion of such tests in introductory statistical
textbooks frequently blends incompatible elements of these approaches together
- see Gigerenzer et al. (1989)). We shall focus on Bayesian statistical methods
henceforth, since it is these, and related methods, that most closely relate to
neural network models. Furthermore, the subjectivist, Bayesian approach relates
probability and statistics most directly to problems of belief updating, and hence
has the most natural relation to cognitive processing.

At this level of generality, it should be clear that there is no limitation on the
nature or complexity of the models (hypotheses, theories) that can be assessed
using Bayesian statistics, aside from the fact that they must be well enough speci-
fied that the probability of each data outcome can be calculated given that the
model holds. That is, hypotheses or theories must constitute probabilistic mod-
els. (In practice, of course, many hypotheses are not well enough specified for
this to be possible, and additional assumptions must be made in order to fill out
the hypothesis or theory into a full probabilistic model, but we shall not be con-
cerned with this issue here.)

Probabilistic models include deterministic models, which specify their data
with probability 1, and models which are defined in terms of symbolic structures
(e.g. sets of grammar rules), and learning for such models can proceed accord-
ing to standard Bayesian procedures. Bayesian methods can also be adapted to
assess parametrized classes of model (e.g. straight lines versus quadratic models
in curve fitting (e.g. Young 1977)).

While there is in principle no limitation on model complexity, performing the
appropriate calculations may be extremely difficult, involving severe mathemati-
cal and computational problems. Hence, in practice, researchers have been
forced to concentrate on relatively simple underlying models. For example, in
the domain of language, statistical research has focused on very simple
stochastic models such as hidden Markov models (e.g. Huang et al. (1990) -
note that the parameters of hidden Markov models are generally trained by maxi-
mum likelihood estimation, a Fisherian, rather than a Bayesian, method; how-
ever, it may be viewed as a special case of the Bayesian approach in which priors
are uniform), and this has been true even when considering areas of natural lan-
guage where such models have been shown to be inadequate (Chomsky 1957). It

is this practical limitation that has led to the claim that “probabilistic” or “statis- |

tical” models of language or some other aspect of cognition are not able to cap-
ture its true structure. Taken at face value, the claim makes no sense, since any
adequately specified model can, in principle, be used in statistical inference, and
hence there is really no such class as the class of statistical models. What is
meant by the claim is, presumably, that the simple stochastic models considered
in current statistical studies are not adequate.

This means that if neural networks turn out to be closely related to statistical
methods this does not necessarily mean that they are inadequate to model par-
ticular cognitive phenomena - for they are a new kind of statistical model, and
must be considered on their own terms.
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Neural networks and statistics

Neal (1993: 475) succinctly sums up the connection between neural networks
and probability theory and statistics viewing “neural networks as probabilistic
models, and learning as statistical inference”. Since many neural networks used
in cognitive modelling are feedforward networks trained with back-propagation,
[ shall concentrate on this case, considering the two halves of the view in turn. I
then briefly consider unsupervised learning networks.

Supervised learning

Neural network architectures as probabilistic models

First let us consider how a neural network can be viewed as a probabilistic model
(I follow Neal’s (1993) development). Consider a neural network (Fig. 11.1)
which takes vectors of real valued numbers, x, as input and produces real valued
vectors, y, as output. Assuming that the network is deterministic, i.e. that the
same input always results in the same output, the network architecture defines a
function f, where y = f(x, w), where w = (w,, . . . ,w,,) denotes the vector of m
weights in the network. Let us now suppose that the target output, z, is just y
with the addition of Gaussian noise, of fixed standard deviation ¢ (other noise
functions can, of course, be considered, but this is the simplest). Once the input
is specified, the probability of the target outputs is specified by

P(z

Thus, a neural network with a particular architecture and a given set of weights
defines a probabilistic model: the output probabilities are fully specified given
the input probabilities, in accordance with Equation 11.2. The neural network
architecture (defined purely by the pattern of connections between nodes) thus
defines a family of probabilistic models, parametrized by the weights w associ-
ated with the connections.

This formulation, while appropriate for modelling feedforward networks to
be trained by back-propagation, is not, of course, a helpful way to analyze all
supervised networks. For example, if the network has a stochastic dynamics,
then the output of the network may itself be a probability distribution, rather than
a particular deterministic state. For example, in the Boltzmann machine (Hinton
& Sejnowski 1986) the goal is to produce an output probability distribution
which models that observed during learning. In deterministic versions of
stochastic dynamics, such as the deterministic Boltzmann machines (Peterson &
Anderson 1987), real-valued output units are considered to denote the probabili-
ties of each discrete binary output, rather than denoting a real-valued number.

x,0) o exp(-z - f(x,w)? / 202) (11.2)
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Qutput units with pattern z

Figure 11.1 A supervised learning system.
The inputs x; are transformed into outputs y;,
which are compared against targets z;. One
natural goal of such reconstruction is to
minimize |z; - y;|?. In statistical terms,
minimizing least squares can be viewed as
assuming that there is Gaussian noise on the
output. As noted in the text, there is
sometimes an additional error term, which
Input units with pattern x punishes networks with large weights w.

Weights w

Neural network learning as statistical inference

Before discussing the statistical interpretation, let us briefly summarize the back-
propagation approach to training neural networks. Learning begins with a fixed
network architecture and a specification of the target output, z;, which is to be
associated with each example input, x;. Back-propagation adjusts the weights in
the light of these data. Typically, weights are adjusted so that some error func-
tion is minimized, the most common error function being the squared difference
between the actual network output and the target output summed over units and
patterns:

E(w) = %izp— f(x,w) /202 (11.3)

In practice, it is sometimes found to be useful to allow weights to decay in pro-
portion to their size, to discourage the network from developing extremely large
weights, which sometimes lead to poor generalization. Hence the function to be
minimized is modified to

E(w)= [21zp = flxe,w)/ 201] + Awf? (11.4)
P

where A is a constant which sets the amount of “weight decay” used.
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If the weights are adjusted in sufficiently small steps in the direction accord-
ing to —dE/dw;, the overall error E decreases. Eventually, the weights will reach
a minimum, at which no local change decreases E. Unfortunately, there is no
guarantee that this will be a global minimum, and so the network may not neces-
sarily achieve the lowest possible E value. This problem of “local r.niflima"_is,
however, a very general one, and typically applies in complex minimization
problems which are solved iteratively (e.g. it arises in training hidden Markov
models (Huang et al. 1990)). ‘

The back-propagation learning algorithm is simply an efficient computational
scheme for calculating the —~dE/dw, values, by passing an “error” signal from the
output units, where error is explicitly assigned, back through the rest of the net-
work. It has the further advantage of being completely local - i.e. simple pro-
cesses over the network units themselves serve to update the weights, and no
external controller is required. From an abstract point of view, all that matters is
that E is locally minimized somehow, and we shall not need to consider the
details of back-propagation below.

A number of authors have shown how this learning algorithm can be viewed
as statistical inference (e.g. Golden 1988, Buntine & Weigend 1991, Mackay
1992a, Neal 1992, Wolpert 1993). As noted above, we can consider the network
and weight values to define a probabilistic model from which the data are consid-
ered to be generated, and aim to choose the weights which correspond to the
most probable model, given the data (x,, z)), . . . , (¥, Z,)-

From Bayes’s theorem it can be shown that

PW{(81,21). (5 2)5) = PO)P(z1 21 X OW)  (1L5)

The probability of the data, given w and the assumption of Gaussian noise of
standard deviation o, is

P(2yye- 12100+ 1 Xs O, 0) o cxp[—):lzp - flxw)a / 202] (11.6)
P

To calculate Equation 11.5 we must also specify some prior probability on w.
(We assume here that the variance G is known. Buntine & Weigend (1991) show
that relatively minor modifications can deal with cases in which ¢ is unknown.)
If we are interested in favouring small weights, then a natural prior is to assume
that weight vectors are distributed in a Gaussian distribution, with standard
deviation m, around 0. That is,

P(w) o< exp(-|w? / 202) (11.7)

Substituting Equations 11.6 and 11.7 into Equation 11.5 gives
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F{“{{xl’zl)v . -'{xm%)ac) o “P[‘{WP 1262 =¥z~ flx,wf2 / ZUIJ (11.8)
p

To maximize Equation 11.8 we minimize
= = 2 /252 2 2

Thus we have a standard error function for back-propagation E(w), as given
in Equation 11.4, with A = 1/2w?. The parameter  depends on the standard
deviation of the Gaussian distribution of the priors. The smaller the standard
deviation, the greater the bias towards networks with small weights.

Thus, we have a clear statistical interpretation of back-propagation learning.
The strength of the weight decay term can now be understood in terms of how
closely the prior distribution of weights is bunched around 0, i.e. it is determined
by the value of . Interestingly, if the prior distribution is ignored, then the
second term need not be considered, and we derive Equation 11.3. Thus, back-
propagation without weight decay corresponds to computing the maximum like-
lihood weights, i.e. the weights according to which the data are most likely
(Golden 1988).

A statistical interpretation of neural network performance is not just a -
mathematical curiosity. It makes sense of neural network learning, clarifies the
assumptions underlying neural network performance, and provides insights into
how neural network methods can be further developed. Thus, the use of least
squares as a measure of error in statistical regression carries over as an appropri-
ate measure of network error (the difference between the network’s actual output
and the specified output). In back-propagation networks, and variants, the
weights are adjusted to perform gradient descent in this error. The statistical
assumption underlying least squares is that the output value is subject to
Gaussian noise; when this assumption is strongly violated, both statistical and
neural network methods should ideally use an alternative error measure. For
example, if the network outputs are known to be binary, an alternative measure,
cross-entropy, is generally recommended as a more statistically appropriate
error measure, and this has been widely used in neural network models. Here,
then, statistics not only justifies standard methods, but suggests how they should
be amended when necessary (see Hinton (1989) for discussion). Furthermore, a
large range of new technical developments derive from the statistical interpreta-
tion (e.g. Mackay 1992a,b, Neal 1993, Wolpert 1993).

The statistical interpretation that we have considered amounts to viewing
neural networks as a method for nonlinear regression, which is simply an exten- -
sion of standard linear regression, which is a familiar data analysis tool in the
behavioural sciences. Within conventional statistics, perhaps the most closely
related approach to back-propagation is projection pursuit regression (Friedman
& Stuetzle 1981), which has recently been related to neural network learning
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(Intrator 1993). Standard linear regression aims to fit a straight line to a set of
data points, so that least squares error is minimized, and this is justified as the
maximum likelihood model, assuming Gaussian noise, just as in the network
case described above. The analogue of weight decay in linear regression is
systematically to favour lines with small regression components, and is known as
ridge regression. The Bayesian analysis sketched above for neural networks with
weight decay directly parallels a Bayesian rationale for ridge regression. Fur-
thermore, linear regression is exactly modelled by a simplification of the stand-
ard back-propagation network - using no hidden units, and making the output
units linear. Back-propagation affords a very considerable generalization over
linear regression, since multilayered feedforward networks can learn to compute
a very large class of nonlinear functions. Indeed, Hornik et al. (1989) have
shown that any well behaved function can be approximated arbitrarily well by a
neural network with sufficiently many hidden units.

Feedforward neural networks trained by back-propagation need not be viewed
as a form of regression. With binary outputs, they can be viewed as classifiers,
analogous to discriminant analysis. Indeed, with a single linear threshold unit
(what Minsky & Papert (1969) termed a simple perceptron) they perform linear
discriminant analysis between input points classified as 0 and input points classi-
fied as 1.

It is clear, then, that supervised networks, which are by far the most common
network used in cognitive modelling, fit squarely in the tradition of conventional
statistics, and are generalizations of familiar methods such as regression and
discriminant analysis. We now turn to consider the statistical basis of unsuper-
vised learning.

Unsupervised learning

Unsupervised learning methods involve finding structure in input data, with no
specified “correct” output. The goal of the network is to extract interesting
structure of some particular kind from the input. Unsupervised models have been
much less used in modelling psychological data, although they have been viewed
ag_a valuable source of hypotheses about aspects of human cogmﬂon (Kohonen
1984, Rume 9 tter & Kohonen 1989, Finch & Chater 1992,
Fii ¢ Chater 1994, se:e also Ch 12) An excepnon is Gmssberg, ‘who
attemp! s to account for a large range of psychological data using rather elaborate
unsupervised networks (e.g. Grossberg 1982). This work stands outside the
mainstream of neural network research, and is beyond the scope of this chapter.

We shall briefly trace two connections between unsupervised learning and
statistics. The first connection is simply that unsupervised learning methods fre-
quently carry out identical or similar calculations to those of conventional statis-
tical methods. For example, a one-layer feedforward network with lateral
connections (Oja 1989) can learn to find principal components; competitive
learning methods (such as that of Rumelhart & Zipser (1986)) can be viewed as
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computing slight variants of k-means cluster analysis (e.g. Krishnaiah & Kanal
1982).

The second connection has a deeper theoretical basis. Whereas supervised
learning involves learning mapping between given input and target patterns,
much unsupervised learning can be viewed as learning a mapping between input
patterns and themselves — i.e. input and output are identical. In neural network
terminology this is the “encoder” task. Since solving the encoder task is a special
case of supervised learning, the statistical interpretation introduced above
applies, and hence an appropriate error function is proportional to |x; - z;|2,
where z; is the network output, and x; is the pattern to be reconstructed.

The encoder task is trivial if a large enough network is available (in particu-
lar, when there are as many hidden units as input/output units) - the network can
simply learn to perform the identity map. When the network is small, however,
this is not possible, and to learn the task successfully the network must compress
the input data into internal codes ¢;, while losing as little information as possible.
In order to compress data successfully, it is necessary to find structure within
that data. To take a simple example, DeMers & Cottrell (1993) use standard
back-propagation with a feedforward network to demonstrate that it is possible to
compress input data which lie on a three-dimensional helix through a single hid-
den unit - thus, three-dimensional input data can be compressed onto a single
dimension. In order to do this, the network must implicitly uncover the helical
structure of the data, so that it can be represented by a single parameter. To take
another example, Baldi & Hornik (1988) have shown that if a back-propagation
network has just one hidden layer, then the units on that layer will extract the
principal components of the input data (strictly, each of the # hidden units will
find components which together span the subspace defined by the first n principal
components, rather than finding exact principal components). It is because the
goal of compression and reconstruction requires knowledge of the structure of
the input that maximizing compression is an interesting goal of unsupervised
learning. Indeed, there is also a direct theoretical connection between theoretical
analysis of compression, in the minimum description length framework and
Bayesian statistics (Rissanen 1983, Rissanen 1989), although I shall not consider
this here.

In order to build a bridge between supervised and unsupervised learning, I
have so far considered unsupervised learning methods which use standard
feedforward networks trained by back-propagation. Of course, most unsuper-
vised networks do not have this form; indeed, much interest in unsupervised
learning concerns attempting to learn interesting structure without resorting to
back-propagation and related methods. Nonetheless, the theoretical analysis
sketched above can be used to derive many popular unsupervised learning algo-
rithms.

Most unsupervised learning algorithms do not explicitly reconstruct the origi-
nal input on a set of output units. Indeed, unsupervised networks generally
consist only of input units, and what I shall call “feature” units which are
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Reconstruction z

000000

Decoder
(not necessarily
a network)

Code ¢

Weights w
of unsupervised
network

Figure 11.2  An unsupervised
learning system. The inputs x; are
transformed into code patterns ¢;,
which can be used to reconstruct the
original input, giving z;. One
statistically natural goal of such

Input units with pattern x reconstruction is to minimize |z;x;|?.

intended to display the structure implicit in the input. The above analysis can be
applied by assuming a simple, fixed decoding mechanism, which maps feature
unit patterns back onto the original input space (Fig. 11.2). Given this fixed
decoding method, it is possible to calculate sum squared error as usual. Unsuper-
vised algorithms can be viewed as adjusting their weights so that this implicit
reconstruction can be as successful as possible - i.e. so that input data are
compressed as well as possible.

For example, in competitive learning (Rumelhart & Zipser 1986) only a sin-
gle feature unit is allowed to be active at any time, the unit whose weight vector
is closest to the input pattern. The decoding mechanism for this network is sim-
ply to take the weight vector associated with the winning unit as indicating the

input pattern. In order to minimize reconstruction error, it can be shown that the

weights should move according to the standard competitive learning algorithm.
Luttrell (1989, 1990, 1994) has extended this result to show that self-organizing
maps similar (though not identical) to those of Kohonen (1984) can also be
viewed as minimizing reconstruction error. Furthermore, networks which per-
form principal component analysis (Oja 1989) (without using full back-propaga-
tion) can also be understood in the same terms.

218

DISCUSSION

Discussion

I have outlined the close relationship between neural network models and statis-
tics, and I now turn to considering the significance of this relationship for psy-
chological theory. First, I shall attempt to put current neural network models in
context in the history of psychology, arguing that they should be seen as descend-
ants of previous statistical models of mind. Secondly, with the precursors of
neural networks in mind, I shall draw out implications for the debate between
neural network and symbolic approaches to cognition.

Relationship of neural networks to statistical models of mind

Neural networks are often portrayed as an entirely new and revolutionary
approach to the mind (e.g. Clark 1989, Bechtel & Abrahamsen 1991); but by
their critics they are frequently written off as associationism rediscovered (Fodor
1987, Fodor & Pylyshyn 1988). Neural networks do have close ties with a range
of previous theories in psychology, including those based on associationist prin-
ciples, although they are somewhat more complex in mathematical and computa-
tional terms. But they also have strong ties with a much broader tradition of
modelling mental processes as involving statistical inference, and we shall
briefly sketch some of these connections here (see Gigerenzer & Murray (1987)
and Gigerenzer (1991) for further discussion of the tradition of statistical models
of mind).

Perhaps the most well known statistical models have been outlined in the
study of perception. The assumption that the mind makes psychophysical judge-
ments and discriminations by using statistical techniques (based on Ney-
man-Pearson statistics) revolutionized psychophysics (Tanner & Swets 1954,
Tanner 1965). The idea of the new “signal detection theory” was that the mind
used statistical methods to take account of noise in perceptual stimuli. Earlier
Brunswick (1943) had put forward a more general, but less mathematically
sophisticated, doctrine of probabilistic functionalism, which held that mental
statistical operations were necessary to integrate uncertain environmental cues.
The methods of signal detection theory have since been applied to a broad range
of cognitive processes, ranging from memory (Wickelgren & Norman 1966,
Murdock 1982, Anderson & Milson 1989) to discriminating random from non-
random patterns (Lopes 1981).

The study of similarity and categorization has also been influenced by statisti-
cal ideas. One statistically natural approach has been to model the environment
as consisting of a number of distinct categories, which stochastically generate
category examples. Given a particular category example, which must be classi-
fied, Bayes’s theorem can be used to calculate the probability that it was gener-
ated by each of the possible categories. This approach to categorization gives
rise to “likelihood” or “feature probability” models of categorization (Fried
& Holyoak 1984, Anderson 1991). Thus, human categorization is viewed as
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involving the use of Bayesian statistics. Nosofsky (1990) has shown that the
scope of this approach is actually rather wide, since it is mathematically
extremely closely related to “exemplar” theories of categorization (Medin &
Schaffer 1978, Nosofsky 1984, Estes 1986, Nosofsky 1986). Learning to cat-
egorize can itself be viewed as a (more difficult) problem of Bayesian inference,
in which a particular number of types of generator category must be inferred.
Recently, a psychological model of how this problem can be solved using
Bayesian statistics has also been put forward (Anderson 1991). This kind of cat-
egorization model is formally closely related to mixture modelling approaches in
neural networks (e.g. Jordan & Jacobs 1993).

Finally, statistical models have also been widely used in theorizing about
human causal reasoning. For example, Kelley (1967) suggested that causal attri-
bution was effected by conducting an intuitive ANOVA, and this approach has
inspired a vast theoretical and experimental literature (e.g. see Cheng & Novick
1990).

The above discussion gives some idea of the breadth of the tradition of model-
ling mental processes in statistical terms, which stretches far beyond the confines
of associationism. Hence, to suggest that neural networks lie within the tradition
of statistical models of mind does not imply that they are simply a new form of
associationism. Nonetheless, there are close connections between certain kinds
of associative principle and particular neural network architectures. The best
known relationship is, perhaps, that the Rescorla-Wagner law of classical con-
ditioning is mathematically equivalent to the update rule for a single-layer neural
network, one of the simplest neural network architectures (Gluck & Bower
1988). More sophisticated neural network-based models have also been used to
attempt to provide new models of conditioning (Sutton & Barto 1981, Gluck et
al. 1992).

Given the statistical interpretation of neural networks that we sketched above,
neural network models can be viewed as lying firmly within this historical tradi-
tion of statistical models of cognition. But they do add something new. As I have
argued, they add technical innovations so that the range of phenomena that can
be modelled is much larger. Furthermore, neural networks are statistical algo-
rithms implemented by a highly parallel processing architecture, which uses
very simple processing units. Many, but by no means all, standard statistical
methods can be efficiently implemented in this way; by implementing a statisti-
cal algorithm as a neural network we are automatically subject to an important
constraint which appears to be a minimal condition for biological plausibility
(Chater & Oaksford 1990).

Neural network models and symbolic theories of cognition

We are now in a position to reconsider the debate between symbolic and neural
network approaches to cognition. As we noted above, advocates of neural
networks sometimes argue that neural networks will entirely displace symbolic
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models; and defenders of symbolic approaches to cognition have countered that -
neural networks are simply irrelevant to psychological explanation, which
should be couched exclusively in symbolic terms (Fodor & Pylyshyn 1988).
According to the arguments presented here, this debate should really be cast
in broader terms, as a debate between statistical and symbolic approaches to

. mind. But, once cast in these terms, the debate appears spurious, since the two

approaches are concerned with orthogonal issues. The advocate of statistical
methods pursues the possibility that aspects of cognition can be understood in
terms of the apparatus of probability, statistics, information theory and decision
UEE{X_:__The advocate of symbolic methods pursues the claim that aspects of cog-
nition involve the formal manipulation of structured symbolic representations
(Fodor 1975, Newell & Simon 1976, Pylyshyn 1984). These are independent
and entirely compatible claims about the nature of mind; they do not stand in
competition. As we noted above, statistics tackles the problem of induction; but
it does not place constraints on what is induced - it could be the gi'amrhar of a
language, or an everyday or scientific hypothesis, all of which might be inter-
nally represented in symbolic form. If the debate between statistical and sym-
bolic ideas seems ill conceived, the debate between neural networks (a special
case of statistics) and symbolic ideas seems equally ill conceived.

I suspect that there has been a tendency to adopt a more radical view because
of the difficulties which have been encountered in pursuing a symbolic approach
to mind. Symbolic methods dominated the computational study of mind from the
beginning of the cognitive revolution, with high expectations in certain quarters
thgt the problems of human cognition might rapidly be unravelled. This opti-
mism was based on the hope that early successes in formal domains, such as
mathematical or logical reasoning, or game playing, should readily scale up to
mo@el common-sense thought. In practice, this symbolic program has run into
serious obstacles, in capturing the densely interconnected and defeasible charac-
ter of human knowledge and in devising mechanisms to reason with such knowl-
edge (see Oaksford & Chater (1991, 1993) for extended treatments; see Dreyfus
& Dreyfus (1986), Fodor (1983) and McDermott (1987) for related positions).
The problems with modelling everyday thought have led to an increasing focus
on apparently specialized cognitive processes, such as syntactic processing,
early vision and motor control. But even here there have been considerable diffi-
culties in attacking real-world problems - symbolic parsers cannot cope with
natural text, and vision systems are very brittle when faced with real images.

. From the point of view of psychology, this disarray does not offer an appeal-
ing menu of computational methods which can be recruited as the basis of poten-
tial cognitive models. It is therefore tempting to believe that neural networks
nffer a radical alternative paradigm, within which these difficulties either do not
arise, or can readily be resolved. In fact, however, most neural network models
are simply unable even to represent the problems that symbolic approaches were
formulated to deal with, let alone solve them. There are, for example, no neural
network models which parse real text, or analyze real visual scenes - even to
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begin to tackle such problems appears to presuppose the abiiity to represent
complex structured information, for which symbolic represen[gnon is Fhe only
candidate. Instead of taking up the problems of the old symbolic paradlgn_l a1_1d
showing how they can be solved with neural networks, in practice, co:?nectlomst
cognitive science has simply shifted focus onto different problems, which appear

- to be amenable to neural network analysis. Interest in neural network cognitive

modelling has, for example, focused on highly specific domains such as reading
(Seidenberg & McClelland 1989, Bullinaria 1993, Plaut & McClelland 1993),
learning the past tense of verbs (Rumelhart & McClelland 1?86b, PIunkeIl. &
Marchman 1991), finding structure in simple sequential material, and modelling
aspects of speech perception and word recognition (e.g. McClelland & Elman
1986, Waibel et al. 1987, Abu-Bakar & Chater 1993, Cairns et al. 1994). .

The rise of neural network models has not, in reality, been a revolution
against old approaches, but simply a shift of emphasis away from one set of
problems, which appear intractable, to another set of problems t_hal can,
perhaps, more readily be tackled. In particular, the pr‘ob]ems that l}ave bee‘n
eschewed are just those in which structured representations are requlr(.:d‘ This
picture is strengthened by the fact that those neural network models which have
dealt with problems previously tackled by symbolic methf)ds have dqne so not by
overthrowing the symbolic approach, but by implementing symbolic structures
and processes in terms of neural networks. So, for example, neural ngtwcrks
have been used to implement semantic networks (Hinton 1981, Shastri 1985,
Smolensky 1987), production systems (Touretzky & Hinu_)n 1985), §chemala
(Rumelhart et al. 1986) and specialist knowledge representation formalisms such
as p-klone (Derthick 1987). e

I have argued for an ecumenical position: neural networks and _staustlcs give
rise to important tools for studying learning and uncertain reasoning; syn?bohc
methods allow us to model the representation and processing of complex infor-
mation. Both or neither of these approaches to the mind may ultimately prove
fruitful; but there is no incompatibility between these approaches, ar}d: foF now,
it seems appropriate to pursue both. From our current persper.:tive, it is difficult
to see how cognitive theory will be possible without ma}cmg sense of bth
approaches, and showing how they can be integrated: the rzc:.hness of symhollc
representations and processes appears to be indispensable in processing lalm—
guage, in vision or in modelling everyday thought, and the stausncgl inductive
methods which show how the information stored in such representations can be
adjusted in the light of experience, appears to be equally indispensab.lc. Bo!h
symbolic methods and neural networks are distressingly weak wl}en v1ewefi in
the context of the extraordinary complexity of the real problems, in perception,
language and common-sense thought, that people routinely a.nd effortlessly
solve. Cognitive science is, I would argue, currently better advised to develop
and pursue both theoretical approaches, rather than to attempt to struggle along
with either alone.
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