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Abstract

How can the classical psychological laws be explained and unified? It is proposed here that
scale-invariance is a unifying principle. Distributions of many environmental magnitudes are
observed to be scale invariant; that is, the statistical structure of the world remains the same at
different measurement scales [Mandelbrot, B., 1982. The Fractal Geometry of Nature (2nd
Edn.). W.H. Freeman, San Francisco, CA; Bak, P., 1997. How Nature Works: The Science of
Self-organized Criticality. Oxford University Press, Oxford, UK]. We hypothesise that the
perceptual-motor system reflects and preserves these scale invariances. This allows derivation
of several of the most widely applicable psychological laws governing perception and action
across domains and species (Weber’s, Stevens’, Fitts’ and Pie´ron’s Laws). We suggest that
these fundamental laws reflect accommodation of the perceptuo-motor system to the scale-
invariant physical world and therefore have a common foundation. 1999 Elsevier Science
B.V. All rights reserved.
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The perceptuo-motor system must represent the statistical structure of the envir-
onment. The present paper addresses the relation between this environmental struc-
ture and the functioning of the perceptuo-motor system. Many aspects of the
environment are statistically self-similar: that is, their structure is invariant over
change of scale (Fig. 1). For example, the power spectrum of natural images is
invariant over changes of scale (Field, 1987), and many natural structures are
scale-invariant (Mandelbrot, 1982; Meakin, 1998). Thus the shape of a cloud may
give no clue as to its size; if no other cues are available a small cloud 20 m away may
be indistinguishable from a large cloud 2000 m away. Similarly, from an aeroplane it
is difficult to judge one’s height above the sea, but not so difficult to judge one’s
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height above a city – because waves do not have a characteristic size, but houses and
cars do. A signature of scale-invariant systems is a power law relationship between
event frequencies and event magnitudes (Fig. 2), and such relationships are observed
in many physical systems including earthquake energies (Gutenberg and Richter,
1949; Johnstone and Nava, 1985), pulsar velocity glitches (Garcia-Pelaya and Mor-
ley, 1993), and many others (Bak, 1997). Similar distributional laws hold in a wide
range of physical, social and economic contexts (Zipf, 1949; Bak, 1997; Ijiri and
Simon, 1977; Mandelbrot, 1982).

If psychological processes are adapted to the statistical structure of the environ-
ment (Shepard, 1987; Anderson, 1990), it is possible that perceptual and motor
processing systems reflect the scale-invariance of the environment. Consistent
with this, a degree of scale-invariance is evident in perceptuo-motor function. For
example, ambient luminance varies by a factor of up to 10 000 in moving from
sunlight to shade, but the perceived brightnesses, colours and contrasts of visual
stimuli are largely unaffected because of adaptation in the perceptual system (e.g.
Fechner, 1860; MacKay, 1963). In general, then, perception appears to be sensitive
to ratios between stimulus magnitudes rather than absolute stimulus magnitudes –
that is, the output of many aspects of perception appear be independent of absolute
scale. Auditory pattern recognition is close to scale invariant with respect to fre-
quency – in music perception, the same ‘tune’ is heard if the frequency of all notes is
changed by the same factor. In complex movements, such as handwriting, the
detailed spatial and temporal structure of actions remains invariant over substantial
changes of speed and spatial scale (Viviani and Terzuolo, 1980). However, more
importantly, the assumption of scale-invariance in perceptuo-motor systems allows
the derivation of several classical psychological laws.

Consider the implications of scale-invariance for the accuracy of perceptual
encoding (Fig. 3). Neural coding must have finite precision, so measurement error

Fig. 1. The concept of scale invariance. (a) and (b) show the same function,y = (1/x2) plotted on different
scales. Note that the functions are visually indistinguishable. This illustrates the meaning of ‘scale-
invariance’ – the form of the function gives no information about the absolute value of the magnitudes
involved, and hence gives no clue regarding the scale of the units involved.
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is inevitable. Assuming that the measuring system is scale invariant, the distribution
of errors cannot reveal the absolute magnitude,I. This means that the width of the
error distribution cannot carry information about the absolute size of the magnitude
being measured. This implies that the proportional error (i.e. standard deviation of
the measurement divided by magnitude) is constant – that is, error is proportional to
absolute magnitude. Suppose, by contrast, that the measuring system has 0.01 pro-
portional error in judging, say, lengths around 1 m; 0.02 proportional error for
lengths around 10 m, 0.03 accuracy for lengths around 100 m, and so on. Suppose
further that a particular rod is judged several times to have a length of 0.5, 0.505,
0.495 and so on, measured using unknown units; the proportional error is estimated
at 0.01. We are then able to determine from these measurements that the length
being measured is about 1 m long. Thus we could determine the scale purely from
the data, in violation of scale invariance. However, if scale invariance holds, pro-
portional error cannot carry any such information, and hence proportional error must
be constant.

In judging perceptual magnitudes, this simply amounts to Weber’s Law, which
states that measurement error,DI, is proportional toI. This is among the most widely
cited of all psychological laws (Laming, 1986), applying to an approximation to
almost all sensory dimensions. Thus the assumption that the perceptual system
reflects scale-invariance in the environment predicts the default relationship govern-

Fig. 2. Power-law relationships and scale invariance. (a) shows the power-law relationshipy = x0.25, and
(b) shows the same relationship with logarithmic transformations of both axes. Note that the resulting
straight line implies ratio preservation:y3/y2 = y2/y1, and correspondinglyx3/x2 = x2/x1. When the original
relationship is not a power-law, in contrast, then the log-log plot is no longer linear (c). Consequently ratio
preservation no longer occurs:y3/y2 = y2/y1, as before, but nowx3/x2 Þ x 2/x1. The changing ratios in this
case provide evidence regarding the absolute magnitudes ofx andy.
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ing measurement error and magnitude in perception (Weber’s Law). For any mea-
suring system, of course, scale-invariance will be violated as the limits on discri-
mination imposed by the physical structure of the sensory organs are approached.
Thus proportional error increases markedly when stimuli are barely detectable.
Similar breakdowns of Weber’s Law are typically observed for stimuli at very
high magnitudes, beyond the normal operating range of the sensory system. Thus,
we would expect a plot of Weber fraction against absolute magnitude to be a
composite function, consisting of a linear relationship in the normal working
range of the perceptual system, where Weber’s Law holds, with concave-upward
‘tails’ at the extreme ends of the magnitude range, where proportional error is raised
(this pattern is shown in Fig. 4). It has been argued (see e.g. Krueger, 1989) that the
appropriate underlying function is not ‘linear plus tails’, but some other function
(e.g. one in which error is proportional to the intensityI raised to some power:
Guilford (1932); or added to some constant: Pie´ron (1952)). There is considerable
debate concerning which account is most appropriate (Krueger, 1989; Laming,

Fig. 3. Measurement error and scale invariance. The graph illustrates how scale invariance implies
Weber’s Law. A hypothetical measuring instrument is used to measure various lengths repeatedly. For
the same length, the instrument gives numerical outputs which vary from trial to trial, due to measurement
error. If the instrument’s behaviour is scale-invariant, then it should not be possible to tell the scale of
these numerical outputs. This means that the percentage error at different scales must be identical –
indeed, the error distribution should have exactly the same shape (as shown for the top three distributions).
But if the percentage error (e.g. for very small objects) changes (here, from 20% to 30%) then this gives
information about the scale at which the instrument is working (e.g. it is measuring at the order of mms).
Such violations of scale-invariance are inevitable at the extremes of the range of any measuring instru-
ment, including the perceptual system.
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1997). The predictions derived from the scale-invariant character of the environment
as derived here are confirmed only to the extent that Weber’s Law is, within the
normal operating range of the sensory system, true. However we also note the
difficulty of excluding the possibility that minor deviations from Weber’s Law
within the normal operating range may reflect the constraints imposed on adapting
systems by biological/implementational considerations.

More generally, scale invariance also implies that the probability of correctly
distinguishing the larger of a pair of presented magnitudes should depend only on
the relative difference between the magnitudes. This prediction is a much stronger
test of scale invariance in perception, because it requires the invariance of an entire
probability distribution, rather than the single quantity of proportional error. The
discriminability function (the probability thatI + DI is categorized as having greater
magnitude thanI, for varyingDI) does indeed have an invariant form (typically a
cumulative normal) whatever the value ofI, at least in those areas where it has been
investigated (e.g. for discrimination of sound pressure: Green and Sewall (1962);
Green (1967); and for intensity of odour: Stone and Bosley (1965); see Laming
(1986) for discussion).

Finally, we note that an analog of Weber’s Law is observed in motor control:
duration and force in ballistic movements are known to have a variance proportional
to magnitude, and accuracy is proportional to distance in a range of aiming tasks
(Schmidt et al., 1979).

Scale independence also has implications for tasks in which people match per-
ceptual or motor magnitudes to numerical values or to each other. If the mapping
between two real-valued dimensions,X andY, is scale invariant the mapping must be
ratio-preserving (Fig. 2). If this were not the case, then information about absolute

Fig. 4. Departures from Weber’s Law. Hypothetical function relating sensitivity,DI/I, to log stimulus
intensity,I. Discriminability is less for very small or large stimulus magnitudes (see text for details), but is
approximately constant (conforms to Weber’s Law) over several orders of magnitude throughout the
normal operating range. The schematic curve is based on sensitivity to white light (see e.g. Geldard,
1972).
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scale could be obtained by observing how these ratios varied. To see why, let us
assume thatX and Y, measured in units u and v respectively, are related by an
exponential relationshipY = 2X, where ratios are not preserved. A constant ratio
change inX (e.g. 1:2) corresponds to very different ratio changes inY, for different
absolute magnitudes (thus contravening scale invariance). Thus, ifX changes from 1
u to 2 u (a 1:2 ratio),Ychanges from 2 v to 4 v (a 1:2 ratio); but ifX changes from 2 u
to 4 u (still a 1:2 ratio),Ychanges from 4 v to 16 v (now a 1:4 ratio); and ifX changes
from 4 u to 8 u (again a 1:2 ratio),Y changes from 16 v to 256 v (now a 1:16 ratio).
This means that ratio changes carry information about the absolute magnitudes
being measured. So, for example, if we are given magnitudes of 0.5 and 1 inX
(but units are not known), and these correspond, respectively, to 500 and 2000 inY
(units not known), we can determine the absolute magnitudes, by noting that a 1:2
ratio in X corresponds to a 1:4 ratio inY, which indicates that the valuesX must be
about 1 v and 2 v, and theY values must be about 4 v and 16 v. Thus we have
determined absolute magnitude (and can trivially determine the measuring units)
from the relationships between these ratios. This is exactly what scale-invariance
rules out.

If the perceptual system is scale invariant, and there is no information in the ratios
between values ofX andY, thenX andYmust stand in a power law relation:Y ∝ Xk,
where k is a constant. If this is true, then if two values ofX differ by a ratior, then the
two corresponding values ofY differ by a ratio ofrk, independent of the absolute
values ofX andY. Therefore the ratios between pairs ofX andY values carry no
information about the absolute magnitudes ofX andY when a power law relation
holds between them.

Thus, scale invariance predicts that a power law relationship should hold in
matching different perceptual or motor magnitudes, and in matching these to numer-
ical values. This is Stevens’ Law (Stevens, 1975), which has been empirically
confirmed for over 30 perceptual and motor dimensions1.

Similar arguments apply to the case of motor control. Perceptual-motor activity
takes place in time, and the temporal behaviour of organisms is often scale-invariant
(Gibbon, 1977). The assumption of temporal as well as spatial scale independence
has implications for the relation between time-accuracy relations in perceptuo-
motor control. Consider an effector being moved a distanced to a target of size
w. To preserve spatial scale invariance, the time to make this movement must be a
function ofd/w, because otherwise changes in movement times would not be inde-
pendent of length measurement scale. If movement is also scale-invariant in time
(Viviani and Terzuolo, 1980), then movement time should be a power law function
of d/w. This model fits closely with over 40 diverse experiments on perceptuo-motor
control, ranging from dart-throwing to control in microscopy – it is one version of
Fitts’ Law (Fitts, 1954). Harris and Wolpert (1998) show that the velocity profiles of
eye and arm movements, and Fitts’ Law, can be explained on the assumptions that
neural control signals are subject to noise that increases in proportion to signal
magnitude and that the motor control system minimises the resulting final position

1Note that this explanation does not assume the existence of an internal sensory scale (Laming, 1997).
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error. Thus scale-invariance at the neural level is also consistent with the observed
functioning of the perceptuo-motor system.

Finally, consider expected reaction times,E(T), in detecting perceptual stimuli
with a magnitude (e.g. luminance, sound pressure),I. Large I are detected more
rapidly than are smallI. A crude application of scale invariance implies thatE(T) is a
power law function ofI. But RTdoes not tend to zero however large the stimulus to
be detected, because the perceptuo-motor system takes a certain time to initiate any
response. Therefore a constant response time,r0 must be subtracted from each
reaction time,T. The residual time should, by scale-invariance, be a power function
of the magnitude to be detected. This gives Pie´ron’s Law,E(T) − r0 = kI −b, where k
andb are constants (Pie´ron, 1952).

Clearly, the perceptuo-motor system is not completely scale invariant – for
example absolute magnitude judgements are possible, albeit remarkably poor (Gar-
ner, 1962), and invariance inevitably breaks down at extremes of perceptuo-motor
function. Nonetheless, many aspects of perceptuo-motor function appear to reflect
the scale-invariant character of the physical world to a remarkable degree, suggest-
ing that scale-invariance may be a unifying psychological principle that underpins
some of the most fundamental psychological laws. Finally, the fact that scale-invar-
iance breaks down radically in some cases (e.g. that of colour vision) argues against
the possibility that the scale-invariance that is normally observed simply reflects the
operation of physical systems which, being subject to the laws of nature, must
themselves embody scale-invariance.
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