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I.. 

Fodor and Pylyshyn’s (1988, this journal, henceforth “F&P”) recent defence 
of the Classical Symbolic Paradigm against the emergea: Connectionist 
Paradigm in cognitive science depends on the assumption that Connectionism 
eschews structural representation. owever, this assumption is belied by the 
numerous attempts of Connectio ent structured representa- 
tions in neural networks 1981; Rumelhark, 
Smolensky, McClelland, & nton, 1985). Thusi, 
the issue of structured representation cannot be the principal point of dis- 
agreement between Classicist and Connectiomist. We contend that although 
F&P are right to argue that Connectionism is an implementational theory, this 
does not detract from Connectionism’s relevance to psychological explana- 
tion. F&P’s contention that implementational considerations are irrelevant 
to psychological explanation only follows on the assumption that cognitive 
and implemert ona! levels are computationally and hence explanatorily au- 
tonomous (F& p. 66). We argue that in attempting to account for the 
various alluring properties of Connectionist systems, F&P are systemtitically 
forced to abandon the autonomy assumption, thereby assuring the relevance 
of Connectionism to psychological explanation. 
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We now reexamine the various “lures” of Connectionism. argue that 
F&P’s objections stem directly om their stand on autonomy. ere are two 
readings of the claim that the cognitive level is implementation-independent. 

The first reading is that the fzognitive level can be formally specified. This 
ecification must be impleme ble, but is wholly independent of the 
implementation employed. e can understand the behaviour of a 

PROLOG program independently of layers of software on which it runs, 
and the hardware realisatio That such independence of higher 
levels is possible is a c titability theory. Establishing the 
notion of a Universal achine demonstrates that hardware 
places almost no csnst ss of implementable virtual machines. 
The second reading is at the implementational level cannot affect higher- 
level processes. F&P are aware that this is an absurd position. 
(1984) points out that implementation affects complexity profile, t 
of damage, reliability and so on. Since the second reading is agreed to be 
absurd the real ncture of the dispute is whether the cognitive level can be 
formally specified in an implementation-i Classicist be- 
lieves in formal autsnolmy; the Csnnec take formal 
autonomy to imply that implementation is irrelevant to cognition. To explain 
the lures we will consistently urge that the cognitive level must interact with 
properties of the implementation and SQ cognitive performance c t be 
explained implementation-independently, pace formal autonomy. will 

e that, in any case, implementational considerations severely con- 
e class of cognitiv plausible architectures, even if autonomy 

can somehow be preserved. nce we will conclude that Connectionism is 
relevant to cognition. 

The “lure” of connectionism consists of a series of p ties 
Connectionist devices and the human cognitive system. 

shared by 
argue that the 

lures are consistent with an appropriately implemented formally autonomous 
Classical architecture. By contrast the Connectionist is not convinced that 
this is possible. To resolve this issue we now discuss the lures in detail. 

TO begin, we must reclassify F&P’s breakdown of the lures since certain 
phenomena are cross-zlassified. They provide the following list: 

(1) Speed 
(2) Content Addressability and Pattern 

lurring of Rule Governed and Rule Exceptional 
(4) Non-verbal or Intuitive Prdcesses 
(5) Resistance to (i) Damage and (ii) Noise 
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(6) Active versus Passive Storage 
(7) All or None Processing, including: 

(ii) Non-determinism 

(8) 

Some of these issues cluster together. Connectionist approaches to massively 
parallel soft constraint satisfaction purchase the alluring properties of 
graceful degradation (7 iii), content addressability (2) and a property F&P 
do not mention, &utomatic genera&satiovl. F&P group noise and damage toler- 
ance (5) together, but ignore the former. PI &se tolerance and partial pattern 
recognition (7 i) are special cases of graceful degradation. Damage tolerance 
and rule governed and rule exceptional behaviour (3) will be dealt with sepa- 
rately. We thus invoke five clusters: 

0 i 
( ) ii . . . 
( ) 111 

( 1 iv 
0 V 

Speed (F&P’s 1) 
Tolerance of Damage (F&P’s 5 i) 
Massively Parallel Soft Constraint Satisfaction (F&P’s 2, 5 ii, 7 i, 7 iii) 
The Blurring of Rule Governed and Exceptional Behaviour (F&P’s 3) 
Brain Style Modelling (F&P’s 8) 

Some of the issues which F&P raise are peripheral to Connectionism. The 
distinction between active and passive memory (6) concerns whether the 
control regime is completely distributed throughout the system (active, no 
CPU, no interpreter) or completely centralised (passive, CPU and inter- 

t is not about m ories “doing” or “not doing” things. Thus, their 
of Kosslyn an atfield (1984) is not germane (pp. 52-53). While 

many connectionist systems possess active memory in this sense, some do not 
(e.g., Shastri, 1985; Derthick, 1987). 

Non-verbal and intuitive processing (4) are not addressed by F&P, and so 
we will not discuss them further, We do not know the origin of the alleged 
“lure” of non-determinism (7 ii). The macroscopic non-determinism of human 
behaviour seems equally compatible with Classicism or Connectionism. 

2.1. Speed 

It has been argued that there is an upper bound of about 100 serial steps on 
any cognitive process lasting less than a second (Feldman & 
The Connectionist claims that the Classicist cannot account for this fact. 

contend that “All [The hundred-step constraint] rules out is 
the (absurd) hypothesis that cognitive architectures are implemented in the 
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brain in the same way as they are implemented on electronic computers” (p. 
55). Yet the hundred-step constraint does severely limit the class of cognitively 
plausible algorithms. For example, it rules out this algorit for addition: 
subtract 1 from the second number and add 1 to the first u the second is 
0; the sum is the final value of the first. ct that most people can add 
1,000,000 and l,OOO,OOO in less than 1 s wever, our algorithm would 
require 1 ,OOO,OOO steps. It is excluded by the hundred-step constraint. 

F&P suggest that since “.. , it is not even certain that the firing of neurons 
is invariably the relevant implementation property . . . the 100 step ‘constraint’ 
excludes nothing” (p. 55). So, perhaps we can push up y1 (the number of steps 

computed in less than a secend). Connectionists thems 
ow this may be achieved by probabilistic coding (e .g . , 

Sejnowski, 1986) and have speculated that fast ne 
firing may be computationally important (voc der 
1986). Only by doing PDP what neural properties are com- 
putationally relevant. At be that n may be significantly greater 

owever, e~cn if n is higher by one or two orders of magnitude, 
the n-step constraint will still significantly restrict the class of cognitively 
plausible algorithms. The substantive practical issue is whether the Classicist 
can implemelit his favourite cognitive algorith.ms without violating the n-step 
constraint. Since Classicist algorithms typically require many millions of 
machine operations, the n-step constraint presenta a non-trivial challenge to 
the Classicist. 

2.2. Tolemnce of damage 

tionist claims that Classical symbolic computation does not have 
tolerance characteristic of human cognition. Connectionist sys- 

ante by using distributed representations. How- 
neural distribution of representations is just as 

rchitectures as it is with Connectionist networks” 
(p. 56). All the support they adduce for this claim is that “... all you need 

mory registers that distribute their contents over physical 
wever, distributed representations are damage tolerant not 

hake spatially non-localised coding but because the inter- 
ture of the symbol reflects its semantic properties, for example 
and APRICOT will have similar bit vectors. Arbitr 

is like storing the same piece of information in many places. 
damaged, however partially, there is a catastrophic loss of performance. In 
a non-arbitrary distributed scheme, similar objects are represented by similar 
bit vectors. Therefore, even if the representation is so damaged that 
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cannot be reconstructed, a semantically related item will be selected, for 
example APRICOT ( inton, McClelland, & Rumelhart, 1986: p. 102). This 
permits an understanding of graded semantically systematic error. 

2.3. ssively parallel soyft constraint satisfaction 

This lure falls under four subheadings: (a) memory is content addressable 
and pattern recognition easy; (b) memory is noise resistant; (c) rules can be 
partially satisfied giving (d) graceful degradation. These issues are distin- 
guished in F&P, but are ail direct consequences of the Connectionist ap- 

proach to massively parallel soft constraint satisfaction. Connectionists con- 
tend i:hat standard symbolic computation does not have these properties. To 
maintain autonomy F&P must believe that an appropriate implementation of 
a Classical architecture can capture (a) to (d). 

In F&P’s reply to the lures, they say nothing about (a). So arguments that 
conventional methods such as “hash coding” are inadequate remain unchal- 
lenged (Hinton et al., 1986). 

P&P identify the problem of noise (b) to be tolerance of “spontaneous 
neural activity” (p. 52). sowever, it is usually seen as the problem of achiev- 
ing reliable computation with a degraded input. The input may be degraded 
for many reasons: for example, noisy background conditions (in ordinary 
speech recognition); errorful memory retrieval (cues ( inton et al., 1986); 
stimuli in peripheral vision; internal noise, whether gen ted by spontaneous 
neural activity or physical damage. The section “Resistance to noise andphys- 
ical damage” does not mention noise but it Ls raised briefly in the discussion 
of “soft” ::onstraints: “The soft or stochastic nature of [Classical] rule-based 
processes arises from the interaction [our italics] of deterministic rules with 
real-valued properties of the implementation, or with noisy inputs or noisy 
information transmission” (p. 58). This does not constitute an autonomous 
solution to the problem of noise since interaction between implementation 
and cognitive architecture simply concedes autorzmy. 

Similarly, in discussing (c), F&P seem to immediately concede autonomy: 
“One can have a Classical rule system in which the decision concerning which 
rule will fire resides in the functional architecture and depends on continu- 
ously varying magnitudes [thus abandoning autonomy]. Indeed, this is typi- 

lly how it is done in practical “expert systems” which, for example, use a 
chanism in their production-system rule-interpreter” (p. 58) l 
the statistical processes of ian inference in practical expert 
defined at the level of cog architecture, not functional ar- 

chitecture (Charniak & cDermott, 1985: p. 460). So the traditional solution 
is an autonomous Classical model. This approach seems unpromising in the 
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ht of complexity results for standar ayesian techniques (Charniak & 
Dermott, 1985: Chapter 8). So the cession to non-autonomy is well 

utonomy is again apparently conced 
a Classical rule syste 
activated in some meas 
holding. Exactly what depend on how the rule- 
system is implemented rave the activation of a cog- 
nitive level rule depen the implementation completely 
abandons autonomy. le in principle that some 
implementation of of weak methods or Laird, 

goaling may capture graceful 
t the Connectioni it can be achieved in practice 

y Connectionist systems have 
quite naturally (McClelland, 

s claim (pp. 5849) but in the 
e lure of graceful degra- 

dation stands. 
Although F&P separate the above points, they are all direct consequences 

of the fact that PDP systems “provide an efficient way of using parallel 
hardware to implement best-fit searches . . . Each active unit represents a 
“microfeature’ of an item, and the connection strengths stand for plausible 
‘microinferences’ between microfeatures. Any particular pattern of activity 
of the units will satisfy some of the microinferences and violate others. A 
stable pattern of activity is one that violates e plausible microinferences less 
than any of the neighbouring patterns” ( ton et al., 1986: pp. 80-81). 
Given this intuitive picture we can see ho various lures emerge. 

n an arbitrary sufficiently large t of a pattern is presented the 
ferences produce the nearest p e completion (stable state). 

I-Ience, any sufficiently large part of the tent of the memory will access 
the whole memory. That is, memory is t addressable (a). If part of the 
presente agment is wrong, the micro rices will still find the best avail- 
able fit. ence a degree of noise can 

This intuitive picture can be generalis within layer interactions to 
between layer interactions generating ( Consider a network trained 
to map each of a set of input patterns onto a corresponding output pattern. 
We may treat each input-output pair as a le with a “condition” (input) and 
an “action” (output). Each bit of the ou t pattern is a function of all the 
elements of the input pattern. Thus th formation about which output 
should be chosen is distributed throughout the input. Suppose that the input 
is a slight distortion of one of the learnt patterns. Since the output is a 
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function of the entire input, the loss of any particular part of the input does 
not lead to a catastrophic failure to produce any particular bit cf the correct 
output. Rather it leads to a slight distortion of the whole output vector. 
Hence, as the fidelity of an ingu.t is smoothly reduced, the fidelity of the 
output smoothly reduces. This ‘is graceful degradation (d). This behaviour 
contrasts with that of conventional schemes, where either the input error is 
detected. corrected for, and the right output chosen, or the error is not 
detected, and a totally inappropriate output is produced (or none at all). 

Suppose that the presented input pattern is a blend of the learnt input 
patterns (suppose we have learnt A + X; B + Y; etc.; a blend of A : 

1111100010 and : 1110000001 might be simply C : 1111000011). What is 
the pattern Z that C is mapped onto? Since the preser. ;d input pattern C is 
a slight distortion of A, the output it produces, Z, is a degraded form of the 
corresponding output X (by graceful degradation). However, similarly, Z 
will be close to the output corresponding to B. Thus if the input C is a blend 
of A and B, the output Z will be a blend of X and Y. Thus an input pattern 
may partially match several different rules, to H graded extent. This is partial 
rule match@ (C). 

2.4 The blurring of rule governed and exceptional behaviour 

F&P claim that Connectionists are committed to a common aetioiogy for rule 
governed and rule exceptional behaviour (p. 51). They appear to be adverting 
to Pinker and Prince’s (1988) criticisms of Rumelhart and McClelland’s 
(1986b) Past Tense Learning Model which attempts to learn regular and 
irregular past tenses with a single mechanism. From a detailed consideration 
of the past tense system in English, Pinker and Prince argue that the model 
is unlikely to generahse. However, F& characterise the rule governed versus 
rule exceptional distinction in terms of the surely unrelated competence- 
performance distinction. The use of went as the past tense of go is to be 
attributed to linguistic competence jet it is rule exceptional. The Connec- 
tionist may wish to blur the aetiology of rule governed and rule exceptional 
behaviour while maintaining a sharp distinction between competence and 
performance. 

F&P further conflate the rule-governed/exceptional distinction with the 
rule-implicit/rule-explicit distinction (pp. 59-60). While the issues surround- 
ing the latter distinction are important and unresolved., we agree with F&P 
that they do not decide between Connectionist and Classicist. Since we advo- 
cate the implementation of high-level cognitive architectures in Connection& 
hardware we are committed to the need for explicit rules in the explanation 
of cognitive phenomena. However, with respect to particular behaviours, the 
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Connectionist 2nd Classicist may differ as to which sort of explanation is 
ropriate. If one retains autonomy, there are only two explanatory avenues 

open: rule governed or errorful. Linguistic exceptio are either simply 
mistakes or are governed by explicit excepti.onal rules. t seems that ali reg- 
ularities must be encoded explicitly. Later on this fact will return to dog the 
Classicist’s attempts to model human reasoning. 

2.5 Brain style modelling 

F&P characterise this lure as the claim that Connectionist models, in contrast 
to Classical models, are constrained by the facts of neuroscience (pp. 53-54). 
However, they claim that biology constrains cognitive architecture very little 
(p. 62) and further that the biological plausibility of PDP models is in any 
case problematic (p. 58). We argue that there are good reasons to work with 
P models that do not map directly onto neural structures, 

given cognitive architecture running a particular algorithm will possess 
radically different real time processing characteristics when implemented in 
different hardware. So although biological hardware cannot determine the 
high-level architecture it severely constrains the class of possible cognitive 
architectures. It is hard to implement many features of standard architectures 
in PDP systems (Touretzky & nton, 1985, for example). rice, it is un- 
clear whether tolerably efficient implementations of any standard symbolic 
architecture are possible. Adversion to Turing machin wer is of no avail 

, since we are concerned with real time processing. 
t cognitive architectures are compatible with biolo 

puter science. 
F&P hold that “brain style” modellers expect biology to specify properties 

of the cognitive architecture and counter that “the structure of ‘higher levels’ 
of a system are rarely isomorphic, or even similar, to the structure of the 
‘lower levels’ of a system” (p. 63). This assumes that lower-level properties 
can only specify higher-level properties in virtue of an isomorphism. The 
relationship between atomic physics and chemistry seems to be an appropri- 
ate counter-example. In any case, the Connectionist need only claim that the 
facts of Biology constrain rather than specify cognitive architecture. 

2.6 The lures: Concluding remarks 

Finally, we present some general remarks which argue against F&P’s re- 
sponse to the “lures” of Connectionism. They argue that the Classicist can 
deal with the lures in principle. To satisfy the Connectionist the Classicist will 
have to demonstrate this in practice. 
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The Classicist has work to do! F&P present no arguments to show that 
Classical architectures are compatible in practice with (2.1) speed; (2.2) toler- 
ance of damage; (2.3) massively parallel soft constraint satisfaction; or (2.5) 
brain style model1 ng. The onus is on the Classicist to persuade us that a 
single Classical architecture/implementation can have all these properties. 

The lures are desirable in standard computer science. If standard Classical 
architectures can be implemented to use just 100 steps, to tolerate hardware 
failure, to implement rapid noise resistant memory search and pattern match- 
ing, and to degrade gracefully under noisy conditions, then this is how they 
should be implemented. Such properties would be advantageous in everyday 
computational applications. If such implementations are possible, they cannot 
be obvious, or we would be running PROLOG on them! 

Learning. The most persuasive lure is not mentioned by F&P. This is that 
Connectionist systems need not be handwired, but can learn. Current learning 
methods such as back-propagation are not the last word in learning theory. 
However, the PE9P approach to learning gives some insight into how 

res can spontaneously emerge (Rumelhart & Zipser, 
rr:on, & Williams, 1986; Pineda, 1987; Almeida, 1987; 

1986; but see Minsky & Papert (1988) for a general 
critique). 

By contrast, standard learning models cannot develop new structures (see 
Fodor, 1975, 198l), since Classical learning is just hypothesis generation and 
confirmation. Everything that can bc learnt must be representable innately. 
S*ch considerations lead to the conclusiw=l that all concepts (e.g., PROTON) 
a;~ innate (Fodor, 1981; though see Chater, 1986). PIY promises a theory 
of learning which sidesteps these difficulties. 

What was the real nature of the dispute? Throughout their discussion of the 
lures, F&P make no reference to structured representation. Thus even for 
F&P this issue does not bear on the dispute between Classicist and Connec- 
tionist. The lures challenge the Classicist to implement some standard ar- 
chitecture which meets each lure. We will only know whether this is feasible 
by attempting to implement standard architectures in brain-style hardware l 

And this will involve doing PDP computer science. 
The Connectionist hunch is that this project will prove impossible and that 

many computational properties should be directly9 purchased from the im- 
plementational level. The lures do not decide the issue, but we have indepen- 
dent grounds to suppose that the Classicist project will prove unworkable. 

e argue that only by rejecting autonomy will we understand the computa- 
tional characteristics of the mind. 
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F&P argue that Classical Cognitive Science amounts to “. . . an extended attempt 
e methods of proof theory to the modelling of thought” (pp. 
y seem to be proposing that we think in a high-level logic pro- 

gramming language (like PROLOG?) whose doma is the everyday world. 
Proof theory guarantees truth preserving inference. cwever, most everyday 
inferences are not guaranteed to preserve truth; that is, they are plausible 
inferences. These have been discussed under the banners of inductive infer- 
ence, abductive inference and default inference. 

3.1 Inductive inference 

Classical inductive reasoning involves hypothesis generation and confirmation 
(Fodor, 1975). Hence, Classical inductive learning models, for example 

, can only learn new concepts by combining eleknents of an 
e basis, Fodcr 1lMU /aQ*i) observes that the primitive basis may 

have to be as large the lexicon of a natural language. Clearly the claim 
that, for example P TON, is innate is close to a reductic ad absurdurn of 
the Classicist theory of induction (but again see Chater, 1986). 

3.2 A bductive inference 

F&P (p. 58) observe that non-demonstrative inferences like abduction (infer- 
ence to the best explanation) may be accommodated by supplementing proof 

ith Bayesian infere ce techniques (cf. Chal,niak a%. 
wever, these are erally computationally intractabl 

diagnosis, heuristic techniqu are used co deal with 
Caduceus, in Charniak $I ermott, 1985: p. 474). T 
be justified semantically within the formal system. For 
must be implementation&l details, for example the search strategy of the 
interpreter. This amounts to computational non-autonomy. This implementaX 
tional detail exphins Caduceus’ ability to deal with multiple diseases. This 

_ --^ amounts to explanatory non-autohohiy. 

3.3 Default reasoning 

Just about any everyday generalisation succumbs to indefinitely many 
counter-examples. If see Fred going past my window at 9.00 a.m., I know 
he’s about to buy his morning paper. But not if it’s Christmas day, since there 
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arz no papers; not if he’s being mugged; not if he’s already reading The 
Tinm I These possibilities override our generalisation that Fred buys a paper 
just after passing my window evemy morning. To preserve autonomy, we must 
encode the various conditions that might override our rules, and check that, 
none of the&m apply in any specific case. 
default reasoning ‘in knowledge 

is the standard approach to 
represe on. Unfortunately we have 

to suspect that it is unworkable. 
t standard logical schemes are monotonic. If on seeing Fred go past 

I infer he will buy a newspaper, then if I reason monotonically 
al premise can invalidate my conclusion. In non-monotonic 

can add premises and lose conclusions. 
5) attempts to extend standard logic to incorporate non- 

ott (1986) notes that there are two problems with 
Reiter’s logic is undecidable in prfqciple and intract- 

able in practice. Deciding whether a default rule applies involve+; consistency 
checking, which is an W-hard problem. Second, the conclusions drawn are 
usually too weak. Although p is the conclusion desired, all that follows is 
p V q, where q is some arbitrary proposition. 

blem need not decide against autonomy in knowledge 
wever there are more general difficulties fol: the Classicist 

vent indefinitely many conditions which override my 
inference about Fred buying his morning paper. For the Classicist, each pos- 
sibility must be explicitly encoded in the appropriate rule. To av$d an infinite 
list of default clauses we must appeal to a finit&? taxonomy which captures the 
infinitude of specific cases. Perhaps FreJ wiii not ge is morning paper in 
distracting situations, dangerous situations and so on. wever, vhat counts 
as a distracting situation is relative to what rule we onsidering. A road 
accident might count as a distracting situation for Fred’s getting his paper, 
but not for his getting to work. So the categories in our taxonomy must be 
spelt out in detail in each rc:le. It is unlikely that such specifications will be 
forthcoming. This difficulty with the context dependence of categories is en- 
demic in concept combination (Lyon & Chater, in press). The problem of 
defaults infects lexical inference as well as structural inference. 

These problems with the Classical account of knowledge representation 
and inference do not argue for a non-autonomous account unless we indicate 
how the implementation can help. n et al. (1986: p. 82) discuss an 
implementation of semantic nets in hardware (originally in Winton: 
1981): 

If . . . you learn that chimpanzees like onions YQ 1~ -&ii1 probably raise your esti- 
mate of the probability that gxillas -an 1:“~: onions. In a network that uses distri- 
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buted representations, this kind of generalization is automatic. The new knowl- 
edge about chimpanzees is incorporated by modifying some of the connection 
strengths so as to alter the causal effects of the distributed pattern of activity 
that represents chimpanzees. The modifications automatically change the causal 
effects of all similar activity patterns. So if the representation of gorillas is a 
similar activity pattern over the same ;L,t of units, its causal effects will be 
changed in a similar way. 

The similarity metric used in automatic generalisation is induced by pattern 
similarity and need not be specified by the programmer, but is learnt by the 

inton, 1987). Gorilla has “likes onions” as a default which may 
by explicitly storing information to the contrary. The default 

may also be overridden if “gorilla” has a similar pattern to “orangutan” and 
orangutans do not like onions. The similarity metric gives us default rules for 
free, and the autoassocia:ive mechanism fin e best fit to the soft con- 
straints. Soft constraints, the very fabric of implementations, just cere 
default rules. This is a paradigm case of the value of non-autonomous im- 
plementations of structured representations. This toy example is suggestive 
of how implementation may unburden the cognitive architecture of the prob- 
lems created by non-demonstrative inference. 

If the domain of psychology is a proof-theoretic cognitive level, then the 
following are apparently not psychology: arr’s (1982) models of low-level 

n; Anderson’s (1983) spreading activation models of semantic memory; 
of the work on the capacity limitations of human memory (cf. Fodor, 

1983); the whole of neurophysiology, neuropsychology and physiological 
psychology; all the work on semantic priming; the Trace model of speech 
perception (McClelland & Elman, 1986), etc. The only experimental work 
we know of which explicitly addresses the logical characteristics of the cogni- 
tive architecture is that on deductive reasoning (Wason & Johnson-Laird, 
1972; Evans, 1982, 1983). On F&P’s demarcation principle, the domain of 
psychziogical concern is unexpectedly limited. hat remains is also prob- 
lematic for the Classicist, since no existing logical regime is capable of captur- 
ing more than an insignificant fraction of the experimentally observed infer- 
ences (Oaksford, 1988; Oaksford & Stenning, 1988). 
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On a representational theory of mind the central problem for psychology is 
providing a semantics for mental states and a mechanism whose causal se- 
quences are semantically coherent: that is, cognition is computation (Fodor, 
1975,1980,1983,1987; Fodor, Bever, & Garrett, 1974; Pylyshyn, 1973,1980, 
1984). F&P claim biological computations are autonomous; thai is, mental 
processes are simply an implemented formal system and Cognitive Science is 
proof theory. adduce evidence for structured representation and take 
this to decide st Connectionism because of the autonomy assumption. 

e believe that this assumption is the real locus of the dispute between 
Classicist and Connectionist. This diagnosis is borne out in the discussion of 
the lures, which provide empirical adequacy criteria on an autonomous ar- 
chitecture. It is unclear whether these criteria can be met without violating 
autonomy. Further, autonomous architectures may fail in principle to handle 
non-demonstrative inference. Admittedly, non-autonomous (Derthick, 1987) 
Connectionist approaches are embryonic. However, to borrow a Fodorian 
phrase, they seem to be the only straw afloat. So we must take seriously the 
possibility that cognitive architecture is not autonomous from its implementa- 
tion. 
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