
In 1989, J.R. Anderson and Milson1 published the first
paper explicitly adopting the ‘rational analysis’ approach to
cognition. In the decade since, the approach has been vigor-
ously pursued, whether by name2–9 or merely in spirit10–12.
Rational analysis has been the topic of an international con-
ference, involving some of the world’s leading cognitive
psychologists and is the focus of the resulting book13. 
But what exactly is rational analysis? How does it relate to
other approaches in cognitive science? How does it apply in
practice? This review addresses these questions, beginning
by distinguishing the style of explanation used in rational
analysis from conventional explanation in the cognitive 
sciences.

What is rational analysis?
Mechanistic and purposive explanation
A scientific explanation of psychological, biological, or so-
cial phenomena can take one of two complementary forms.
The first is ‘mechanistic’. Phenomena are explained by
analysing their internal causal structure. The second is ‘pur-
posive’. The phenomena are explained in terms of their 
purpose: what problem they solve. 

In biology, purposive explanation concerns the function
of biological structures and processes (e.g. the function of
the heart is to pump blood); and the same style of expla-
nation is applied to animal behaviour (e.g. the function of
building nests is to provide a safe shelter for eggs). In social
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theory, purposive explanation is embodied in ‘rational
choice’ explanation14, which ranges from economics to
sociology and political science. People’s behaviour is ex-
plained as rational in terms of their beliefs and goals (i.e.
their purposes). This kind of explanation is a systematiza-
tion of our everyday, folk-psychological explanation of each
other’s behaviour in terms of beliefs and desires.

In the cognitive sciences, however, there has been a
strong predominance of mechanistic explanation. Compu-
tational models, whether symbolic or connectionist, have
focused on specifying architectures and algorithms for cog-
nition. Experimental studies have carefully documented the
structural features of memory or reasoning, for example,
but with relatively little concern for why these processes
work as they do. Neuroscience provides another source of
primarily mechanistic constraint on cognitive theory, in
terms of the causal properties of the neural substrate in
which cognitive processes are implemented. The picture
that emerges from this focus on mechanistic explanation is
of the cognitive system as an assortment of apparently arbi-
trary mechanisms, subject to equally capricious limitations,
with no apparent rationale or purpose.

This rather unflattering picture of the cognitive system
seems radically at variance with its performance. In percep-
tion, motor control, language processing, common-sense
reasoning and decision making, the cognitive system 
reliably (though not infallibly) handles perceptual and cog-
nitive problems of spectacular complexity, typically under
conditions of extreme uncertainty. The cognitive system
can learn to deal with a remarkably broad range of 
challenges, both natural and artificial, from unicycling to
backgammon to musical composition. It acquires, stores,

and can flexibly retrieve, an immensely rich understanding
of the everyday world. It seems plausible that, as for other
biological structures, this success is not accidental – rather,
the cognitive system seems more likely to be superbly
adapted to serve practical and computational ends.

Purposive explanation has been applied to some aspects
of cognition. Most notably, there has been considerable 
interest in studying how visual processing is adapted to the
problem of reconstructing environmental structure from 
visual input15. Marr’s ‘computational level’ analysis aims to
explain the nature of the problems that the visual system
faces, and how these can be solved successfully15. The idea 
is that the adaptive success of visual processing can be 
explained by assuming that visual processes approximate an
optimal solution to these problems. Another purposive style
of explanation is the ‘ideal observer’ approach to under-
standing visual processes, in which the performance of a
‘perfect’ algorithm for solving a computational problem is
compared with the visual system (which is assumed to at-
tempt to solve that problem). This approach was developed
in relation to quantal limits on light detection, but has re-
cently been extended to complex visual functions, such as
letter recognition16, reading11, and object recognition17. In
the same vein, there has been much recent interest in how
the visual system is adapted to the statistical properties of
natural images18.

The methodology of rational analysis
Although purposive explanation has been immensely fruit-
ful in perception, it has been less vigorously pursued in cog-
nition. This is presumably because analysing agents’ goals
and the environments in which they think and act appears
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Rational analysis is concerned to explain why cognition is adaptive. A related
approach is ‘evolutionary psychology’ (Ref. a). Whereas rational analysis is
neutral concerning whether adaptation arises through evolution or learning,
evolutionary psychology has been applied principally where adaptation arises
through evolution. However, evolution might also have predisposed humans
to learn some tasks more quickly than others.

Another point of contrast is that some evolutionary psychologists have ar-
gued that cognitive processes or behaviours that appear counteradaptive in the
contemporary environment (to which adaptation might have occurred via
learning) can be explained as having been adaptive in the hunter–gatherer so-
cieties of evolutionary history. Given that so little is known in detail about the
problems faced in such societies, this style of explanation seems particularly
weak. However, the general programme of evolutionary psychology is mainly
concerned with how specific cognitive structures can be seen as adaptations to
the environment. This emphasis on the environment in providing relevant
goals for the cognitive system and crucial constraints on its operation is shared 
by the rational analysis approach (e.g. need-probability and the rarity 
assumption). Consequently, although rational analysis incorporates some 
elements of the evolutionary approach, some of its proponents (ourselves in-
cluded) are less willing to endorse evolutionary ‘just so’ stories concerning
primitive societies as explanations of cognitive phenomena.

This issue is highlighted in relation to the selection task, where some evo-
lutionary psychologists have argued that the different performance observed
when people are given so-called ‘deontic’ rules (i.e. norms of behaviour) can
be explained by the evolutionary importance of reasoning about such social

norms (Ref. b). With such rules, for example, ‘if you drink beer (p), you must
be over 18 (q)’, people select the p and not-q cards, rather than the usual p and
q cards selections. According to some evolutionary psychologists, this is a 
result of enhanced reasoning ability, owing to the operation of a dedicated 
social-reasoning module, wired in by evolutionary pressures on certain kinds
of social interactions. But the task also has a different rational analysis, and
hence a different ‘correct’ solution (Refs c,d), to the standard selection task,
which explains the change of people’s responses. Therefore, rational analysis
explains the data parsimoniously, without requiring assumptions about 
evolutionary history [see the interchange between Cummins (Ref. e) and
Chater and Oaksford (Ref. f) for further discussion].
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Box 1. Rational analysis and evolutionary psychology



more difficult to specify for higher-level cognition than it is
for vision.

The program of rational analysis2,3 provides a method-
ology for applying purposive explanation to higher cogni-
tive processes. Rational analysis requires specification of the
goals of the system and the nature of the environment, and
formally derives an optimal solution to achieving some goal
in that environment. Thus, rational analysis specifies what
problem the cognitive system is solving – some approxima-
tion to an optimal solution. It also explains why this is use-
ful: because it approximates the optimal solution to attain-
ing some adaptively relevant goal or purpose (though it does
not have a commitment to an evolutionary explanation for
why the cognitive system is well-adapted to such goals; see
Box 1).

Anderson’s methodology2,3 for deriving rational analy-
ses of cognitive processes involves the following six steps.

(1) Goals: specify precisely the goals of the cognitive system.
(2) Environment: develop a formal model of the environ-

ment to which the system is adapted.
(3) Computational limitations: make minimal assumptions

about computational limitations.
(4) Optimization: derive the optimal behaviour function,

given 1–3 above.
(5) Data: examine the empirical evidence to see whether

the predictions of the behaviour function are confirmed.
(6) Iteration: repeat, iteratively refining the theory.

Rational analysis is closely related to other approaches
that have assumed that human behaviour is adapted to the
structure of the environment. Psychologists such as
Brunswick19 and Gibson20 adopted a specifically adaptionist
perspective. Shepard21 and Cosmides22 have also pursued an
adaptionist stance within an evolutionary framework (see
Box 1). Recently Chase, Hertwig and Gigerenzer23 have
proposed a related approach that takes Herbert Simon’s24

notion of bounded rationality as its starting point. For
Simon, ‘Human rational behaviour…is shaped by a scissors
whose two blades are the structure of task environments and
the computational capabilities of the actor’. Chase et al.23

develop this analogy by proposing simple heuristics for
human reasoning, which do not tax people’s limited com-
putational resources and which exploit specific features of
the environment. Proponents of rational analysis adopt a
similar perspective being equally concerned with modeling
the structure of the environment (Step 2) and with compu-
tational limitations (Step 3) [the principal difference be-
tween these accounts concerns the role of optimization
(Step 4) in cognitive explanation, which we discuss in Box 2].
We now illustrate how rational analysis applies in practice
in two core cognitive domains – memory and reasoning.

Memory
A ubiquitous finding in memory research is that memory
fails gradually over time. This is typically assumed to be a
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Optimization (Step 4 in a rational analysis) is not a straightfor-
ward step in carrying out a rational analysis. This is for at least
two reasons. First, it might not be clear how to compute the op-
timal solution for a particular cognitive task. This issue sepa-
rates rational analysis from the recent work of Chase and col-
leagues (Ref. a). On the one hand, according to rational
analysis, deriving the optimal solution is the crucial step in ex-
plaining why human performance on a cognitive task is suc-
cessful: it is successful to the extent that it approximates the op-
timal solution. Recently, for example, McKenzie (Ref. b) has
shown that the linear heuristics thought to lead to irrational
causal reasoning (Ref. c) actually provide very good approxi-
mations to the optimal solution. The need to explain the success
of cognition means that, even if they are currently unavailable,
deriving optimal solutions will remain a desideratum. Using
Marr’s analogy (Ref. d), ignoring this step of a rational analysis
would be like trying to understand why birds can fly without a
theory of aerodynamics. On the other hand, Gigerenzer and
Goldstein (Ref. e), for example, seem to argue that environ-
mentally successful algorithms can be developed without check-
ing whether they approximate the optimal solution. However,
Chase et al. (Ref. a) go on to analyse when their algorithms will
be successful and when they will not, which is at least in the
spirit of an optimality approach. Although rational analysis is
committed to showing that cognitive algorithms approximate
optimal solutions, whether this is necessary is an area of current
debate.

Second, as we have seen, rational analysis follows expla-
nations in economics and biology by focusing on optimal be-
haviour and assuming that actual behaviour approximates this.
The tacit assumption is that good suboptimal behaviours will

be similar to the optimal behaviour. But this is not necessarily
true – in principle, it is possible that a problem could have two
or more good solutions that are very different. Consider, for ex-
ample, the range of classic algorithms in computer science for
traveling to each of a set of locations covering the minimal 
possible distance (the Travelling-Salesman problem). There are
many different good solutions, but often these solutions, al-
though very close to the shortest path, will dictate very different
paths both from the optimum path and from each other. If,
given a particular set of locations, it was calculated that a par-
ticular path was optimal or near-optimal, it would therefore not
at all follow that any good path would approximate this path.
Putting the matter in slightly more general terms, many prob-
lems have deep ‘local maxima’ in the space of possible solutions;
so good solutions corresponding to these maxima may be very
distant from the global maximum (the optimal solution).

This adds a note of caution to the focus on optimality in 
rational analysis. Nonetheless, there are many aspects of cog-
nition where this problem does not appear to arise in practice,
including some of those outlined in this article.
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side-effect of problems of storage or retrieval in the memory
system. But perhaps the pattern of memory breakdown can
be viewed as adaptive. Perhaps recent items are remembered
better because they are more likely to be needed again
soon1. For example, if the last time you read a fact about
Iraq was one sentence ago, then it is likely that Iraq will be
mentioned in the next sentence – and that fact can be use-
fully drawn on. But if the last mention of Iraq was several
days ago, then the probability that this information will be
needed in understanding the next sentence is low. Perhaps
rate of forgetting is optimally adapted to this decline in
‘need-probability’ over time. Let us consider the six steps of
rational analysis as applied to memory in turn.

(1) Goals: the general goal of a memory system is to
allow the efficient retrieval of relevant information from
memory1,2 (see Box 3). Specifically, this involves making the

availability of a memory-trace match the probability that it
will be needed.

(2) Environment: the environment determines the
‘need-probability’, p, for each item in memory, that is, the
probability that some information will be needed, depend-
ing on its prior history of use. Roughly, items with high
need-probability should be the most available in memory.

(3) Computational limitations: Anderson assumes that
items in memory are searched sequentially, with a fixed
cost, C, associated with searching each item in memory.

(4) Optimization: in general terms the optimization
problem can be defined very simply. The memory system
should stop retrieving memories when

pG , C
where G is the gain associated with retrieving a memory and
C is the cost of searching for it. So attempts at retrieval
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Anderson (Ref. a) assumes that an efficient memory system is
one where the availability of a memory structure, S, is directly
related to the probability that it will be needed. Need-prob-
ability, p, is a function of a history factor, HS, and a context 
factor, a(Qs):

p 5 P(HS).a(Qs) (1)

Where P(HS) is the probability that S is needed given its history
of prior usage, and a(Qs) represents the associations between a
set of cues, Qs, that make up the current context and particular
memory structures. Deriving an expression for the history fac-
tor presents the most problems.

Anderson (Ref. a) developed a theoretical model of the his-
tory factor based on previous analyses of informational retrieval
systems (Ref. b). The problem is to derive an expression for the
probability that a memory structure is needed given its history,
P(S|HS). Two pieces of information about history are taken into
account: the total time, t, that S has existed in memory and the
total number of times, n, that S has been used. Previous models
of information retrieval suggest prior distributions and likeli-
hoods relevant to calculating P(S|HS) by Bayesian estimation
(Ref. b). The expression for P(S|HS) is the mean of the posterior
(Gamma) distribution:

(2)

r(t) reflects the rate of decay in memory and v and b are the pa-
rameters of the prior distribution. If context is held constant
and so need-probability depends only on the history factor,
then Equation (2) predicts that need-probability (and hence the
probability that a structure will be recalled) should be a nega-
tively accelerating power function of retention interval, that is,
p 5 A t –k.

A system operating according to Anderson’s model will be
rational in so far as need-probabilities are related to retention
intervals as a power function. Only the structure of the envi-
ronment determines whether this is the case: does the probabil-
ity that someone will need to recall some information about,
say, Saddam Hussein, vary as a power function of the time since
they last heard anything about Saddam Hussein? Power func-
tions are straight lines when plotted on log–log axes (Fig. I).
Consequently, testing the predictions for environmental data

involves examining the fit of the following equation to the data
(reintroducing the context factor):

log(p) 5 log(A) – klog(t) + log[a(Qs)] (3)

Equation (3) predicts graphs of the form shown in Fig. I.
Exactly this form of relationship between retention interval and
need-probability is reported by Schooler (Ref. c) in investigat-
ing environmental data about newspaper headlines. For exam-
ple, the probability that Saddam Hussein will be mentioned in
a headline in the New York Times varies as a power function of
the number of days since he was last mentioned.
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weak (open circles). (The data shown are simulated.)



should stop when retrieval costs exceed the expected gain.
The difficulty, which takes up most of Anderson’s analysis,
involves calculating a good estimate for p, which itelf de-
pends on two factors: the current context (e.g. mentions of
Saddam Hussein or Iraq) and an item’s history of use (pre-
vious mentions of Saddam Hussein and Iraq). The latter
presents the most problems. It is assumed that similar as-
sumptions can be made about the usage of items in human
memory as are made about other information retrieval sys-
tems, for instance, libraries1,2. The probability of an item
being needed given its history is derived theoretically by 
extending existing models of usage in library systems25.

(5) Data: the theoretical model predicts that need-
probability is a decreasing power function of the time since
an item was last studied (a power function has the form y 5
xn) (see Box 3). Thus, simplifying Anderson’s argument
somewhat, if need-probability decays as a power function,
then an adaptive memory system should forget items as a
power function of time, a prediction that has been observed
empirically26. Similarly, the model implies that need-prob-
ability increases as a power function of the frequency with
which an item has been used in the past – this predicts the
empirically ubiquitous power law of practice27. Finally, if
number of exposures to an item, and time since last presen-
tation are held constant, then there are interesting effects of
spacing. If the final two presentations of an item are spaced
at times t2d (where d is a specific time interval) and t, then
the need-probability is predicted to be maximal at t1d.
This has been empirically observed28,29.

(6) Iteration: Anderson and Schooler30 have strength-
ened the empirical basis of their analysis of the memory ‘en-
vironment’ by looking at distributions of recurrence items
in newspaper headlines and in parental speech. As in the
theoretical model, need-probabilities estimated from these
sources follow a power function.

On the empirical side, R.B. Anderson and colleagues
have shown that by experimentally manipulating need-
probability, forgetting functions can be manipulated31.
Participants memorized strings of digits, and retained them
for 1, 2, 4, 8 or 16 seconds. Some trials ended with a recall
test, others with no test. Need-probability was manipulated
by changing the proportion of tests for each retention inter-
val (e.g. the probability of a test could increase or decrease
with length of retention interval). Forgetting curves
changed to reflect (although not exactly) these need prob-
abilities. This is striking confirmation of the approach,
which does not emerge from current mechanistic accounts
of memory.

However, concerns have been raised about the fit be-
tween rational models and the presumed power law of for-
getting32. Apparently, such power laws can be artifacts aris-
ing from averaging non-power-law forgetting curves across
individual subjects. However, it has been countered that in-
dividual forgetting curves also follow a power law, in line
with J. Anderson’s account33. Nonetheless, the power law of
forgetting remains a centre of controversy34,35.

Schooler9 has extended empirical tests to deal with both
of the factors assumed to determine need-probability: the
context in which an item occurs and its history of use.
Environmental analysis of the joint effects of time elapsed

and the presence of associated items leads to precise predic-
tions from the rational analysis concerning the interaction
of these factors in memory. Schooler tested these predic-
tions using a cued-recall task in which the cues were either
strongly associated or not associated with the targets, using
various time delays. He found that the interaction of time
and contexts was broadly in line with predictions of the ra-
tional analysis. But there were interesting disparities with
the model; for example, that time elapsed was relatively
more important than contextual cues than would be ex-
pected from an optimal match with the environment.
Schooler argues that this can be explained in terms of the
underlying processing mechanisms that are assumed to 
instantiate the rational analysis. Similarly, R. Anderson36

argues that processing mechanisms (e.g. the capacity of
short-term memory) must be taken into account to explain
the departure from the prediction of the rational analysis –
this requires a richer specification at Step 3 of the rational
analysis.

A range of other recent work also focuses on the inter-
face between rational- and algorithmic-level explanations of
memory37,38. This emphasis on welding together rational
analysis with cognitive mechanisms also underlies the latest
version of the Anderson’s ACT cognitive architecture,
ACT-R (for ‘rational’), which incorporates aspects of the
analysis of memory directly into the computational archi-
tecture5. The interaction between the rational and mecha-
nistic explanation of memory is likely to be an important
area of future research.

Reasoning
In the cognitive science of reasoning, approaches based on
rational analysis have been developed in a number of areas.
Indeed, in the study of reasoning there is some research im-
plicitly adopting the rational analysis approach39 that pre-
dates Anderson and Milson’s1 paper. We focus on how ra-
tional analysis applies to the most controversial and heavily
researched reasoning task, Wason’s selection task40, and
then touch briefly on other important developments.

In the abstract selection task, people are given a rule of
the form if p then q (e.g. ‘if there is an A on one side there is
a 2 on the other’) and are presented with four cards, each of
which has a p (e.g. A) or a not-p (e.g. K) on one side, and a
q (e.g. 2) or not-q (e.g. 7) on the other side. Only the upper
faces of the cards are visible, and these faces are as shown in
Fig. 1. The task is to decide which cards need to be turned
over in order to decide whether the rule is true or false.
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Fig. 1. The four cards in the abstract version of Wason’s
selection task. Participants are told that each card has a num-
ber on one side and a letter on the other side. They are also
given a rule, such as, ‘if there is an A on one side, then there is
a 2 on the other side’. Participants are then asked to select the
cards they ‘must’ turn over in order to decide whether the rule
is true or false.



Logically, participants should select only the p and the 
not-q cards, that is, those cards with the potential to reveal a
falsifying instance. However, as few as 4% of participants
make this response, other responses being far more com-
mon [p and q cards (46%); p card only (33%), p, q and 
not-q cards (7%), p and not-q cards (4%)]41.

Viewed abstractly, the selection task involves optimal
data selection, as discussed in statistics and the philosophy
of science. There is a hypothesis (the rule) and the problem
is to decide which experiments should be conducted (cards
should be turned) in order to help decide whether the 
hypothesis is true. Different views of the philosophy of sci-
ence give different recommendations concerning how this
problem should be solved. 

According to Popper’s falsificationist view of science42,
it is never possible to confirm a rule, only to disconfirm it.
The rule will be disconfirmed only if there is a logical con-
tradiction between the hypothesis and the data; that is, this
requires finding a p, not-q card, which is explicitly disallowed
by the rule. Hence the p card should be chosen, because it
might have a not-q on the back, and the not-q card should
be chosen, because it might have a p on the back, and no
other cards should be chosen. This is the ‘logical’ solution to
the task (although there are contrasting views43). The fact
that people do not follow this pattern has been taken as 
casting doubt on human rationality44–46.

But considering an everyday example reveals that this
recommendation is counterintuitive. Suppose that the rule
is: ‘if a saucepan falls (p), it clangs (q)’. If I see the saucepan
fall (p card), I should listen for a clang (q card) (e.g. take off
my headphones). If there is a clang, the rule seems more
plausible; if there is not, the rule appears disconfirmed.
Similarly, if I hear a clang while sitting in the next room (q),
I should look to see whether a saucepan has fallen – if it has,
the rule seems more plausible. But, if I hear no clang while
sitting in the next room, it seems futile to look to see if a
saucepan has fallen. It is possible that this has happened, in

which case the rule would be disconfirmed; but as sauce-
pans fall rather rarely, it is more likely that no saucepan has
fallen and I will learn nothing. In this example, the q card
seems more worth turning than the not-q card – contrary to
the ‘logical’ solution, but in line with performance on the
selection task. This example suggests that in an environ-
ment where most properties and events are rare, looking for
apparently confirmatory evidence will be more informative.
The assumption that by default people treat properties in
the environment as rare is central to providing a rational
analysis of normal selection-task performance.

Oaksford and Chater’s7 rational analysis draws on the
theory of optimal data selection (ODS) from Bayesian sta-
tistics47, rather than on Popper’s falsificationism. The six
steps of the ODS model are as follows:

(1) Goals: selecting the data that has the greatest ex-
pected informativeness (EIg) about whether the rule is true
or whether the antecedent (p) and consequent (q) of the rule
are independent (see Box 4).

(2) Environment: the ODS model relies crucially on the
assumption that properties (e.g. falling; clanging) are rare
(i.e. most things are not falling or clanging at most times).
Given this ‘rarity’ assumption it makes sense to check if the
saucepan has fallen given the rare event of hearing a clang (q
card), but not to check given the very common occurrence
of hearing no clang (not-q card). This intuition is captured
by the ODS model. When properties are rare, that is, 
P(p) and P(q) are low [P(p) , 0.4 and P(q) , 0.25 
approximately] then EIg(q) . EIg(not-q).

(3) Computational limitations: it is assumed that there is
a cost of examining data, so as little as possible is examined.

(4) Optimization: the ODS model assumes that people
select the most informative data they can, subject to the
costs of turning the cards that they are willing to accept.
Assuming rarity leads to the following order of expected 
information gain across the four cards: EIg(p) . EIg(q) .
EIg(not-q) . EIg(not-p). Costs determine the number of
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According to the optimal data selection (ODS) model, people are
initially uncertain whether a rule is true. Thus they assign equal
probabilities to the hypothesis (HD) that the rule, if p then q, is
true and the hypothesis that p and q are independent (HI), that
is, P(HD) = P(HI) = 0.5. Using standard information theory
(Ref. a), this means that the uncertainty about whether HD is
true, I(HD), is maximal at 1 bit. In order to determine how con-
ducting an experiment (e), (e.g. turning a card in the Wason se-
lection task; see Fig. 1, main article) reduces this uncertainty it
is necessary to calculate the probability that HD is true given the
data D, P(HD|D, e), by Bayesian estimation. For example, what
reduction in uncertainty is obtained by conducting the experi-
ment of turning the 2 (q) card to reveal some data (D), that is,
either an A (p) or a K (not-p)? Applying Bayes’ theorem requires
information about the likelihoods of these outcomes given this
experiment under the different possible hypotheses, that is,
P(A|2,HD), P(K|2,HD), P(A|2,HI), and P(K|2,HI). These likeli-
hoods can be calculated directly from the contingency tables used
to represent HD and HI in the ODS model. So the probability that

HD is true given that, for example, the 2 card is turned to reveal
an A [P(HD|A, 2)], can be calculated by Bayes’ theorem. This value
can be used to calculate the uncertainty remaining after selecting
the 2 card to reveal an A, that is, I(HD|A, 2). However, in the se-
lection task, participants can not actually turn the cards over to
reveal the data. Therefore the expected value of uncertainty after
turning the 2 card, E[I(HD|2)], must be calculated instead. So
I(HD|A, 2) and I(HD|K, 2) are weighted by the expected values of
P(A|2) and P(K|2), respectively. The difference between the in-
itial uncertainty, I(HD), and the expected uncertainty after turn-
ing a card, E[I(HD|2)], provides the ‘information gain’ that can
be expected from conducting the experiment (e) of turning the
2 card. More generally, the expected information gain associ-
ated with conducting experiment e, EIg(e), is given by:

EIg(e) = I(HD) – E[I(HD|e)]

Reference

a Shannon, C.E. and Weaver, W. (1949) The Mathematical Theory of

Communication, University of Illinois Press

Box 4. Expected information gain



cards that a participant will turn over. Thus, maximizing in-
formation gain involves turning cards in the above order up
to this number. So, if participants decided to turn just one
card, this would be the most informative single card, p; if
they decided to turn two cards, they would turn the two
most informative cards, p and q; and if they decided to turn
three cards, they would turn the three most informative
cards, p, q and not-q.

(5) Data: the ODS model accounts for the large volume
of apparently puzzling data on Wason’s selection task. It 
resolves the problem of apparent human irrationality, by
demonstrating that human performance approximates
Bayesian optimal data selection (see Fig. 2). This model
captures all the main experimental results on the selection
task, including the non-independence of card selections48,
the negations paradigm49, the therapy experiments50, the 
reduced-array selection task51, and work on so-called fictional
outcomes52.

(6) Iteration: the ODS model makes the novel predic-
tion that selection-task performance should change if the
rarity assumption is violated. This has been tested and ob-
served empirically53–55. As in the case of memory, this con-
firmation is striking, because it would not have been pre-
dicted by mechanistic models.

Other probabilistic models of the selection task have
been proposed, building on the ODS model56–59. Chater
and Oaksford60 have also developed a related account of syl-
logistic reasoning, which aims to model even this paradigm-
atic area of logical inference using a probabilistic rational 
explanation.

Another area of reasoning research where rational ex-
planation has led to a radical re-interpretation of apparently
flawed human inference is causal reasoning. For example,
Cheng10 has developed the ‘Power PC theory’ of causal rea-
soning. Roughly speaking, in this model the main determi-
nant of the causal influence of a factor on some outcome is
the difference in probability of the outcome when the causal
factor is, or is not, present, if all other factors are held con-
stant. This model can be viewed as a rational analysis for the
Rescorla–Wagner model of classical conditioning12; and
moreover, it reveals that apparent ‘biases’ in causal infer-
ence61 are predicted by a rational model, and hence are not
really biases at all.

Interestingly, there have recently been attempts to inte-
grate the two themes we have discussed, by considering
causal conditions in the selection task. Over and Jessop62

argue that apparent biases in causal judgments using 2 3 2
contingency tables correspond to apparent biases in selec-
tion-task performance. Consequently if selection-task per-
formance can be viewed as rational, then so can causal judg-
ments, using directly analogous arguments.

Conclusion
Traditional cognitive psychology implicitly treats the 
cognitive system as a ragbag of arbitrary mechanisms, with
arbitrary performance limitations. Little attention is given
to why these mechanisms and limitations add up to a 
system that is so adaptively successful in coping with 
a complex and partially known world. Rational analysis 
aims to answer this question by identifying the problems

that specific cognitive mechanisms face, and crucially by 
including the environment in which these problems 
occur.

Working out ‘optimal behaviour functions’ – optimal
solutions for solving these problems – provides the possibil-
ity of explaining why cognitive mechanisms are as they are
(although see Box 2); it also provides a major source of con-
straint on the development of theories of specific cognitive
processes, and, as we have seen, is a source of novel em-
pirical predictions. Rational analysis has been remarkably
fruitful in the key domains of memory and reasoning. We
suggest that it could play a central role in the development
of cognitive science as a whole.
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Fig. 2. Comparison of the expected information gain
(dotted line) with the frequency of card selections in the
standard abstract selection task (solid line). (For purposes
of comparison both scales have been normalized.) These data
are taken from the meta-analysis of the selection task reported
by Oaksford and Chater7.

Outstanding questions

• What are the limits of rational analysis? Can every successful aspect of
cognition be explained rationally, or could some mechanisms ‘just work’
with no rational explanation63?

• How far can rational analysis in cognitive science be integrated with
related work in perception and motor control, such as Marr’s15

‘computational level’ of explanation, ‘ideal-observer’ models’64, and ‘task
dynamics’65?

• How does rational analysis relate to proposed cognitive architectures?
We have seen that Anderson’s ACT-R architecture is designed to have
close links with aspects of rational analysis. Many connectionist networks
also have probabilistic interpretations, which may be viewed as rational
analyses for explaining why and when these networks learn and behave
effectively66,67.

• Can learning be given a rational analysis? Formal research on
computational theories of learning; for example, based on Kolmogorov
complexity68, the Vapnik–Chervonenkis dimension69, or standard 
Bayesian statistics, could provide a general framework for such rational
analyses.

• How constrained is rational analysis? One of the problems with
theorizing about the algorithms that the cognitive system might use is
that there are typically many different plausible algorithms that are
consistent with the observed data. This was one of Anderson’s2

motivations for developing the rational analysis approach. But is rational
analysis really any more constrained? Or are there always many plausible
rational analyses compatible with the data?
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The view that the amygdala and other temporal lobe
structures are critical to the display of emotional behavior
has prevailed for more than 60 years. For example, Kluver
and Bucy1 reported that monkeys with temporal lobe le-
sions became less prone to display fear, disgust, and other
emotional behavior. Similarly, Kaada2 described organized
fear and rage responses in cats in response to electrical 
stimulation of the amygdala.

In an early review, Weiskrantz3 concluded that amyg-
dala function might be described as the attachment of emo-
tional significance to stimuli by stimulus–reward learning.
Since that pivotal report, many researchers have focused on
the role of the amygdala in learning, culminating in elegant
descriptions of the contributions of the amygdala to fear
conditioning by Davis, LeDoux, and others4–6. These inves-
tigations have done for the amygdala and fear conditioning
what the work of Thompson7 and others has done for the
cerebellum and simple motor conditioning, such as the eye

blink response. These two systems are probably the most
studied and best defined mammalian model systems for the
study of the neurobiology of associative learning.

In the wake of this success in the analysis of amygdala
functions in fear conditioning, it is easy to lose sight of the
fact that the amygdala is busy performing other tasks as
well. Some of these other functions fit under the general
rubric of emotion or affect, and others do not. In the same
way that decades of research in motor control shows that
the cerebellum’s job is not limited to the blinking of an eye,
considerable evidence shows that the amygdala participates
in many adaptive behavioral functions in addition to fear
conditioning. Furthermore, some of this evidence suggests
that the organization of information processing in these
functions differs from that portrayed in the flow charts 
typically proposed for simple fear conditioning (Box 1).

In this article, we discuss recent evidence implicating
the amygdala in several aspects of associative learning apart
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The amygdala has long been implicated in the display of emotional behavior and

emotional information processing, especially in the context of aversive events. In this

review, we discuss recent evidence that links the amygdala to several aspects of food-

motivated associative learning, including functions often characterized as attention,

reinforcement and representation. Each of these functions depends on the operation of

separate amygdalar subsystems, through their connections with other brain systems.

Notably, very different processing systems seem to be mediated by the central nucleus

and basolateral amygdala, subregions of the amygdala that differ in their anatomy and

in their connectivity. The basolateral amygdala is involved in the acquisition and

representation of reinforcement value, apparently through its connections with ventral

striatal dopamine systems and with the orbitofrontal cortex. The dentral nucleus,

however, contributes heavily to attentional function in conditioning, by way of its

influence on basal forebrain cholinergic systems and on the dorsolateral striatum.
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