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CHAPTER 14

Time-warping tasks and
recurrent neural networks

Mukhlis Abu-Bakar & Nick Chater

Introduction

Finding structure in real-world acoustic signals, whether from the perspective
of engineering or psychology, is difficult because not only must an underlying
sequence of elemenis be discerned, but, frequently, the duration of those ele-
ments may be “warped” in complex ways. Furthermore, in some contexts, such
as speech recognition, this warping is especially problematic, since the very
identity of sequence elements may be given by duration-based cues, which warp-
ing will distort. The ability to cope flexibly and successfully with time-warped
material is crucial if neural networks, or any other computational technique, are
to be applicable to a wide range of real-world temporal processing tasks.

Utterances are frequently time warped because speakers speed up and slow
down when they talk rather than maintain a constant rate of speech. The varia-
tion in rate that occurs in conversational speech can be quite substantial (Miller
et al. 1984). More often, time warping distorts the temporal structure of words:
a segment of a word may be compressed, another stretched, while others remain
durationally invariant to changes in the speech rate. The problem is more com-
plex at the phonemic level. As articulation time is altered due to changes in the
speech rate, certain acoustic properties that specify the identity of phonetic seg-
ments are modified, since they are themselves temporal in nature. For instance,
a short duration of some property may specify one phonetic segment while a
longer duration specifies another (Lisker & Abramson 1964). Thus, time warp-
ing potentially confounds temporal cues to phoneme identity.

Within engineering, there have been various approaches to solving time-
warping problems (e.g. hidden Markov models (Huang et al. 1990), dynamic
time warping (Lipmann et al. 1987) and dynamic rate adaptation (Nguyen &
Cottrell 1993)). The present work attempts to apply connectionist tools to the
problem of time warping. To the extent that connectionist methods are psycho-
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logically plausible, this work also gives an attractive approach to modelling
aspects of human speech perception.

Using recurrent back-propagation

Recurrent neural networks have been widely used in modelling sequence
processing (e.g. Elman 1990), including a wide range of problems drawn from
speech processing (e.g. Norris 1990, Shillcock et al. 1991, Watrous et al. 1990).
Recurrent networks are atiractive for such problems since their behaviour
depends on the entire sequence of inputs, rather than just the current input,
although there are various ways in which feedforward networks can be modified
in order to handle sequential material (see Chater (1989) for a review).

We use a standard recurrent neural network architecture, in which the units in
the hidden layer are connected to all other hidden units by weights which operate
with a delay of one time step. This kind of recurrent network is often thought of
as involving an additional set of units, the “context” units, to which the hidden
units at the previous time step are copied. According to this conception, the con-
text units are treated simply as additional input units to the network. This kind of
recurrent network can be trained in a variety of different ways, the most com-
mon being Elman’s (1990) “copy-back” scheme, which uses a computationally
cheap approximation to gradient descent in error to change the weights. We use
recurrent back-propagation (Rumelhart et al. 1986), which computes gradient
descent more exactly by “unfolding” the recurrent network into a sequence of
serially connected feedforward networks, and then trains the resulting network
using standard back-propagation. The only additional constraint on learning is
that the weights in each “incarnation” of the recurrent network in the unfolded
feedforward network are constrained to be the same, so that it is possible to fold
the trained feedforward network back up into a recurrent network.

In general, the larger the number of unfoldings used, the more exactly the
network computes true gradient descent, although the benefits of additional
unfoldings begin to tail off after some point, because very deep feedforward net-
works are very slow to train. It is also important to note that the number of
unfoldings used in training does not place a strict limit on the distance back in the
sequence to which the network can learn to be responsive. Even if the network is
trained as a feedforward network unfolded through n time steps, the “context”
units in the final unfolding are likely to contain information about the inputs at
earlier time steps, and the network may therefore learn to become sensitive to
this information. Nonetheless, although under certain circumstances networks
can learn to respond to information which is very much more temporally distant
than the number of unfolded time steps, in practice, performance is generally
rather poor for such distant items (see Chater & Conkey (1994) for discussion).
Training used conjugate gradient descent, and was implemented on the Xerion
simulator (van Camp & Plate 1993).
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Figure 14.1 Folded versions of (a) a standard recurrent network (network A), (b) a
network with five additional input windows at the output layer (network B), and (c) a
network with a single additional input window at the output layer (network C).

Comparing architectures

Perhaps the main advantage of using recurrent networks, as opposed to other
neural network methods, is their ability to treat temporal material, such as
speech, as a sequence of events and take input one at a time. We trained the net-
works by feeding them with the sequences one input pattern at a time and keep-
ing the target output pattern present throughout the presentation of each
sequence. The production of the correct output as the sequence is presented indi-
cates that the sequence is classified successfully. If performance is optimal, cor-
rect classification should occur after the “recognition point” of the category is
reached, i.e. when enough of the sequence has been encountered that it can be
classified unambiguously (Norris (1990) uses a model of this kind to capture
cohort effects in word recognition).

To see how well networks can make such classifications with time-warped
stimuli, we compared the basic recurrent network architecture (network A) with
two minor variants (networks B and C). These latter networks contained addi-
tional input windows of different sizes at the output layer (Fig. 14.1). In one
(network B), this window contained nodes representing inputs at the previous
two and next two time slices and the current input (cf. Maskara & Noetzel 1992,
Shillcock et al. 1992). For the other variant of the network (network C), the
nodes in the window represented input at the ¢ +2 time step only. In contrast to
the target output, which remained constant, these additional outputs changed
with the presentation of each input. The idea was to force the network to pay
attention to the individual elements being presented in succession for a specified
window and/or to prepare the net to accept inputs that arrive at a specified time
in the future. The following set of experiments was designed to test how well
these various networks classify sequences presented at a rate they are not famil-
iar with.
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Non-duration-based stimuli

For the experiments in this section, we used sequences which are unique in the
sequential order of their constituent elements and whose respective identities
remain unaffected by changes in the duration of these elements. Two training
versions and one test version of 27 sequence types were built from all possible
combinations of the numbers 1, 2 and 3, with each version representing different
rates of input (fast, medium, slow). The set of stimuli presented at the intermedi-
ate rate was the test set. The three numbers were implemented as three-bit
binary elements. Thus, 100 stood for 1, 010 for 2 and 001 for 3.

The basic network consisted of an input layer of three input nodes, a single
hidden layer of either 30 or 36 nodes, and an output layer of 27 nodes. The two
variants of the network contained an additional 15 and three output nodes,
respectively. The networks were unfolded for 13 cycles during training. We ran
every simulation twice with a different weight start for each attempt. Batch
learning was employed.

Experiment 1: simple variation of input

We varied the duration of the constituent elements of the sequence types follow-
ing the scheme used by Norris (1990). Table 14.1 illustrates the temporal com-
position of a model sequence type across the three rates. The period over which
each constituent member of a sequence type appears (or the number of time it is
successively presented) is captured by the relation N; = i, where i is the rate,
and N, the number of successive presentations of each constituent member at
the specified rate. Thus, in the “fast” series, each member of a sequence type
remains constant for one time slice. In the “medium” series, this is extended to
two units of time each, and in the “slow” series, each constituent member lasts
for three units of time.

For all the 54 training stimuli, it is possible to determine by hand at which
point in a stimulus the sequence type is recognizable. With a few exceptions, this
does not normally require that the entire stimulus be processed. It would be
interesting if the nets can capture this sequence structure by identifying the
sequence type at the point in time when the stimulus item becomes unique. The
crucial test, however, is how to generalize from this sequence structure to new
stimuli presented at an intermediate rate.

All stimuli were preceded by an input pattern in which all three bits were set
to 0. In the long version of the stimuli, where each constituent member of a

Table 14.1 A model sequence type at the three presentation rates (experiment 1).

Rate tl 2 3 t4 t5 t6 t7 8 9
1: Fast A B C

2: Medum A A B B C C c

3: Slow A A A B B B C C C
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Sequence type was repeated three times, they were followed by a final O input
pattern. In the short version where each constituent member of a sequence type
appeared only once, they were followed by seven input patterns which were set
to 0. In the test stimulus where the constituent members appeared twice, they
were followed by four of these 0 input patterns. As an illustration, scquencé type
321 would be presented to the network in the slow and fast modes as follows:

Slow mode Fast mode

at time t1
at time 2
at time t3
at time t4
at time t5
at time t6
at time t7
at time t8
at time 9
at time t10
at time t11

SO~ —~ocoocococo
Coococooo~00 0o
DDODODOD.—ADO
CoocoocooocOo~0o

(== = = e === =]
COoOCOOCOO -

Results

Training ceased when the sum-squared error of the training decreased by less
than 0.0001. Total training time was usually between 1000 and 2000 iterations,
To assess network response, we looked for the node with the highest activation at
tl}e point the sequence type can be identified. The activation of this node must be
higher than that of other competing nodes by a criterion value of at least 0,25
otherwise there will be no winner, and the search for the winning node moves t(;
Il?c next time step. A stimulus is accepted as being correctly classified if the win-
ning node corresponds to the target node and that its distance from the other
nodes is maintained right up to the end of the stimulus and one time step after.

All three nets successfully fulfilled these criteria for all the training stimuli

whatever the hidden unit population. With the test stimuli, however, the net;

Tgble 14.2  Successful identification of test
stimuli for each network type and hidden unit
population (experiment 1),

Network  Hidden Targets On
_ lype units correct time

A 30 25 15

36 27 21

B 30 23 15

36 24 15

C 30 25 16

36 26 18
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Figure 14.2  Activity of test stimulus 113322 (solid line) with 132_ as
the underlying sequence type. Activations of three other competing

sequence types are also shown (experiment 1).

achieved a slightly lower rate of success (Table 14.2). Consider the results from
simulations with 36 hidden units since these show better perfqrmance. Only
network A maintained 100% correct response for the test stimuli, whereas net-
works B and C had three and one wrong classifications, respectively.. In terms of
the number of timely responses, network A managed a high 21, while netwo}‘ks
B and C only 15 and 18, respectively. Thus, network A performed more consist-
ently with both sets of stimuli than networks B and C. ‘ ‘
Figure 14.2 demonstrates the recognition process of the test (medmm)‘ version
of sequence type 132 (appeared as 113322). Notice that the sequence of input up
to the third time step is an exact copy of the fast version of sequence type 113.
Since the net has seen this stimulus item during training, it responds.app.ropri—
ately by exciting the output node of this sequence type at its unique point (l'e.' at
the third time step). However, when another 3 comes along at the follov_vlng time
step, the net is forced to revoke its decision, for this creates ‘a n?vel string 1133.
This change is depicted by the downward shift in the acn.vatlon value‘ of the
sequence type 113. Activations of other sequence types continue to remain low.
Interestingly, when 2 is presented at the fifth time step, the net pr?rnptly and cor-
rectly activates sequence type 132 without waiting for the last input patten? to
arrive. This is an optimal performance where the strategy is to accumulate just
enough information to make the final decision.
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Experiment 2: complex variation of input

For many complex temporal stimuli, including speech, changes in rate do not
result in a simple compression and expansion of the signal as modelled in the
previous section. Rather, the time warping is quite complex. One case in point
concerns the absolute and relative durations of vowels in conversational speech.
An increase in speech rate has been shown to reduce the duration of a long vowel
(e.g. [i]) more than a short vowel (e.g. [I]), so that the durational difference
between the two vowels is reduced at the faster rate of speech (Miller 1981). In
this experiment, we modified the earlier stimuli to reflect such complexity.

Instead of varying the duration of all the constituent members of a sequence
type equally via a single linear function, three different functions were used.
Two versions of these stimuli were constructed. In the first version, X, the dura-
tion of the first constituent member remained constant across rates following the
relation N; = 1. For the second member, the duration was specified by the same
linear function used previously, namely, N; = i; and for the last member, a
nonlinear function N; = 2¢-1 was used. For all the functions, i is the rate and N,
the number of successive presentations of the constituent member at the specified
rate. The resulting temporal configuration can be found in Table 14.3. A second
version, Y, was created from the first version by switching the functions associ-
ated with the first and third constituent members. The motivation behind having
two versions of the complex variation of sequence types was the intuition that a
left-to-right processing model of this kind will exact a higher cognitive cost if the
transition from one element to another occurs much later in the sequence than if
it occurs earlier in time, since the system must learn to attend to temporally more
distant information. We wanted to confirm this intuition. The nets were trained
with the two versions separately. As in the previous experiment, the medium
series in both versions served as the test set.

Table 14.3 Two versions (X and Y) of a model sequence type at the three presentation
rates (experiment 2).

Versigp Rate tl 2 3 t4 t5 6 t7 t8
X 1: fast A B c

2: medium A B B & C

3: slow A B B B G C C c
¥ 1: fast A B C

2: medium A A B B C

3: slow A A A A B B B C
Results

All the nets classified both versions of the training stimuli correctly, irrespective
of hidden unit population. Generalization to the test stimuli, however, was not
uniform across stimulus versions and hidden unit population (Table 14.4). With
the exception of network C, simulations with 36 hidden units for the other two
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Table 14.4 Successful identification of each ver-
sion of test stimuli for each network type and hidden
unit population (experiment 2).

Network Hidden Targets On
type units correct time
Version X
A 30 27 27
36 27 27
B 30 27 27
36 27 26
C 30 27 27
36 27 27
Version Y
A 30 22 22
36 25 23
B 30 20 9
36 22 13
C 30 26 21
36 22 18

nets produced better results. And, as expected, version Y, as opposed to version
X, proved more difficult for all three nets. Simulations with version X produced
perfect scores on correct classification, and almost perfect scores on getting the
classifications correct on time, but with version Y the recognition rate varied
between 20 and 26 while that of timely responses between 9 and 23. Compara-
tively all round, network B performed less well than the other two networks.

Duration-based stimuli

In the preceding experiments, the duration of the constituent members of a
sequence type made no difference to the identity of that sequence type that we
altered by time warping. In this section, we consider a set of sequences whose
identity depends on the duration of these very elements. This occurs in a variety
of ways in natural speech, and is extensively discussed in the speech production
and perception literature (see Miller (1981) for a review). One commonly cited
example involves the voicing distinction between /bi/ and /pi/ as specified by the
voice onset time (VOT). These syllables can be differentiated simply by the dura-
tion of this property: /b/ having typically shorter VOTs than /p/. More impor-
tantly, however, as speaking rate changes from fast to slow and the individual
words become longer, the criterion vOT value that distinguishes /b/ and /p/ also
moves towards longer values (Miller et al. 1986). Potentially, due to this varia-
tion, the mapping from acoustic signal to phonetic percept is difficult, but, inter-
estingly, listeners adjust for these variations with apparent ease. Our goal is to
work towards a first approximation of this “rate normalization” process.

276

COMPARING ARCHITECTURES

Although primarily intended as an abstract test, our stylized stimuli were '
loosely patterned after the synthesized syllables used by Volaitis & Miller
(1992). Two contrasting stimuli, /bi/ and /pi/, took the form

/bi/ — 21113333333333444444
/pi/ — 21111111111333444444

where the numbers represent the states of various acoustic properties; in this
case, 2 may be taken to refer to the release burst, 1 to F1 cutback, 3 to transition
and 4 to steady state. The duration of a particular property is specified by lhE:,
n.umber of times the corresponding state is repeated. /pi/ is derived from /bi/
simply by lengthening the latter’s VOT (counted from the onset of the burst till
the onset of transition). This involves extending the F1 cutback by cutting into
the transitions. Localist representations of 4-bit patterns were used for the states.
The basic network consisted of four input units, five or ten hidden units, and two
output units. The two variant networks, B and C, contained an additional 20 and
four output nodes, respectively. In this and the next set of simulations, the nets
were unfolded for 36 time cycles during training.

Experiment 3: non-overlapping stimuli

From the production data of Miller et al. (1986), it appears that within a place of
articulation, there is some overlap in the distribution of vOT values for voiced
and voiceless consonants across different speech rates. However, in this section
we assume no overlap of VOT values between categories across rates. Thus, reci
ognition should be a straightforward task from the processing point of view: a
VOT that lasts for a certain time range specifies one segment, and another if it
extends beyond that range. Six /bi/-/pi/ pairs were constructed across six rates
as shown in Figure 14.3. One pair (23 time steps syllable duration) was set asidé
as test material.

21
18 0
o
o 15 O m} /pif
£ 5 o o il
3 a
g 9 o
8 6 ¥ o e
(=] 0
= 3 ° i+
0
15 20 25 30 35
Syllable duration

Figure 14.3 Distribution of /bi/ and /pi/ tokens for the non-overlapping
case (experiment 3).
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Results

All three nets were able to handle effectively both the training and test stimuli.
As expected, the strategy employed by the nets operates in a straightforward
fashion: information about VOT alone triggers the contrast between /b/ and /p/
for this group of non-overlapping stimuli. Syllable duration is thus irrelevant in
the distinction and exerts no influence over the processing task.

Experiment 4: overlapping stimuli

We now consider the more realistic case in which vOT values overlap over a
certain range, as in natural speech. Figure 14.4 shows the relationship between
vOT and syllable duration for 14 /bi/ and /pi/ stimuli. Six of these stimuli are
within the overlap range (/pi/-1 and /bi/-3, /pi/-2 and /bi/-5, and /pi/-3 and /bi/-
7, where /pi/-n denotes /pi/ at rate n, with rate 1 being the fastest rate and 7 the
slowest). Every /bi/~/pi/ pair in this range has an identical vOT but different syl-
lable duration, as illustrated below. Sequence U is a /bi/ syllable presented at a
slower speech rate (as specified by a longer syllable duration) than sequence V,a
/pi/ syllable, but their VOT values are the same. To recover the intended voicing
feature specified by the vOT value, the nets have to consider the entire stimulus.

U /bi/  21113333344444444444
\Y /pi/  21113333344444

Two /bi/-/pi/ pairs (rates 2 and 5) were set aside as test material. Of these, /bi/-
5 and /pi/-2 have identical vOT values but different syllable duration.

Results

All three networks were successful in learning to classify the training stimuli
including those within the overlap range. However, only networks B and C were
able to generalize to all the test stimuli appropriately. The stimuli in the overlap

18
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o o il

12 2 o M

(=23 o
[m]
<

Voice onset time
w
o
o

0
10 15 20 25 30 35

Syllable duration

Figure 14.4 Distribution of /bi/ and /pi/ tokens for the overlapping
case (experiment 4).
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range proved difficult for network A: it classified both /bi/ and /pi/ as /bi/.
Nevertheless, the fact that the other nets can make appropriate generalizations
with this kind of stimuli was encouraging.

The networks’ on-line processing reveals that the process of identifying
voiced and voiceless tokens that lie outside the overlap region is straightforward,
as it was with the previous set of stimuli, with performance nearly optimal at the
offset of the voT (Figure 14.5). The processing of the tokens in the overlap
region, however, proceeded differently, and in two stages. Figure 14.6 shows
the on-line processing of a voiceless token from the overlap range (/pi/-2). In the
first stage, VOT is calculated. The nets show an initial preference for /pi/ by
gradually increasing the activation of /pi/ through the entire length of the VOT.
Upon reaching the end of the voT, however, the activations for the voice and
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voiceless tokens switch direction, triggered by the possibility that the given voT
duration is uncharacteristically short for a /pi/ stimulus thus favouring /bi/
instead. This is the second stage where vowel duration is considered. At the end
of the vowel, the activations again switch direction, this time cued by the possi-
bility that the given vowel duration against the earlier information about VOT can
only match a /pi/ rather than a /bi/ stimulus. Thus, syllable duration, in this
case, is critical for the identification of the voiceless tokens.

Discussion

What these experiments reveal about the basic computer science of recurrent
networks is encouraging. The type of problem dealt with here is tractable using
relatively simple networks. Without additional input windows at the output
layer, the networks work well in accommodating the shorter non-duration-based
time-warped sequences as well as the longer duration-based sequences whose
constituent elements do not overlap in time. With additional windows of input
units trained to remember and predict inputs, the networks handle well duration-
based stimuli (overlap and non-overlap) but not non-duration-based stimuli.
However, with a single input window at r + 2, the recurrent network can
accommodate the full range of test cases we have considered with an appreciable
degree of accuracy. We might speculate that having to predict the future forces
the network to encode the structure of the input material more carefully, and that
this, as a side-effect, results in a representation which is useful for the classifica-
tion task. However, having too many time steps to predict and remember might
have forced the network to devote too much attention to these tasks, and there-
fore to neglect the classification task.

In all four experiments the nets needed only to interpolate from training data
in order to perform well on the test data. It is therefore not clear if the nets can
cope with input which is more extreme than that in their training sets. The ability
to extrapolate from training data is seemingly crucial with respect to real speech
data, for there is no guarantee that the training set will contain stimuli covering
the wide range of speaking rates. A follow-up experiment was thus carried out
with network C, and the findings suggest that extrapolation is an achievable task
for this network. In the experiment, we used stimuli from experiment 4, but
instead of training the net with stimulus pairs at rates 1, 3, 4, 6 and 7, and testing
it on pairs at rates 2 and 5, we trained the net on stimulus pairs at rates 2, 3, 4, 5
and 6 and tested it on pairs at the extreme rates (1 and 7). A particularly interest-
ing case is the test item /pi/-1 which has the same VOT value as training item /bi/
-3. Despite being trained on the longer /bi/-3 stimulus, the net successfully clas-
sified /pi/-1 on the basis of its shorter overall duration. Thus, the net was able to
extrapolate to data at rates not in the training set.

The strategies arrived at by the nets are interesting as psychological models,
even if it can be argued that recurrent networks, trained by algorithms like back-
propagation through time, are not particularly psychologically plausible. The
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present findings are significant in that they offer a plausible account of the cor-
respondence between the way in which a contextual variable alters VOT values
and the way in which the variable is used to restructure phonetic categories in
perception. We have shown a mechanism whose strategy is to pick up early in
the stimuli any information that is relevant to the contrast being judged, and to
alter any initial decision if later information proves important for the distinction.
Specifically, where no overlap is present, and the range of VOT is distinct
between /bi/ and /pi/ across different speech rates, syllable duration is an unnec-
essary aid to phoneme distinction. But where there is overlap in the VOT distribu-
tion, as one would find in real speech, the mechanism discriminates between
stimuli on the basis of whether they are within or outside the overlap region of
the VOT continuum; syllable duration is critical only when processing tokens
from the overlap range. This raises some questions about the nature of the
human speech-processing system, First, in the face of changing speech rates, is
the system sensitive to the structural distribution of temporal properties such as
VOT that provide cues to phonetic contrasts? In particular, does the system treat
differently tokens that belong to the overlap region and those that do not? Sec-
ondly, assuming that the system can make a voicing decision partway through
the syllable, is the initial decision made on the vOT and then changed once the
syllable has been processed, or is the decision postponed until processing of the
entire syllable is completed? These questions require empirical study which is
beyond the scope of this chapter.

Extension and application to speech perception

In this section, we describe simulations that apply the network’s strategy (using
network C) on another set of contrast, namely /b/ and /w/. These consonants are
distinguished by the abruptness of their onsets or changes in transition duration
(hereafter referred to as TD). In the studies of the production of these conso-
nants, the onset for /b/, as in the syllable /ba/, was reported to be more abrupt
than that for /w/ (Dalston 1975). Perceptually, the standard contrast effect has
also been reported for these phonetic categories: as syllable duration increases,
the /b/-/w/ boundary moves towards transitions of longer duration (Miller &
Liberman 1979). This boundary, however, shifts in the opposite direction when
the increase in syllable duration is effected by adding a final transition corre-
sponding to a third phonetic segment, as in /bad/. The simulations here demon-
strate how the network responds to the combined effect of syllable duration and
syllable structure.

Stimuli

Eleven pairs of “speech-like” stimuli that resemble /ba/ and /wa/ syllables
co-varying in syllable duration and TD values were constructed. For every pair
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Figure 14.7 Schematic two-
formant representations of /ba/,

/bad/, /wa/ and /wad/ at a single
/ r rate. Each consists of a brief
/ o prevoicing (first formant only),

a variable duration of formant

transition appropriate for /b/ or
/w/, a subsequent period of

steady state formants, and, for
the cvc stimuli, a final period of
/ \ transition corresponding to /d/.

/ba/ fwal

Frequency (Hz)

fbad/ [wad/
Notice the variations in TD

across category and syllable

Time structure.

of /ba/ and /wa/ syllables of a certain syllable duration, we created a correspond-
ing pair of /bad/ and /wad/ syllables of similar overall duration. The timing of
the phonetic segments was constrained such that, for any given syllable duration,
the TD value for syllables with a CVC (consonant-vowel-consonant) structure
was always shorter than for those with a cv (consonant-vowel) structure, as
shown in Figure 14.7. This production pattern was directly derived from the per-
ceptual findings of Miller & Liberman (1979) with respect to the /b/-/w/ distinc-
tion when the rate and syllable structure were altered (cf. Summerfield 1981,
Volaitis & Miller 1991). The “formant frequencies” which we modelled the
stimuli from can be found in Abu-Bakar & Chater (1993a).

The relationship between TD and syllable duration for all stimuli is shown in
Figure 14.8. Notice that CvC syllables are located along individual distributional
curves separate from syllables of the cv type. However, curves which hold
syllables with the same syllable-initial consonants are pulled closer together.
Twelve tokens of varying syllable duration and structure were reserved as test
items. Of these, /wa/-2, /wad/-4, /ba/-7 and /bad/-9 have identical TD values but
different syllable duration.

In the simulations reported here, 58 unfoldings were used. The input layer
which consisted of 31 units can be thought of as falling into two groups. One
group represents the frequency of the first formant, and the other represents the
frequency of the second formant. We use a simple localist-style coding to repre-
sent this frequency information. Each unit in a particular bank represents a par-
ticular frequency, and if a formant has frequency F, then all and only the units
which represent frequency values F and less will be active. Sixty hidden units
were used, which seems to be approximately the smallest number of units that
can learn the task successfully. The target output window of the net has six units;
one each for /ba/, /wa/, /bad/ and /wad/, and another for /b/ and /w/. The last
two can be conceived of as phoneme detectors. They were included to allow for
some independence between the identification of the syllable-initial phonetic
segments and the classification of the syllables. This target output is in addition
to another bank of units which is trained to continually predict the next but one
pattern in the input sequence (recall Fig. 14.1c).
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Results

Training stopped after about 400 iterations, by which time the network had suc-
cessfully classified all the training stimuli and correctly generalized to the test
tokens. Figure 14.9(left) shows the on-line recognition of a /wa/-2 stimulus, one
of the four test tokens with identical TD values. Since the TD is ambiguous be-
tween /b/ and /w/, the activation of the /w/ detector remains very low for much
of the duration of the syllables. It shoots up only at the offset of the vowel seg-
ment, which also happens to be the end of the syllable. It is also at this point that
the /wa/ syllable is distinguished from the other syllables (/wad/, /ba/ and /bad/)
by way of an abrupt increase in the activation of the node representing the /wa/
syllable. In Figure 14.9(right), we have a /wad/-4 stimulus of the same TD value
as /wa/-2. As with the latter, the activation of the /w/ detector is low initially and
shoots up at the offset of the steady state section of the syllable. But here, the
recognition point does not coincide with the end of the syllable, for there is still
the final transition following the vowel. Thus, a parsimonious explanation for
the syllable-initial distinction is one that takes into account the relationship
between the TD and the adjacent vowel and not overall syllable duration. Indeed,
we found that for all the stimuli in the overlap region, irrespective of whether
they are CV or CVC syllables, the pattern is the same, i.e. the identity of the
syllable-initial phoneme as well as the syllable is processed in relation to the
syllable’s CV component.

Figure 14.10 illustrates the processing of a group of fast /ba/ and /bad/ sylla-
bles (/ba/-2 and /bad/-2) whose TD values are outside the category overlap. As
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the figure shows, the identity of the syllable-initial /b/ is obvious right from
the start since the TD values are exclusive to the /b/ category. In contrast to
syllable-initial phoneme identification, however, syllable recognition occurs
late. For the /bad/ syllables, activation increases gradually and reaches the maxi-
mum just before the onset of the final transition, whereas for the /ba/ syllables,
activation remains low almost throughout the syllable but increases abruptly at
the end of the vowel (which also coincides with the offset of the syllable). The
recognition of other stimuli outside the category overlap follows the same
description, i.e. syllable-initial phoneme recognition occurs as soon as the TD is
determined, while syllable identification takes place only at the end of the vowel.

Discussion

There are two main results of the present simulations. First, the present findings
are similar to those obtained from the preceding series of simulations in that rate
information, specified by the overall stimulus duration, is important for the
phonetic distinction between the syllable-initial segments, but only for items in
the category overlap. Second, and more importantly, the network picked up the
durational constraints we imposed on syllable structure. In the way that we have
manipulated the CV and cvc stimuli, syllable structure, apart from giving infor-
mation about overall syllable duration, also provides specific information about
the duration of the phonetic segments that constitute the syllable. Our experi-
ments show that this was crucial to the network in two instances: first, when
making the relevant phonetic contrast for those items in the category overlap,
and, secondly, when distinguishing between syllables of different structure but
identical syllable-initial phoneme for all tokens along the TD continuum.

The work also speaks on the issue of whether information provided by sylla-
ble structure is used by listeners during perception. Miller & Liberman (1979)
have shown that this was indeed the case for their subjects. Interestingly, how-
ever, their proposal that listeners calculate the number of phonetic segments to
determine the articulation rate of a given syllable and use this to influence the
phonetic categorization of an initial consonant does not fit with the network per-
formance. The behaviour of our network suggests a more general strategy which
involves making a durational contrast between the cue provided by the TD and
the following adjacent segment, a vowel in this instance. Syllable structure, as
noted earlier, reconfigures the vowel duration and TD with respect to the overall
syllable duration, as is the case when a third segment is appended to the cV sylla-
ble (see Volaitis & Miller 1991). Possibly, this is geared to maintain perceptual
intelligibility in much the same way that language communities intentionally
regulate vowel length in order to enhance perceptually the closure duration cue
for voicing distinctions (Kluender et al. 1988). The resulting configuration, par-
ticularly the relationship between a vowel and the initial TD, is learned by the
network, and this information is used both to capture the relevant phonetic con-
trast and to generalize to new stimuli.
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This explanation is consistent with the results obtained by I\.Iewman &
Sawusch (1992). In examining the effects of adjacent and non-adjacent pho-
nemes on the perception of the syllable-initial contrast between /sh/ and /ch/,
cued by the duration of friction, in the /shwaes/-/chwaes/ series, they clf:.rnon-
strated that varying the /w/ duration produced the standard contrast effect, i.e. a
longer /w/ made the initial segment seem shorter, or sound more like a ;"l:h! :
while a shorter /w/ made the initial segment seem longer, or sound more like a
/sh/. Variation in the duration of the non-adjacent vowel, on the other hand, had
no contrastive effect. In relation to the /bad/-/wad/ stimuli used in our computa-
tional experiments, the distant segment that does not contribute to the bcomrast
effect is the final transition. The same explanation can also be used to interpret
the data obtained by Volaitis & Miller (1991). In studying the role of syllable
structure on the perception of VOT in /di/-/ti/ and /dis/-/tis/ syllables in the con-
text of changing speech rate, they found that listeners adjusted for change.s in
VOT in relation to the syllable’s cv duration, and not to its overall duration,
which is consistent with our model.

Conclusion

Motivations for dealing with time-warped sequences have been discussed, and a
successful recurrent network model has been described that can accommodate_a
range of rate-varying stimuli. Application of this model to a specific problem in
phonetic perception has also been examined with encouraging resul.ts. ; T{.) the
extent that recurrent networks embody a learning account, one remaining issue
raised by the model is whether the strategy of contrasting segmental durations is
dependent on what is learned about the properties of actual speech, or is
the strategy that is hardwired in the auditory system (Diehl & Walsh 1989).
Recently, we completed another series of studies with these networks (Al?u-
Bakar & Chater 1994a,b) to investigate the viability of the model in simulating
other phenomena in speech perception, namely shifts in category boundaries due
to rate, experience and selective adaptation, and alteration to the internal struc-
ture of phonetic categories as a consequence of changes in speaking rate. 'I.‘hl:
results from this work bring further implications for spoken language processing
and models of perception and categorization of human speech (see Abu-Bakar &
Chater 1994c¢).
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CHAPTER 15

Bottom-up connectionist
modelling of speech

Paul Cairns, Richard Shillcock, Nick Chater,
Joseph P. Levy

Introduction

Low-level phonological information plays an important role in spoken word rec-
ognition. It is certain that listeners are highly sensitive to simple sequential pho-
nological patterns - thus any speaker of English can instantly say which of the
following are possible words in their language: /snarp/, /mplaf/, /krad/, /sakf/.
Furthermore, one intuitively rates legal examples such as /sfip/ as being less
“normal” than items such as /stip/. Although it might be possible for such judge-
ments to be mediated by rapid calculation of some lexical intersection, for
reasons of computational efficiency it would be advantageous for this type of
information to be represented in summary form in a component of the human
language processor. We believe that this sublexical information impinges upon
higher-level processes such as lexical access, and there is evidence to show that
this is the case (e.g. Jakimik 1979, Foss & Gernsbacher 1983). In this chapter
we describe a system that learns to encode this type of information. Our system
is not a model of any particular psycholinguistic process in itself; rather, it can
be used as a tool to represent and assess the possible influence of sublexical pho-
nological information in specific cognitive processes.

In recent years, statistically based models have come to dominate computa-
tional psychological modelling, with neural networks playing an increasingly
prominent role. However, it is frequently the case that such work is prone to a
particular misunderstanding about the nature of statistical modelling: in order to
stand as a valid model of human behaviour, and particularly learning behaviour,
a statistical system must be derived from input that is representative of genuine
natural language input — yet this fact seems to be forgotten in much connectionist
modelling work. Thus, a model which employs a “toy” training set, of say a
dozen lexical items, can only make defensible claims about human behaviour
to the extent that its input is statistically representative of natural input -
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