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1. Introduction 

Sperber, Cara and Girotto (1995) argue that relevance theory (Sperber & 
Wilson, 1986) explains the selection task. The main tenet of relevance 
theory is that relevant information has the greatest cognitive effects for the 
least processing effort. They construct experimental materials that they take 
to vary the cognitive effect and the processing effort required to solve the 
selection task. They argue that the results of their experiments conclusively 
support the relevance account, and discount other explanations of selection 
task performance. In particular, they suggest that their data and their 
approach are not compatible with Oaksford and Chater's (1994) rational 
analysis (Anderson, 1990) of the selection task that uses "information gain" 
to determine card selection. By contrast, in this paper, we argue that the 
information gain and relevance accounts are compatible, rather than in 
competition. Oaksford and Chater's notion of expected information gain 
provides a quantitative measure of relevance appropriate to the selection 
task. We demonstrate the validity of this interpretation by showing that the 
information gain account can explain Sperber et al.'s (1995) experimental 
results. 

Why do Sperber et al. (1995) conclude that information gain and 
relevance approaches are incompatible? First, they contend that the in- 
formation gain approach does not explain important aspects of the data in 
the empirical literature, which, they argue, the relevance account can 
handle. In particular, they argue that the information gain account does not 
address the facilitation of the "logical" p, not-q response when the 
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consequent of the task rule contains a negation (Evans & Lynch, 1973; 
Oaksford & Stenning, 1992). However, Oaksford and Chater (1994) 
provide a detailed quantitative analysis of these experiments, including data 
from Evans and Lynch (1973), Griggs and Cox (1983), Manktelow and 
Evans (1979), Oaksford and Stenning (1992), Pollard (1985) and Reich and 
Ruth (1982). Indeed, Oaksford and Chater show that their theoretically 
derived expected information gains correlate highly, and significantly, with 
the observed data. 

Second, Sperber et al. (1995) argue that their own data (Experiment 2) 
are incompatible with Oaksford and Chater's (1994) account. Given the 
large range of experimental data for which Oaksford and Chater's theory 
provides a quantitative explanation, it is not clear how to interpret a single 
anomaly, even if it was completely inexplicable in terms of the theory. 
Moreover, it is not clear that the relevance account is compatible with the 
range of data covered by the information gain approach (which provides a 
comprehensive, quantitative analysis of the majority of the past literature). 
The Bayesian approach that we adopt in our model of the selection task is in 
explicit opposition to falsificationism - you can always explain away a single 
inconsistent result (Duhem, 1914-1954; Quine, 1953). What is important is 
the ability of a theory to account for the broad pattern of replicable results. 
In any case, we shall argue that there is a plausible interpretation of 
Experiment 2, which is compatible with the information gain account. 

Third, along with almost all existing accounts of the selection task, they 
accuse the information gain account of falling "short of either predicting or 
ruling out good performance (more than 50% correct) on yet untested 
varieties of the task". Sperber et al. argue that their relevance account does 
provide predictions. We are at a loss to know what differentiates all these 
other views from the relevance account in relation to predictive power. In 
particular, we have made predictions from the information gain account, 
which we mention in Oaksford and Chater (1994), and which we are 
currently testing experimentally. Further, we note that Oaksford and Chater 
(1994) formulated the information gain theory and submitted it for publi- 
cation before Kirby's (1994) results were available. Oaksford and Chater's 
(1994) subsequent analysis showed that the information gain theory pre- 
dicted Kirby's results. 

We have suggested that the information gain account may be a way of 
making a relevance account of the selection task formally precise. We now 
outline the information gain account, and then show how to apply it to 
model Sperber et al.'s experiments. Finally, we discuss relevance, in- 
formation gain and other accounts of the selection task more generally. 

2. The information gain approach to the selection task 

In Wason's selective task (Wason, 1966, 1968), subjects are instructed to as- 
sess whether some evidence is relevant to the truth of falsity of a conditional 
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rule, i f p  then q, where "p" stands for the antecedent clause of the conditional 
and "q"  for the consequent clause. In the standard abstract task, the rule con- 
cerns cards, which have a number on one side and a letter on the other. The 
rule is if  there is a vowel on one side (p) ,  then there is an even number on the 
other side (q). Four cards are placed before the subject, so that just one side is 
visible. The visible faces show an "A" (p card), a "K" (not-p card), a "2" (q 
card) and a "7" (not-q card). Subjects then select those cards they must turn 
over to determine whether the rule is true of false. Typical results were: p and 
q cards (46%); p card only (33%), p, q and not-q cards (7%), p and not-q 
cards (4%) (Johnson-Laird & Wason, 1970a). Subjects confront a task that is 
analogous the scientist's problem of which experiment to perform. Scientists 
have a hypothesis (the conditional rule) to assess, and they aim to perform ex- 
periments (turn cards) likely to provide data (i.e., what is on the reverse of 
the card) bearing on its truth or falsity. 

The "correct" response of turning the p and the not-q card derives from a 
tacit acceptance of Popper's (1959-1935) falsificationist philosophy science 
which recommends only conducting experiments that can potentially falsify 
a hypothesis. Subjects should therefore only turn cards that could be 
logically incompatible with the conditional rule if  p then q. Subjects should 
therefore turn the p card, because it might have a not-q on the back, and the 
not-q card, because it might have a p on the back. However, subjects 
typically select the p and q cards. This mismatch has been viewed as 
throwing human rationality into doubt (see Cohen, 1981; Manktelow & 
Over, 1993; Stich, 1985, 1990). 

Oaksford and Chater (1994) note that contemporary philosophers of 
science have rejected falsification as unfaithful to the history of science 
(Koyr6, 1957; Kuhn, 1962, Toulmin, 1961) and as in any case unworkable 
(Duhem, 1914-1954; Putnam, 1974; Quine, 1953). More recent accounts of 
scientific inference take a Bayesian, probabilistic approach to confirmation 
(Earman, 1992; Horwich, 1982; Howson & Urbach, 1989). Oaksford and 
Chater adopt this point of view in providing a rational analysis (Anderson, 
1990, 1991) of the selection task that uses the Bayesian theory of optimal 
data selection (Lindley, 1956; Good, 1966; MacKay, 1992). 

Oaksford and Chater (1994) suggest that hypothesis testers should choose 
experiments (select cards) to provide the greatest possible "expected 
information gain" in deciding between two hypotheses (i) that the task rule, 
i f p  then q, is true, i.e., ps are invariably associated with qs; and (ii) that the 
occurrence of ps and qs is independent. For each hypothesis, Oaksford and 
Chater (1994) define a probability model that derives from the prior 
probability of each hypothesis (which for most purposes they assume to be 
equally likely, i.e., both = .5), and the probabilities of p and of q in the 
task rule. They define information gain as the difference between the 
uncertainty before receiving some data and the uncertainty after receiving 
that data where they measure uncertainty using Shannon-Wiener infor- 
mation. Thus Oaksford and Chater (1994) define the information gain of 
data D as: 
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Information before receiving D: I(H i) = - 2., P(Hi) log2P(Hi) 
i = 1  

Information after receiving D: I(HiID ) = - P(H, ID ) log2P(nilo ) 
i = l  

Information gain: Ig = I(H,) - I(Hi]D ) 

They calculate the P(H~ID) terms using Bayes' theorem. Thus information 
gain is the difference between the information contained in the prior 
probability of a hypothesis (Hi) and the information contained in the 
posterior probability of that hypothesis given some data D. 

When choosing which experiment to conduct (i.e., which card to turn), 
the subject does not know what that data will be (i.e., what will be on the 
back of the card). So they cannot calculate actual information gain. 
However, subjects can compute expected information gain. Expected 
information gain is calculated with respect to all possible data outcomes, 
e.g., for the p card, q and not-q, and both hypotheses. 

Assuming subjects can compute expected information gains, they then 
have to make a decision about which cards to select. Oaksford and Chater 
(1994) incorporated two aspects of the decision process in their relevance 
measure. First, they introduced a noise factor by adding .1 to the in- 
formation gain for each card. This allows that people may occasionally see 
the not-p card as informational. Second, card selection is a competitive 
ma t t e r -  a card should have a greater chance of being chosen the less 
distinguishable it is from alternatives. Oaksford and Chater (1994) therefore 
scaled their information gain measure by the mean value for all four cards. 
They refer to the resulting measure as "scaled expected information gain" 
(SE(t~)). 

Oaksford and Chater (1994) calculated SE(Ig)S for each card assuming 
that the properties described in p and q are rare. They motivate the "rarity 
assumption" from the observation that it seems to apply to the vast majority 
of everyday conditional sentences. They also cite support for this view from 
the literature on other reasoning tasks (Klayman & Ha, 1987; Anderson, 
1990). Hence, oaksford and Chater (1994) argue that people's strategies for 
dealing with conditional rules will tend, by default, to be adapted to the case 
where rarity holds. 

Adopting the rarity assumption, the order in SE(Ig) is: 

SE(Ig(p)) > SE(Ig( q)) > se(Ig(not-q)) > SE(Ig(nOt-p)) 

This corresponds to the observed frequency of card selections in Wason's 
task: n(p) > n( q) > n(not-q) > n(not-p), where n(x) denotes the number of 
cards of type x selected. This account thus explains the predominance of p 
and q card selections as a rational inductive strategy. This ordering holds 
only when P(p) and P(q) are both low. Oaksford and Chater note that task 
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manipulations that suggest that this condition does not hold (at least one of 
P(p) or P(q) is high) leads to alternative orderings, predominantly that: 

SE(Ig(p)) > SE(Ig(nOt-q)) > SE(Ig( q)) > SE(lg(not-p)) 

This ordering is more consistent with Popperian falsficationism, where the 
p and and not-q instances are favoured. The effect of rarity and its violation 
will enable us to account for much of Sperber et al.'s results. 

Oaksford and Chater (1994) also show how their model generalises to all 
the main patterns of results in the selection task. Specifically, it accounts for 
the non-independence of card selections (Pollard, 1985), the negations 
paradigm (e.g., Evans & Lynch, 1973), the therapy experiments (e.g., 
Wason, 1969), the reduced array selection task (Johnson-  Laird & Wason, 
1970b), work on so-called fictional outcomes (Kirby, 1994) and deontic 
versions of the selection task (e.g., Cheng & Holyoak, 1985) including 
perspective and rule-type manipulations (e.g., Cosmides, 1989; Gigerenzer 
& Hug, 1992), and the manipulation of probabilities and utilities in deontic 
tasks (Kirby, 1994). 

3. Modelling Sperber et al.'s results 

We now apply the information gain account to Sperber et al.'s four 
experimental studies in turn, and argue that these studies confirm this 
account. The basic strategy of these experiments is to show that in a 
"relevance" condition subjects consistently select the p and not-q cards, 
whereas these selections are much less frequently observed in an "irrele- 
vance" condition, where the p, q card selection dominates. Our approach to 
modelling Experiments 1-3 will be to show that in the relevance condition 
the materials violate rarity, whereas they adhere to rarity in the irrelevance 
cases. We provide a more quantitative analysis of the richer data obtained in 
Sperber et al.'s Experiment 4. 

Experiment 1 

Sperber et al.'s Experiment 1 contrasts a relevance condition concerning 
what they call the "virgin mothers" problem, with an irrelevance condition 
consisting of a standard abstract selection task. The irrelevance condition 
uses standard materials, and hence we assume that the default rarity 
assumption applies, giving the normal ordering: n(p)>n(q)>n(not-q)> 
n(not-p). This is exactly the ordering found in Sperber et al.'s data: 
n(p) = 25 > n(q) = 11 > n(not-q) = 8 > n(not-p) = I(N = 27). 

The "virgin mothers" problem employs the rule "if a woman has a child, 
she has had sex". In this rule, both the antecedent and the consequent 
violate the rarity assumption, because the majority of women have children, 
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and the majority of women have had sex. Therefore, we would predict that 
not-q card selections will exceed q card selections leading to the overall 
pattern: n(p) > n(not-q) > n( q) > n(not-p). As before, this is exactly the 
ordering found in Sperber et al.'s data: n(p) = 26 > n(not-q) -- 23 > n(q) = 
2 > n(not-p) = I(N = 27). 

Experiment 2 

In Experiment 2, both relevance and irrelevance conditions involve 
contentful materials, concerning the visit to Padua of a group of English 
schoolchildren. Volunteers are required to look after these children, and 
there is speculation over the sex and marital status of people who put 
themselves forward as volunteers. The relevance condition uses the rule: "if 
a volunteer is male, then he is married". The irrelevance condition uses the 
rule: "if a volunteer is male, then he is dark haired". Unlike Experiments 1 
and 3, it is much less clear how to assign the probabilities in this experiment, 
because it depends on subjects' assumptions about the people who are likely 
to put themselves forward in this type of situation. The uncertainty here is 
paralleled by the uncertainty in Sperber et al.'s account of the task. They 
assert that "if a volunteer is male, then he is married" is relevant on the 
grounds that its counterexample is lexicalized (i.e., bachelor); and that "the 
most salient cognitive effect of the conditional statement is on the presence 
of bachelors among the volunteers". Although these are perhaps reasonable 
speculations concerning how subjects represent the problem, these asser- 
tions do not follow from any well-specified theory of relevance. Therefore, if 
the information gain account can also provide a plausible interpretation, 
then it should be favoured as an account of the computation of relevance in 
this context. 

We suggest that in the volunteering context, subjects assume that male 
volunteers will be rare (the instructions for the relevance condition explicitly 
reflect this). So, we argue that rarity holds for the antecedent in both the 
relevance and the irrelevance conditions. In the irrelevance condition, the 
consequent is "dark-haired" which is presumably rare. 1 Therefore, we would 

l One might object that the assumption of rarity for dark hair is not appropriate for the 
Italian subjects who participated in this study. However, we suspect that the task instructions 
force an interpretation in which dark hair is relatively rare (i.e., a particularly strict standard of 
what counts as dark must be in play). This is because the task instructions state: "Mrs. Bianchi, 
who has strong views on many things, says: 'Men with dark hair love children! I bet you, if a 
volunteer is male, then he is dark haired." Conversational maxims suggest that utterances such 
as "Men with dark hair love children!" must be informative. For this utterance to be 
informative requires that most men have not got dark hair, otherwise, very little information 
will be conveyed because most men will be assumed to love children, irrespective of the 
statement. This line of thought suggests an interesting possible relationship between the 
pragmatic principles that relevance theory was designed to explain, and probabilistic measures 
of information. It may be that pragmatics affects reasoning via its impact on people's subjective 
probabilities. 
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predict that q card selections will exceed not-q card selections leading to the 
overall pattern: n(p)> n(q)> n(not-q)> n(not-p). This is exactly the order- 
ing found in Sperber et al.'s data: n(p) = 16 > n(q) = 12 > n(not-q) = 7 > 
n(not-p) = 5(N = 19). 

In the relevance condition, the consequent is "married".  Because most 
people are married this violates the rarity assumption. Importantly on the 
information gain account if either P(p) or P(q) is high (or they are both 
high) then the expected information gain associated with the not-q card 
exceeds that associated with the q card. Therefore because P(q) is high, i.e., 
the materials violate rarity for the consequent alone, the theory still predicts 
the ordering: n(p)>n(not-q)>n(q)>n(not-p). As before, this is exactly 
the ordering found in Sperber et al.'s data: n(p)= 15 >n(not-q)= 13> 
n(q) = 5 > n(not-p) = I(N = 17). 

Experiment 3 

Sperber et al.'s Experiment 3 contrasts two problems about employment. 
In the irrelevance condition, the rule is: "if a person is older than 65, then 
this person is without a job".  Because most people are younger than 65, and 
most people are in work, both antecedent and consequence adhere to the 
rarity assumption, and hence the theory predicts the standard ordering: 
n(p) > n(q) > n(not-q) > n(not-p). This is exactly the ordering found in 
Sperber et al.'s data: n(p) = 15 > n(q) = 10 > n(not-q) = 9 > n(not-p) = 
5(N = 20). 

In the relevance condition, the rule is: "if a person is of working age, then 
this person has a job". Because most people are of working age, and most 
people have a job, both antecedent and consequent violate the rarity 
assumption. Therefore the theory predicts the ordering: n(p)> n(not-q)> 
n(q) > n(not-p). As before, this is exactly the ordering found in Sperber et 
al.'s data: n(p) = 19 > n(not-q) = 17 > n(q) = 6 > n(not-p) = 2(N = 20). 

Experiment 4 

Sperber et al. used four conditions in Experiment 4 corresponding to all 
possible combinations of high and low cognitive effects (Ec + IEc-) and 
high and low effort (Et + lEt - ). The materials used were very similar to 
those used by Kirby (1994) and involved a machine that is printing double- 
sided cards with letters on one side and numbers on the other side. The rule 
used was "if  a card has a 6 in the front, it has an E on the back". We 
interpret all the conditions in this experiment as directly setting the 
parameters of the information gain account. In showing how we assume that 
subjects interpret "numbers" as referring to the numerals (1, 2 . . . .  ,8,  9). 

In the high cognitive effects and low effort ( E c +  l E t - )  condition 
subjects are told that the machine prints a 4 or a 6 on the front of a card at 
random, it then prints an E on the back if there is a 6 on the front, and an E 
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or an A at random if there is a 4 on the front, p (6) and not-p (4) are 
therefore equiprobable and so P(p)= .5. When there is a 6 on the front 
there is always an E printed on the back, so the probability of p, q is .5. 
When there is a 4 on the front then whether an A or an E gets printed on 
the back is equiprobable, so the probability of not-p, q is .25. Therefore the 
probability of q, P(q) = P(p, q) + P(not-p, q) = .75. 

In the high cognitive effects and high effort condition (Ec + lEt + ) 
subjects are told that the machine prints a number on the front of a card at 
random, it then prints an E on the back if there is a 6 on the front, and a 
letter at random if there is not a 6 on the front. The probability of p (6) is 
therefore 1/9, and not-p (not 6) is 8/9 and so P(p) = 1/9. When there is a 6 
on the front there is always an E printed on the back, so the probability of 
p,  q is 1/9. When there is another number on the front then a letter gets 
printed at random on the back so the probability of not-p, q is 8/9 x 1/26 = 
8/234. Therefore the probability of q, P(q)= P(p, q)+ P(not-p, q ) =  17/ 
117. 

In the low cognitive effects and low effort condition (Ec - lEt - ) subjects 
are told that the machine prints a 4 or a 6 on the front of card at random, it 
then prints an E or an A at random on the back. Therefore the probability 
of p (6) is .5, not-p (not 6) is .5, q(E) is .5, and not-q (not E) is .5. So 
P(p) = P( q) = .5. 

In the low cognitive effects and high effort condition ( E c - l E t +  ) 
subjects are told that the machine prints a number on the front of a card at 
random; it then prints a letter at random on the back. Therefore the 
probability o f p  (6) is 1/9, not-p (not 6) is 8/9, q(E) is 1/26, and not-q (not 
E) is 25/26. So P(p) = 1/9 and P(q) = 1/26. 

In the high cognitive effects conditions (Ec + lEt - ,  Ec + [ E t  + ) subjects 
are told that the machine has broken down but that Mr. Bianchi has now 
fixed it. In the low cognitive effects conditions ( E c -  l E t - ,  E c -  lEt + ) 
subjects are told that the machine has broken down and that Mr. Bianchi 
thinks that the task rule is now in force (rather than the card faces being 
printed at random as they should be). In both cases an expert informs 
subjects that the rule is in force. Subjects should therefore assign a low 
value to the probability that the independence model holds, i.e., P(Mt) 
should be low. We therefore set P(Mt) to .1 and then used the parameter 
values derived above to compute scaled expected information gains for each 
card in each condition of Sperber et al.'s (1995) Experiment 4. However, in 
our model, the values of P(p)= 1/9 and P(q)= 1/26 in the E c - l E t  + 
condition are inconsistent. It is a constraint on our model that P ( q ) >  P(p) ,  
otherwise the dependence model cannot hold. A similar problem arises for 
rules with negated antecedents (see Oaksford & Chater, 1994, pp. 617-618) 
and was resolved by arguing that subjects must revise P(p) down so that it is 
less than P(q). Confronting the same situation, this is what we assume 
subjects do here and so we reset P(p)  in the Ec - lEt + condition to 1/28. 

Table 1 shows the SE(Ig)s for each card in each condition of Sperber et 
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Table 1 
SE(ls)s for each card in each condition of Sperber et al.'s Experiment 4 showing the individual 
card selection frequencies in parentheses (in each condition, N = 22) 

Card 

p not-p q no&q 

Ec+ lEt- 1.408(18) .527(3) .557(7) 1.508(15) 
Ec+ lEt+ 2.173(17) .415(2) .841(7) .571(10) 
E c - l E t -  1.882(15) .380(7) .650(8) 1.088(11) 
Ec- lEt+ 2.073(17) .370(5) 1.144(15) .414(4) 

Note: r(14) = .89 (p <0.0001). Ec + lEt - = high effects and low effort condition; Ec + lEt + 
= high effects and high effort condition; Ec-  lEt- = low effects and low effort condition; 
Ec - lEt + = low effects and high effort condition. 

al.'s Experiment 4, with the individual card selection frequencies they 
observed in parentheses. The fit between data and model is very good 
(r(14) = .89, p <0.0001). This result indicates that information gain may 
well provide an excellent measure of relevance in this task. 

Sperber et al. (1995) go on to apply their relevance approach to other 
versions of the selection task, in particular the recently much studied deontic 
versions (e.g., Rumelhart,  1980; Griggs & Cox, 1982; Cheng & Holyoak, 
1985, 1989; Manktelow & Over, 1987, 1990, 1991; Cosmides, 1989; 
Gigerenzer & Hug, 1992; Jackson & Griggs, 1990; Johnson-Laird & Byrne, 
1991, 1992; Girotto, Mazzocco, & Cherubini, 1992). They argue that their 
approach is to be preferred because it generalises to these data. However, 
Oaksford and Chater (1994) also provide a further quantitative measure of 
relevance based on expected utilities that provides excellent fits to the data 
on the deontic selection task. So again Oaksford and Chater (1994) provide 
a more compelling, formal account of relevance in this domain. 

4. Conclusions 

This commentary has shown that information gain can provide a quantita- 
tive account of relevance in the selection task and that consequently Sperber 
et al.'s relevance approach and our information gain (and expected utility) 
approach are compatible rather than in competition. Evans (1989, 1993, 
1994) has also advocated the view that subjects select those cards in the 
selection task that they view as relevant or salient. Sperber et al. suggest 
that Evans fails to "develop an explicit notion [of relevance] of his own". 
However,  recently Over and Evans (1994) have suggested that "epistemic 
utility" may provide a quantitative measure of relevance in the same way as 
information gain. It remains to be seen whether epistemic utility can be 
appropriately formalised and applied to the range of selection task results in 
the same way as Oaksford and Chater's information gain and expected 
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utility measures. Nevertheless the goal of uncovering suitable relevance 
measures now seems firmly established. 

Why are relevance measures needed? The principal reason concerns the 
computational intractability of current theories of reasoning (Chater & 
Oaksford, 1990, 1993; Oaksford & Chater, 1991, 1992, 1993, 1995). All 
current theories tacitly assume that subjects only represent the most relevant 
or plausible information from which to draw inferences. In artificial 
intelligence (AI) the problem of retrieving relevant information from 
memory in order to draw inferences is known as the frame problem 
(Glymour, 1987). This problem has bedevilled work in AI knowledge 
representation since the 1960s (McArthy & Hayes, 1969). However, people 
do not seem to be prone to these problems-f rom the vast store of world 
knowledge people seem to unerringly access the most relevant and plausible 
information to solve a problem or to interpret a situation. As Sperber and 
Wilson (1986) identified, what linguistics and psychology requires is a 
well-defined theory of relevance. As Oaksford and Chater's (1994) model 
reveals, developing formal relevance measures may also resolve many 
outstanding problems in the psychology of reasoning. 
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