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4 Categorization by simplicity: a minimum
description length approach to
unsupervised clustering

Emmanuel M. Pothos and Nick Chater

There is a strong intuition that one important factor in determining psychological
categories is that they should group similar items together—that categories should be seen
as running along default lines in a psychological similarity space. To make this idea
precise requires finding some ‘objective’ criterion for determining a *good’ classification,
given a set of similarity data. This chapter provides such a criterion, based on an applica-
tion of a simplicity principle, that can be viewed as a general criterion for cognition. To
illustrate the approach, we address the specific illustrative problem of dividing a set of
items into groups, on the basis of data consisting of pairwise similarities between the
items. Clusters are defined as groups of items such that between-cluster similarity is
minimized, while within-cluster similarity is maximized. A simplicity principle is used to
assess the relative goodness of different clusterings on the same data set: a particular
classification is good to the extent that it provides a short encoding of the similarity
information. This criterion enables us to identify the optimal classification for a set of
items. The utility of the present approach is illustrated by comparing the performance of
well-known clustering algorithms on artificial data sets, and investigating clustering
problems from the psychology literature.

Introduction

There is a powerful intuition that good, coherent categories group together things that are
similar. What makes ‘bird’ a good category, we feel, is that birds share a great many
properties (having feathers, laying eggs, and so on). What makes ‘things that weigh a
prime number of grams’ a poor category is that objects that weigh a prime number of
grams (perhaps my sofa, an ant, the milky way) have nothing in common at all, aside, of
course, from weighing an even number of grams. Pushing this intuition to an extreme, one
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might suggest that similarity is the main determinant of conceptual structure, and that the
concepts that we possess run along natural default lines in our internal similarity space.
This line of thinking is embodied in, for example, early discussions of ‘basic’ categories
(Rosch and Mervis 1975).

In recent years, there have been challenges to the centrality of similarity to categoriza-
tion. There have been attempted demonstrations that other factors, such as background
knowledge, are relevant (Rips 1989); and fears that there may be a vicious circularity in
elucidating categorization in terms of similarity, when similarity itself seems to
presuppose categorization (Hahn and Chater 1997). Moreover, Sloman et al. (Chapter 5,
this volume) report several instances where one aspect of categorization performance,
naming, is shown to dissociate from similarity judgements: that is, the perceived similarity
of the objects Sloman et al. employed in their studies, could not predict the linguistic

labelling of these objects. Likewise, Hampton (Chapter 2, this volume) points out that :

quite often the way ‘similarity’ is invoked in categorization may be vacuous because the
notion of similarity is flexible enough to accommodate any set of experimental data (see
also Hahn and Chater 1997). We agree with Hampton that at a broad level the notion of
similarity imposes few computational constraints for models of categorization.

But let us leave aside these concerns, and assume, at minimum, that clustering items by
similarity appears to be one important factor in determining what we view as good cate-
gories; and, furthermore, let us accept that the close relationship between similarity and
categorization is worth exploring, even if the exact direction and nature of the dependence
between the two is unclear.

With this in mind, a critical issue is: given a set of similarity data for a set of items, what
is a natural way of partitioning those items into a ‘good’ classification? What principled
method can we adopt? It might seem that there must be some standard answer to this
problem in the statistical literature on clustering, but, as we shall discuss further below, the
problem is instead avoided completely by many statistical methods (although the issue is
addressed, using a different approach, and in a somewhat different setting, in important
work by Gluck and Corter 1985). This raises the possibility that the idea of concepts
falling along natural default lines in similarity space is doomed from the outset, because
there is no agreed way of deciding what counts as a natural default line. Given a set of
similarity data, perhaps, despite our intuitions, any classification is as good at capturing
these similarities as any other. If this is the case, then the role of similarity as underpinning
category structure would need to be completely rethought. On the contrary, though, if we
could find such a criterion, this would provide a useful direction for seeking to test the idea
that psychologically natural categories break up items according to clusters jn similarity
space, in a concrete way.

This chapter takes up this challenge. We propose that there is a preferred criterion for
mapping similarity data into discrete sets of ‘best’ categories—based on a simplicity
principle, that has been proposed as a general goal in many areas of cognition (Mach 1959;
Leeuwenberg and Boselie 1988; Chater 1997, 1999). Roughly, the idea is that the
cognitive system seeks to find the simplest explanation for the data it encounters—what-
ever the character of that data, and whatever the nature of the explanations that it
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postulates. Suppose that the data has the form of a matrix of similarities (which might be
so, if similarity is psychologically basic, and easily computed—we note that this is, of
course, very unclear, as we have mentioned above). Suppose further that the explanations
for these data are simply different classes of items (intuitively, being part of the same
category ‘explains’ why two items are similar—we shall see how this intuition can be
made precise below). Then perhaps we can use a simplicity principle to determine which
grouping is optimal—the best classification should correspond to the simplest explanation
for the similarity data.

This chapter spells out one way in which this can work, for a particular representation
of similarity data, and for a particular definition of the ‘meaning’ of a cluster. These
specifics will be spelt out below. But the point of the exercise is, from the point of view of
psychological theory, largely illustrative. We suggest that this kind of analysis may be
relevant to how spontaneous categorization actually occurs in humans. Although our
motivations are ultimately psychological, the goal of this chapter is to establish the
technical viability of this kind of approach, rather than to report empirical data. We aim to
put a new theoretical candidate into the ring. Another way of looking at the contribution
of this chapter is as a piece of statistics—as providing a new method for building methods
of clustering based on a simplicity principle. Since clustering is so important in the
cognitive science, this work may be of fairly general interest, from this perspective, even
to those who utterly reject the possibility that similarity may play any foundational role in
the understanding of how categorization occurs.

The chapter is organized as follows. First we discuss the relationship between catego-
rization and induction. We then provide an overview of existing clustering techniques and
argue that these cannot be used to answer the question of what is a ‘natural’ classification
for a set of items. We call a clustering *natural’ to the extent that there is evidence for it in
the simflari{y structure of the objects classified. This discussion leads to the presentation
of our own model, where a formal definition of classification goodness is suggested (that
can be used to provide a quantitative measure for whether there is evidence for one
classification as opposed to another). We next illustrate the measure with comparisons of
different clustering algorithms on artificial data sets, and also by classifying some well-
known data from the psychology literature.

Categorization and induction

There are several ways to make inferences from past experience to future events.
Clustering, the partitioning of a set of instances into groups, is one of them, in the sense
that the groups provide us with information about regularities in the instances. Clearly, if
each new instance is completely unique, then clustering is useless. However, in most other
cases, identifying an object as a member of a category will give us insights about several -
properties of the object, that we have not observed directly. For instance, if we are
presented with a red, round object, of soft texture, and we infer from this information that
the object is an apple, then we also know that this object is edible, has a characteristic
taste, etc.
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Inference from past experience is problematic, however, in the sense that there is no
unique way to generalize from past experience to future events (Goodman 1954;
Watanabe 1985). This problem carries over to clustering investigations: given a set of
items, there is an intractably large number of possible divisions of the items into groups.
The way this problem has been approached traditionally, is by defining a heuristic or
criterion that would guide the classification of items; an example would be something
along the lines of, ‘cluster together the two most similar items in the set and proceed by
combining these groups/items that are most similar to each other’ (where similarity of two
groups might be defined as the greatest similarity between any item in the first group and
any item in the second one; this method is called single linkage and will be described more
carefully in the following section).

Grouping by some function of similarity of the items, such as in the example above, is
by far the most common approach (for alternatives, see for example, Medin et al. (1987),
who suggest a classification system that attempts to extract rules describing different
groups). With similarity as the guiding principle, the objective is to create groups of items
so that more similar items end up in the same group. This is far from straightforward,
however, because there is no unique way to assess similarity between items (Goodman
1954); thus, with different methods, one is likely to get different partitionings of the same
data set, which is problematic if one is interested in making some inference on the basis of
the partitioning.

So to summarize so far, clustering appears as an intuitive technique to organize a set of
items in a way that inferences about new instances can be made. But, the usefulness of the
method is reduced because different clustering methods will lead to different partitionings
of the same data set, and there is no criterion to prefer one as opposed to the others. To
reiterate some of the concerns raised by James Hampton in this volume, similarity inde-
pendent of a particular model is not a very constraining grouping principle. So, if there are
several possible classifications for the same data set, how could we decide among the best
ones?

Some researchers have suggested that a way to get round the problem of evaluating
different classifications on the same data set is by identifying the clustering methods that
perform better on specific test data sets. Thus, the method of choice for a new data set will
be determined by how similar it is to one of these test cases (Fraboni and Cooper 1989). In
this work we aim for a more general solution to this problem. We will restrict ourselves to
clustering on the basis of similarity information between items. This information could be
in the form of vector distances, or confusabilities between items (Shepard 1987), or
measures in terms of set theoretic properties of the items (Tversky 1977). AJthough we do
not provide a solution to the problem of what is the most appropriate way to compute
similarity between items (if indeed there is a solution to this problem), we will adopt a
representation of similarity that is as general as possible, so that our model would be
flexible with respect to how similarity is defined.

Our particular approach to formalizing simplicity is based on the minimum description
length framework (MDL). But why is MDL an appropriate criterion for clustering? MDL
is a particular formalization of the familiar notion of simplicity in inductive inference,
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according to which the simplest theory is the best (more accurately, the preferred theory is
the one such that the description of the theory plus the description of the data in terms of
the theory is least; Rissanen 1978, 1986a, 1986b; Wallace and Freeman 1987). William of
Ockham (12857-13497) is credited to have first stated a principle of simplicity; Ockham’s
assertion was that ‘entities are not to be multiplied beyond necessity’ (non sunt multipli-
canda entia praeter necessitatem), which has become to be understood as ‘plurality
should not be assumed without necessity’ (see Bosch (1994) and Derkse (1993) for a
discussion of the historical origins of the simplicity principle). Intuitively, the simplicity
principle is useful, since in the absence of any information about the world our only
strategy is to go for the ‘simplest’ (as stated above) hypothesis (see Barlow (1983) and
Olshausen and Field (submitted) for an application in low-level vision). Formally, Vitanyi
and Li (submitted, a) have shown the simplicity will identify both the most probable
theory and the best theory for prediction (see also Bosch 1994). Furthermore, it has been
suggested that many shortcomings of standard Bayesian models for generalization can be
addressed by appeals to simplicity (Forster 1995; see Vitanyi and Li (submitted, a) for a
demonstration of equivalences between simplicity and Bayesian methods, and Chater
(1996) for an illustration of this equivalence in perception).

Thus, there is ample indication to suggest that simplicity is a good strategy. In
subsequent sections we will describe a particular formalization of the simplicity principle
(the minimum description length principle; Rissanen 1978) and show how this can be
applied to classification.

Overview of clustering ,,//

In this section, we review some well-known methods of clustering; for more comprehen-
sive reviews, see Krzanowski and Marriott (1995), Gordon (1994), or Everitt (1993). The
objective of all methods is to identify a partitioning of the objects in a domain, such that
the groupings will reflect regularities in the similarity structure between the items. The
input to such procedures consists of a similarity matrix between the items (containing
information about the similarity between two items, for all pairs of items); and the output,
some representation of the cluster structure in the domain (see later). This differs from
models of human categorization in an important way: the importance of similarity is taken
for granted. In statistics, this makes perfect sense: we would only be interested in group-
ing things together if it would be meaningful to perceive some of these things as being
more similar compared to others. In human classification, the situation is more complex.
Identifying the similarity structure of a set of items as the starting point of categorization,
provides us with a very tangible advantage. Namely, this enables us to specify the
objective categorization quite easily: we select the classification for a set of items that best
captures the similarity structure for these items. Granted, we have not yet discussed what
‘bestness’ is about (and, as will become apparent shortly, this is far from an easy problem).
Nevertheless, this still goes a long way towards clarifying the problem of grouping,
compared to the equivalent situation in human categorization where it is not even clear as
to what categorization is about (for example, see the introduction of Chapter 5).
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Back to clustering: the similarities between the items are typically derived on the basis
of some metric distance, so that most methods assume that the similarities obey the metric
axioms, i.e. minimality (the distance of any point to itself is zero, or the similarity of any
item with itself is maximal), symmetry (similarity of item a with item b is the same as the
similarity of item b with item a), and the triangle inequality (dissimilarity of items a and b
plus dissimilarity of items b and ¢ is at least as great as the similarity of items a and ¢). The
metric axioms are clearly justified in a broad range of contexts; in the context of psycho-
logical investigations, it has been an issue of controversy whether similarity information
derived empirically (for example, by asking participants in a psychology experiment to
rate qualitatively the similarity between different objects) is consistent with the metric
axioms (for an argument supporting this view, see Shepard (1987); for examples of viola-
tions of the metric axioms in psychological similarity judgements see Tversky (1977), and
also Bowdle and Gentner (1997) for a more recent view of these issues).

The output of the clustering procedures can be, generally, of two kinds: either a
hierarchy of groups such that the bottom level consists of individual items and the top
level of an all-inclusive cluster, or one set of groups. In both types of cases, clusters are
usually non-overlapping (for hierarchical approaches this applies to clusters at the same
level; see Shepard and Arabie (1979) and Tenenbaum (1996) for exceptions).

The hierarchical clustering models (or agglomerative procedures) initially consider
each item in a domain as a separate cluster. In each step, the two most similar items/
clusters are combined together, until all items are included in the same cluster. Where such
methods differ is mainly in the way the similarity between two clusters is computed. For
example, in the single-link method, a much celebrated early approach (Sokal and Sneath
1963; Jardine and Sibson 1968; see Johnson (1967) for a more general discussion), the
similarity between two clusters is defined as the greatest similarity between any item in the
one cluster and any item in the other. Such a method will clearly lead to chain-like
clusters, even if such groupings may not be appropriate for a data set (see Lance and
Williams (1975) for criticisms of the single-link procedure, and Hartigan (1975) for a
more general discussion and the plausibility of chain structures). However, an alternative
approach, the complete-link method (Kuiper and Fisher 1975; Baker and Hubert 1976;
Hubert and Baker 1977), where the least similarity between any point in one cluster and
any point in the other will determine the similarity between the two clusters, is not without
equivalent problems. For instance, complete-link methods are heavily biased to partition a
set of items into clusters of more or less similar size.

The single- and complete-link methods are extremes in a continuum of methods, where
similarity between two clusters depends on some function of the simila}ity between a
point in the first cluster and another in the second. (see Hubert (1974) for an explication of
this observation using graph theory). There are several other possibilities of procedures,
the end result of which is a hierarchy of clusters for a set of items (see Norusis (1994) for
an overview of methods that are common in practical clustering applications today).

The alternative class of clustering models involves algorithms that aim to provide a
‘natural’ classification for a set of items. That is, instead of producing a hierarchy of
clusters, they would compute one classification (again, in most cases non-overlapping)
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that is supposed to be reflecting the optimal partitioning of the items, in the sense of
making the regularities in the structure of the items as salient as possible. With
hierarchical methods, such solutions are possible as well, if one provides a ‘cut-off’
criterion for the agglomeration procedure (that is a criterion to indicate when further
combining of clusters is to be terminated; but note that such cut-off indicators are usually
external to the actual algorithm).

The success of models in this second class depends on defining an appropriate criterion
for how good a classification is. That is, there must be a measure to indicate when the
optimal classification has been reached, and so terminate additional changes; MacQueen
(1967) presents an early example (see also Banfield and Bassill 1977). Although the
choice of such criteria is relatively unconstrained, researchers in this area have tried to
come up with function of classification goodness that could be justified on a priori
theoretical grounds. This reflects the general understanding that although hierarchical
methods are more like tools to represent similarity information in a set of items in an
elegant way, clustering procedures that construct a single classification attempt to address
more directly the issue of what is the true group structure in a set of items (if indeed such
a question is meaningful; Hartigan (1975) discusses the question of what is meant by a
cluster or group).

For example, Wong (1993) relied on thermodynamics to derive an ‘objective’ function
for determining classification goodness. In this context, objective is used to describe
criteria that are meant to apply in as general conditions as possible; that is, criteria that are
independent both of the type of invegtigation and the actual properties of the data set,
Thermodynamics is an appropriatgAfamework because it provides a formal description of
the statistical properties of systems composed of an assembly of more elementary objects.
"More specifically, he defined cluster centres as the points that minimize a free-energy
function (set up in a way to rcprcscnt the clustering problem; note that at the lowest level
“the information about the items to be clustered that is manipulated relates to their
similarity structure), and thus his procedure could provide an answer as to how many
clusters can be postulated for a set of points. The actual method is an agglomerative one,
so that a hierarchy of classifications is produced; but the emphasis is on the final answer—
the number of clusters that optimally describe the domain—and so all hierarchical
information is meant to be purely descriptive. A similar approach has been reported by
Buhmann and Kuhnel (1993). Their calculation of cluster centres is similar to that of
Wong (1993), in that it depends on minimizing a free-energy function. However, a novelty
in their theoretical framework is that they also consider the trade-off between fit provided
by the clusters (that is, how well the clusters describe the actual distribution of points) and
complexity of cluster structure (the more clusters are postulated, the more complex the
cluster structure will be, in the sense that it will be more difficult to decide where a new
point belongs).

Generally speaking, as was the case with the hierarchical clustering procedures,
methods such as the ones mentioned above will lead to similar but not identical results.
Although there has been a major effort in defining ‘objective’ criteria for classification
goodness, there are still several arbitrary features in approaches such as the one of Wong
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(1993) and Buhmann and Kuhnel (1993), that preclude meaningful comparison between
different classifications. For example, in the above approaches, the error—or distortion—
terms have not been motivated in the same way that justified the use of free energies.
There is one important line of research that does directly address the question of how
many categories it is appropriate to assign to a set of data, and this line arises from
psychology, rather than statistics. Corter and Gluck (1992; see also Gluck and Corter
1985) developed a model of category utility. They argued that categorization is useful to
the extent that it enables us to predict the features of instances (see also Anderson (1991)

for a model of dynamic categorization based on a similar motivation). In particular, they '

defined category utility as

CU(e,F)= POXIP(il0) = Pf)°]:

where f, refer to features and ¢ to a category, and showed that in a variety of situations,
given a hierarchy of objects, their measure would identify correctly basic-level categories
(Rosch and Mervis 1975). Category utility has been applied successfully in a number of
categorization systems developed in the artificial intelligence literature (Fisher 1987,
1996; Gennari et al. 1989). The relationship between category utility and the present
approach is an interesting area for future research. For now, we note simply that the two
methods apply to different kinds of data—category utility requires that items consist of
feature bundles; whereas the approach developed here assumes simply that pairwise
similarity judgements between items are available, and makes no assumptions about how
items are represented.

In sum, two points are evident: first, all methods of clustering in statistics start from
similarity; this is considered the only meaningful motivation for doing classification in the
first place. Secondly, in terms of discriminating between the possible methods, the situa-
tion is as bad as that in human categorization: there are several possible models, and it is
not always clear as to what would be an effective strategy to compare them. Nevertheless,
one shortcoming can be identified readily: none of the methods mentioned above provides
us with any information regarding what could be an optimal classification for a set of
items. Even the K-means clustering techniques required explicit information as to how
many clusters need to be identified. This is the shortcoming that we address with the
present work.

Clustering by simplicity

In this section we describe the general features of our approach; a more technical
exposition can be found in Chater and Pothos (submitted). The general guiding principle
is simplicity: classifications are good to the extent that they provide a parsimonious
representation of the similarity structure of a set of items. More specifically, the version of
simplicity we will adopt is the minimum description length principle (henceforth, MDL)
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(Rissanen 1978, 19864, 1986b), according to which . . . the best theory to infer from a set
of data is the one which minimizes the length of the theory and the length of the data when
encoded using the theory as a predictor for the data’ (Quinlan and Rivest 1989, p. 227). As
we will see, classifications can be thought of as theories on the regularities between a set
of items, so that different ‘theories’ can be compared with respect to how simple a
representation of a set of items they provide.

The description lengths in the MDL principle refer to how extensive the description of
an object is in some (universal) programming language. That is, for an object x we ask
how long is the shortest program to describe object x? For example, consider a sequence
of natural numbers: 1,2, 3, ... 25. A simple program for this sequence would be ‘start with
1 and increment in units of 1 until 25 is reached’. On the contrary, with a sequence of
natural numbers presented randomly, it is unlikely that we can come up with a program
that is shorter than simply listing the numbers one by one. In general, it will be the case
that more regular objects will be described by shorter programs.

In order to apply the MDL formalism in clustering, we need to define what we mean by
description lengths for clusters, similarity information, etc. Starting with similarity, at the
outset we noted that we do not wish to restrict ourselves to any particular theory of
similarity (Tversky LE?,/ghepard 1987). The problem of defining a meaningful measure
of similarity is one Mt is, to a large extent, separate from that of determining classifica-
tion goodness; furthermore, it is unclear as to whether there can be a general representa-
tion of similarity (for an interesting suggestion see Chater and Hahn 1997). The way we
avoid dealing with similarity definition issues, is by assuming a maximally general
similarity representation, that would be compatible with any other more specific theory. In
particular, we suggest that the similarity information between a set of items is in the form
of the relative magnitude of pairwise inequalities: for items a, b, ¢, and d, we would have,
for example, that similarity (a, b) is greater (or less) than similarity (c, d). Such a specifi-
cation is suitable in the sense that it makes no assumptions at all about the properties of the
data set. With respect to the metric axioms, for example, one can readily see how they
could all be violated in a way consistent with the representation suggested.

With respect to applying the MDL principle to classification, the description length
required to specify all the inequalities for a set of items can be computed easily by
observing that for each inequality there are two possibilities: for the pairs (a, b) and (c, d)
either the similarity between (a, b) is greater to that of (c, d), or it is less (in this work we
have ignored ties; this is only a matter of simplifying methodology and all ideas can be
easily extended to account for ties as well; note also, that with real-valued domains, ties
would practically almost never arise). From information theory, (Cover and Thomas
1991), the codelength required to make a binary decision, that is a decision between only
two possible outcomes, is one bit. Thus, with n objects (if we further assume minimality
and symmetry, again for simplicity of exposition), we have p = n X (n — 1)/2 pairwise
relations between them, and so p X (p — 1)/2 bits will be required to define the similarity
structure of the objects in terms of inequalities between pairs of items.

Call the above quantity—the codelength required to describe all similarity information
between a set of items—DL(raw), where DL stands for ‘description length’. As mentioned
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before, a classification can be seen as a ‘theory” that aims to flesh out regularities in this
set of similarity relations. More specifically, we define clusters as collections of objects in
a set, such that objects within a cluster are more similar than objects between clusters.
Such a definition has been motivated as plausible in the human classification literature in
the context of basic categories (Rosch and Mervis 1975), and is justified in the present
work only in the sense that it captures, intuitively at least, all the specifications that are
relevant for deciding whether a cluster is good or not good. The reason why we do not
attempt a more formal justification of our choice for this definition of clusters is that, as
will become apparent later, one is not needed, in the sense that our model does not depend
on a particular cluster definition.

Saying that clusters correspond to objects such that between-cluster similarity is as low
as possible, while within-cluster similarity is greater, can be used to specify many of the
inequalities in the description of the similarity structure between the items. For example,
suppose that we have a domain of four objects, a, b, ¢, and d, and we place objects (a, b)
in one cluster, while objects (¢, d) are in another. Then, from our definition of clusters, this
entails the information that similarity (a, b) is greater than similarities (a, ¢), (a, d), (b, ¢),
and (b, d), and similarly for similarity (c, ). Now, all these ‘constraints’ specified by the
cluster may or may not be correct; however, generally speaking, a classification will be
successful to the extent that it specifies many constraints that are correct.

So using a classification to describe the similarity structure of a set of items can
reduce the description length required to specify all similarity information. Thus,
DL(rawlclusters), the description length required for specifying the inequalities with
clusters, will be less than DL(raw), depending on how many constraints the clusters
specify. Since knowledge of each inequality is worth one bit, each constraint reduces
DL(raw) by one bit as well.

As noted before, however, some of these constraints might be erroneous, so that the
reduction in description lengths associated with a clustering configuration (call this
compression, see later) will not be simply DL(raw) — DL(rawlclusters). Thus, one must
consider the description length required for identifying the errors, which we call
DL(errors). The way to do this is by considering the set of all constraints and deciding
which subset of these constraints includes only all the erroneous ones (once an erroneous
constraint has been found, the correct answer is known automatically, since for each pair
of similarities there are only two possibilities; the required expression is obtained from
standard combinatorics and is reported in Chater and Pothos (submitted)).

The final term that is needed before the MDL principle can be applied to the classifica-
tion problem relates to the complexity of the cluster structure used. We start with a
specification of the similarity relations only in terms of relative magnitudes between
pairwise similarities, and ‘clusters’ is a construct that is postulated a posteriori; thus, we
need to consider the savings provided by the constraints, only with regard to the additional
costs required to describe the clusters. The description length to specify cluster configura-
tions, DL(clusters), can be computed by considering all possible classifications on a set of
items, and the number of bits needed to select the one actually used (see Chater and Pothos
(submitted) for a derivation).
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With the above terms, we can now apply the MDL principle: classification goodness is
given by the difference

compression = DL(raw) — (DL(rawlclusters) + DL(clusters) + DL(errors).

The better a classification, the more the constraints and the less the errors, so that the cor-
responding reduction in description lengths, compression, is likewise greater. With the
above quantities, a numerical measure of classification goodness can be derived, so that
different possibilities can be assessed quantitatively.

In what way is our formulation different from the others we mentioned? One could, for
example, argue that in the same way there are arbitrary error terms in Wong’s (1993)
scheme, or the one by Buhmann and Kuhnel (1993), likewise in ours the particular way
description lengths are computed will, no doubt, influence results so that the model will be
biased to favour certain types of classification structures.

The difference lies in that although it is true that the actual specification of description
lengths is somewhat flexible, the compression equation is maximally general and at the
heart of the simplicity/MDL approach to generalization. For instance, another investigator
might be able to come up with a better or more intuitive way to define clusters than ours,
or a more efficient way to specify errors. Alternatively, for different data sets, different
definitions of clusters might be more suitable (in terms of leading to greater compres-
sions). However, despite all such differences, classification goodness measures calculated
on the basis of the compression equation stated above are always directly comparable,
even for different methods. This is because the complexity of description lengths in infor-
mation theory is a notion that is both data and model independent; an object whose
description is 40 bits long would be always simpler than an object whose description
length is 50 bits long, regardless of the actual coding scheme that was used to compute
these lengths (for the general theory of ‘objective’ measures of complexity in information
theory, see Li and Vitanyi (1997); for application in psychology see Chater (1996), and in
statistical inference, Juola et al. (1998)).

In the next sections, we illustrate these ideas by clustering artificial data sets with a set
of well-known clustering procedures, as well as two novel clustering algorithms that
optimize directly the compression measure of classification goodness in a local way.
Although, as is typically the case, different procedures perform better with different data
sets, in each case we can use the compression measure of classification goodness to
identify the optimal clustering. Also, we classify some well-known data sets from the
psychology literature, so as to further illustrate the uses of being able to identify the
optimal clustering configuration on a set of items.

Artificial data sets

In this section, we present analyses of classification goodness on four artificial data sets.
The data sets, shown in Figs 4.1-4.4, have all been constructed explicitly to reflect
different data structures, while some points were also introduced by hand to make the final
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configuration slightly ambiguous. For example, although the Fig. 4.1 arrangement of
points seems to be consistent with a two-cluster structure, the points in the middle cannot
readily be assigned. Note that the similarity relations required as input to the classification
goodness measure have been computed on the basis of the metric distances between the
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|

Fig. 4.1 Two overlapping clusters. The best cluster configuration resulted in a compression by about 2744 bits,
almost 50% of the description length for the similarities without clusters (in this, and all other examples in this
section, there are always 15 points; thus, there are 15 x 14/2 = 105 pairs of points, and hence 105 x 104/2 = 5460
pairs of similarities to be determined).

Fig. 4.2 Embedded category in random noise. Although most methods clustered the points corresponding to the
embedded category together, the ambiguity in the random noise points resulted in poor overall solutions. The best
compression achieved was only 1059 bits, almost a third of the compression possible in the straightforward two-
clusters case.
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points in the examples in Figs 4.1-4.4, but, as discussed before, the method does not
require at all that the similarities between the objects are consistent with the metric

axioms.

The clustering algorithms compared were the nearest neighbour, furthest neighbour,

Fig. 4.3 A simple case of three clusters, with some noise. Although there was considerable structure, the best
compression of 1987 bits again reflects the fact that some points were ambiguous, compared to the case in Fig. 4.1,

where the structure was more transparent.

Fig. 4.4 Little obvious structure. We have constructed this data set so that no obvious structure would be readily
discernible. Nevertheless, many algorithms succeeded in identifying nearly the optimal configuration (associated

with a compression of 1276 bits).
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between-groups linkage, within-groups linkage, centroid clustering, median clustering,
and the Ward’s method (methods described by Norusis 1994). Our choice of these
methods simply reflects the fact that these are the most common procedures in clustering
applications. Note that they are all agglomerative, hierarchical; that is, they initially
consider all objects in a domain to be individual clusters, and in each step two objects or
clusters are merged together. Since the simplicity criterion can be used to identify the
optimal classification for a set of items (but not a hierarchy), for each of the above methods
we identified the best classification for a specific method as that partitioning in the
hierarchy that led to the greatest compression. For example, suppose we consider the
nearest neighbour method; for a given data set, the nearest neighbour prediction for the
best, or most natural, classification, will be that level in the hierarchy produced which
leads to the greatest compression.

We also constructed two novel clustering agglomerative algorithms based on optimiz-
ing the compression criterion directly, in a local way. That is, as is the case generally with
agglomerative algorithms, they start off with each item in a separate group.:The two
objects or clusters that are merged in each step, will be those such that the resulting
classification is associated with a greater compression. One algorithm looks at simply how
much compression is increased at each step (the ‘absolute’ method), while the other also
takes into account other factors in preferring one merger as opposed to another (the
‘relative’ method; see Chater and Pothos (submitted) for details). Both these methods
utilize local optimization algorithms in the sense that improvement over the current
solution is assessed only with respect to possibilities in the next step. Thus, they do not
guarantee to compute the best compression classification (but the problem of discovering
the shortest code for an object is generally intractable).

For each data set, there is an ‘objective’ best classification, namely the one that is
associated with least compression. Thus, the different methods can be evaluated (for these
four data sets) according to how often they succeed in identifying the best compression
solutions; the results are shown in Fig. 4.5.

Another straightforward dimension of comparison would be simply to ask what average
compression was achieved by different methods for the four data sets. Such a calculation
would be useful since a particular method might still be able to identify high compression
classifications, even though they are not the optimal ones. Figure 4.6 shows these results,
and the overall impression is the same as that from Fig. 4.5: namely, different methods
(including our own) perform better in some situations, as opposed to others, and that
overall no method can be credited with a clear advantage.

So what do these demonstrations show? One can argue that there is nothing remarkable
in either the data sets, or that all methods perform, generally, at roughly similar levels.

The data sets may be simple, but clustering them has been far from trivial: this is
reflected in the fact that we observed great between-method variability, in the number of
best compression solutions discovered and the average compression for the four data sets,
for each method. Thus, although the data sets represent classification structures that are
highly intuitive to a human observer, none of the methods tested can reliably predict this
classification structure. Moreover, the hierarchical methods we tested are even less
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constrained than ours, since they will provide not a single classification, but a family of
possible partitionings. We think that the utility of our approach is that in each case we can
evaluate different groupings according to how much compression they provide, and thus
select the optimal one.
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Fig. 4.5 Number of times each method discovered the best solution. Mote that with the exception of the straight-
forward two-cluster case where most algorithms found the best solution (or a very similar one), in all the other cases
on average about only two algorithms achieved the maximum compression.
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Fig. 4.6 Average compression achieved by each of the algorithms tested across the four data sets we used. The
total information content of each domain was 5460 bits.
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Psychological data sets

In this section we present analyses on some well-known data from the psychology
literature. These results are useful to the extent that the best classifications predicted by
compression are consistent with those expected intuitively.

Miller and Nicely's data
Miller and Nicely (1955) were interested in investigating the phonological similarity
structure between the consonants in the English alphabet. Thus, they had a set of partici-

pants make several same/different judgements on consonant pairs presented auditorially

(they also used different filters and noise conditions; for our analysis, we selected the
similarity information corresponding to least frequency distortion and maximum noise).
They reasoned that more similar objects would be more often confused together, and so
constructed a confusability matrix for the consonants, that is a matrix such that in each cell
there was information about how many times the column consonant was confused with the
row one (see Shepard (1980, 1987) for a general argument with respect to the psycho-
logical plausibility of such a procedure and associated implications; also, see Shepard
(1962a) for a more general discussion about the nature of psychological relation).

Such a confusability matrix is equivalent to a dissimilarity matrix that is suitable for
clustering procedures. Describing the similarity structure of a set of objects in such a way
is more general than assuming a spatial representation (as we did in the examples with the
artificial data sets), because the similarity relations in a dissimilarity matrix must obey
only transitivity, and do not have to conform to the metric axioms (transitivity states that
if similarity (a, b) is greater than similarity (b, ¢) and similarity (b, ¢) greater than
similarity (d, ), then it must also be the case that similarity (a, b) is greater than similarity
(d, )). The similarity information required to compute compressions in our model is still
more general, in that transitivity need not be adhered to either.

In practice, Miller and Nicely (1955) normalized the confusability data so that
minimality and symmetry would be obeyed, and for ease of comparisons we will adopt
their methodology as well (but, to reiterate, this is not required). Figure 4.7 shows the best
compression grouping that we identified on the basis of confusability information.

For comparison, Fig. 4.8 shows a classification of the same consonants, now on the

pt kf 6sSb d & v g z {|[mn

Fig. 4.7 Best cluster solution found for of Miller and Nicely's (1955) confusability matrices (signal-to-noise ratio,
-12 db; frequency response of the sound-producing apparatus, 200-8500 cps; for more details see Miller and
Nicely 1955). The compression achieved was about 2800 bits and the description length required for the similarity
information without any clusters was 7140 bits.
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Fig. 48 The consonants of Fig. 4.7 classified according to a representation reported by Shillcock et al. (1992),
whereby the different dimensions of the representation correspond to features relevant to the perception of linguistic
objects (compression of the above grouping, about 2500 bits).

basis of a feature representation reported by Shillcock et al. (1992); consonants were
coded along nine dimensions that were thought to summarize important characteristics of
the language perception problem. The similarity of the two classifications can be used to
examine whether the Shillcock et al. (1992) feature representation is indeed psychologi-
cally plausible (bearing in mind, however, that Miller and Nicely’s data were collected
under high noise conditions). The Rand index of classification similarity (Rand 1971,
Fowlkes and Mallows 1983) for the clusterings in Figs 4.7 and 4.8 was .83, where 1
indicates identity, thus supporting Shillcock er al.’s representation.

Ekman's data

Ekman (1954) reported a study very similar to that of Miller and Nicely (1955), but in the
domain of colour. In particular, he asked participants to rate qualitatively the similarity
between 14 colours, so that each participants made a similarity judgement for all possible
pairs of colours. Furthermore, the participants’ responses were averaged and transformed
to a scale ranging from 0 to 1, and, as was the case with Miller and Nicely (1955),
symmetry and minimality were imposed. Three main groups were identified (Fig. 4.9), a
group whose members were primarily long wavelengths, another composed of short
wavelengths, and finally a group of intermediate wavelengths. Note that the well-
documented effect of the perceived similarity between extreme reds and extreme violets
(thus suggesting a cyclic spatial structure for the wavelengths spanning the visible
spectrum; see Shepard (1962b), but also Rodieck (1977) for a different view) can neither
be seen in the similarity structure of our clustering solution, nor was (apparently) present
in Ekman’s results (confusability between 674#nm and 434#nm was only 0.16).

Reds Intermediate Violets

434 485 490 537 584 610 651
445 472 504 555 600 628 674

Fig. 4.9 Fourteen colours labelled according to their wavelength (nm) and classified on the basis of similarity
ratings collected by Ekman (1954). We found the upper clustering to have the highest compression (1449 out of
4005).
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Conclusions and future directions

This research addresses one very basic problem in classification: how can we decide
which of the alternative classifications of a set of items is more suitable? Hierarchical
classification techniques provide only an indirect answer to this question: the output of
such procedures is a family of (hierarchically organized) groupings and it is up to the
investigator to decide which one is the most appropriate. Other techniques exist, where a
criterion is defined, allowing the derivational of one classification that is optimal relative
to this criterion. However, it is generally the case that the criteria optimized in such
procedures involve several arbitrary terms, that is terms that cannot be justified in a single

theoretical framework. For instance, although the general theoretical motivation for the '

approach of Wong (1993) and Buhmann and Kuhnel (1993) is founded on thermo-
dynamics and the concept of free energy, the way in which a cluster is defined is but one
possibility of many equivalent ones compatible with their frameworks. i

In our work, we argued that some version of the simplicity principle can provide the
foundation for ‘objective’ classification. This is because clustering is a type of generaliza-
tion inference, and simplicity has been suggested as a suitable guiding principle in
generalization by several investigations in a variety of fields (Forster 1995; Vitanyi and Li
submitted, a, submitted, b). The particular model we presented starts from a general, non-
committing representation of similarity between a set of objects, and interprets clusters as
‘theories’ about how these similarities are organized. Clusters were defined as sets of
objects such that between-cluster similarities is lower than within-cluster similarities, for
all pairs of objects. In this way, good classifications would reduce the description length
required to specify the similarity structure between the objects, and, applying simplicity,
the greater the overall compression, the better the classification.

‘Objectiveness’ arises in that although the exact simplicity values have been derived on
the basis of our particular definition of clusters, and cost terms, the general equations for
computing compression for a classification, on the basis of a classification, are model
independent. That is, suppose that we have two classifications for a set of objects, A and
B; the shortest possible description length for the objects with classification A is DL(A),
and likewise for B, DL(B). Then, if DL(A) is less than DL(B) then it is the case that DL(A)
is a better classification (according to simplicity) then DL(B), even if the two description
lengths were computed using different equations (this approach is explicated in the theory
of Kolmogorov complexity; see Li and Vitanyi (1997) for an introduction). Thus, our

~model avoids the problem of having a proliferation of clustering algorithms that cannot be
compared with each other.

More generally, we hope that the idea that a simplicity principle for classification
might be relevant to explain how people spontaneously group objects, and perhaps also
to the nature of the categories that become fossilized into words of natural language.
The direct psychological relevance of this work depends, of course, on using the frame-
work developed here to explain empirical data—a project in which we are currently
engaged.
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