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CHAPTER TWO

Concepts and Similarity

Ulrike Hahn and Nick Chater

CONCEPTS AND SIMILARITY - THE CHICKEN AND THE EGG?

The cognitive system does not treat each new object or occurrence as
distinct from and unrelated to what it has seen before: it classifies new
objects in terms of concepts which group the new object together with
others which have previously been encountered. Moreover, the cognitive
system also judges whether new objects are similar to old objects. Prima
facie, these processes seem to be related, but exactly how they are related
is not so clear. This puzzle is important because concepts are thought
to be building blocks in terms of which knowledge is represented (e.g.
Oden 1987).

One suggestion concerning the relationship between concepts and
similarity is that concepts group together objects which are similar.
According to this point of view, the reason that “bird” is a useful concept
is that birds are relatively similar to each other — mostly having wings,
laying eggs, building nests, flying and so on. A hypothetical concept
“drib” which grouped together a particular lightbulb, Polly the pet
parrot, the English channel and the ozone layer would seem to be a
useless, and highly bizarre, concept precisely because the items it
groups together are not at all similar.! Why is it important that concepts
group together similar things — why is “bird” a more coherent concept
than “drib”? One suggestion is that birds, being similar, support many
interesting generalizations (most birds have wings, most birds fly, and
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so on); but there seem to be no interesting generalizations to state about
dribs. Moreover, on learning that Polly has a beak, it is reasonable to
infer that other birds also may have beaks (since Polly is a bird, and
birds are similar to each other); on the other hand, it is not reasonable
to infer that other dribs may have beaks, since other dribs and Polly
have nothing in common. If this view of the relation between concepts
and similarity is correct, then similarity is at the very centre of the
theory of concepts: a theory of similarity would explain, or at least be
an important factor in explaining, why people have the concepts that
they do.

There is, however, an alternative view of the relationship between
concepts and similarity that also has considerable intuitive appeal. What
is it for two objects to be similar? Presumably it is that they have many
properties in common — indeed, this point of view is implicit in our
discussion above. But to say that birds are similar because, among other
things, birds generally lay eggs is the same as saying that birds are
similar because, among other things, they are grouped together by the
concept “egg-layer”. In the same way, the similarity of birds seems to
be rooted in the fact that most birds are members of concepts “flyer, has
wings”, and so on. Thus, it seems that objects are similar because they
fall under the same concepts.

Bringing together these intuitively plausible views confronts us with
a “chicken and egg” problem. The first point of view suggests that
similarity can be used to explain concepts; the second point of view
suggests that concepts can be used to explain similarity. This seems
dangerously circular, to say the least! The relationship between
similarity and concepts is plainly not a straightforward one. As we have
seen, it is not even clear which notion should be taken as fundamental.
Moreover, unravelling the relationship between concepts and similarity
is not merely an entertaining puzzle; it goes to the core of current
theories of concepts.

Given this tight connection, it is surprising that there is little research
directly integrating the two. Similarity, although frequently employed
as an explanatory notion in the concepts literature, is seldom given
closer scrutiny. Likewise, models of similarity typically assume given
properties, and thus concepts, as a starting point. In both cases, this
leaves out the question of whether or not the notion one is building on
can actually fulfil its designated role. In this chapter we consider in what
ways concepts and similarity are related, and how research in both areas
can be brought together. This task is complicated by the fact that just
as there are a range of competing theories of concepts, there are also a
range of competing views of similarity, none of which is entirely
satisfactory. Furthermore, different views of concepts have different
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roles for similarity, and not all notions of similarity are consistent with
all views of concepts.

We begin by establishing the precise role attributed to similarity in
current theories of conceptual structure. Subsequently, we investigate
the notion of similarity, examining both general issues and current
models of similarity. These will be drawn not only from psychology but
also from artificial intelligence and computer science. Specifically, we
introduce neural networks, case-based reasoning (CBR) and a relatively
little-known account based on a mathematical notion called Kolmogorov
complexity. These models are assessed for their adequacy as models of
similarity, as only a theory of similarity which is in itself satisfactory
can ground a theory of conceptual structure. We then bring these models
together with the theories of conceptual structure introduced, examining
which models of similarity are compatible with which views of
conceptual structure. Finally, leaving particular models and theories
behind, we return again to the question of the general relationship
between concepts and similarity. We review the empirical evidence and
establish along what lines the problem of the “chicken and the egg”
might one day be resolved.

CONCEPTS

We begin by giving a brief overview of present theories of concepts in
relation to similarity. Current theories of concepts are covered in more
detail elsewhere in this volume, and in Komatsu (1992) and Medin
(1989). We first outline two theories of concepts, prototype and exemplar
theories, in which similarity is directly and explicitly involved. We then
consider rule-based and theory-based accounts, which do not explicitly
involve similarity, but in which, we argue, similarity plays an important,
although indirect role.

Prototype and exemplar views: similarity centre-stage

The common thread linking this family of views is a direct connection
between concepts and similarity: categorizing an object involves judging
the similarity between that object and some other object(s). Exactly what
the new object is compared with, and how that comparison is carried
out distinguishes prototype and exemplar views from each other, and
identifies different variants of each view. In all cases though,
categorization depends on similarity.

Prototype views
The prototype view” assumes that each category is associated with a
“prototype”, a stored representation of the properties that typify
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members of that category. The classification of new objects as, for
example, birds will depend on how similar that object is to the bird
prototype, and also to the prototypes of other categories.

Opinions vary concerning exactly what a prototype is.? The simplest
view assumes that prototypes are stored mental representations of the
same nature as the mental representation of specific objects. It follows
from this view that judging the similarity between a specific object to
a prototype in classification is exactly the same process as judging the
similarity between two objects.

By contrast, some prototype views assume that prototypes are not
represented in quite the same way as specific objects, but are specified
in somewhat more abstract terms (e.g. Taylor 1989). In its simplest form,
this abstract specification could simply list certain properties which have
previously appeared in instances of the category (while other features
might be ignored entirely — this is what makes the representation
abstract). The various listed properties might also have different
“weights”, reflecting their varying degrees of relevance for category
membership. For example, the concept bird might consist of the
following list of weighted features:

has wings 0.8
has feathers 0.9
flies 0.5
sings 0.5
lays eggs 0.9

The categorization of a new creature, then, can be divided into three
stages: first, which of these features the creature possesses is assessed.
Then, using this information, the similarity between the prototype and
the new creature must be calculated. Many different measures of
similarity, such as addition or multiplication of the weighted features
that the creature possesses, have been proposed. Finally, it is necessary
to decide whether the creature ultimately is “similar enough” to the bird
prototype to count as a bird. This, for example, might involve seeing
whether the object is more similar to the bird prototype than it is to any
other prototype; again, the possibilities are numerous.

Exemplar views

The exemplar approach also sees classification as involving judgements
of similarity to stored representations (see, for example, Brooks 1978,
and Medin & Schaffer 1978. For more recent variants, see Kruschke
1992, and Nosofsky 1988, and for an overview, see Komatsu 1992).
Instead of judging similarity to a single prototype representing each
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category, the new object is compared to many stored “exemplars” (specific
previously encountered instances) of the category. If the new object is
more similar to exemplar birds than to exemplars of any other category,
then it will be classified as a bird. According to the exemplar view, the
specification of the category is implicit in its instances; no necessary and
sufficient features, or even probable features, are abstracted. The
concept is learned simply by storing examples of its category members
(for experimental investigations on abstraction in category acquisition,
see e.g. Homa et al. 1981, Whittlesea 1987, this volume, and Medin et
al. 1983).

As with prototype views, there are numerous specific proposals
concerning how this framework is fleshed out into a full-blown model
of classification. For example, specific models vary according to whether
it is the similarity to a single, best-matching exemplar that matters (see,
e.g. Hintzman & Ludlam, 1980, and many CBR systems in artificial
intelligence, e.g. PROTOS, Porter et al. 1990) or whether a set of
exemplars — either a fixed subset or the entire set — is matched (see for
discussion, e.g. Homa et al. 1981, Jones & Heit 1993). In all cases,
however, similarity assessment is given a central role.

Definitional and theory-based accounts: similarity behind the scenes?

In the last subsection, we considered views of concepts in which
similarity is explicitly viewed as central to explaining concepts. Now
we turn to rule-based and theory-based views of concepts, which do not
make direct reference to similarity. Nonetheless, as we shall see,
similarity may play an important, if less visible, role in categorization
in these views.

Definitional views

The definitional or “classical” view of concepts holds that concepts
possess definitions specifying features necessary and sufficient for the
concept. This definition is the summary description of the entire class
used in every instance of categorization, which proceeds simply by
checking for the presence of these features in the entity in question. This
view is commonly supplemented by the “nesting assumption” — that a
subordinate concept (e.g. “robin”) contains nested within in it the
defining features of the superordinate (“bird”). The crucial point, in our
context, is that concepts are explained without reference to similarity.
The definitional view thus requires closer scrutiny.

First and foremost, the definitional view seems inadequate as a
theory when transferred from artificial concepts in controlled
experiments® to our everyday concepts, that is to the concepts for which
we typically have words. Of the difficulties faced here, the most serious
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one is that almost all everyday concepts appear to be indefinable (Fodor
et al. 1980). It simply does not seem possible to formulate necessary and
sufficient conditions for being, for example, a chair, or a window, or a
smile. This is illustrated by the fact that dictionary “definitions” of
almost all terms are not really definitions at all. They do not provide
necessary and sufficient conditions for category membership — instead
they typically do no more than provide some relevant information about
category members, which may help the dictionary user identify which
concept is intended.’

Moreover, even for those concepts which do appear to have definitions,
these definitions generally hold only with respect to a range of
“background assumptions”. Varying these assumptions immediately
produces unclear or borderline cases:

The noun bachelor can be defined as an unmarried adult man, but
the noun clearly exists as a motivated device for categorizing people
only in the context of a human society in which certain expectations
about marriage and marriageable age obtain. Male participants in
long-term unmarried couplings would not ordinarily be described
as bachelors; a boy abandoned in the jungle and grown to maturity
away from contact with human society would not be called a
bachelor. (Fillmore, quoted from Lakoff 1987).

Background factors, such as the social conventions concerning
marriage, will, in general, hold to varying degrees. Presumably the
definition of bachelor can meaningfully be applied if the background
conditions are sufficiently similar to the conventions concerning
marriage current in the West. This is one way in which similarity can
have a “behind the scenes” role in the definitional view — similarity
applies to background assumptions underlying the application of
necessary and sufficient conditions, rather than being explicitly
mentioned in the definition itself.

There is also another way in which similarity would enter the theory
of concepts, even if the definitional view were correct. We have so far
dealt with the most direct difficulty of the definitional view: that it is
difficult or impossible to define almost all concepts. But there is another
argument, based on “prototype effects” against the definitional view.
This argument, crudely stated is: if category membership is all or none,
as the definitional view suggests, why is a robin judged to be (and treated
as) a more typical bird than an ostrich? Some theorists have responded
by arguing that such effects are attributed to the “identification
procedure” for a concept — the procedure used to identify members of
that concept; the “core” of the concept, used in reasoning, is still held to

"
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consist of a definition (Miller & Johnson-Laird 1976, Osherson & Smith
1981). This two-component account opens the door to similarity — the
identification procedure may, for example, be based on prototypes or
exemplars, as discussed above, with their direct reliance on similarity.

We have seen that, as a theory of everyday concepts, the definitional
view appears to be inadequate. More importantly, the main problems
it encounters appear to implicate similarity. Most everyday concepts
such as “chair”, or “smile” seem to involve networks of related and thus
similar instances, but without there being a single set of defining
properties. In the other case, similarity of background conditions must
hold for a definition to be applicable. Finally, prototype effects, for
which an explanation involving similarity suggests itself, must be
accounted for.

In experiments on artificial concept learning, on the other hand,
performance can be modelled accurately by assuming that subjects
learn definitional rules. Here, the core problems plaguing the
definitional view for everyday concepts are generally ruled out by the
design of the materials. Nevertheless, recent research has revealed
“intrusions” of similarity where subjects appear to make use of a rule
in these contexts as well. For one, Nosofsky et al. (1989) found that the
addition of an “exemplar” component to their rule-based account
considerably improved the degree to which their model fits the
experimental data. Thus, even when using a rule, subjects may also be
paying attention to the similarity of new instances to previous instances.
More direct evidence comes from Allen & Brooks (1991), who found in
many, but not all, experimental conditions that similarity to past
instances affected subjects’ application of a simple explicit rule, specified
by the experimenter. This ongoing influence of similarity to prior
episodes, Allen & Brooks argue, may be particularly frequent (because
useful) in uncertain situations where rules and definitions have only
heuristic value. Incidentally, a similar ongoing role of prior episodes in
addition to explicit instructions has emerged in the context of problem
solving (Ross 1984, 1987, 1989, Ross et al. 1990, Ross & Kennedy 1990).

In sum, then, the definitional view, while appearing to ignore
similarity, actually leaves open a number of ways in which similarity
may affect concepts: in determining how definitions are interpreted, as
playing a role in a concepts’ “identification procedure”, and as an
additional factor affecting how definitions or rules are applied in actual
classification.

Theory-based views
Theory- or explanation-based views of concepts reject exemplar,
probabilistic and definitional views and focus instead on the relationship
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between concepts and our knowledge of, and theories about, the world
(Murphy & Medin 1985, Wattenmaker et al. 1986, Lakoff 1987, Medin
& Wattenmaker 1987, Wattenmaker et al. 1988, Wisniewski & Medin
1994; see also Heit’s chapter in this volume). “Theory”, here, can be taken
to refer to a body of knowledge that may include scientific principles,
stereotypes and informal observations of past experiences (Murphy &
Medin 1985, Wisniewski & Medin 1994). Most importantly, properties
of objects are not independent and thus not independently assessed in
categorization but are embedded within networks of inter-property
relationships which organize and link them (Wattenmaker et al. 1988).
Accordingly, Lakoff’s (1987) “idealized cognitive models” are another
expression of the same idea (Medin & Wattenmaker 1987). For example,
the concept “bird” cannot be merely a collection of “bird” features such
as “has wings”, “has feathers”, and “has a beak”, but must specify how
these feature are related (e.g. that the wings are covered in feathers,
the beak is not). But not only such relational aspects between features,
but also their causal connections can play a crucial role in categorization
(Wattenmaker et al. 1988). More fundamentally still, our prior theories
influence what features we perceive in the first place (Wisniewski &
Medin 1994).

How do theory-based views relate to similarity? It is frequently
suggested that theory-based views undermine the role of similarity in
theories of concepts. But this is misleading: explanation/theory-based
approaches target simplistic views of similarity assessment such as
simple counting of shared perceptual features. However, explanations
or theories are neither capable of, nor intended to, replace similarity in
categorization. What they suggest is that similarity itself, if it is to be
relevant to concepts, must be influenced by our theories of, and
knowledge about, the world (Lamberts 1994, Wattenmaker et al. 1988),
Thus, theory-based views demand a better account of similarity, rather
than no account of similarity, in explaining concepts.

Summary

We have seen that similarity plays an important role in theories of
concepts based on prototypes, exemplars, definitions and theories. We
now turn to similarity in order to establish whether or not it can really
fit the bill.

SIMILARITY

We will begin our investigation of similarity with a treatment of the
damning criticisms which have been voiced against similarity as an
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explanatory notion. With these out of the way, we then turn to specific
models of similarity, assessing them for strengths and weaknesses.
Finally, we will conclude this section with a discussion of crucial stages
of the process of similarity assessment which are outside the scope of
all current models of similarity.

Is similarity explanatory: the problem of “respects”

If theories of concepts are to rely on similarity, whether directly or
indirectly, then similarity must be a coherent and explanatory notion.
Within philosophy, however, grave doubts about the explanatory power
of similarity have been expressed (Goodman 1972). If these doubts are
well-founded, then the role of similarity in current theories of concepts,
and indeed the viability of those theories, must be called into question.
In this subsection, we consider Goodman’s critique of similarity and how
it relates to the theory of concepts.

What does it mean to say that two objects a and b are similar?
Intuitively, we say that objects are similar because they have many
properties in common. But, as Goodman pointed out, this intuition
does not take us very far, because all entities have infinite sets of
properties in common (Goodman 1972). A plum and a lawnmower
both share the properties of weighing less than 100 kilos (and less
than 101 kilos . . . etc.). This seems to imply that all objects are
similar to all others! Of course, all entities will also have infinite
sets of properties that are not in common. A plum weighs less than
one kilo, while a lawnmower weighs more than one kilo (and
similarly for 1.1 kilos and 1.11 kilos . . . etc.). Perhaps, then, all
objects are dissimilar to all others! Pursuing our intuition about
what makes objects similar has led to deep trouble.

Goodman concludes that “similarity” is thus a meaningful notion only
as similar in a certain respect. Although similarity superficially appears
to be a two-place relation, it is really a three-place relation S (a, b, r) —
a and b are similar in respect r. Any talk of similarity between two
objects must at least implicitly contain some respect in which they are
similar.

But, Goodman notes, once “respects” are introduced, it seems that
similarity itself has no role to play: the respects do all the work. To say
that an object belongs to a category because it is similar to items of that
category with respect, for instance, to the property “red” is merely to
say that it belongs to the category because it is red — the notion of
similarity can be removed without loss. “Similarity”, so Goodman says,
is a “pretender, an imposter, a quack”, “it has, indeed, its place and its
uses, but is more often found where it does not belong, professing
powers it does not possess” (Goodman 1972: 437). In particular,
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Goodman’s qualms suggest that similarity may not be an explanatory
construct upon which a theory of concepts can rely.

These criticisms have made their way into psychology only fairly
recently through authors advocating theory-based approaches to
concepts (Murphy & Medin 1985, Medin & Wattenmaker 1987),
sparking what has been viewed as the “decline of similarity” within the
study of concepts and categorization (Neisser 1987).

Two recent papers (Goldstone 1994a, Medin et al. 1993) have,
however, re-evaluated whether Goodman’s criticisms really undermine
similarity for psychology. Perhaps a psychological notion of similarity
may not be subject to the points that Goodman raises for similarity in
the abstract. Two questions are particularly important. First, are there
psychological restrictions on respects, or can simply anything be a
respect? Medin et al. (1993) have argued that although similarity is
highly flexible as a result of goals, purpose, or context, because respects
are by no means fixed, this does not imply that they vary in arbitrary

ways. Rather, there is a great deal of systematicity in the variation

exhibited with constraints arising both from knowledge and purpose as
from the comparison process itself, as we shall discuss in more detail
below. Secondly, granting Goodman’s claim that similarity involves
respects, does this really imply that respects do all of the work, leaving
no role for similarity? Goldstone (1994a) argues that people do not
usually compare objects only in a single respect such as “size” but along
multiple dimensions such as size, colour, shape, etc. Given multiple
respects (or, alternatively, a complex respect, such as “colour”, or
“appearance”) the psychologically central issue is how different factors
are combined to give a single similarity judgement (Goldstone 1994a).
Thus, it seems that respects only do some, but not all, of the work in
explaining similarity judgements; in addition, we require an account of
how information about different respects is combined to give a single
similarity judgement.

While the fact that respects and hence similarity can vary does not
render similarity meaningless, Goodman’s argument that similarity
depends on respects does have important implications for psychology.
Most importantly, there will be many different similarity values between
objects depending on which respects are considered. Therefore, different
types of similarity can be distinguished depending on the respects in
question. A number of terms have gradually, and somewhat
haphazardly, been introduced to distinguish important types of
similarity: perceptual similarity is distinguished from similarity based
on conceptual properties; global similarity which refers to an overall
comparison, underlying, for instance, the unspecified feeling that
somehow, “John and Bill are very similar”, as opposed to similarity
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centred around one or two specific respects (e.g. size); and, finally, a
distinction has been drawn between surface and deep similarity. This
distinction stems from the analogical reasoning literature (Gentner
1983). Here, surface similarity as based on superficial attributes is
contrasted with deep or structural similarity based on common relations
regardless of the mismatch of superficial attributes. A common example
of such a structural correspondence is given by the similarity between
Rutherford’s model of the atom and the solar system. While planets and
electrons do not match at a surface level, they nevertheless have
corresponding roles expressed through the relation “orbit around (x, y)”.
Within each of these types of similarity, of course, there will be further
variation, determined by the particular respects that are considered.

This flexibility of similarity has often been ignored when considering
the role of similarity in the psychology of concepts. Indeed, it is
widespread in the concepts literature to speak merely of “similarity” in
a general way, making it necessary for the reader to work out which
respects are actually under consideration. In much research, some form
of perceptual similarity is assumed. Moreover, many of the criticisms
levelled against similarity in the concepts literature are really criticisms
of perceptual similarity (e.g. Medin & Wattenmaker 1987).

Finally, there is an alternative reply to Goodman’s criticism that also
sheds more light on the slightly hazy notion of global similarity. The
fact that any two entities have an infinite number of properties in
common also ceases to be a problem when similarity is not viewed as
an objective relation between two objects but as a relation between
mental representations of these objects in a cognitive agent. As mental
representations must be finite, computation of similarity between
objects can be thought to take place without the need for constraining
respects. The crucial issue then becomes one of mental representation,
of understanding what is represented and how this is selected. Arguably
this is hard, but it is not arbitrary — there is a fact to the matter of what
is or is not included in an agent’s mental representation.

Different respects correspond to varying representations, varying
either in what information is represented or in how it is weighted (or,
of course, both). The two notions “similar in a given respect” and “similar
in a given representation” are, from this perspective, equivalent. We
find, however, that a conceptualization in terms of representation is
more natural from a cognitive perspective. The perspective on global
similarity then is not one of somewhat unspecified mysterious multiple
respects but a comparison between two representations. The above
distinctions of types correspond to differences and changes in
representation, and the mechanisms of re-representation are given a
prominent position both in our general understanding of similarity and
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of performance differences and variations in difficulty of cognitive tasks.
Whatever perspective is chosen, “respects” or “representation”, the
problem of understanding what material enters a given similarity
comparison, how this is selected and weighted, is a crucial part of
understanding similarity. We will return to these issues, and the
progress psychology has made here, later on in the chapter.

Having considered Goodman'’s critique of similarity, and suggested
that similarity may, nonetheless, be a useful and explanatory notion for
the psychology of concepts, we now turn to a range of models of
similarity. From psychology, we consider spatial (e.g. Nosofsky 1984) and
feature-based models (e.g. Tversky 1977). These models have provided
the starting point for most experimental work on similarity. From
artificial intelligence, we consider models of similarity used in neural
networks and CBR (Bareiss & King 1989). Finally, from computer
science, we consider an abstract notion of similarity based on
Kolmogorov complexity (Li & Vitanyi 1993).

Spatial models

Theory

Spatial models of similarity represent objects as points in a space, with
the distances between objects reflecting how dissimilar they are. These
spatial representations can be viewed in two ways: merely as a
convenient way of describing, summarizing and displaying similarity
data or as a psychological model of mental representation and perceived
similarity (Tversky & Gati 1982). In the latter view, objects are viewed
as represented in an internal psychological space.® Objects are
positioned according to their values on the respective dimensions of this
space, which are viewed as the properties of the object with psychological
relevance. This hypothetical space cannot, of course, be directly
investigated. There is, however, a method for constructing putative
internal spaces from empirical data on how similar people take objects
to be. This empirical data can be of various kinds — for example, it might
consist of explicit similarity judgements between pairs of objects, or data
concerning how frequently people confuse each object with each of the
others. According to the spatial model of similarity, similarity data, of
whatever kind, can be interpreted as “proximity data” — i.e. as giving
information about the distance between the objects in the internal
space. Once similarity data is interpreted in terms of proximities, the
problem is to reconstruct an internal space in which the distances
between objects reflect, as closely as possible, the given proximity data.
The problem is analogous to attempting to derive a map of a country
from a table of the distances between each pair of cities. The problem
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of reconstructing spaces from proximity data can be solved using a set
of statistical techniques known as multi-dimensional scaling (MDS;
Shepard 1980, 1987). By using MDS, a spatial representation can be
generated in which the distances between objects correspond as closely
as possible to the similarities between objects.

Formally, a traditional MDS-derived model is given by:

dy= (Sn |2im = 2m | 1207 (2.1)

where x;, is the psychological value of exemplar i on dimension m;
value of r defines the distance metric. A value of r = 2 defines the metric
as Euclidean (i.e. the shortest line between two points).” Other values
and thus metrics are possible; r = 1, for example, specifies the so-called
city-block metric which has also been successfully employed (here the
distance between two items equals the sum of their dimensional
differences). In general, it seems that it depends both on the stimulus
and subject’s strategy which value best fits the data (Goldstone 1994a).
Stimuli with integral dimensions, that is, dimensions which are
perceived together (such as hue, saturation, and brightness for colour)
seem better modelled with r = 2, whilst stimuli with separable
dimensions (size and colour, for instance) are better captured with
r = 1 (for discussion see Nosofsky 1988; for an overview of differences
found between separable and integral stimuli, see Tversky & Gati
1982).

When the spatial approach is used as a psychological model,
similarity is often taken not to correspond directly to distance, but is
assumed to be an exponential decay function of distance. That is,
distance, ds, is converted to similarity, n;, via:

M = exp( —¢ * di?) (2.2)

where ¢ is a “general sensitivity parameter”; value of p defines the
similarity gradient (p = 1 exponential, p = 2 Gaussian; Nosofsky 1988).
This function is known as the Universal Law of Generalization and has
been shown to capture the similarity-based generalization performance
of both humans and a variety of animals on a range of data sets from
colours to morse code signals with striking accuracy (Shepard 1987).

The similarity space on its own does not explain data from cognitive
tasks — it must be supplemented with an account of how the similarity
space is used. Nosofsky (1984) has developed an account of how
similarity spaces could be used in a number of contexts, based on his
“Generalized Context Model”, which is an extension of Medin &
Schaffer’s (1978) exemplar account of categorization. This account has
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successfully fitted subject’s performance on recognition, identification,
and categorization tasks (e.g. Nosofsky 1988). Relating recognition,
identification and categorization results, here, also requires an
additional process of selective attention, to capture the fact that subjects
focus on different aspects of the stimuli on each of the tasks. This is
modelled through additional, flexible, weight parameters on each of the
dimensions:

dyj= [Zn Wn | Zim = Xjm |11/ (2.3)

in which w. is the “attention weight” given to dimension
m 0L wn 2 wn=1).

An increase in w, “stretches” the space along the mth dimension,
hence increasing the effect of differences on this dimension on overall
similarity; correspondingly, reducing w., “shrinks” the space on this
dimension, making mismatches on this dimension less important. For
illustration of this effect one can imagine a graph plotting points
according to their value on the x and y axes — e.g. doubling the units per
value on the x axis (i.e. 2 inches between levels on x instead of 1) will
draw points further apart in the direction of this axis, thus increasing
the distance between them. Given this additional mechanism of
distorting the space, recognition, categorization and identification
performance on this task can be related through an underlying
psychological space, which is modified through attention according to
the task demands.

The constraint that the weights sum to 1 offers a simple solution to
a basic flaw of the unweighted spatial model. The latter fails to
incorporate the effect of adding common properties to two stimuli.
Intuitively, if two stimuli are modified by adding the same property to
each, their similarity should increase. Dimensions, however, on which
stimuli have identical values mathematically do not affect the distance
between the two, as this is based on dimensional differences only. As
far as these two stimuli are concerned this dimension might as well not
be represented. This means one could continue to add identical
properties to both stimuli indefinitely without this affecting their overall
similarity — an intuitively implausible assumption which has also been
experimentally invalidated by Gati & Tversky (1982).

This problem arises because the spatial model takes no account of
the total number of dimensions of the representations of the objects that
are being compared. If two objects are represented by three dimensions,
and differ widely on all three, it seems reasonably to assume that they
should not be judged as similar. If, on the other hand, they are
represented by 10,000 dimensions, and differ only on these three, then
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it would be reasonable that they are judged to be highly similar.
Intuitively, similarity is concerned with the proportion of the properties
shared relative to all the properties considered. Spatial models, in their
basic form, do not take account of this. By introducing attention weights
that must sum to 1, Nosofsky deals with this difficulty, because adding
a dimension now implies that the dimension weights for the extant
dimensions are reduced. This means that they “shrink”, and, hence, the
impact of mismatches along the old dimensions is reduced; the new
common property, as before, has no impact. The final result is a greater
similarity overall.

As a psychological model, these spatial representations of similarity
are of additional interest through an emerging link with neural
networks. Nets, as will be discussed in more detail below, provide a very
simple architecture for storing items in such a way that related items
are clustered near or less near to an exemplar, depending on their degree
of similarity. The items so stored likewise define a “similarity space” in
the network and distance from the prototypical exemplar defines a
similarity metric (Churchland & Sejnowski 1992).

Despite the appeal of the spatial approach, in particular its success
in fitting a fairly wide range of data, it has come under considerable
theoretical and experimental attack.

Problems

The assumptions underlying spatial models of similarity have been
criticized, in particular in the work of Tversky, both on theoretical and
experimental grounds (Tversky 1977, Tversky & Gati 1978, 1982, Gati
& Tversky 1982, 1984, Tversky & Hutchinson 1986). Specifically, it has
been argued that the continuous dimensions used by spatial models are
often inappropriate, and that spatial models make assumptions about

,similarity that are not experimentally justified. We consider these

issues in turn.

Continuous dimensions

Tversky (1977) argues that dimensional representations used by spatial
models do not seem appropriate in many cases. He argues that it is more
appropriate and natural to represent, for instance, countries or person-
ality in terms of qualitative features (i.e. something an object does or does
not have) rather than in terms of quantitative dimensions. This does not
present a decisive argument as MDS and spatial models do not neces-
sarily require continuous dimensions —discrete dimensions are possible
and the representation of binary “features” does not automatically
present a difficulty (Nosofsky 1990). On the cognitive side, conceptual
stimuli might often be structured in a way that gives rise to hierarchical
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featural groupings or clusters and thus “pseudo-dimensions” (Garner
1978). To take an example of Rosch (1978), an automatic transmission
can be treated as a feature that an object has or does not have; once it is
decided, however, that the relevant set of objects are cars and that cars
must have a transmission, “automatic” and “standard” become two levels
on the pseudo-dimension “transmission”. This also indicates that
dimension vs. feature might be a processing decision that depends on
task and occasion (Rosch 1978). Continuous dimensions do, however,
have in principle limitations when it comes to nominal variables with
several levels: there is no apparent way in which, for instance, “eye
colour” which might take on the values blue, green, brown, etc. can be
represented, as the different values admit of no meaningful serial
ordering, a constraint demanded by the notion of dimension.

Perhaps an even more serious difficulty with representing objects as
points in space is that similarity may reflect not just the collection of
attributes that an object has, but the relationships in which those
attributes stand, as we noted above. Representing such relationships
appears to require structured representations of objects, rather than
representing objects as unstructured points in space. We shall see that
this problem is not limited to spatial models, but also arises for a
number of other models of similarity. This problem will be discussed in
detail in the context of feature-based models below.

Invalid assumptions. At the core of spatial models is the notion that
similarity can be related to distance in space. Distances, by definition,
must be non-negative quantities that obey the so-called metric axioms:
1. Minimality: des = doa = 0
2. Symmetry: das = die
3. Triangle inequality: das + dw2 dac

Translating back to similarity, this implies that

1. Minimality: the similarity between any object and itself is greater
than or equal to the similarity of any two distinct objects.

2. Symmetry: the similarity between objects a and b must be the same
as the similarity between and b and a.

3. Triangle inequality: the similarity of a, b and b, ¢ constrains the
similarity of a, c.
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Symmetry has been the main focus of attack for critics of spatial
models. Similes such as “butchers are like surgeons” vs. “surgeons are
like butchers”, which differ in meaning with respect to whom they
compliment or criticize (example from Medin et al. 1993), appear to
indicate that human similarity judgements need not be symmetrical. A
number of experiments have demonstrated that this effect is not specific
to similes, but occurs with similarity statements (“a is similar to b”) and
directional similarity judgements (Tversky 1977, Tversky & Gati 1978,
Rosch 1978). However, it is possible that such results can be explained
not by asymmetry of similarity itself, but by other aspects of the
cognitive process being studied. Enhanced spatial models which
additionally allow for flexible attention weights on dimensions (Nosofsky
1988), can deal with asymmetries if they are explained in terms of
“focusing”: the relevant dimensions and their weightings are selected
by focusing on the properties of the subject of the comparison —
accordingly the space is stretched along the salient dimensions of the
subject. For instance, in the comparison “surgeons are like butchers” —
“surgeons” is the subject, “butchers” the referent. As the selected
dimensions need not be the dimensions most salient in the referent,
reversing the direction of the comparison might change the result. A
different solution to this problem has been sought through the
incorporation of a general notion of bias into spatial models (Nosofsky
1991).

Attempts to show that the other two metric axioms are violated
(Tversky 1977, Tversky & Gati 1982) have been even less conclusive.
The minimality condition is difficult to investigate because the very idea
of the degree of similarity between an object and itself is problematic.
The triangle inequality is difficult to test, because the constraint that
it places on similarity is extremely weak. Given that similarity and
distance are not necessarily the same thing, this axiom does not
translate into a specific claim about similarity judgements. Recall that
in many models, similarity is assumed to be an exponentially decaying
function of distance. According to this assumption, the triangle
inequality in distance translates into a much more complex relationship
between similarities. The exact nature of this relationship depends on
the precise value of exponential decay, which is, of course, not known.
But many other assumptions about the relationship between similarity
and distance are also possible, the only obvious constraint being that
smaller distances correspond to greater similarities. But only when the
precise relationship between distance and similarity is specified can the
triangle inequality be translated into a claim about similarity. Evidence
against the triangle inequality in a constrained case has been claimed
by Tversky & Gati (1982). Moreover, there is the further problem of
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deciding how similarity, which is internal, relates to external behaviour.
Therefore, to date, it is not clear to what extent these apparent
difficulties really weigh against spatial models.

The chicken and the egg

How does the spatial model relate to the chicken and egg problem with
which we began? In the discussion of concepts, we argued that
categorization depends on similarity, whether directly or indirectly.
According to the spatial model, does similarity depend on categorization?
It does because the dimensions in the internal space are assumed to
have some meaningful interpretation. Suppose, for example, that faces
are classified in some way using an internal space with dimensions such
as nose length, eye colour, and so on. To be able to locate a particular
face in this space, so that classification can begin, requires classifying
the face according to length of nose, colour of eyes, and so on. Hence,
similarity depends on categorization. Note that this state of affairs is
independent of whether or not we have appropriate labels for these
dimensions. Unless the dimensions are meaningful, it is difficult to see
how the new object can be assigned a value on each of them. Moreover,
even if some way of determining the appropriate location for a new object
can be found, it is difficult to imagine how this might occur without
determining what properties the object has —i.e. categorizing it. Spatial
models of similarity thus require that the apparently circular
relationship between concepts and similarity be clarified.

Feature-based models

Theo

Featgre-based models, such as Tversky’s (1977) contrast model, are
designed to overcome the difficulties with the spatial model. The contrast
model represents objects not as points in a space with continuous
dimensions but as sets of discrete, binary features (note that features
need not be limited to perceptual properties). Specifically, according to
the contrast model, similarity is defined as:

Sim(ij) =af @ J)-bf A D) —cf (J-D) (2.4)

I, J are the feature sets of entities i and j. a, b, ¢ are non-negative
weight parameters; f is an interval scale and f (D) is the scale value
associated with stimulus i. This model allows for the violation of all three
metric axioms discussed above as being central to spatial accounts.

Basically, similarity is an increasing function of the number of shared
features (I ~ J) and a decreasing function of the unmatched features of
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both objects (I - oJ, JJ — I). The weight parameters a, b and ¢ depend on
the demands of the task. In particular, varying the focus on either the
distinguishing features of I or of J, that is by increasing b over ¢ or vice
versa allows the modelling of the asymmetry of directional similarity
judgements (“how similar is i toj?”). For tasks which are non-directional,
e.g. where the subject is asked “how similar are i and j?” similarity
judgements should be symmetrical. In the model, this requires that the
parameters b and c are equal.

The scale freflects the salience or prominence of the various features,
thus measuring the contribution of any particular (common or
distinctive) feature to the similarity between the objects. The scale value
associated with stimulus (object) i is therefore a measure of the overall
salience of i, which might depend on, for instance, intensity, frequency,
familiarity or informational content (Tversky 1977, Tversky & Gati
1978). Because f, a, b and ¢ can be varied, the contrast model provides
a family of measures of similarity, rather than a single measure.

Problems

The contrast model makes the natural prediction that the addition of
common properties increases similarity. However, this has an
unintuitive consequence of its own: that similarity has no inherent upper
bound. The similarity between two items can be increased indefinitely
by adding elements without an ultimate value for identity being
approximated. In fact, (unless ruled out by definition), the similarity of
an item to itselfis entirely dependent on the number of features chosen
to represent it, again a rather unconvincing property.

Tversky’s use of binary features rather than continuous dimensions
certainly avoids the difficulties that spatial models can have with
discrete properties. But it simply trades one representational problem
for another — now continuous dimensions, or even nominal variables
with several levels are difficult to represent. Tversky suggests various
representational devices which can be used to deal with such cases,
albeit somewhat awkwardly. Nominal variables of more than two values
can be expressed by making use of “dummy variables” (Tversky & Gati
1982), though this solution introduces otherwise meaningless features.
Similarly, ordered attributes (e.g. “loudness” levels) can be expressed
through “nesting”, that is through the use of a succession of sets each
of which is more inclusive than the preceding one, e.g. levels of loudness:
as level 1 = (), level 2 = (), and so on, or “chaining” in the case of
qualitative orderings (Tversky & Gati 1982).

The representational difficulties with feature-based models do not
end here, however. We noted in the discussion of theory-based concepts
above that it has been argued that concepts cannot be viewed as mere
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collections of features. Rather, the relationships between these features
must be represented, specifying the relationship of the beak, the eyes,
and the tail to the whole bird. A creature with all the right features in
the wrong arrangement would not be a bird! But features, as we will
see, cannot express relationships. Hence, the feature-based approach
to similarity appears to be unworkable from the start. Moreover,
relational properties cannot simply be ignored as irrelevant to similarity
judgements. Recent experiments have demonstrated that relations play
an important role in human similarity judgements (Goldstone et al.
1991, Goldstone 1994b).

The problem is equally serious for spatial models. Dimensions are no
more than features with a continuous number of values — these too are
unable to represent relationships. If the relationships between features
or dimensions are crucial in similarity judgements, not merely the
features and dimensions themselves, then both feature-based and
spatial models appear to be ruled out automatically as
representationally inadequate.

Our most familiar means of representing relationships is natural
language. The crucial difference between natural language sentences
and collections of features highlights the problem. Natural language
sentences have a complex syntactic structure, which can allow a finite
vocabulary to be used to express an infinitely large number of
statements — language is compositional. Thus, in natural language an
infinitely large set of possible relationships, between arbitrary objects,
can be expressed using a finite representational system. But
compositionality does not appear to be possible in featural or spatial
representations (Fodor & Pylyshyn 1988, Fodor & McLaughlin 1990).

Accordingly, artificial intelligence has resorted to a variety of
compositional, language-like representational systems, such as semantic
networks (Collins & Quillian 1972), frames (Minsky 1977), schemata
(Schank & Abelson 1977) and various kinds of visual “sketch” (Marr
1982) in order to store relational information. In psychological terms,
such a language-like, structured representation is described as a
propositional code (Pylyshyn 1973) or a language of thought (Fodor
1975).

A mere collection of features is not a language; and neither is a point
in a continuous space. So if objects are mentally represented using
structured, language-like representations, then neither featural nor
dimensional views of similarity will be sufficiently general to be
satisfactory. Both approaches require some alternative way in which
relationships can be represented using features or dimensions. However,
no viable proposals have been put forward, and there are in principle
arguments that appear to show that this is not possible (Fodor &
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Pylyshyn 1988, Fodor & McLaughlin 1990).° The problem of
representing relations appears, then, to pose a serious problem for both
the psychological models we have considered.

The chicken and the egg

Feature-based views of similarity also share with spatial models their
status with respect to the chicken and egg problem. They confront it
head on, because features are just concepts by another name. It is no
help in this context to argue that these features are different, simpler,
concepts than those that were originally to be explained. This provides
a solution only if it is possible to arrange concepts in a hierarchy from
complex to simple, where the simplest concepts/features are directly
given by the perceptual system. This existence of such a hierarchy
presupposes a crude empiricism, which has long been rejected as
philosophically and psychologically indefensible (Fodor & Lepore 1992).
The ways in which this paradox might be resolved will be investigated
in the final section of this chapter.

Similarity in neural networks

Theory

Having discussed the major psychological accounts of similarity, we now
turn to two important computational ideas which can be used to model
cognition, neural networks and CBR. Although these computational
approaches are not directly concerned with providing an account of
similarity, similarity is central to the way they operate.

Neural networks (alternatively called parallel distributed processing
[PDP] models or connectionist models) are a class of computational
systems inspired by aspects of the structure of the brain. They consist
of large numbers of simple numerical processing units that are densely
interconnected, and which operate in parallel to solve computational
problems. The relationship with real neurons and synapses is a loose
one (Sejnowski 1986) and, within cognitive science, neural networks are
generally used as cognitive models without detailed concern for
neurobiological issues (Chater & Oaksford 1990). Neural networks have
been applied to a range of cognitive domains including speech perception
(McClelland & Elman 1986), visual word recognition (Seidenberg &
McClelland 1989), learning the past tense of English words (Plunkett
& Marchman 1991) and aspects of high-level cognition, including
knowledge representation and categorization. For introductions into
this ever-growing field the reader is referred to one of the many
introductory articles or textbooks available (McClelland et al. 1986,
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Bechtel & Abrahamsen 1991, Churchland & Sejnowski 1992, Rumelhart
& Todd 1993). Here, rather than attempt to provide a full introduction
to neural networks, we shall conduct the discussion at a general level,
referring the reader to the literature for further details.

One distinctive aspect of neural networks is their ability to learn from
experience. A network can be trained to solve a problem on a series of
examples, and will then, if all goes well, be able to generalize to novel
cases of the problem to which it has not yet been exposed. A central
question in neural network research concerns how this generalization
OCccurs.

Suppose that a neural network is trained on a categorization task
(unless indicated otherwise, the network we consider is a standard feed-
forward network, with one layer of hidden units, trained by some
variant of backpropagation. Many of the points we make apply more
generally). That is, the inputs to the network are a set of examples that
are to be classified, and the output of the network is to represent the
category into which the current input falls. Training involves showing
the network examples where the category is specified by the modeller.
The network is then tested by presenting new examples and seeing
whether they are classified appropriately.

The trained neural network can be viewed as a model of
categorization, which, in a sense, presents an alternative to the
prototype or exemplar views. Interestingly, neural networks appear to
combine some aspects of both views (Rumelhart & McClelland 1985): if
a network is trained on a number of distorted examples of a prototype,
and then shown the prototype itself, it will classify that prototype as a
particularly good example of category (i.e. the output of the network will
be particularly high for that category). This is the classic prototype effect
(Posner & Keele 1970). On the other hand, neural networks also appear
to be sensitive to the specific examples on which they are trained — the
classic exemplar effect (see Whittlesea, this volume).

Like prototype and exemplar theories of concepts, neural network
categorization depends on similarity (Rumelhart & Todd 1993). But the
behaviour of neural networks need not always depend directly on the
similarity of the input representations — neural networks are able to
form their own internal representations, on the so-called “hidden units”.
Classification in neural networks is therefore best thought of as
determined by similarity in the internal representations of the network
— thus similarity in neural networks is flexible because the internal
representations are determined by the network itself, in order to provide
the best way of solving the problem it has been trained on. Furthermore,
each part of the internal representation used by the network need not
be treated equally — some parts of the representation may be more
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strongly “weighted” than others (in the context of a standard feed-
forward network with a single layer of hidden units, this has a very
direct interpretation in terms of the magnitude of the weights from each
hidden unit to the output layer).

How do the internal representations over which similarity is defined
in neural networks relate to the representations used by spatial and
feature-based models of similarity? Again, neural networks provide a
curious combination of aspects of two different views. The internal
representations consist of a set of n hidden units, each associated with
a numerical value (typically between 0 and 1), its level of activation.
The representation associated with the units can therefore be thought
of as a point in a continuous n-dimensional space, in which each
dimension corresponds to the activity level of each hidden unit. This
seems compatible with spatial models of similarity. On the other hand,
however, many trained neural networks learn to use a binary (or nearly
binary) representation, in that the hidden unit values associated with
patterns only take extreme values (i.e. almost 0 or almost 1). In such
cases, the neural network can be viewed in terms of binary features, in
line with feature-based models of similarity.

These remarks should be enough to suggest that neural networks
provide potentially flexible and powerful models of at least some aspects
of similarity and categorization, suggesting new perspectives on many
issues. Researchers have attempted to exploit the potential of neural
networks in a variety of ways (Shanks 1991, Gluck 1991, Kruschke 1992,
Hinton 1986, McRae et al. 1993), and it remains to be seen which of
these approaches will prove to be the most fruitful.

Problems

Perhaps the most significant area of difficulty for neural network models
concerns the representation of relational information. This issue is vast
and highly controversial, because it is central to the general debate
concerning the utility of neural networks as models of cognition (Chater
& Oaksford 1990, Fodor & Pylyshyn 1988, Smolensky 1988). Devising
schemes for structured representations in neural networks is a major
research topic as they are necessary not only in the context of
categorization but for the modelling of language and large areas of
reasoning. Numerous approaches have been put forward (e.g. Smolensky
1990, Shastri & Ajjanagadde 1992, Pollack 1990), of which none is
wholly satisfactory. The question, thus, remains open.

Another source of problems concerns adapting similarity judgements
to take account of “theory-based” effects on similarity judgements. Any
effects of background knowledge will be difficult to deal with, because
neural networks typically have no background knowledge — their
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knowledge is restricted to the category instances on which they have
been trained. This again, constitutes an important research area, but
is at present still in the very early stages (see e.g. Busemeyer et al., this
volume; Choi et al. 1993, Tresp et al. 1993, Roscheisen et al. 1992).

If and how neural networks manage to cope with these problems
remains to be seen. They indicate limitations for current network models
both of similarity and conceptual structure; any final judgement,
however, must be deferred.

The chicken and the egg

Neural networks offer a range of possible perspectives on the chicken
and egg relationship between concepts and similarity. One picture
mirrors the above discussion for spatial and feature-based models of
similarity. The patterns in the inputs and outputs of neural networks
can typically be interpreted. For example, the input to a word recognition
model might be in terms of perceptual features at different locations,
each coded by one or more units in the input to the network. This input
itself, like the dimensions in the spatial models, and the features in the
contrast model, therefore presupposes a classification. Here, neural
networks are nothing new.

Another possibility is that similarity and concepts are mutually
constraining, and that neither presupposes the other. This possibility
is illustrated (though not using concepts and similarity) by neural
networks which involve interactive activation. An example are
interactive activation models of word recognition, in which letters and
words are recognized simultaneously, so that there are mutual
constraints between them (McClelland & Rumelhart 1981). Various
tentative hypotheses about which letters are present each reinforce the
tentative hypotheses about which words are present with which they
are consistent, and inhibit those with which they are inconsistent. At
the same time, reinforcement and inhibition flow in the reverse direction
from hypotheses about words to hypotheses about letters. The system
is designed to settle into a state which simultaneously satisfies these
constraints as well as possible. Thus, in an interactive reading system,
decisions about which words and letters are present are interdependent.
Paradox is avoided, because there is no attempt to recognize words
before letters are recognized, or vice versa. Instead, both problems are
solved together. It is not yet clear whether a similar approach could be
used to provide neural network models which simultaneously calculate
similarity judgements and categories, subject to mutual constraint.

There is also a further possibility: that similarity and concepts emerge
from a more basic process — given by the way in which the neural
network learns from exposure to individual category instances. The way
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in which the neural network learns will determine both how
categorization is carried out and the similarities between individual
items. Because the behaviour of neural networks is strongly determined
by similarity over the hidden units, this means that, as the network
learns, that is, as it learns to form suitable categories over the hidden
units, classification and similarity will inevitably be intertwined.

While these various perspectives are suggestive, it is important to
stress again that the neural network approach to similarity is still
underdeveloped. It is currently difficult to assess to what extent
potentially promising directions provided by neural networks will
ultimately prove fruitful.

Similarity in case-based reasoning

Theory

Case-based reasoning (CBR) is a computational method in artificial
intelligence, from a somewhat different research tradition than neural
networks. It is closely linked to both the construction of expert systems
and to research on machine learning (see for overviews DARPA 1989,
Slade 1991, or Kolodner 1992).

The fundamental idea of CBR is, as the name suggests, that reasoning
can be based on past stored cases, rather than on complex chains of
inference from stored abstract rules. It therefore requires that past cases
relevant to a new situation can be retrieved successfully, and that these
cases can be used to guide thinking in the new situation appropriately.
Which past cases should be consulted in dealing with a new situation?
The cases that are relevant are those that are similar to the new
situation. Of course, the notion of similarity may vary depending on the
goals and context of the reasoner, in the ways that the discussion of
Goodman above suggests. So, if we are reasoning about the Jjust outcome
oflegal cases, then similarity in matters of legal significance, rather than
in the date and place of birth of the people involved in the trial, will be
important in determining similarity. If, on the other hand, we were
attempting to predict the outcome of the cases by astrological means,
the birthdates might be central and the legal details peripheral in
determining similarity.

Within artificial intelligence, interest in CBR has been fuelled by the
recognition that rule-based approaches to the representation of
knowledge encounter severe difficulties. Rule-based systems for
representing information presuppose the existence of “strong domain
theories” (Porter et al. 1990), that is, theories consisting of facts and
abstract rules from which all required solutions can be deduced. But
such strong domain theories are rarely available (Oaksford & Chater
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1991) — in real-world contexts, all rules, or sets of rules, however
elaborate, succumb to countless exceptions. CBR offers an attractive way
out of these difficulties. Rather than having to patch up rules with
endless sub-rules, to capture endless awkward cases, reasoning takes
cases as the starting point. This is appealing not only as a means of
building practical artificial intelligence systems, but also a framework
for understanding cognition.?

CBR is similar in spirit to the exemplar view of concepts — large
numbers of examples/cases are stored, and used to deal with the current
situation. CBR is much more general, however, in three ways. First, it
is concerned with reasoning of all kinds, and not simply with
categorization. Secondly, cases in many CBR systems are complex
structured representations, rather than points in a space or bundles of
features. Therefore, CBR tackles the problem of relational properties
by defining a similarity measure over structured representations.
Thirdly, many CBR systems make use of prior knowledge such as
general knowledge of the domain and explanations of previous cases.
Hence, these systems also embody the theory-based view (Porter et al.
1990, Branting 1991).

Approaches to similarity in CBR are too diverse (Bareiss & King 1989)
to be described as constituting a theory of similarity — rather, CBR
provides a range of accounts, many of which may be of interest in a
psychological context. In some systems, similarity requires little or no
computation but is implicitly given in the way cases are represented in
memory (e.g. Bayer et al. 1992). In others, explicit similarity metrics
are used. Here, we find different approaches depending, in particular,
on whether cases can be represented exclusively through a set of
numerical values or whether symbolic representations are required.
Numerical values correspond to “dimensions”, which allows Euclidean
distance to be used in this context (Cost & Salzberg 1993). Symbolic
representations for features and relations on the other hand make use
of the traditional artificial intelligence repertoire of frames, scripts or
graphs, mentioned above. CBR and machine learning research is,
however, continuously evolving new ways of calculating similarities
between instances (e.g. Cost & Salzberg 1993). Rather than discussing
any of these approaches in detail, we limit our discussion to a few general
points.

First, the existence of this wealth of practically useful solutions
suggests that psychological theories of similarity have only explored a
small range of possible ideas about similarity.

Secondly, paradigms such as CBR and machine learning in general
can provide what might be called a problem perspective, that is an
understanding of similarity which originates not from high-level
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considerations about supposed psychological plausibility but from the
need to solve a particular problem. Where these problems concern
cognitive tasks generally performed by humans such a perspective can
greatly contribute to our understanding.

Finally, CBR systems, while subject to limitations of their own (see
e.g. Hahn & Chater 1996), provide important empirical support in
evaluating models of similarity in real-world domains. While much work
remains to be done before conclusions on existing algorithms can be
drawn, CBR has already contributed to our understanding of the
problem both by highlighting the crucial role of representation and the
role of knowledge in matching two items (Porter et al. 1990), illustrating,
for example, the need for structured representations, which go beyond
current psychological models.

Problems

Approaches to similarity from the point of view of CBR are too various,
and also too undeveloped from the point of view of psychological
modelling, for a coherent list of problems to be formulated. Individual
similarity metrics deserve scrutiny comparable to those provided for
spatial models and the contrast model, but this would take a paper of
its own. If a general weakness can be claimed, it stems from the fact
that the flexibility, the context sensitivity and dependency on goals and
tasks that characterizes similarity in human cognition are difficult to
achieve. CBR systems are often extremely rigid in what information
about a case is represented (Hahn & Chater 1996). Once an initial
decision by the modeller has been made, new types of information such
as previously unanticipated, novel features cannot be included (a
prominent example here is HYPO, Ashley 1990). This, incidentally, is
a problem they share with neural networks. In contrast to networks,
exceptions to this strait-jacket of uniform representation can be found
as well (an example here is given in PROTOS, Porter et al. 1990),
although the flexibility of the human cognitive system remains a goal
yet to be attained.

It is important to stress, however, that the reason these weaknesses,
both of neural networks and CBR systems, become an issue at all, is
because they are attempting to tackle a far greater proportion of the
job. Spatial models and the contrast model can, because of a considerable
number of suitable free parameters, fit much (possibly all) of the
flexibility exhibited in human similarity judgements. They do this
exclusively, however, by providing post hoc fits to the data. The
computational models we are discussing here, in contrast, actually
attempt to solve the task in question. The vital issue in similarity of
what is to be represented and how the individual factors are weighted
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must thus be addressed in the design and implementation of these
models and cannot be left to post hoc analysis. These questions, and the
answers experiments and modelling have so far provided, will be treated
in more detail in the section on feature selection and weighting below.

The chicken and the egg _

With respect to the chicken and the egg, CBR offers nothing new. All
systems will have a set of basic categories — features, relations, attr}bute
values — with which they operate. Depending on the system, this set
can or cannot be extended, possibly also allowing current categories to
be further decomposed. At any given point in time, however, some set
of categories over which similarity is computed will be treated as given.

Kolmogorov complexity

Theo

We the considered two psychological theories of similarity, spatial and
feature-based models, and also the way in which similarity arises in two
computational mechanisms, neural networks and case-based reasoners.
We now consider an account of similarity which has a computational
origin, but which is not specific to any particular computational
mechanism. This account has been developed within a branch of
computer science and mathematics known as Kolmogorov complexity
(see Li & Vitanyi 1993, for a comprehensive introduction). Related
ideas are discussed under the headings minimum message length
(Wallace & Boulton 1968), minimum description length (Rissanen 1989),
and algorithmic complexity theory (Chaitin 1987).

The fundamental idea of Kolmogorov complexity theory is that the
complexity of any mathematical object x can be measured by the lerllg‘th
of the shortest computer program that is able to generate that object.
This length is the Kolmogorov complexity, K (x) of x. The class _of obje_cts
which can be given Kolmogorov complexities is very broad, including
numbers and sets, but also computer programs themselves, and, more
generally, representations of all kinds. Anything that can be
characterized in purely formal, mathematical terms can be assigned a
Kolmogorov complexity. A physical object, such as a chair, cannot, of
course be generated by any computer program — and hence I_(olmogomv
complexity cannot measure the complexity of physic_al t?bjects_;. But a
representation of a chair (e.g. as a set of features, a pomt in an 1nt§rna1
space, or using a structured representation of some kind) can be assigned
a Kolmogorov complexity. An immediate query is that surely the length
of the shortest program to describe an object will depend on th? nature
of the programming language that is being used. This is quite true,
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although there is a remarkable mathematical result which states that
the difference between the Kolmogorov complexities given by different
programming languages can differ by at most some constant factor, for
any object whatever. This means that, in some contexts at least, the
specific programming language under consideration can be ignored, and
Kolmogorov complexity can be treated as absolute. Kolmogorov
complexity, while easy to define, turns out to have a large number of
important mathematical properties and areas of applications, including
inductive inference and machine learning (Solomonoff 1964, Wallace &
Boulton 1968, Rissanen 1989).

Kolmogorov complexity can be generalized slightly to give a notion
of the conditional Kolmogorov complexity, K (x| y), of one object, x, given
another object, y. This is the length of the shortest program which
produces x as output from y as input. Suppose, for example, that x
represents the category “chair,” and that y represents the category
“bench.” K (x| y) will be low, because it is presumably relative easy (i.e.
only a short program is required) to transform one representation to
the other. This is because many of the aspects of the two representations
will be shared, since they have many of the same properties. In
particular, the length of the program needed to generate a chair
representation from a bench representation will be considerably shorter
than length of program required to generate the chair representation
from scratch — that is, K (x |y) < K (x). On the other hand, if chair must
be derived from, say, whale, then there will presumably be no saving at
all in program length — since there are no significant shared aspects of
the representation which can be carried over between chair and whale
representations.

The intuition is, then, that the conditional Kolmogorov complexity
between two representations (i.e. the length of the shortest program
which generates the one given the other) will depend on the degree of
similarity between those representations. But it is possible to turn this
observation around, and use conditional Kolmogorov complexity as a
measure of dissimilarity. This gives a simple account of similarity, with
a number of interesting properties:

(a) There is a well-developed mathematical theory in which a number
of measures of similarity based on conditional Kolmogorov
complexity are developed and studied (Li & Vitanyi 1993).

(b) Perhaps most importantly, this account applies to representations
of all kinds, whether they are spatial, feature-based or, crucially,
structured representations. Indeed, it can be viewed as a
generalization of the featural and spatial models of similarity, to
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the extent that similar sets of features (nearby points in space)
correspond to short programs.

(¢) The fact that similarity is defined over general representations
allows great flexibility, in that goals and knowledge of the subject
may affect the representations which are formed. As with the
featural model, this flexibility has both advantages, in terms of
accounting for the flexibility of people’s similarity judgements, and
disadvantages, from the point of view of deriving testable empirical
predictions.

(d) Self-similarity is maximal, because no program at all is required
to transform an object into itself.

(e) The triangle inequality holds. The shortest program which
transforms z to y concatenated with the shortest program which
transforms y to x, is always at least as long as the shortest program
that transforms z to x.

() It builds in the asymmetry in similarity judgements: K (x|y) is
not in general equal to K (y|x). This asymmetry is particularly
apparent when the representations being transformed differ
substantially in complexity. Suppose that a subject knows a rea-
sonable amount about China, but rather little about Korea,
except that it is “rather like” China in certain ways. Then trans-
forming the representation of China into the representation of
Korea will require a reasonably short program (which simply
deletes large amounts of information concerning China which is
not relevant to Korea), while the program transforming in
the reverse direction will be complex, since the minimal
information known about Korea will be almost no help
in constructing the complex representation of China. Thus, we
would predict that K (China|Korea) should be greater than
K (Korea|China). This is observed experimentally (Tversky
1977).

(g) Background knowledge can be taken into account by assuming that
this forms an additional input to the program that must transform
one object into another. Background knowledge may radically affect
the program length required to transform two objects. Whether the
effects of background knowledge on human similarity judgements
can be modelled in terms of the effects of background knowledge
on this program length is an interesting subject for future research.
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Measures of similarity based on conditional Kolmogorov com-
plexity have yet to be developed as potential psychological accounts
of similarity. This promising direction may be an important avenue
of future research.

Problems

Conditional Kolmogorov complexity appears to have a number of
difficulties. First, it is psychologically unrealistic, because the general
problem of calculating the conditional Kolmogorov complexity between
two objects is provably uncomputable (Li & Vitanyi 1993). Psychological
judgements of similarity could, however, be based on crude estimates
of conditional Kolmogorov complexity, of which a number are available
(Rissanen 1989).

Secondly, as in simple, unweighted, spatial models of similarity,
conditional Kolmogorov complexity makes somewhat bizarre predic-
tions as common features are added to the representations of the
objects being compared. Indeed, similarity decreases as more similar
features are added. This suggest that some modification of the
approach is required to model human similarity judgements. One
obvious suggestion is that the relevant measure of dissimilarity
should be given by K (x|y) / K (x). This gives the prediction that
objects are judged to be more similar as more and more similar
features are added, but it has implications for the other properties
discussed above. Whether a measure which is appropriate overall
can be found is a topic for future research.

Thirdly, the approach may be insufficiently flexible. Given two
representations of objects, it simply gives a global similarity value
between those representations. There is no scope for weighting some
aspects of the representations more highly than others, or focusing only
on sub-parts of the representations. This difficulty can, perhaps, be
overcome if it is assumed that the flexibility of similarity in response
to changing knowledge and goals is a reflection of the flexibility of the
representation of objects in the light of these factors.

The chicken and the egg

This approach appears to break out of the vicious chicken and egg
circularity in a radical way. Similarity is measured in terms of program
length, which makes no reference to concepts — and hence there is no
circularity to explain away. But this is misleading: similarity is defined
over representations of the objects being compared; and how an object
is represented depends on how it is categorized. It is therefore not clear
that Kolmogorov complexity provides any new insights in the apparent
interdependence of concepts and similarity.
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Feature selection and feature weighting: choosing respects

Leaving our introduction of models and their particular problems behind,
we return to the discussion at the beginning of this section, resuming the
issue of respects. There, we noted that similarity is relative to respects,
rather than an absolute notion. This, we saw, is equivalent to stating that
similarity is representation dependent. Fixing the respects for a given
similarity comparison can, hence, be described as selecting and, possibly,
weighting the factors of interest. How is this reflected in the different
accounts of similarity we have described? (For a more thorough account
than can be provided here, see Hahn & Chater 1996.)

The short answer is that the feature selection and weighting process
is very much outside the scope of all models discussed. Neural networks
and CBR systems can capture some of this process. For all other models,
it is simply not addressed. The contrast model does not describe how
features are chosen, but simply assumes that they are selected from a
rich mental representation of the objects concerned, in the light of the
task at hand (Tversky 1977). Similarly, spatial models use MDS to
establish retrospectively which dimensions were of what importance to
a given subject. As a tool for data analysis, this is of utility and
importance. As a model of similarity it falls rather short of the mark,
given that the selection of factors over which similarity is assessed is
the most crucial determinant of similarity.

CBR systems and neural networks depend largely on the input
representations chosen by the modeller. To the extent that these systems
learn, however, they establish some weighting and selection of features.
As we saw above, neural networks can learn their own internal
representations, and so can choose the respects in which similarity is
appropriately measured for the task on which they have been trained.

At present, however, no computational system exhibits the flexibility
of humans. Our similarity judgements are, for instance, highly
dependent on contexts, goals or purposes, as is evident not merely from
the general considerations of the importance of respects, but also from
empirical studies (Roth & Shoben 1983, Sadler & Shoben 1993,
Lamberts 1994, Barsalou 1982, 1983, 1987).

Why do current computational systems not mirror this flexibility of
human judgements? The answer is, because it is so hard. At a general
level, respects appear to be chosen according to whether they are
relevant. The general problem of determining relevance is one of the
most difficult questions in cognitive science and artificial intelligence
(Oaksford & Chater 1991, Chater & Oaksford 1993). Accounting for the
features selection and weighting process is, thus, a tall order.

However, experimental investigation has identified a number of
factors affecting both selection and weighting, which seem to arise from
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the way the cognitive system processes similarity judgements (Medin
et al. 1993). For example, adding common features, as opposed to
relations, to a pair of objects, leads to a greater increase of similarity if
common features (as opposed to relations) already dominate in this pair,
and vice versa for adding relations. The weight of common features, thus,
seems to depend in part on whether two objects share more features or
relations (Goldstone et al. 1991). Similarly, the time available for the
judgement seems to affect systematically the weight attributed to the
dimensions on which comparison is based (Lamberts 1995). Given short
deadlines, subjects rely heavily on perceptual properties. With more
time, formal category structure exerts the greater role. Including effects
of this kind in models of similarity is a far more achievable goal than
solving the general problem of what counts as relevant. At present,
research on these questions has just begun (Lamberts 1995, Goldstone
1994b).

In summary, the question of which respects are relevant, and how
strongly each should be weighted, is fundamental to any complete
account of similarity. To the extent that this depends on relevance, the
problem is very hard indeed. A more manageable task is presented by
constraints arising from the similarity comparison process itself. The
question of respects must, however, be a major topic of future research
in the literature both on similarity and on categorization.

Conclusions: adequacy of current models of similarity
We have reviewed a range of current models of similarity, from
psychology, artificial intelligence and computer science. The two
psychological models, spatial and feature-based models, both have
important limitations — perhaps most crucially in that they appear to
be unable to incorporate relational information. Neural networks, CBR
and conditional Kolmogorov complexity provide, on the other hand, an
intriguing range of possible models. But these models are not fully
worked out and moreover their psychological utility is unproved.
Furthermore, we have seen that models of similarity typically leave out
a crucial aspect of the psychology of similarity — concerned with choosing
which respects, with what weighting, should enter the similarity
comparison. Important goals for future research therefore include
attempting to apply sophisticated computational ideas concerning
similarity to provide better psychological models of similarity, and
addressing the question that theories of similarity typically ignore: how
respects are chosen.

In the previous section, we considered accounts of concepts. In this
section, we have considered accounts of similarity. In the next, we focus
directly on how similarity and categorization are related.



76 HAHN AND CHATER
CONCEPTS AND SIMILARITY

In introducing the range of theories of concepts, we discussed the role
that similarity plays in each. We have considered a range of accounts
of similarity. We now reconsider the relationship betwee_n conce_pts and
similarity from both a theoretical and an empirical point of view. We
ask whether, or to what extent, theories of similarity are able to play
the role required of them by theories of concepts. Thi§ involves three
separate issues. First, we need to investigate how p&rtu:ular models of
similarity can be integrated with particular views of conceptual
structure, and where this leads to difficulties. Secondly,_ we must
consider the experimental evidence concerning the relationship betwe(?n
similarity and categorization. Finally, it must be showxz how‘ the in
principle difficulties presented by “the chicker} and t}}e egg” relationship
might be resolved. We address each of these issues in turn.

Theoretical integration _ _ ‘
Table 2.1 shows schematically the extent to which the various theories

and models can be integrated. We will take each view of co_ncgptgal
structure in turn and examine whether the models of similarity

discussed above can be fitted in.

TABLE 2.1
Exemplar Prototype Theory Rule
Spatial + + outsilde +
Feature-bazed + + outside +?
K-distance + - - -
Networks +? +? - +?
CBR - + + +

As we see, the prototype and exemplar views can .bgsicelxlly be
reconciled with any view of similarity discussed. While similarity has
a central role in either, they do not place any constraints on how
similarity is assessed. The only query, for both these views, concerns
their compatibility with similarity as found in neural netwolrks. This
is, as we recall, because the most standardly used network architectures
blur the distinction between both views, showing both prototy?e and
exemplar effects. In this sense, they can be viewed as extensions of

rototype or exemplar accounts.
i Theygleory-base?i view is somewhat less universally compatible. Onl‘y
in two of the accounts, conditional Kolmogorov complexity and CBR,_ is
some form of theory included directly in the process of similan_ty
assessment. Theories — as some form of general, explicit, but partial
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knowledge — can affect similarity judgement in both spatial models and
the contrast model only through the feature selection and weighting
process. But these processes are, as we have seen, beyond the scope of
either account. Hence, theory-based views of concepts are compatible,
but cannot be integrated with current versions of the spatial and
contrast models. Neural networks, at present, fare even worse with
theory-based views of concepts, as there is currently no universal
mechanism by which networks could represent and use background
knowledge (but see Busemeyer et al., this volume). Finally, we noted
above that conditional Kolmogorov complexity can be affected by the
knowledge, because that knowledge can be used to identify simple
transformations between objects, which would not otherwise be
available. Conditional Kolmogorov complexity can therefore be used
within a theory-based approach. A cautionary note is, nevertheless,
required. Allowing knowledge to influence similarity does not guarantee
that knowledge influences similarity in a psychologically relevant way
— the question of whether conditional Kolmogorov complexity can
appropriately capture the effects of “theory” in this respect, needs
further investigation.

Finally, the degree to which definitions can be expressed in each of
these frameworks again differs. In the spatial model a set of necessary
and sufficient features (i.e. a definition) corresponds to a set of
dimensions and values to which a point must have zero distance in order
to be classified as a member of the category. In the contrast model, a
definition becomes a set of specified features which must be shared by
the object to be classified. In other words, the terms comprising the
distinctive features [i.e. bf(I - .J) and ¢f (J - D] vanish from the equation
as irrelevant; the outcome of the comparison must correspond to the
weighted total of the definition’s features. Likewise, a CBR system can
be made to match a set of necessary and sufficient conditions by
introducing the constraint that these features be perfectly matched, it
is not so clear, however, how definitions can be assimilated in the neural
network approach — indeed, the more general question of whether
neural networks can follow rules at all is highly controversial in the
context of neural network models of language (Christiansen & Chater,
1997; Coltheart et al. 1993, Hadley 1994, Pinker & Prince 1988, Plunkett
& Marchman 1991, Rumelhart & McClelland 1986, Seidenberg &
McClelland 1989). Finally, the definitional view of concepts does not
appear to have any place for the idea that similarity should be measured
by conditional Kolmogorov complexity. Although possible connections
can be imagined, such as that definitions are short descriptions of sets
of objects, and that perhaps there is low conditional Kolmogorov
complexity between pairs of objects which are members of such sets, it
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is not clear whether any account along these, or other, lines could be
viable. In our discussion of the definitional view, we also mentioned that
recent experimental investigations suggest an “interference” of
similarity even where subjects used definitions or similar rules. These
effects can be captured by all accounts of similarity as they merely
require an ongoing similarity comparison to pre?ious_ exemplars
operating alongside a rule-based classification if we imagine th‘at t_he
former overrides the latter only above certain degrees of similarity
match. ‘

In summary, there are partial constraints between current theories
of categorization and similarity. These constraints will become more
important in modifying theories of concepts and similarity, to the extent
that unified accounts of similarity and categorization are developed. We
now move on to consider the experimental evidence concerning the
relationship between similarity and categorization.

Interpreting the empirical evidence
Empirical evidence concerning the relationship between concepts and
similarity comes from a variety of sources. The interpretation of much
of this evidence is determined by the theoretical stance taken on concepts
and similarity. We have, in passing, already mentioned a great dieal of
empirical data which can be viewed as support for an intimate
connection between both: namely, the empirical evidence that appears
to favour either prototype or exemplar views of concepts. Because the
prototype and exemplar views assume such a direct and cen_tral
relationship between concepts and similarity, evidence for these views
is automatically evidence that concepts and similarity are closely
associated. But we have also already considered evidence from the
perspective of rule-based approaches to similarity — that simi?arity_ to
past examples “intrudes” even on apparently rule-based c_las&ﬁcatlo_n
(Nosofsky et al. 1989, Allen & Brooks 1991, Ross 1989, Whittlesea, this
volume). Further credibility is lent to the idea that cognition might use
similarity to stored examples in categorisation, and in reasoning_m{?re
generally, by the comparative success of CBR within artificial
intelligence. The reason for this was that, in domains without a strong
domain theory, rules (or at least rules alone) simply will not work, as
there is nothing to tell us what a sufficient set of rules ought to be. The
vast majority of real world problems, however, arises in precisely such
domains. Here, it is difficult to see what else, if not similarity to cases,
could be the driving force.

The theory-based view of concepts, in contrast, has generated a range
of experimental studies that appear to cast doubt on the relationships
between similarity and categorization (Carey 1985, Keil 1989, Rips 1989,
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Wattenmaker et al. 1988, Wisniewski & Medin 1994). However, as we
mentioned in reviewing these studies in our discussion of the theory-
based view, these studies are not evidence that categorization is not
based on similarity; they are evidence that categorization is not based
on a simple and rigid notion of similarity, typically conceived as some
kind of perceptual similarity. Once it is recognised that similarity need
not be rigid, but may itself be influenced by the knowledge that the
theory-based view emphasizes, then the necessity for tension between
these experimental results and the role of similarity in categorization
disappears. Nonetheless, at least one experiment has found a strong
dissociation between similarity judgements and categorization —a result
which does seem to be inconsistent with a direct link between the two,
and hence, between similarity and concepts.

Rips (1989) provides two lines of experiments that undermine a
straightforward relationship between similarity and categorization. In
one line of experiments, he demonstrates that information such as
variability of category members or frequency information differentially
affects categorization and similarity judgements. Asked, for instance,
whether a three-inch round object is more like a pizza than a quarter
(the US coin) subjects prefer the quarter, while nevertheless preferring
the classification as a pizza. These results can be explained, with some
support from subjects’ protocols, by the fact that pizzas allow far greater
variability in size than do quarters, a fact which subjects seem to find
selectively relevant to classification only. In a second line of experiments,
subjects are presented with stories in which the superficial qualities of
an animal undergo systematic transformation, creating greater surface
similarity with another species. Nevertheless, classification as the
original species is preferred. Though effects of the transformation on
both categorization and similarity are observed, i.e. no strong
dissociation takes place, the impact on similarity judgements
nevertheless far outweighs that on categorization. In line with theory-
based approaches, Rips argues that our knowledge of “essences” and
underlying, non-surface features determines categorization, not
superficial resemblance.

A further study, however, has produced results which indicate that
strong dissociations between similarity and categorization occur only
under special circumstances (Smith & Sloman 1994). Rips’ results seem
replicable only with sparse descriptions of objects, that is descriptions
that contain only what they call “necessary” features with respect to
some classification. For objects with descriptions combining necessary
and merely characteristic features, categorization tracked similarity.
Furthermore, even with sparse descriptions, Smith & Sloman found a
dissociation only if subjects were also asked to explain their decisions.
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These results are very much in line with the theory-based view:.
Similarity does play a role, where stimulus materials are sufficiently
rich to allow similarity comparisons along dimensions perceived as
relevant. Similarity, as stated several times before, is in no way limited
to perceptual similarity as Rips suggests.

More generally, this line of experiments also points to the fact that
the role of similarity in categorization may differ for different kinds of
concepts. Goldstone (1994a) proposes the following ordering in terms of
“grounding” by similarity: natural kinds (“dog”), man-made artefacts
(“hammer”, “chair”), ad hoc categories (“things to take out of a burning
house”), and abstract schemas or metaphors (e.g. “events in which an
act is repaid with cruelty” or “metaphorical prisons”). For the latter,
Goldstone suggests, explanations by similarity are almost vacuous:

an unrewarding job and a relationship that cannot be ended may
both be metaphorical prisons, but this categorization is not
established by overall similarity. The situations may both conjure
up a feeling of being trapped, but this feature is highly specific and
almost as abstract as the category to be explained (Goldstone
1994a:149).

At the other end of the scale high within-category-similarity has been
shown to characterize at least basic-level objects'® of many artefacts and
natural kinds. At this level, category members share more features as
listed by subjects than do the subordinate or superordinate category’s
members (Rosch 1975).

A slightly different strategy of dissociating categorization and
similarity is presented in Rips & Collins (1993). Here, the experimenters
aim to establish dissociations between typicality ratings, similarity
ratings, and a judgement of the likelihood that a particular instance was
a category member. This study, however, fails to provide persuasive data
for a number of reasons. Most importantly, similarity is elicited by
asking subjects how similar a particular instance is to its category. This
is not a well-formed question; “robin” is not similar to “bird”, a robin is
a bird."! Presumably, subjects succeed in making some sense of this
question, for example by reformulating it as “how similar is a robin to
an average bird”, or “to a typical bird”, or “to other birds”. In lieu of any
information on what exactly it is that subjects do, there is no way that
the data can be taken to be representative of similarity judgements as
assumed to occur in the context of categorization. Additional worries
rest on the fact that estimating the likelihood of an item being a category
member is not the same as categorizing it (though probabilities may be
part of this decision, see e.g. the “Generalized Context Model”, Nosofsky
1988); given only the information that Linda is female, it is perfectly
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possible to judge how likely it is that Linda heads a multinational
company. It does not, however, seem possible to categorize Linda, that
is, say whether she is or is not head of a multinational company.'? For
this latter question, we simply lack enough information. Given, then,
that the measures for the two central notions seem questionable, not
much can be made of the results. However, the general strategy of the
experiments, searching for differential effects of frequency information
on similarity and categorization, does seem a suggestive avenue to
pursue.

Clearly, the area requires further research. In particular, the
interaction of similarity with “theories”, that is prior knowledge, needs
further specification. This, we think, requires not only more
experimental but also computational work: it is only through the process
of building explicit, rigorous models of theory-dependent categorization
tasks that the exact need for, and thus role of, similarity assessment
can be determined.

The chicken and the egg
We began this chapter by noting that concepts and similarity appear to
stand in a “chicken and egg” relationship. Similarity appears to underlie
categorization; but belonging to many of the same categories seems to
be what makes objects similar. We then argued that this apparently
circular relationship actually applies to theories in the psychological
literature. We saw that current theories of concepts are all committed
to the claim that concepts presuppose similarity, whether directly (for
prototype and exemplar views) or indirectly (for rule-based and theory-
based views). We then turned to the theories of similarity, and found
that these are committed to the claim that similarity presupposes
categorization. Spatial, feature-based, CBR and conditional Kolmogorov
complexity approaches to similarity all presuppose categorization. We
noted that neural network models also frequently presuppose
categorization, although we suggested that this may not always be the
case. So, our review of current theories of concepts leaves us with the
conclusions that, according to current theories, concepts and similarity
do stand in a chicken and egg relationship — each seems to presuppose
the other. :

If we accept that there is a circular relationship between concepts
and similarity, how can paradox be avoided? We consider four
possibilities.

1. Revise or abandon concepts and similarity. One approach is to
attempt to revise the notions of concepts and similarity so that the
circular relationship between them is removed. If this is not possible,
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then perhaps the notions must be abandoned wholesale. While this
option cannot be ruled out, it is definitely to be used only as a last resort,
given its severe implications for cognitive psychology. Once concepts are
abandoned, for example, accounts of how knowledge is represented in
memory, how language is produced and understood, what is tl_le outpl_lt
of the perceptual system, and many more fundamental issues in
cognitive psychology must be dramatically rethought.

2. Recursion. This approach is based on a solution to an even more
basic problem of circularity: how a notion can be expla.inec_l in terms of
itself. In computer programming, the notion of recursion is often used
to define concepts in terms of themselves in a harmless way. I.?or
example, the factorial function can be defined using the following
relationships:

factorial (n) = (n) (factorial (n-1) ) -
factorial (0) =1

The upper clause involves recursion — factorial is, in a sense, defined
in terms of itself. Circularity is avoided because the problem of finding,
for example, the factorial of 10 is reduced to the problem of finding the
factorial of 9 by applying the recursive clause. But applying the clause
again, it is reduced to the problem of finding the factorial of 8, and so
on, down to the factorial of 0. Now that a complex problem has been
reduced to a simple one, the simple problem can be solved directly, by
breaking out of the recursion and applying the lower clause. The
important point is that notions can be defined in terms of themselves,
by successively reducing complex problems to simple ones of the same
form.

Recursion applies equally well to cases in which there are t}avo
interdependent notions to be explained. As before, the important point
is that the problems can successively be reduced to simpler problems of
the same form. This is the solution to the original “chicken and egg”
problem. Each chicken presupposes an egg; and each egg presupposes
a chicken. But as evolutionary history is traced back, the ancestor
chickens and eggs become simpler and simpler, until there are neither
chickens or eggs to be explained at all.

There are various ways in which this approach might be applied to
concepts and similarity. One of these has been discussed already in the
context of models of similarity. We noted that concepts could be arranged
in a list from most to least complex, and it could be assumed that simi-
larity judgements on which a particular concept depends could only
involve simpler concepts. Because recursion has to stop somewhere, some
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concepts (or some similarity judgements) would have to be primitives,
which are not explained further. Many other possible applications of the
idea of recursion can be imagined. Itis not clear whether any of these can
provide a satisfactory account of concepts and similarity.

3. Mutual constraint. An alternative approach is that concepts and
similarity must be calculated simultaneously by the cognitive system,
so that each constrains the other. This was illustrated above, in the
discussion of interactive activation neural network models.

Could this approach apply to concepts and similarity? The idea would
be that concepts and similarity would be computed simultaneously in
a mutually constrained way. That is, decisions about categorization
would constrain decisions about similarity, and vice versa, but these
constraints would operate simultaneously. This is an attractive idea,
although it has not yet been explored.

4. The third factor. This approach assumes that the relationship
between concepts and similarity is to be explained in terms of a third
factor, which is more basic than either of them. Consider, for example,
the degree to which metals conduct electricity, and the degree to which
they conduct heat. These properties co-vary — better heat conductors
are better conductors of electricity. This means that it is possible to judge
how well a metal will conduct electricity by finding out how well it
conducts heat and vice versa. But this does not lead to paradox, because
neither notion should be explained in terms of the other. The right
explanation is that there is a third factor, the atomic structure of the
metal, which determines its conductivity for both heat and electricity.
Moreover, this third factor makes it possible to explain why these two
properties correlate as they do.

What might an appropriate third factor be in the context of concepts
and similarity? A natural approach would be to specify some general
goal of the cognitive system, perhaps maximizing expected utility or
maximizing the amount of information gained about the environment.
The general goal might require the cognitive system to construct
categories; and moreover to determine similarity relationships between
different objects. The critical challenge for any such approach is to show
that the general goal requires concepts and similarity must co-vary, just
as a challenge of atomic theory is to explain why conductance of heat
and electricity co—vary. In the context of neural networks, the third cause
could be the way in which the network learns when it encounters new
instances. This learning might produce both classification and similarity
as by-products of the change in the hidden unit representations, as we
mentioned above.
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Summary

We have considered four possible options for dealing with the circular
relationship between concepts and similarity. It is not clear which, if
any, of them can provide a satisfactory theory of concepts and similarity.
But future research must take up the challenge of developing one of
these accounts, or devising a different approach to explaining the
circular relationship between concepts and similarity. If this is not
done, theories of concepts and similarity remain in the perilous position
of using explanations which presuppose the very notions that they
attempt to explain. Understanding the interrelationship between
concepts and similarity is therefore one of the most important, and
urgent, problems facing research in both areas.

There is also a more mundane moral to be drawn from the close
relationship between concepts and similarity: that it seems likely that
the problems that make progress difficult in both areas may be the same.
This suggests that it may be fruitful to study concepts and similarity
at once, rather than as two separate domains.

CONCLUSION

The major theories of conceptual structure rely more or less heavily
on similarity. This seems sound, given the fact that there is signifi-
cant experimental evidence to support this view. Additionally, com-
putational modelling within artificial intelligence has provided
compelling support by highlighting the weaknesses of approaches
which make no use of similarity. However, we have also seen that
similarity is too complex and difficult a notion for it to be used as an
explanatory primitive. Without a model of similarity, much of the
problem has simply been swept under the carpet. This is all the
more so, as no current model seems fully satisfactory. Furthermore,
the difficulties are worsened by the intimate connection of similarity
and concepts, which suggest that there are limits to the extent to
which they can usefully be studied on their own. Nevertheless, we
think, the feeling should not be one of dejection. The material we
have reviewed does indicate that many constraints, both on theories
of conceptual structure and on models of similarity, have emerged. In
short, while no satisfactory solution has yet been found, it has
become far clearer what we are looking for. We hope that the review
of material in this chapter may provide some useful sources from
which further research can begin, and indicate directions which it
may prove useful to explore.
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NOTES

Rather ad hoc seeming grouping of objects are found as so-called goal
derived categories — e.g. “things to take out of a burning house” (Barsalou
1983); these will be discussed later. For “dribs”, however, no such unifying
goal is in sight.

This term is widely used to cover family resemblance (Rosch 1975, Rosch
et al. 1976) and probabilistic accounts (Komatsu 1992, Smith & Medin
1981).

For example, prototypes can be viewed as abstractions (such as a feature
list) or as a particular exemplar (Lakoff 1987). The former is exemplified
in notions of central tendency as average properties, modal properties, or
modal correlations of properties. Viewing the central tendency as one or a
number of particularly representative instances of the category illustrates
the latter approach. See Barsalou (1987) for discussion of the numerous
ways in which a particular exemplar might be “typical”.

The definitional view underlies the main psychological research on artificial
concepts from 1920 to 1970 (Smith & Medin 1981). Indeed, early empirical
research embodied the assumption in the choice of experimental materials
used: subjects were typically asked to learn to classify artificial materials,
where the “correct” classification was given by a rule formulated by the
experimenter (Bruner et al. 1956, Hunt et al. 1966, Levine 1975, Neisser
& Weene 1962, Restle 1962, Trabasso & Bower 1968).

It is possible to argue that definitions of everyday concepts might exist in
an internal “language of thought”, even if these definitions could not be
given in natural language. While logically possible, this view is
unattractive, in the absence of any concrete proposals concerning the
nature of this language of thought and how definitions of everyday concepts
can be framed in terms of it.

In a sense, the notion of psychological space is not particularly well defined:
there are no commitments as to what exactly this space is, whether it is a
long-term representation or not, nor whether it is explicitly similarity that
is represented here or whether the representation of similarity it generates
is merely a by-product of a general scheme for the representation of objects.

In the Euclidean case, the equation is merely a generalization of
Pythagoras’ theorem to any number of dimensions: the square of the length
of the hypotenuse is equal to the sum of the squares of the lengths of the
other two sides. Hence, the length of the hypotenuse equals the square root
of this sum. The distance between two points, however, is the hypotenuse
of the right-angled triangle defined by the stretch (the differences) between
the values of both points on both co-ordinates as the other two sides.

It is, of course, true that in a sense anything can be a feature (Tversky 1977)
or a dimension, and any relation can also be represented as a feature: the
fact that some individual @ is the mother of b can make use of the two place
relation “mother-of”, i.e. mother (a, b), can also be expressed with one-place
predicate (i.e. a feature) “mother-of-b”, that is mother-of-b (a). This,
however, does not solve the problem. The choice between a 1-placed,
featural and an n-placed relational representation is not arbitrary as it
determines the choice of primitives in the representation of entities. This,
in turn, directly affects the similarity between entities as it determines in
what ways they can be compared: if representational specificity leads to
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10.

11.

12.

“left-eve” and “right-eye” as primitives, one cannot even compare two eyes
within the same bird. The problem is one of a general tension between the
need for simple features which allow comparison and the need for encoding
relations between features. The situation is one of “having your cake and
eating it” and it seems that it can only be avoided by using structured
representations.

Examples of systems with a primary emphasis on cognitive modelling are
to be found in Riesbeck & Schank 1989. Practical applications (e.g. fault
diagnosis) can be found in the relevant conference proceedings such as
Richter et al. (1993) or AAAT (1993). Examples of commercially available
products are ReCall by ISoft S. A. or Remind by Cognitive Systems Inc.
Within a hierarchy of abstraction such as “rocking chair”, “chair”,
“furniture”, the basic level — “chair” — is that which seems cognitively
privileged in the sense that it is first learned, most freely produced, first
accessed, and most quickly confirmed (see, e.g. Murphy & Lassaline, this
volume; Rosch 1975, Rosch et al. 1976; see also, e.g. Tanaka & Taylor 1991).
Rips & Collins’ own reply that such questions are common in ordinary
language as illustrated by questions such as “How similar is Alice to
Woody Allen’s other movies or how similar is Montreal to European cities?”
(1993:483) misses the point as it lacks precisely the element it ought to
have: “Woody Allen’s other films” are instances, not a superordinate
category, of Alice.

This holds for all three accounts of conceptual structure. We cannot tell
whether, for examples, a definition of “head of multinational company”
applies, for, whatever it may be, it will not contain “male” as a necessary
and sufficient definition. In both the exemplar and prototype view, the lack
of further detail about Linda makes the necessary similarity computation
impossible; again, it need not concern us what exactly exemplars or the
prototype of this category look like, because even if “male” was a specified
attribute, both accounts, by definition do not require that all attributes are
matched. For both, nothing follows from the existence of non-matching
(non-necessary) features on their own.



