
LETTER Communicated by Gary Cottrell

Using Noise to Compute Error Surfaces in Connectionist
Networks: A Novel Means of Reducing Catastrophic
Forgetting

Robert M. French
rfrench@ulg.ac.be
Quantitative Psychology and Cognitive Science, Psychology Department,
University of Liège, 4000 Liège, Belgium

Nick Chater
nick.chater@warwick.ac.uk
Institute for Applied Cognitive Science, Department of Psychology,
University of Warwick Coventry, CV4 7AL, U.K.

In error-driven distributed feedforward networks, new information typi-
cally interferes, sometimes severely,with previously learnedinformation.
We show how noise can be used to approximate the error surface of previ-
ously learned information. By combining this approximated error surface
with the error surface associated with the new information to be learned,
the network’s retention of previously learned items can be improved and
catastrophic interference signi�cantly reduced. Further, we show that the
noise-generated error surface is produced using only �rst-derivative in-
formation and without recourse to any explicit error information.

1 Introduction

Everyone forgets but, thankfully, it is typically a gradual process. Neural
networks, on the other hand, and especially those that develop highly dis-
tributed representations over a single set of weights, can suffer from severe
and sudden forgetting. Almost all of the early solutions to this problem,
called the problem of “catastrophic forgetting,” relied on learning algo-
rithms that reduced the overlap of the network’s internal representations
(see French, 1999, for a review)by making these representations sparser. This
had the desired effect of reducing interference, with the obvious trade-off
being a decrease in the network’s ability to generalize.

A signi�cantly different approach, that made use of noise, was developed
by Robins (1995). The idea was as follows. When a network that had pre-
viously learned a set of patterns had to learn a new set of patterns, a series
of random patterns (i.e., noise) was input into the network and the asso-
ciated output was collected, producing a series of pseudopatterns. These
pseudopatterns, which re�ected the previously learned patterns, were then

Neural Computation 14, 1755–1769 (2002) c° 2002 Massachusetts Institute of Technology

1756 Robert M. French and Nick Chater

interleaved with the new patterns to be learned. This effectively decreased
catastrophic forgetting of the originally learned patterns. The use of pseu-
dopatterns will serve as the starting point for the algorithm developed in
this article. Unlike Robins’s algorithm, however, we will use pseudopat-
terns to directly approximate the error surface associated with the original
patterns. This approximated error surface will then be combined with the
error surface associated with the new patterns, and gradient descent will be
performed on the combined error surface. This will be shown to improve
the network’s performance on catastrophic forgetting signi�cantly.

2 Measures of Forgetting

There are two standard measures of forgetting in connectionist models,
both related to standard psychological measures. The �rst is a simple error
measurement. Suppose a �rst set of patterns fPi: Ii ! OigN

iD1 has been
learned to criterion by a network. A new set fQi: Ii ! OigM

iD1 is then learned
to criterion. We measure the amount of network error produced by each of
the patterns in the �rst set.

The second widely used measure of forgetting is an Ebbinghaus “sav-
ings” measure, �rst applied to neural networks by Hetherington and Seiden-
berg (1989). After learning fPigN

iD1 and then fQigM
iD1, we measure the number

of epochs required to retrain the network to criterion on the initial training
set fPigN

iD1. The faster the relearning, the less forgetting that is judged to have
occurred. We will use both of these measures in the discussion that follows.

3 Overview of Hessian Pseudopattern Backpropagation (HPBP)

Any given set of patterns fPi: Ii ! OigN
iD1 has an associated error surface,

E (w) , de�ned over the network’s weights. This means that for each possible
combination of values of the network’s weights, there will be an overall
error associated with the set of patterns (usually the sum of the squared
errors produced by each individual pattern, Pi). Learning the set of patterns
fPigN

iD1 is equivalent to the network’s �nding a minimum—call it w0—of this
error surface.

When a new pattern, Pnew, is presented to the system, the original er-
ror surface E (w) changes to EPnew (w) . (For simplicity, we will discuss only
the case where a single new pattern is presented to the network, but the
argument is identical for any number of new patterns.) In general, w0, a
minimum of the original error surface, E (w) , will no longer be a minimum
of EPnew (w) . In other words, the network “forgets” the original error surface
E (w) . What we need is some way for the network to approximate E (w) in the
absence of the original patterns. We could then create a new overall error
surface that would re�ect both E (w) and EPnew (w) . We do this by taking a
weighted sum of the approximation of E (w) , which we will call OE (w) , and

Using Noise to Compute Error Surfaces 1757

EPnew (w) . Our weight change algorithm will then be gradient descent on this
combined error surface. In what follows, we will develop the mathematics of
HPBP and demonstrate the algorithm by means of two simple simulations
on empirical data: one in which we sequentially learn two sets of patterns
to criterion, the other in which the network is presented with a series of
patterns, each of which is learned to criterion before the presentation of the
next pattern.

4 Noise and the Calculation of an Error Surface

Assume, as above, that E (w) is the unique error surface de�ned by a set
of real input-output patterns fPi: Ii ! OigN

iD1 learned by the network. The
network’s having learned these patterns means it has discovered a local
minimum w0 in weight-space for which E0 (w0) D 0, where E0 (w) represents
the �rst derivative of the error function.

If the function f underlying the original set of patterns is relatively “nice”
(continuous, reasonably smooth, and so forth), then a set of pseudopatterns
fyi: � Ii ! �Oig

M
iD1 whose input values are drawn from a �at random distri-

bution will produce a reasonable approximation of f . (See French, Ans, &
Rousset, 2001, fora discussion of how this approximationcouldbe improved
by additionally making use of the values of the output associated with each
random input, or Ans & Rousset, 2000, for a technique that produces an
“attractor” input pattern from uniform random input. In the present case,
however, we simply use �at random input to produce the pseudopatterns.)
Just as the original set of patterns fPigN

iD1 had a unique error surface associ-
ated with it, so does the set of pseudopatterns fyigM

iD1. For this latter error

surface, �E (w) , it follows fromthe de�nition of pseudopatterns that �E (w0) D 0

and �E
0
(w0) D 0. The question is how we can produce this approximation of

the original error surface in the vicinity of w0 (assuming that the original
patterns fPigN

iD1 are no longer available).
We know that for the original error surface E (w) , E0 (w0) D 0. While this

tells us that w0 is a local minimum of E, it does not provide any information
about the shape (in particular, the steepness) of E (w) around w0, which
is what we want. For this, we need the higher derivatives of E (w) , which,
unlike the �rst derivative, do not disappear when evaluated at w0.Using this
steepness and the local minimum information, we reconstruct the desired
approximation of the original error surface by means of a truncated Taylor
series. (For other techniques using the higher-order derivatives to improve
backpropagation, see, for example, Bishop, 1991, and Becker & Le Cun, 1988,
among others.)

Somewhat counterintuitively, approximating the original error surface
using noise does not require any explicit error information; noise moving
through the system is suf�cient for the calculation. Thus, unlike other tech-
niques that make use of pseudopatterns that require the system to learn a

1758 Robert M. French and Nick Chater

mixture of pseudopatterns and new patterns (Robins, 1995; French, 1997;
Ans & Rousset, 1997, 2000), here noise is simply sent through the system,
and this alone allows us to approximate the error surface around w0. This
approximated error surface, combined with the error surface of the new
patterns to be learned, produces an overall error surface on which gradient
descent will be performed.

The details of this calculation follow.

5 Hessian Pseudopattern Backpropagation (HPBP)

Assume that the network has already stored a number of patterns and has
found a point wo in weight space for which all the previously learned pat-
terns have been learned to criterion. Further assume that we are using the
standard quadratic error function,

E D
1
2

PX

pD1

NoutputsX

iD1

(yp
i ¡ tp

i) 2, (5.1)

where P is the number of patterns, Noutputs is the number of output units in
the network, yp

i is the output of the ith output node for the pth pattern, and tp
i

is the teacher for the ith output node for the pth pattern. E being a continuous,
everywhere differentiable function, it has a Taylor series expansion about
wo, which we can write as follows:

E (w) D E (w0) C E0 (w0) (w¡w0) C
1
2!

(w¡w0) TH |w0
(w¡w0) C . . . , (5.2)

where w is a point in weight space, wo is the point in weight space at which
the network has arrived after learning the original patterns, E0 (w0) is the
gradient of E evaluated at wo, and H |w0 is the Hessian matrix of second
partial derivatives of E evaluated at wo. For values of w suf�ciently close to
w0, we will assume that we can truncate the Taylor series after the second
term.

Since the network is at w0 after having learned the original patterns, this
implies that w0 is a local minimum of the error surface and, consequently,
E0 (w0) is 0. We can therefore write the truncated Taylor series approximation
of the error surface corresponding to the originally learned set of patterns
as

OE (w) ¼ E (w0) C
1
2!

(w ¡ w0) TH |w0
(w ¡ w0) . (5.3)

Now assume that a new pattern, P, is presented to the network. This pattern
induces an error surface, EP (w) (as mentioned above, the argument is the
same for a set of new patterns):

Using Noise to Compute Error Surfaces 1759

Let E (w) D a�E (w) C EP (w) , where the constant, a, is a weighting factor.
The standard delta rule gives:

Dw D ¡g
@E
@w

where
@E
@w

D a
@�E (w)

@w
C

@EP

@w
But from equation 5.3 we have

@�E (w)

@w
D H|w0

(w ¡ w0) (5.4)

The weight change rule will therefore be

Dw D ¡g

µ
aH|w0

(w ¡ w0) C
@EP

@w

¶
(5.5)

where g is the learning rate and a is the weighting factor of the prior ap-
proximated error surface.

We will now show how noise allows us to calculate H|w0 .

6 Noise and the Calculation of H |w0

For each pseudopattern, the teacher and the output will, by de�nition, be
the same. In other words,

8y2Y8n (yy
n ¡ ty

n) D 0 (6.1)

where Y is the set of all pseudopatterns, yn is the output from the nth output
node of the network, and tn is the teacher for the nth output node of the
network.

The Hessian matrix evaluated at wo is de�ned as follows:

H|w0 D

2

666664

@2E
@w1@w1

¢ ¢ ¢ @2E
@w1@wN

...
. . .

...
@2E

@wN@w1
¢ ¢ ¢ @2E

@wN@wN

3

777775

­­­­­­­­­­­
w0

where w0 is a solution for the originally learned set of patterns.
Consider the hi, jith term of H:

Hij D
@2E

@wi@wj

We begin with the error function for the pseudopatterns y1, y1, y1, . . . , yNY

where NY is the number of pseudopatterns that will be used to calculate
the error surface:

E D
1
2

NYX

pD1

NoutputsX

nD1

(yp
n ¡ tp

n) 2

1760 Robert M. French and Nick Chater

where NY is the number of pseudopatterns, Noutputs is the number of output
units of the network, yp

n is the output of the nth output unit for the pth
pseudopattern, and tp

n is the teacher for the nth output unit for the pth
pseudopattern.

The second partial derivatives of E are calculated as follows:

@2E
@wi@wj

D
@

@wi

NYX

pD1

NoutputsX

nD1

(yp
n ¡ tp

n)
@yp

n

@wj

D
NYX

pD1

NoutputsX

nD1

Á
@

@wi
(yp

n ¡ tp
n)

@yp
n

@wj
C (yp

n ¡ tp
n)

@2yp
n

@wi@wj

!

D
NYX

pD1

NoutputsX

nD1

Á
@yp

n

@wi

@yp
n

@wj
C (yp

n ¡ tp
n)

@2yp
n

@wi@wj

!

But we know from equation 6.1 that for pseudopatterns,

8p8n (yp
n ¡ tp

n) D 0

and, therefore, the second term above is zero, giving

@2E
@wi@wj

D
NYX

pD1

NoutputsX

nD1

@yp
n

@wi

@yp
n

@wj
(6.2)

(The precise terms of the pseudopattern-induced Hessian matrix are given
in the appendix.)

Interestingly, only �rst derivative information is required in this pseudo-
pattern-induced Hessian, which means that the complexity of this calcula-
tion is O(N2) , where N is the number of weights in the network.

In short, from equations 5.3 and 6.2, we conclude that noise passing
through the network is suf�cient to approximate the error surface for the
original patterns close to w0.

The pseudocode for the HPBP algorithm is shown below. We assume
that the network has already learned a set of patterns, P D fPigN

iD1, and is at
a local minimum w0 in weight space. The network must then learn a new
data set, Q D fQigM

iD1. To create the Hessian, we use R pseudopatterns:

Initialize the Hessian to 0.

Set network activation values to 0.

Hessian Loop:

Put a random input vector through the network to produce a pseu-
dopattern;

Using Noise to Compute Error Surfaces 1761

Use these activation levels and network weight values to create
a matrix of second-derivative values to be added to the Hessian
H |w0 ;

Exit Hessian Loop after R pseudopatterns;

Training Loop: For each pattern in Q, do:

Feedforward pass;

Error backpropagation, changing the weights according to equa-
tion 5.5, including momentum;

When all patterns in Q are learned to criterion, exit Training Loop;

Test errors for all patterns in P.

7 Simulations

In order to show that the HPBP algorithm works, we performed two simu-
lations, the �rst involving catastrophic forgetting and the second involving
sequential learning.

7.1 Simulation 1: Catastrophic Forgetting. We created two sets of four
patterns, P and Q. The two sets were intentionally designed to interfere
maximally with one another (even though a network would have been able
to learn all patterns in the combined set P [Q). The network was trained
�rst on P and then on Q. Once it had learned Q to criterion, we tested it to
see how well it had remembered P. An 8-32-1 network was used for both
BP and HPBP networks with learning rate 0.01, momentum 0.9, Fahlman
offset 0.1, and a maximum weight-change step size of 0.075. For the HPBP
network, we used 100 pseudopatterns, and because we wanted to give more
weight to the approximated error surface associated with past learning, we
set its weighting factor to 8. All results were averaged over 100 runs of the
program.

7.1.1 Results. After learning the �rst set of patterns P, then Q, the stan-
dard backpropagation network produced an average error over all items
in P of 0.80. (Thus, as intended, interference of the items in P by the items
in Q was extremely severe.) By contrast, the HPBP network produced an
average error for these previously learned items of only 0.38. Further, the
HPBP network correctly generalized on 67.5% of the previously learned
items, whereas the backpropagation network was able to generalize cor-
rectly on only 10.25% of the items in P. (See Figures 1a and 1b.) In addition,
we measured the number of epochs required for both networks to relearn
P. Not surprisingly, HPBP also relearned P to criterion in 42% fewer epochs
than the BP network.

1762 Robert M. French and Nick Chater

Figure 1: Catastrophic interference is signi�cantly reduced with the HPBP al-
gorithm. (a) Errors on the originally learned patterns in set P for BP and HPBP
after learning set Q. (b) Correct generalization for the originally learned items
for BP and HPBP after learning Q.

Although much work clearly remains to be done on this type of algo-
rithm, we believe that these early results demonstrate that the HPBP algo-
rithm can be very effective in reducing catastrophic interference.

7.2 Simulation 2: Sequential Learning. In order to test the HPBP al-
gorithm further on a sequential learning task drawn from a real-world
database, we selected the 1984 Congressional Voting Records database from
the UCI repository (Murphy & Aha, 1992). Twenty members of Congress (10
Republicans, 10 Democrats, each “pattern” being de�ned a yes-no voting
recordon 16 issues associated with a party af�liation) were chosen randomly
from the database and were learned sequentially by the network (each pat-
tern was learned to criterion before the next pattern was presented to it).
The network was then tested with both standard measures of forgetting on
each of the 20 patterns.

Both BP and HPBP algorithms used a 16-3-1 feedforward backpropa-
gation network with a learning rate of 0.01, momentum of 0.9, a Fahlman
offset of 0.1, with a maximum weight step of 0.09. For the HPBP network, 25
pseudopatterns were generated each time a new pattern was to be learned.
The weighting parameter associated with the approximation of the original
error surface was set to 3.

For each new pattern that was sequentially learned, 25 pseudopatterns
were generated to calculate the Hessian and thereby to produce the approx-
imation of the prior error surface. Speci�cally, the network learned the �rst
pattern, P1, until the difference between target and output for the pattern
was below 0.2. Then 25 pseudopatterns were generated, and the associated
error surface was produced. The second pattern, P2, was then presented

Using Noise to Compute Error Surfaces 1763

Figure 2: Original learning of the 20 items. It is somewhat harder for the Hes-
sian pseudopattern network to learn the �rst few patterns, given the “inertial”
effect of E (w) . Standard error bars show the evolution of the variance for both
algorithms.

to the network. The new error surface induced by P2 was combined with
the previously approximated error surface, and gradient descent was per-
formed on this combined surface until the network had learned P2. Then 25
new pseudopatterns were generated to produce an approximation of this
error surface. P3 was then presented to the network, and so on.

7.2.1 Results. First, we considered the extent to which the addition of
the approximated error surface made the initial learning more dif�cult. Sec-
ond,once the networkhad sequentially learned all 20 patterns, we measured
the error for each of the previously learned patterns (the error measure of
forgetting). Finally, we examined how dif�cult it was to relearn the original
patterns (the savings measure of forgetting described above).

All of the data reported were averaged over 100 runs of each algorithm.
The order of presentation of the patterns and the initial weights of the net-
works were randomized at the beginning of each run.

7.2.2 Original Learning. Figure 2 shows that, on average, it is more dif-
�cult for HPBP to learn the �rst few patterns. Presumably, this is because
before any learning of the patterns has occurred, �E (w) de�nes an error sur-
face that is quite unlike the error surface associated with that of any of the
20 patterns to be learned (because the network weights are initialized ran-
domly). However, the average number of epochs required for learning the
items with HPBP soon converges to that of BP.

7.2.3 Error Measure of Forgetting. We computed average and median
error scores for both HPBP and BP for each item after each network had
sequentially learned all 20 items. The in�uence of the noise-computed error
surface in reducing these errors can be seen in Figures 3 and 4. All results

1764 Robert M. French and Nick Chater

Figure 3: Average error measures for the 20 sequentially learned patterns. The
average overall error for HPBP is 0.05 better than for standard BP. The learning
criterion is 0.2.

Figure 4: Median errors for BP and HPBP for all items after sequential learning
of the original patterns. For HPBP, all 20 patterns remain at or below the 0.2
learning criterion; only 9 of the 20 items are at or below criterion for BP.

were averaged over 100 runs. Standard error bars are shown for the values
produced by each algorithm.

7.2.4 Savings Measure of Forgetting. The most striking improvement
with respect to standard BP can be seen in the average relearning time for
each of the individual items (see Figures 5 and 6). First, all 20 patterns are
learned to criterion one after the other by the network. After the twentieth
pattern has been learned, the network’s weights, wf inal, are saved. Then each
of the �rst 19 items is tested to see how many epochs the network requires
to relearn it. Speci�cally, the �rst pattern in the list is given to the network,
and it relearns that pattern to criterion, the number of epochs required for
relearning being recorded. The network weights are then reset to wf inal. The

Using Noise to Compute Error Surfaces 1765

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20

Figure 5: Average relearning times for all 20 patterns after the network has
learned them sequentially. Standard error bars are shown for the means for
each pattern in the sequence.

Figure 6: The proportion of patterns requiring no relearning is signi�cantly
higher for HPBP than for BP.

second pattern in the list is then relearned to criterion by the network and
the number of epochs required to do so is recorded, and so on.

Overall, relearning is about 45% faster for the patterns learned by the
HPBP network compared to BP (30.8 epochs for BP versus 16.9 epochs
for HPBP). In short, with HPBP, there is still forgetting, but it is shallower
forgetting (i.e., relearning of the previously learned patterns is signi�cantly
easier for HPBP than BP).

1766 Robert M. French and Nick Chater

8 Discussion

It is clear that HPBP shows improved forgetting performance compared
to standard backpropagation. However, there are a number of issues con-
cerning the generality and computational complexity of this algorithm that
must be addressed. We will brie�y discuss the quality of the approximation
of E (w) by OE (w) and whether HPBP would scale to larger networks.

The quality of the approximation of E (w) by OE (w) is largely dependent
on three factors: (1) the form of the original error surface, (2) the choice of
pseudopatterns, and (3) the divergence from w0. If we assume that the error
surface close to w0 is approximately quadratic, then in this neighborhood,
we would need only as many points as there are degrees of freedom in the
weights to determine the shape of the bowl. Since we assume a quadratic
approximation, the number of pseudopatterns required to determine the
approximation as the network grows in size should scale with the number
of weights. Finally, the further we move from w0, the less accurate the Taylor
series expansion of E will be.

HPBP requires only �rst-order derivative information and thus has a
complexity of O(n2) , where n is the number of weights. Further, there exists
an O (n) approximation of the Hessian (Le Cun, 1987; Becker & Le Cun,
1988) that could also be produced by pseudopatterns. This would ensure
that scaling would be linear in the number of weights. This approximation
of the Hessian has only diagonal elements, and as a result, weight changes
in the HPBP algorithm would require only local information. Explorations
of the scaling performance of the network with the diagonal approximation
to the Hessian are needed.

9 Conclusion

We have presented a connectionist learning algorithm that signi�cantly im-
proves network forgetting performance by turning noise to its advantage.
A number of authors have shown that a certain amount of noise can en-
hance the performance of various systems in a wide range of contexts. For
example, Linsker (1988) has shown that elementary perceptual detectors
can emerge from noise. Numerous authors (e.g., Collins, Chow, & Imhoff,
1995; Grossberg & Grunewald, 1997; Sougn Âe, 1998) have shown how the
addition of noise to neural networks can enhance weak signal detection. In
a neurobiological setting, Douglass, Wilkens, Pantazelou, and Moss (1993),
Bezrukov and Vodyanoy (1995), and others have shown that optimal noise
intensity in biological neurons can enhance signal detection.

In this article, we have shown how noise can be harnessed to improve
memory performance in feedforward backpropagation networks. We be-
lieve that this work, and the work by others on related problems, represents

Using Noise to Compute Error Surfaces 1767

the tip of the iceberg in the exploration of how noise can be turned from a
problem into a performance-enhancing advantage.

Appendix: Calculating the Precise Terms of the Pseudopattern-Induced
Hessian Matrix

In order to approximate the error surface associated with the originally
learned patterns by means of pseudopatterns, it is suf�cient to calculate the
terms of the Hessian matrix. The Hessian matrix evaluated at wo is de�ned
as follows:

H|w0 D

2

666664

@2E
@w1@w1

¢ ¢ ¢ @2E
@w1@wN

...
. . .

...
@2E

@wN@w1
¢ ¢ ¢ @2E

@wN@wN

3

777775

­­­­­­­­­­­
w0

where Ew0 is the vector of weights (w0
1, w0

2, w0
3, . . . , w0

N) , which was a solution
for the originally learned set of patterns.

We have shown in equation 6.2 that for any two weights, wi and wj, in a
network with Noutputs output nodes and for NY pseudopatterns, the hi, jith
term of the Hessian matrix is

@2E
@wi@wj

D
NYX

pD1

NoutputsX

nD1

@yp
n

@wi

@yp
n

@wj

For each pseudopattern and each output node (with output y) and for
all pairs of weights wi and wj, we calculate

@y
@wi

@y
@wj

Each term of the Hessian matrix will be the sum over all output nodes
and over all pseudopatterns. The notation conventions are as follows: ya is
the output from node a; y0

a is the �rst derivative of the squashing function,
evaluated at ya, and for the standard squashing function, y D 1

1Ce¡x we have
y0

a D ya (1 ¡ ya) ; Noutputs is the number of output nodes; and wab, wcd the
weights from node b to node a and from node d to node c. There are three
cases of pairs of weights to consider:

Case I: When wab, wcd 2 hidden-output layer:

@2E
@wab@wcd

D

(
(y0

ayb) (y0
cyd) D (y0

a)2ybyd if a D c
0 if a 6D c

1768 Robert M. French and Nick Chater

Case II: When wab 2 input-hidden layer and wcd 2 hidden-output layer:

@2E
@wab@wcd

D (y0
ayb) (y0

cyd) (y0
awac) D (y0

a) 2y0
cybydwac

Case III: When wab, wcd 2 input-hidden layer:

@2E
@wab@wcd

D (y0
ayb) (y0

cyd)
NoutputsX

iD1

(y0
iwia) (y0

iwic)

D y0
ay

0
cybyd

NoutputsX

iD1

(y0
i)

2wiawic

Acknowledgments

This workhas been supported in part by a grant from the European Commis-
sion, HPRN-CT-1999-00065. We thank Anthony Robins and Dave Noelle for
their discussions of the ideas of this work. Particular thanks go to Gary Cot-
trell and an anonymous reviewer whose insightful comments contributed
signi�cantly to the quality of this article.

References

Ans, B., & Rousset, S. (1997). Avoiding catastrophic forgetting by coupling two
reverberating neural networks. Acad Âemie des Sciences, Sciences de la vie, 320,
989–997.

Ans, B., & Rousset, S. (2000). Neural networks with a self-refreshing memory:
Knowledge transfer in sequential learning tasks without catastrophic forget-
ting. Connection Sciences, 12, 1–19.

Becker, S., & Le Cun, Y. (1988). Improving the convergence of back-propagation
learning with second order methods. In D. S. Touretzky, G. E. Hinton, &
T. J. Sejnowski (Eds.), Proceedings of the 1988 Connectionist Models Summer
School (pp. 29–37). San Mateo, CA: Morgan Kauffman.

Bezrukov, S., & Vodyanoy, I. (1995).Noise induced enhancement of signal trans-
duction across voltage-dependent ion channels. Nature, 378, 362–364.

Bishop, C. (1991). A fast procedure for retraining the multilayer perceptron.
International Journal of Neural Systems, 2(3), 229–236.

Collins, J., Chow, C., & Imhoff, T. (1995). Stochastic resonance without tuning.
Nature, 376, 236–238.

Douglass, J.,Wilkens, L., Pantazelou,E., & Moss, F. (1993).Noise enhancement of
information transfer in cray�sh mechanoreceptors by stochastic resonance.
Nature, 365, 337–340.

French, R. M. (1997). Pseudo-recurrent connectionist networks: An approach to
the “sensitivity-stability” dilemma. Connection Science, 9, 353–379.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends
in Cognitive Sciences, 3(4), 128–135.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0954-0091^28^2912L.1[aid=1463281]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29378L.362[aid=2715338]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29376L.236[aid=847294]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29365L.337[aid=214979]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0954-0091^28^299L.353[aid=785374]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1364-6613^28^293:4L.128[aid=1841853]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1364-6613^28^293:4L.128[aid=1841853]

Using Noise to Compute Error Surfaces 1769

French, R. M., Ans, B., & Rousset, S. (2001). Pseudopatterns and dual-network
memory models: Advantages and shortcomings. In R. French & J. Sougn Âe
(Eds.), Connectionist models of learning, development and evolution. London:
Springer-Verlag.

Grossberg, S., & Grunewald, A. (1997).Cortical synchronization and perceptual
framing. Journal of Cognitive Neuroscience, 9, 117–132.

Hetherington, P., & Seidenberg, M. (1989). Is there “catastrophic interference”
in connectionist networks? In Proceedings of the 11th Annual Conference of the
Cognitive Science Society (pp. 26–33). Hillsdale, NJ: Erlbaum.

Le Cun, Y. (1987).Modèles connexionnistesde l’apprentissage.Unpublished doctoral
dissertation, Universit Âe Pierre et Marie Curie, Paris, France.

Linsker, R. (1988, March). Self-organization in a perceptual network. Computer,
105–117.

Murphy, P., & Aha, D. (1992). UCI repository of machine learning databases.
Irvine, CA: University of California.

Robins, A. (1995).Catastrophic forgetting, rehearsal, and pseudorehearsal. Con-
nection Science, 7, 123–146.

Sougn Âe, J. (1998). Period doubling as a means of representing multiply-
instantiated entities. In Proceedingsof the20thAnnual Conference of theCognitive
Science Society (pp. 1007–1012). Hillside, NJ: Erlbaum.

Received June 4, 2001; accepted January 7, 2002.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0898-929X^28^299L.117[aid=1469936]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0954-0091^28^297L.123[aid=785379]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0954-0091^28^297L.123[aid=785379]

