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Holography Does Not Account for Goodness: A Critique of van der Helm
and Leeuwenberg (1996)
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P. A. van der Helm and E. L. J. Leeuwenberg (1996) outlined a holographic account of figural goodness
of a perceptual stimulus. The theory is mathematically precise and can be applied to a broad spectrum
of empirical data. The authors argue, however, that the account is inadequate on both theoretical and
empirical grounds. The theoretical difficulties concern the internal consistency of the account and its
reliance on unspecified auxiliary assumptions. The account also makes counterintuitive empirical
predictions, which do not fit past data or the results of a series of new experimental studies.

Figural goodness is typically used to refer to the salience or
strength of a perceptual regularity. The notion has strong intuitive
roots. For example, most people will feel that Figure 1B is “better”
than Figure 1A. The goodness of a regularity can also be opera-
tionalized in several ways. For instance, bilateral symmetry (see
Figure 1B) is generally rated as “good” (Hamada & Ishihara, 1988;
Masame, 1986), is responded to quickly (Baylis & Driver, 1994;
Pomerantz, 1977; although see Olivers & van der Helm, 1998), is
easily discriminated from random figures (e.g., Wagemans, Van
Gool, & d’Ydewalle, 1991), is relatively noise resistant (Barlow &
Reeves, 1979; Jenkins, 1982), and is well remembered (Att-
neave, 1955). Henceforth, we make the standard assumption
that goodness refers not just to an intuitive notion but to a
theoretically interesting perceptual property underlying, per-
haps in a complex way, the measures we have mentioned. The
study of goodness, therefore, seeks to address fundamental
questions in perception: Why are some structures salient and
rapidly detected, whereas other structures appear weak and
difficult to detect?

Traditionally, the transformational approach to goodness has
been most influential: Stimulus regularities are viewed as revealed
by invariance under group-theoretic transformations over the stim-
ulus. For example, the mirror symmetric Figure 1B remains in-

variant under a “flip” transformation around its vertical axis,
whereas Figure 1C remains invariant under rotations in steps of
90°. More invariant transformations lead to greater perceived
goodness (Garner, 1974; Palmer, 1982, 1983, 1991).

Recently, however, van der Helm and Leeuwenberg (1996)
proposed an important alternative approach, based on a specific
coding-theoretic account of perception, structural information the-
ory (SIT; Leeuwenberg, 1969; Leeuwenberg & Buffart, 1983). SIT
was developed to explain how the perceptual system chooses
between rival perceptual organizations: The perceptual system
chooses the simplest organization, that is, that with the shortest
code in the SIT coding language. It is important to note that van
der Helm and Leeuwenberg (1996) affirmed this account but
argued that the goodness of the resulting organization cannot also
be determined by simplicity. Their most important counterexample
is that mirror symmetry is better than twofold repetition, even
though these are equally simple (e.g., Bruce & Morgan, 1975;
Corballis & Roldan, 1974; see Figure 2). Instead, van der Helm
and Leeuwenberg (1996) proposed that goodness is determined by
a new measure: weight of evidence (W), which, they argued,
captures a wide range of empirical data.

W is based on a novel mathematical analysis of regularities in
1-D pattern codes, dubbed the holographic approach (van der
Helm & Leeuwenberg, 1991, 1996). However, here, we argue that
the holographic approach does not capture the broad regularities
concerning goodness. It fails theoretically because of the insecure
link between mathematical theory and psychological predictions as
well as because of problems of internal consistency. Moreover, the
account makes counterintuitive predictions, which we experimen-
tally disconfirm. This article has three main sections. The Holo-
graphic Theory of Goodness: From SIT to Weight of Evidence
section describes van der Helm and Leeuwenberg’s (1996) ac-
count. The Evaluating the Holographic Theory of Figural Good-
ness section outlines theoretical and empirical difficulties. The
General Discussion section summarizes and considers the future of
the holographic approach to goodness.
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Holographic Theory of Goodness: From SIT to Weight of
Evidence

There are three key elements in the holographic approach to
goodness. The first is SIT, mentioned above (Leeuwenberg, 1969;
Leeuwenberg & Buffart, 1983). The second is the holographic
theory itself (van der Helm, 1988; van der Helm & Leeuwenberg,
1991, 1996), which was intended to provide a rigorous mathemat-
ical foundation for SIT. The third element is the weight of evi-
dence, W, based on the holographic account, which is van der
Helm and Leeuwenberg’s (1996) measure of goodness. We outline
these elements below.

SIT

The perceptual stimulus can be organized in a limitless number
of ways. But typically, just one or at most a small number of
organizations are perceptually apparent (e.g., Hatfield & Epstein,
1985; Leeuwenberg & Boselie, 1988; Pomerantz & Kubovy,
1986). By what principle is the dominant perceptual organization
chosen? One influential viewpoint, which can be traced to Mach
(1886/1897) and Gestalt psychology (Koffka, 1935/1963), is the
simplicity principle: The perceptual system prefers the simplest
organization that it can find (e.g., Attneave, 1954; Chater, 1996,
1999). Spelling out this view requires measuring simplicity. One
direct way of doing this is to devise a perceptual coding language
and to identify perceptual organizations with codes that embody
the regularities in those organizations. Thus, if the organization
postulates that the stimulus is symmetrical, the corresponding code
would use a symmetry predicate or operator. This approach is
known as coding theory (Restle, 1979; Simon, 1972), of which SIT

is the most important example (Leeuwenberg, 1969; Leeuwenberg
& Buffart, 1983).

The SIT visual coding language is initially defined over 1-D
sequences of symbols. These 1-D sequences are then used to
describe regularities in 2-D visual patterns. Figure 1 shows how
symbols are assigned to the contour elements. For instance, we can
assign the symbol sequence abcdefgh to the irregular contour of
Figure 1A. This figure has eight contour elements, and this code
can thus be assigned an informational load of I � 8. Similarly, we
can assign a symbol sequence to Figure 1B, with identical ele-
ments receiving identical symbols. Tracing the contour, we show
that the symbol series becomes abcd dcba, which can be simplified
by capturing its bilateral symmetry in one of SIT’s coding rules,
the symmetry rule (S-rule): S[(a)(b)(c)(d)]. In this code, there are
only four perceptual elements left, hence I � 4. (Note that SIT
counts only the remaining number of perceptual elements; i.e., it
does not include the S symbol in its perceptual load; van der Helm,
van Lier, & Leeuwenberg, 1992. Note also that, purely for clarity,
we frequently use spaces to parse codes into chunks.) Because the
symmetry code is simpler (i.e., shorter) than the raw code, it is
perceptually preferred.

Figures 1C and 1D demonstrate two more SIT coding rules: the
iteration rule (I-rule) and the alternation rule (A-rule). In Figure
1C, the contour elements a, b, c, and d are repeated three times.
The resulting sequence, abcd abcd abcd abcd, is thus coded as the
threefold repetition 4 � (abcd), by the I-rule. According to SIT, I �
4 because there are four symbols remaining in the code (again, the
scalar, 4, and the operator, �, are not counted). The raw symbol
code for Figure 1D is abcd abef abcd abef, which the A-rule codes
as �(ab)���(cd)(ef)(cd)(ef)�, with I � 10. [Note here how (ab)
alternates with (cd) and (ef).]

Finally, within SIT, codes can combine hierarchically. For ex-
ample, the alternation �(ab)���(cd)(ef)(cd)(ef)� of Figure 1D
can be simplified by coding the repetition, leading to 2 �

(�(ab)���(cd)(ef)�), with I � 6. The repetition in the code
corresponds directly to the repetition in the contour of the polygon.
In practice, the I-, S-, and A-rules (called the ISA-rules) have been
the most popular rules in SIT.

Figure 2. Three different regularities and the structures assigned to them
by holography. A: Bilateral symmetry, point structure. B: Repetition, block
structure. C: Glass pattern, point structure.

Figure 1. Examples of different regularities. A: Random polygon. B:
Bilateral symmetry. C: Fourfold rotational symmetry. D: Twofold rota-
tional symmetry with alternation. The shapes have been assigned simpli-
fied structural-information-theory-style codes with codes abcdefgh (A),
abcddcba (B), abcdabcdabcdabcd (C), and abcdabefabcdabef (D).
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Holographic Approach

A fundamental issue in building any coding language is which
regularities to include and which not to include. Early statements
of SIT (e.g., Leeuwenberg, 1969; Leeuwenberg & Buffart, 1983)
did not provide any justification for why the ISA-rules were
allowed, whereas a vast range of other conceivable rules were not.
Without such justification, the constructs of SIT were somewhat ad
hoc.

The holographic approach was developed to address exactly this
issue, by providing a firm theoretical foundation for the choice of
regularities in a coding language (van der Helm, 1988; van der
Helm & Leeuwenberg, 1991, 1996, 1999). Van der Helm and
Leeuwenberg (1991, 1996, 1999) argued that a visual regularity
must be accessible for the visual system to detect it. Specifically,
the “regularity and hierarchy in a code of a pattern should corre-
spond directly to regularity and hierarchy in the pattern itself” (van
der Helm & Leeuwenberg, 1991, p. 167). Accessibility is deter-
mined by two subcriteria, holography and transparent hierarchy,
that, from all possible rules, eliminate those that are perceptually
inaccessible. According to van der Helm and Leeuwenberg (1991,
1996), there are essentially only three regularities that are both
holographic and transparent: the ISA-rules. Thus, holography pro-
vides a formal justification for SIT’s coding rules.

Holography

Intuitively, a holographic regularity in a code corresponds di-
rectly to a regularity in a pattern, in a holistic way. That is, if a
particular piece of code describes a regularity, then every single
element of that code should be involved in describing that very
same regularity. This concept is formalized as follows. The regu-
larity in a symbol series can be expressed in so-called identity
chains. For instance, the bilateral symmetry abcd dcba can be
described by the identity chain {(1) � (8), (2) � (7), (3) � (6),
(4) � (5)}, in which the numbers 1–8 signify the position of the
symbol in the sequence (with the first symbol, a, being identical to
the eighth symbol; the second, b, to the seventh symbol; etc.). Note
also that the group of identities can be split into subchains, each of
which embodies the very same regularity, namely a bilateral sym-
metry. For example, the subchain {(1) � (8), (3) � (6)} corre-
sponds to the symmetry in a_c_ _c_a (underscores denote arbitrary
elements). It can be shown that for a bilaterally symmetric code, all
its identity chains also refer directly to bilaterally symmetric codes.
Hence, bilateral symmetry is a holographic regularity: Its symme-
try is omnipresent in its identity chains. Not all regularities are
holographic. Van der Helm and Leeuwenberg (1996) considered
the sequence kpf kfp, which is described by the identity chain
{(1) � (4), (2) � (6), (3) � (5)}. Its regularity could be captured
in a general SIT-style rule, B(x,y,z) in which x, y, and z are
repeated but y and z are swapped from one chunk to the other. Van
der Helm and Leeuwenberg noted that this regularity is not holo-
graphic: The subchains {(1) � (4),(2) � (6)}, {(2) � (6),(3) �
(5)}, and {(1) � (4), (3) � (5)} do not all correspond to one and
the same regularity; that is, they are not all typical instances of the
B-rule.

Transparent Hierarchy

The holographic rules are further sifted by the second accessi-
bility criterion, transparent hierarchy. We noted earlier that SIT’s

coding rules can be hierarchically combined: For example, abab
baba can be coded S[(a)(b)(a)(b)] and simplified to S[2 � ((a)(b))].
Now, the hierarchy in this code is transparent, because the higher
order repetition 2 � ((a)(b)) corresponds directly to the abab
repetition in the raw symbol sequence. More generally, the idea is
that a hierarchy is transparent if a regularity described at any level
in the hierarchy corresponds directly to the same type of regularity
at the bottom of the hierarchy, that is, the raw symbol sequence.
Thus, the regularity in the code is transparent in the raw symbol
sequence.

Not all regularities show transparent hierarchy. For example,
van der Helm and Leeuwenberg (1996) argued that the holo-
graphic M-rule, which codes the regularity in ara bsb ctc as
M[(a)(b)(c),(r)(s)(t)], is not transparent. Consider the sequence ara
brb ctc, which is coded M[(a)(b)(c),2 � (r),(t)]. The higher order
repetition 2 � (r) does not correspond to a repetition (e.g., rr) in the
symbol sequence, and so the M-rule is not transparent. According
to van der Helm and Leeuwenberg (1996), only the ISA-rules are
both holographic and transparent (although see our evaluation
below).

From Holography to Weight of Evidence

Van der Helm and Leeuwenberg (1996) went even further.
Holography not only offered a reason for the priority of certain
visual regularities over others but also explained some of the most
puzzling goodness phenomena. Figure 2 illustrates a particularly
important case. Figure 2A shows a random dot pattern that has
been copied and mirror reversed, whereas Figure 2B shows a
repetition by translation of the same subpattern. Bilateral symme-
try is generally considered better than repetition (Baylis & Driver,
1994; Bruce & Morgan, 1975; Chipman, 1977; Chipman & Men-
delson, 1979; Corballis & Roldan, 1974; Julesz, 1971; Kahn &
Foster, 1986), although both patterns are intuitively equally sim-
ple. In line with this intuition, the two patterns have the same code
length in SIT. Figure 2A could be coded as S[(a)(b)(c)(d) . . . (l)]
and Figure 2B as 2 � (abcd . . . l), so that informational load, I, is
12 for both patterns (the 12 dots in the subpattern have been
assigned symbols a–l).

Figure 2C also shows a repetition of the basic dot pattern, but
the translation is over a much shorter distance than in Figure 2B.
The pattern now resembles a Glass pattern (Glass, 1969). Unlike
the translation in Figure 2B, and even though they are equally
simple, Glass translations usually induce very strong percepts,
which are resistant to relatively high levels of noise (Glass &
Switkes, 1976; Maloney, Mitchison, & Barlow, 1987). Empiri-
cally, then, in terms of goodness, Glass patterns appear to lie closer
to bilateral symmetries than to long-distance translations.

At first, one might expect that within SIT Figure 2C would be
coded in the same way as Figure 2B, that is, 2 � (abcd . . . l).
However, van der Helm and Leeuwenberg (1996, p. 451) sug-
gested that Glass patterns are better coded using the A-rule. They
proposed that for Glass patterns the visual system codes the
position of one member of each dot pair and then makes these
positions alternate with a “Glass relationship.” Thus, in Figure 2C,
the initial subpattern is coded as abcd . . . l, as usual. The Glass
relationship G with the second member of each dot pair is then
introduced, resulting in aGbGcGdG . . . lG, which is coded as the
alternation �(a)(b)(c)(d) . . . (l)���(G)�.
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The informational load is the same for each of these regularities,
but their goodness differs. Van der Helm and Leeuwenberg (1996)
therefore proposed that goodness must be determined by the struc-
ture of the regularities, rather than by their simplicity. Crucially,
van der Helm and Leeuwenberg (1996) argued that bilateral sym-
metry and repetition have a fundamentally different structure.
They claimed that whereas bilateral symmetry has a point struc-
ture, repetition has a block structure (see the bottom panel of
Figure 2): a distinction that can be clarified by considering how
regularities grow. Consider the symmetry abcddcba, with the
identity chain {(1) � (8), (2) � (7), (3) � (6), (4) � (5)}. To
modify this symmetry in compliance with holography, one must
add or remove identities without disturbing the overall regularity.
For instance, taking away {(1) � (8)} leaves the symmetric
bcddcb; adding {(0) � (9)} results in the symmetry zabcddcbaz.
Because the regularity extends “point-by-point,” van der Helm and
Leeuwenberg (1996) said that symmetry has a point structure (see
Figure 2A). This point structure implies that every identity in the
holographic chain embodies the bilateral symmetry—thus provid-
ing considerable weight of evidence for the overall regularity.

Now consider the repetition abc abc abc. There are two possible
identity chains for this repetition. The first is {(1) � (4), (2) � (5),
(3) � (6), (4) � (7), (5) � (8), (6) � (9)} and has a point structure.
However, this chain is not holographically extendible or reducible:
Removing, for example, {(1) � (4)} results in _bc _bc abc, which
is not a repetition according to van der Helm and Leeuwenberg
(1996). Adding the identity {(7) � (10)} leads to abc abc abc a,
which also violates the overall repetition. The second type of
identity chain divides the repetition into blocks: {(1 2 3) � (4 5 6),
(4 5 6) � (7 8 9)}. This type of identity chain can be holograph-
ically extended or reduced by one identity, and hence by one
block, at a time [e.g., adding {(7 8 9) � (10 11 12)} results in abc
abc abc abc]. Because repetition can only extend a block at a time,
van der Helm and Leeuwenberg referred to repetition as having a
block structure. Crucially, because only the identities between the
blocks provide evidence for the regularity, there is much less
weight of evidence for its presence (see Figure 2B).

Thus, a regularity with a point structure, like symmetry, has
greater weight of evidence than a regularity with a block structure,
like repetition. This suggests the number of identities in a code
may determine the goodness of a regularity. Specifically, van der
Helm and Leeuwenberg (1996) quantified the weight of evidence
W for a code as the ratio of the number of identities in a regularity
(E) and the number of elements in the raw symbol code (n):

W � E/n. (1)

Thus, in the symmetry in Figure 2A, there are E � 12 identities
and n � 24 raw elements (i.e., the dots), yielding W � 12/24 �
1/2. By contrast, the repetition in Figure 2B has a weight of
evidence of only 1/24 because the pattern is organized into two
blocks of 12 elements, linked by only one identity. Hence, W
explains why bilateral symmetry is so much better than repetition.

Now, consider the goodness of Glass patterns. Alternations, like
bilateral symmetries, have a point structure. The alternation of
Figure 2C contains 11 identities, and the goodness therefore is
W � 11/24, which is almost as good as bilateral symmetry. This
explains why Glass patterns are generally so strong.

Finally, consider rotational (or centric) symmetry. This can have
high goodness, although typically less than bilateral symmetries

(e.g., Kahn & Foster, 1986; Palmer & Hemenway, 1978; Royer,
1966). The ISA-rules do not directly provide for rotational sym-
metries, but van der Helm and Leeuwenberg (1996) suggested that
rotations are “repetitions in polar co-ordinates” (pp. 429, 440).
Thus, rotations get a block structure and are hence less good than
bilateral symmetries.

Note, however, that holography still envisages a crucial role for
the simplicity principle in perceptual organization. Pattern repre-
sentations are still selected solely on the basis of their simplicity.
But the goodness of the selected pattern is determined by W (van
der Helm & Leeuwenberg, 1996, p. 444). This ingenious line of
reasoning promises to reconcile the simplicity account of percep-
tual organization with apparent differences in goodness, such as
between symmetry and repetition, that simplicity alone appears
unable to explain. In addition, van der Helm and Leeuwenberg
(1996) argued that this dissociation also accounts for many other
goodness phenomena, many of which we discuss below. Further-
more, holography appears to provide rigorous formal foundations
for its key psychological concepts (van der Helm, 1988; van der
Helm & Leeuwenberg, 1991). This, according to the authors,
creates a “win–win situation” relative to other approaches, such as
Palmer’s (1982, 1983) transformational approach and Wageman et
al.’s (1991; Wagemans, Van Gool, Swinnen, & Van Horebeek,
1993) bootstrap model, which suffer from making psychological
assumptions for which there exists no formal foundation (van der
Helm & Leeuwenberg, 1999, p. 624). However, in this article, we
demonstrate that the formalizations of van der Helm and Leeu-
wenberg (1991) do not underpin the holographic approach to
figural goodness outlined in van der Helm and Leeuwenberg
(1996). We argue that point and block structures are arbitrarily
interchangeable and crucially depend on the specific spatial map-
ping of a regularity onto a symbol code. Once this mapping is
specified, holography becomes redundant in explaining goodness.
Even if point and block structures are taken as given, the theory
leads to incorrect and sometimes contradictory predictions. In
other words, holography itself suffers from making psychological
assumptions for which there exist no formal foundations.

Evaluating the Holographic Theory of Figural Goodness

In this section, we systematically analyze van der Helm and
Leeuwenberg’s (1996) most important claims. We focus on those
issues that have not previously been critically examined in detail
(e.g., in van der Helm & Leeuwenberg, 1999, and Wagemans,
1999).

Before we present our critique, however, a few notes are in
order. First, it is worth pointing out that van der Helm and
Leeuwenberg’s (1996) account does not relate directly to our
knowledge of the functional and neural mechanisms involved in
vision. Instead, they concentrated on an abstract and mathematical
level of representation, while ignoring possible effects of attention
and spatial frequency as well as of the different operationalizations
of goodness (with sometimes different results). This may seem
problematic, as it would be surprising if such factors did not
substantially affect performance. Any abstract theory of vision, in
the end, requires detailed augmentation with constraints imposed
by the machinery of the visual system. Van der Helm and Leeu-
wenberg were aware of this concern but believed that an abstract
account might, nonetheless, provide deep insights that would be
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missed by “biases” at the processing level (van der Helm &
Leeuwenberg, 1996, pp. 431–436). As this may be true, we believe
that it would be inappropriate at this stage to open lines of attack
on the level of the exact implementation and operationalization of
the theory. As a result, our critique often makes use of equally
abstract counterexamples, which we do not claim to be any more
neurally or functionally plausible, unless stated otherwise. They
serve just to demonstrate inconsistencies. Second, it might be
argued that no single measure of goodness can be adequate be-
cause goodness is operationalized with many measures (reaction
times [RTs], error rates, sensitivity, and noise resistance), few of
which are linearly related. Consequently, holography’s W, being a
single measure, could be immediately falsified.1 However, we
believe it would be unfair to criticize van der Helm and Leeuwen-
berg for attempting to bring some unification in the diverse re-
search field on goodness. Instead, van der Helm and Leeuwen-
berg’s theoretical unification requires, we suggest, just that W is
monotonically, but not necessarily linearly, related to the different
operationalizations of goodness.

Claim 1: Bilateral Symmetries and Alternations Have
Point Structures, Whereas Repetitions and Rotations Have

Block Structures (van der Helm & Leeuwenberg, 1996,
pp. 429, 438–440; 1999, p. 622)

The assignment of point and block structures to specific regu-
larities is central to the holographic account. However, this assign-
ment is, on closer inspection, not determined by the theory. The
first problem is the order of the symbols in a series—a point raised
earlier by Wagemans (1999). Consider the symmetrical pattern in
Figure 3A. Following SIT, each line segment is labeled with a
symbol. Corresponding line segments are given the same label,
reducing the pattern to an array of eight symbols, displayed in two
vertical columns. We now face a critical question: How should this
2-D array be mapped onto a 1-D symbol string? Only when this
mapping has been achieved can SIT, holography, and weight of
evidence be applied. Yet, there appear to be many mappings
available. Van der Helm and Leeuwenberg (1996) were implicitly
committed to the mapping shown in Figure 3A: The 1-D string is
defined to start at the upper left corner and finish in the upper right
corner, following a U-shaped path. The resulting symbol string
codes the bilateral symmetry as abcddcba, which indeed results in
a holographic point structure. But, if we defined the 1-D string to
trace a mirror-reversed N (see Figure 3B), we would obtain the
alternative path abcdabcd, which results in a holographic block
structure. Thus, whether mirror symmetry has a point or block
structure is not predicted by the holography; it is determined by an
implicit assumption about the choice of mapping.

The same point applies to repetitions. Using the mirror-reversed
N route (which was rejected for mirror symmetry), we obtain the
path preferred by van der Helm and Leeuwenberg (1996), abcd-
abcd (see Figure 3D), and we assign repetition a block structure.
But with the U route, the resulting code would be abcddcba (see
Figure 3E), and repetition would be assigned a point structure.
This point is further illustrated by a fourth rule, the T-rule. Van der
Helm and Leeuwenberg (1991) allowed that the T-rule is both
holographic and transparent (pp. 196–197). It codes a repetition as
T[(a)(b)(c)(d)], as illustrated by the Z-shaped route in Figure 3F.
However, in a subsequent article, van der Helm and Leeuwenberg

(1996) too quickly dismiss it as “completely accounted for by
repetition as described by the I-rule” (p. 442) and do not therefore
include the T-rule in any of their analyses. Yet, in their account of
figural goodness, the T-rule takes on considerable theoretical sig-
nificance: It describes repetitions using a point structure because
its identity chains consist of individual pairs of pattern elements
(an easy test shows how identities can be removed or added
without destroying the T-regularity). Note, too, that symmetry can
also be coded using the T-rule, using the same Z route (see Figure
3C).2

The assignment of codes, and hence point and block structures,
is also arbitrary for the rotational symmetries illustrated in Figures
3G and 3H. We could, as van der Helm and Leeuwenberg (1996)
suggested, code the rotation as a repetition (using the I-rule),
leading to a block structure. However, we could also invent a new
P-rule (“P” for point symmetry), which follows a route through the
center of symmetry and hence codes this particular rotation as
P[(a)(b)(c)(d)]. The P-rule is both holographic and transparent
(note its similarity to the T-rule) but results in a point structure,
aabbccdd, rather than the block structure proposed by van der
Helm and Leeuwenberg.

The same points apply to the growth of regularities. Whereas
van der Helm and Leeuwenberg (1996) suggested that repetitions
grow blockwise and bilateral symmetries grow pointwise, the
examples in Figure 4 show this can easily be reversed. It all
depends on the direction in which we add the elements. With 2-D

1 We thank an anonymous reviewer for suggesting this point.
2 One case in which the U route may be preferred over the N route for

symmetries (and vice versa for repetitions) is when line segments and their
angles are coded separately. For instance, in the bilateral symmetry of
Figure 3A, if we start at segment a on the left half and trace the contour
toward b, we need to turn x°. Likewise, b and c are at an angle of y° to each
other, and so on. Taking the N route would mean that in the second half of
the pattern angles receive an opposite sign. For instance, if we start at
segment a on the right and follow the route down to b and c, we need to
turn �x° and �y°, respectively. Van der Helm and Leeuwenberg (1996)
may argue that the visual system is unable to match equal angles of
opposite sign, which would mean that the N route is unable to encode the
regularity. Only the U route leads to angles equal in sign. The same can be
shown for the N route in repetitions. However, there are a number of
problems with this argument. First, in case of repetitions, the N route may
work fine for the stimuli in Figure 3, in which the two pattern halves are
separated. However, we can easily close the contours, by connecting the
top and bottom segments, to form an outline polygon. The N route would
now have to break away from the fully connected contour, resulting in a
violation of van der Helm and Leeuwenberg’s (1996) definition of spatial
contiguity (see the General Discussion section). Second, were such break-
aways allowed nevertheless, then the most straightforward way of coding
would be via the T- rule for symmetries and repetitions alike—thus still
making any point and block structures arbitrary. Third, we can think of
regularities that are easily perceivable but are difficult to explain if angles
of opposite sign but equal magnitude are treated as completely different—
such as the glide (Hardonk, 1999; see also Wolfe & Friedman-Hill, 1992).
Finally, compare the curved stimuli )( and )). It is difficult to see what the
angles are here, unless we impose a limited resolution on the curvature:
That is, we assume that the visual system sees the curvature as existing of
many tiny line segments at many different angles. However, contrary to
what has been found (e.g., Pomerantz, 1977), this would mean an ex-
tremely low goodness for the )) repetition (because of the high n in the W
ratio) compared with the )( symmetry.
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or 3-D patterns, multiple growth directions are possible, resulting
in different structures. However, by dealing only with 1-D symbol
strings, holography obscures these possibilities.

Van der Helm and Leeuwenberg (1996) might raise two objec-
tions to this. First, they may argue that they do have a criterion for
ordering symbols: spatial contiguity (van der Helm & Leeuwen-
berg, 1996, p. 443). Spatial contiguity has not been rigorously
defined (see the General Discussion section), but van der Helm and
Leeuwenberg proposed that the visual system may follow a par-
ticular path through the pattern elements, resulting in a certain
symbol order. However, there appears no rationale based on spatial
contiguity of why the visual system should jump back to the top of

the pattern when coding the second half of a repetition (the N
route; see Figure 3D) but stay at the bottom when coding the
second half of a bilateral symmetry (the U route; see Figure 3A).
Indeed, only the T-rule seems to provide a consistent path (the Z
route) for both regularities, but it results in a point structure for
symmetry and repetition. Spatial contiguity is especially problem-
atic in random dot patterns, in which there are no cues concerning
which route to follow. In fact, in a reasonably dense dot pattern
(e.g., Julesz, 1971), millions of routes are possible, some resulting
in block structures and some in point structures. Furthermore, if
spatial contiguity—whatever its definition—is so theoretically
critical, there is the danger that it may explain goodness without

Figure 3. Bilateral symmetry (A, B, and C), repetition (D, E, and F), and rotation (G and H), plus their possible
structures (block or point) as imposed by different coding rules (S, I, T, and P). The I-rule results in block
structures, the S-, T-, and P-rules in point structures. See the text for details on these rules.
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the necessity for holography or transparent hierarchy. We shall see
that spatial contiguity is a recurring problem for holography (see
also Wagemans, 1999).

Even under a consistent spatial-contiguity criterion, there is no
a priori reason for why repetitions could not grow pointwise within
holography. Consider the pattern abc abc abc, with the code 3 �

(abc), by the I-rule. Now consider abc abc abc a. There is a
holographic rule (again, mentioned in van der Helm & Leeuwen-
berg, 1991) that can fully capture the regularity in this pattern; call
this the J-rule. The J-rule codes abc abc abc a as J[(a), 3 � (bc)].
More generally, the J-rule takes on the form J[(x),(y)], meaning
that any y will be interspersed with x. Notice how this pattern is a
pointwise extension of the iteration in the first example. The
pointwise extension is further illustrated by the next step: abc abc
abc ab, which the J-rule codes as J[(ab), 3 � (c)]. The final step,
abc abc abc abc, brings us back to the—now extended—iteration
4 � (abc), as coded by the I-rule. However, notice that the I-rule is

no more than a special instance of the J-rule, which would code
this pattern J[(abc),4 � ( )] (i.e., without the second parameter).3

A second objection may be that the onefold repetition as de-
scribed by the T-rule (e.g., aabbccdd) is not representative of how
the visual system codes repetitions in general. Van der Helm and
Leeuwenberg (1996, pp. 438–439) argued that repetitions are
infinitely and holographically extendible (e.g., from abcd abcd
abcd to abcd abcd abcd abcd, etc.), which, van der Helm and
Leeuwenberg said, is not possible with the T-rule and can be
achieved only if the visual system assumes a block structure. Thus,
they might argue that the onefold repetition too must be coded as
abcd abcd, even though the T-rule applies in principle. Note,
however, that in the present context, this argument is circular. It
requires using constraints on what the visual system can detect (the
fact that it can encode multiple repetitions) as a criterion to choose
holographic coding rules, whereas the holographic coding rules are
intended to explain the constraints on what the visual system can
detect. Leaving aside circularity, the special status of multiple
repetition causes problems when equally applied to multiple sym-
metry. Figure 4G shows a multiple (twofold) symmetry. Making
this symmetry grow, while maintaining its status of a multiple
symmetry, requires adding two identities simultaneously. But, this
is not allowed within holography, in which regularities should
grow by one identity at the time. By analogy to multiple repeti-
tions, we would have to assume a block structure for multiple
symmetries (which would incorrectly imply low goodness).

In summary, there is no criterion for mapping from 2-D arrays
to 1-D symbol strings. Hence, whether particular regularities are
assigned point or block structures is arbitrary and cannot help
explain goodness. Growth of symbol series is not dictated by
holography but depends entirely on which regularity is believed to
be relevant and in which order this regularity is coded. Below,
however, we assume, for argument’s sake, that goodness is based
on point and block structures, as van der Helm and Leeuwenberg
(1996) assigned them. We show that the account still faces
difficulties.

Figure 4. Bilateral symmetry (A, B, and C) and repetition (D, E, and F),
plus their possible directions of growth (blockwise or pointwise). G shows
how a multiple symmetry needs the addition of more than one identity to
grow while still maintaining its status as a multiple symmetry.

3 To our knowledge, the J-rule is both holographic and transparent.
However, the J-rule may be dismissed on the basis of the hierarchical
correspondence not being completely unambiguous (van der Helm &
Leeuwenberg, 1991). For instance, if we encode abcabcabca as J[(a), 3 �

(bc)], then the higher order 3 � (bc) repetition corresponds to the lower
order 3 � (abc) repetition as well as to the 3 � (bca) repetition in the basic
symbol sequence. Hence, according to van der Helm and Leeuwenberg
(1991), the J-rule is not completely transparent. But, this is by no means
clear. First, the ambiguity pertains only to where in the code the repetition
starts; that is, it can be shifted by one symbol position. In contrast, as we
understand it, the hierarchy itself is unambiguously transparent, as the
higher order regularity corresponds to the same kind of regularity at a
lower level (see van der Helm & Leeuwenberg, 1991, p. 193). Second, the
ambiguity as to where exactly in a code the extraction of a particular higher
order regularity should start occurs in many other places in holographic
coding. An example is given by van der Helm and Leeuwenberg (1996, pp.
447–448), who demonstrated the ambiguity in the hierarchy of threefold
mirror symmetries. Threefold symmetries can be hierarchically coded as
one global bilateral symmetry combined with two local bilateral symme-
tries but also as three local symmetries (all with the valid S-rule). Even if
the global symmetry is defined, there is ambiguity as to where exactly the
local symmetry should start. However, none of these ambiguities serve as
a criterion to dismiss the S-rule as being nontransparent.
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Claim 2: Goodness Is Independent of Simplicity (van der
Helm & Leeuwenberg, 1996, p. 444)

The holographic approach uncouples goodness from simplicity.
The visual system selects the simplest code, but the goodness is
measured by W. However, this uncoupling leads to contradictory
predictions if we consider the problem of finding a pattern in noise.
This is because, on van der Helm and Leeuwenberg’s (1996)
account, both notions can be applied to the issue, yielding different
predictions.

From the perspective of holography, the noise resistance of a
pattern is a monotonically increasing function of its weight of
evidence, W. Thus, because symmetry has a much higher W than
repetition, the mirror-reversed pattern in Figure 5 should be much
more noise resistant than its repeated equivalent.

From the perspective of simplicity, however, discerning a reg-
ularity in noise involves choosing a perceptual organization. Ac-
cording to the simplicity principle, which van der Helm and
Leeuwenberg (1996) endorsed, perceptual organizations are cho-
sen to have the shortest SIT code (or more strictly, to minimize the
closely related informational load). Here, this choice is between
two relevant interpretations of a noisy pattern. On the one hand,
there is a structure plus noise (S�N) interpretation, which views
the pattern as, for example, exhibiting noisy symmetry or noisy
repetition. On the other hand, there is the null interpretation, which
imposes no structure on the stimulus. For a pattern with little noise,
the S�N interpretation is preferred because it provides a briefer

description of the stimulus. In the case of symmetry or twofold
repetition, for example, only half the stimulus must be described as
well as the few “exception” points to which the symmetry does not
apply. With very high levels of noise, by contrast, almost all points
are exception points, and the code length for the S�N interpreta-
tion becomes greater than the null interpretation that does not
attempt to impose any regularity. Crucially, therefore, there is a
point at which the noise level becomes sufficient to overwhelm the
regularity, and this point is the same for equally simple regulari-
ties. Under van der Helm and Leeuwenberg’s (1996) claim that
symmetry and twofold repetition are equally simple, we should
thus predict that symmetry and repetition are equally noise resis-
tant, in contradiction to the prediction from W above.

This contradiction is particularly problematic because the ac-
count of figural goodness is directly founded on the simplicity
principle, as embodied in SIT. Thus, holography cannot be saved
by rejecting the simplicity principle because this would undercut
the foundations of the holographic approach. However, let us again
ignore this theoretical complication and focus on the empirical
adequacy of van der Helm and Leeuwenberg’s (1996) preferred
method of predicting resistance, based on W.

First, van der Helm and Leeuwenberg (1996) stated that holog-
raphy correctly predicts that noise has relatively little effect on the
goodness of bilateral symmetries. However, contrary to this pre-
diction, small amounts of noise can dramatically affect bilateral
symmetry detection, as long as it is placed near the axis of
symmetry (Jenkins, 1982; Julesz, 1971; Tyler, Hardage, & Miller,
1995; Wenderoth, 1995). It seems that the visual system is sensi-
tive only to bilateral symmetry if its elements lie relatively close to
each other (see Wagemans, 1995, 1999, for similar arguments).
Van der Helm and Leeuwenberg (1996, 1999) claimed that holog-
raphy leaves room for such local biases—but it does not explain
these phenomena.

Second, uncoupling goodness and simplicity gives the strange
prediction that degrading a pattern can sometimes improve its
goodness. Figure 6A shows a fourfold repetition abcd abcd abcd
abcd. Its simplest code uses the I-rule, 4 � (abcd), with W � 3/16.
Suppose we degrade the pattern by changing the last element, d, of
the second and fourth chunks into arbitrary elements (abcd abcx
abcd abcy; see Figure 6B). The simplicity criterion dictates that we
now use a different rule to code the pattern, namely the A-rule,
�(abc)����(d)���(x)(y)�� (cf. van der Helm & Leeuwen-
berg, 1996, p. 449). This code contains four identities [three for the
(abc) alternation and one for the nested (d) alternation], giving an
improved goodness, W � 4/16. We degraded the pattern even
further in Figure 6C by randomly changing all but one element in
the second and last block. The simplest code within SIT is now
�(a)����(bcd)���(xyz)( pqr)�� and again W � 4/16.

There are many such examples. For instance, the degraded abcdef
abcedf is twice as good as abcdef abcdef. The latter is a repetition [2
� (abcdef)] and, according to van der Helm and Leeuwenberg (1996),
receives a block structure with one identity between the blocks: W �
1/12. But, abcdef abcedf needs a more elaborate code, which is
captured by the A-rule: �(abc)�/��(de)(ed)�/�(f)��, W � 2/12.
Again, degrading a pattern is predicted to improve its goodness and,
hence, noise resistance.

Van der Helm and Leeuwenberg (1996, p. 449) were aware of
this type of counterintuitive prediction and, indeed, explicitly (and
bravely) suggested that repetitions can be made better by adding

Figure 5. Repetition and symmetry. The top row shows noise-free pat-
terns (s). In each successive row, the repetition and symmetrical patterns
are subject to the same amount of additional noise (specifically, the same
random displacements of the dots, modulo symmetry). Thus, they are each
participant to successive noise levels n1, n2, n3, where n3 � n2 � n1. As
noise increases, the patterns become increasingly difficult to perceive, and
at some point the preferred interpretation is an unstructured random field of
dots. Simplicity predicts this point is the same for repetitions and bilateral
symmetries. W predicts that this point arrives sooner for repetitions than for
bilateral symmetries. As W is fundamentally rooted in simplicity, the
holographic theory contradicts itself.
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noise, if the noise is carefully placed at particular locations. Be-
cause there are no existing data to test this prediction, we con-
ducted the following experiment.

Experiment 1

Method. In Experiment 1, participants ranked line patterns (see Figure
6) according to “regularity,” “goodness,” “complexity,” and “pleasant-
ness,” by assigning the numbers 1, 2, and 3 to them (Rank 1 � most
regular, best, least complex, and most pleasant, respectively). We phrased
the question in different ways because the term goodness may be unclear
to participants. Moreover, these terms correspond to different operational-
izations of goodness and are expected to correlate highly (Hamada &
Ishihara, 1988; Masame, 1986). We predicted that the average rank would
drop as the pattern becomes more degraded because the pattern becomes
more complex. In contrast, the holographic approach predicts that the
patterns in Figures 6B and 6C should have equally high ranks, and both
should be ranked higher than the pattern in Figure 6A. For generality, we
also constructed analogous dot patterns. Each individual dot pattern con-
sisted of 10 dots, repeated three times. We then degraded the patterns by
moving one or all but one of the dots.

Patterns were presented on separate A4 sheets of paper, with order
counterbalanced. Line and dot patterns were presented separately. The
order of ranking tasks (goodness, complexity, etc.) was randomized. Par-
ticipants ranked the patterns by writing 1, 2, or 3 next to each stimulus.
Each pattern was judged by at least 23 observers. In the present and all
subsequent experiments, the participants were undergraduates at the Uni-
versities of Birmingham and Warwick (aged 18–25 years) and were naive
to the purpose of the experiments.

Results and discussion. Table 1 shows average rankings of the
patterns in Figure 6. Perfect repetitions received top rankings in all
tasks. Slightly degraded repetitions were second, and the most
degraded patterns were ranked third. The intertask correlations
averaged .94 (range, .74–1.00), indicating that our results were not
an artifact of the phrasing of question. The only small deviation to
this pattern concerns the pleasantness of dot patterns. Here, the
perfect repetition and the slightly damaged version received almost
equal rankings (1.6 and 1.7, respectively). This may be partially
due to the way participants interpreted pleasantness. Some partic-
ipants may have considered perfect repetitions to be somewhat
boring (e.g., see the fine balance between regularity and irregular-
ity in art; Shubnikov & Koptsik, 1974).

The results fit the simplicity view of goodness. As patterns
become more complex, their goodness reduces. In contrast, the
predictions of the holographic account (van der Helm & Leeuwen-
berg, 1996, p. 449) are refuted: Participants did not perceive
carefully degraded patterns as better than perfect repetitions. These
results count directly against the way van der Helm and Leeuwen-
berg (1996) uncoupled goodness from simplicity.

Claim 3: The Number of Pattern Elements Has No
Influence on the Goodness of Bilateral Symmetry and
Alternation, Whereas It Has a Major Influence on the

Goodness of Repetition (van der Helm & Leeuwenberg,
1996, p. 445)

Bilateral symmetries grow pointwise, so that the number of
identities is proportional to the number of pattern elements. Each
extra symmetrical pair contributes one identity, and W therefore
stays constant at 1/2. By contrast, repetitions grow blockwise, and
each block contributes only one identity, regardless of the number
of elements within the block. Therefore, the more elements in a
repetition subpattern, the lower W. However, we believe it may not
be the total number of elements that is crucial to the goodness of
a repetition. Consider Figure 7A, which is 16 elements wide and 4
elements high, and compare it with Figures 7B and 7C, of which
the dimensions are 8 � 8 and 4 � 16, respectively. All patterns

Table 1
Mean Rankings for Experiment 1

Goodness measure

Line patterns Dot patterns

A B C A B C

Regularity 1.0 2.0 3.0 1.0 2.3 2.7
Goodness 1.5 1.8 2.7 1.5 1.9 2.6
Complexity 1.3 2.0 2.7 1.2 2.0 2.8
Pleasantness 1.5 1.8 2.7 1.6 1.7 2.7

Note. Columns A, B, and C correspond to the manipulations exemplified
in Figure 6.

Figure 6. Stimuli of Experiment 1. A shows a perfect repetition, which is
then progressively damaged in B and C. Nevertheless, holography predicts
B and C to be better than A.
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have the same number of elements and should thus have equal W.
Yet, their goodness appears to become progressively better. Per-
haps more crucial then is that the patterns differ in their 2-D spatial
layout. This leads to an important difference between the patterns:
namely, the number of elements in between the two members of a
to-be-matched pair. In Figure 7A, to match a dot in one pattern
with its counterpart in the other, one must skip seven irrelevant
intervening dots. In Figure 7B, the number of interfering elements

is three, and in Figure 7C, it is just one. We predict that the number
of intervening elements strongly affects the goodness of repetition.
This prediction stems from studies of bilateral symmetry percep-
tion showing that the area near the axis is important for accurate
symmetry detection (e.g., Jenkins, 1982; Julesz, 1971; Wenderoth,
1995; see Claim 2). In this area, the to-be-matched dot pairs have
few intervening elements, allowing for efficient local processing
(see also Wagemans et al., 1993). Similarly, local processing is
possible with our narrow but not wide repetitions. If local process-
ing is important, we should see performance vary with pattern
width. In contrast, pattern width should have relatively little effect
on bilateral symmetries because the local proximity of dots near
the axis remains intact (see Figures 7D, 7E, and 7F). This was
tested in Experiment 2.

Experiment 2

Method. Eight observers saw patterns such as those in Figure 7 (new
patterns were randomly generated for each participant) and decided
whether they were regular (symmetrical or repeated) or not (random), by
pressing one of two possible response keys. The stimuli were maximally
6.1° wide by 6.1° high and presented for 250 ms, to minimize eye-
movement effects. Participants had to distinguish the regular (repeated,
mirror-reversed) patterns from irregular (random) patterns and were en-
couraged to be accurate and fast, with stress on accuracy. One complication
is that the wider 16 � 4 stimuli inevitably extend further into the periphery,
which might impair detection (e.g., because of decreased acuity or the
increased distribution of attention). To control for this, we included an
eccentricity control condition, in which the 8 � 8 and 4 � 16 patterns were
positioned as far in the periphery as the 16 � 4 pattern (randomly to the left
or right of fixation) as well as an eccentricity plus distance control condi-
tion, in which the two pattern halves were presented at a distance from each
other equal to the 16 � 4 condition (see Figure 7). Note that further
eccentricity and attention effects should be controlled for by the symmetry
condition, against which the repetition condition was compared. The rep-
etition and symmetry detection tasks were presented in separate blocks in
counterbalanced order, with all other trial types randomly mixed within
each block. There were 15 trials for each combination of conditions.

Results and discussion. Figure 8 shows percentage error and
RTs. There was an eccentricity main effect for detection accuracy,
F(2, 14) � 16.3, MSE � 1.2, p � .001. Overall, only slightly more
errors were made on peripheral patterns than on patterns presented
at fixation, with no further interactions. We therefore collapsed the
data across the eccentricity conditions. As indicated by Figure 8,
more errors were made in the repetition than the symmetry con-
dition, F(1, 7) � 22.0, MSE � 8.0, p � .01. This is consistent with
earlier findings that repetition is worse than symmetry (e.g., Cor-
ballis & Roldan, 1974). There was also a significant effect of
pattern width, with more errors for wider patterns, F(2, 14) � 66.1,
MSE � 1.4, p � .001. This effect was much larger for repetitions
than bilateral symmetries, F(2, 14) � 10.8, MSE � 3.7, p � .001.
In the symmetry condition, errors ranged from 9% for the narrow
patterns to 17% for the wide patterns; in the repetition condition,
errors rose from 15% to 44%. RTs showed a similar pattern: The
rise in RTs was significantly steeper in the repetition condition
than in the symmetry condition, F(2, 14) � 5.3, MSE � 4,952, p �
.02 (which did not interact with eccentricity, p � .46).

The results go against the holographic account, which predicts
constant performance across constant numbers of pattern elements.
In contrast, error rates and RTs rose sharply when the spatial
configuration was such that many dots fell in between the to-be-

Figure 7. Stimuli examples used in Experiment 2. A shows a repetition
that is maximally 16 elements wide and 4 elements high. This pattern
would always be presented centrally. B shows a repetition of exactly the
same number of elements but now arranged in an 8 � 8 array. In this
example, the pattern is presented peripherally, to control for eccentricity
effects (eccentricity control condition). C shows a 4 � 16 configuration
presented in the periphery. D, E, and F illustrate similar conditions for the
symmetry task. Moreover, E illustrates the eccentricity plus distance con-
trol manipulation, in which one pattern half was placed at maximum
eccentricity and the other half was placed at a distance of half a pattern
length.
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matched members of a dot pair (the 16 � 4 configuration). When
these members were close to each other (the 8 � 8 and 4 � 16
configurations), performance resembled that of the symmetry con-
dition much more.

These results may also explain why Glass patterns are generally
so good. A Glass pattern may not be fundamentally different from
a normal translation; as long as translation distances are modest,
the regularity is easily detectable. Again, the presence or absence
of interfering dot pairs seems crucial (Glass, 1969; Maloney et al.,
1987). Notice that according to van der Helm and Leeuwenberg
(1996), Glass patterns are coded in a fundamentally different way,
by alternation, �(G)���( p1)( p2)( p3) . . . ( pn)�, with p1 . . . pn
being the positions of each dot pair and G the Glass relationship
between the members of each pair. However, Glass patterns can be
constructed with a variety of operations, of which translations and
rotations are just two. Complex spiral and optic flow patterns can
also be detected (e.g., Glass & Perez, 1973). It is unclear how
holography would incorporate these without resorting to very
complex Gs in the alternation. Indeed, as the G operator could be
any relationship, there is a danger of collapsing back into the
transformational approach, with which van der Helm and Leeu-
wenberg contrast their account. Moreover, without restrictions on
G, we are back where we began, namely, at an unlimited set of
coding rules.

Experiment 3

In Experiment 2, we tested (and falsified) holography’s predic-
tion that the goodness of repetition remains constant as long as the
number of elements is not altered. In Experiment 3, we test
holography’s prediction that bilateral symmetry detection remains
constant even if the number of elements is altered. At first sight,
this prediction appears to find support in the literature. For in-
stance, both Jenkins (1982) and Wenderoth (1995) found that
adding elements outside the region around the axis of symmetry
leads to little change in performance. However, this is probably
because of the same reason why the area around the axis is so
important for symmetry detection (Julesz, 1971), as it allows for

efficient local processing. In contrast, the holographic prediction is
based on the overall constancy of the W ratio (1/2, regardless of
where additional elements are placed). To test between these
alternatives, we used the outline polygons illustrated in Figure 9B.
The advantage of outline polygons is that the number of elements
can be varied without changing the local relationship to the axis
(i.e., there is only one region: the outline). However, Figure 9B
suggests that, contrary to holography’s prediction, increasing the
number of spikes degrades the goodness of the bilateral symmetry.

Method. To test this more thoroughly, we asked 10 participants to
decide as quickly and accurately as possible (by one of two possible

Figure 8. Results of Experiment 2, with error percentage data (A) and reaction time (RT) data (B). No Sym �
symmetry condition, irregular patterns; Sym � symmetry condition, regular patterns; No Rep � repetition
condition, irregular patterns; Rep � repetition condition, regular patterns.

Figure 9. Are extra pattern elements redundant or not? A shows a
symmetrical dot pattern (left image). Increasing the number of dots (right
image) does not add much to the percept. B shows a polygon (left image).
Adding extra elements (right image) appears to affect the overall goodness,
contrary to holography’s prediction.
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keypresses) whether outline polygons (closely resembling Figure 9B) were
perfectly symmetric. Each polygon was presented for 50 ms and was drawn
in white on a gray background. We systematically varied two factors: the
number of contour elements of the shapes (6, 12, 24, and 48) and the
amount of regularity present in the shapes. In the symmetry versus random
(SvR) condition, perfect bilateral symmetries were mixed with randomly
constructed shapes (of course, within certain constraints). According to
holography, perfect symmetries have a goodness of W � 1/2, whereas
random stimuli have a goodness value of W � 0. Thus, the perceptual
(goodness) distance between the two types of stimuli would remain con-
stant at the maximum value of 1/2 across the number of contour elements.
We also ran a symmetry versus perturbed (SvP) condition, in which perfect
bilateral symmetries were mixed with symmetries in which p spikes were
randomly perturbed, with p � (number of elements)/6. Thus for 6 contour
elements, the perfect symmetry had goodness W � 3/6, whereas the
perturbed stimulus would receive W � 2/6. For 12 contour elements, the
values would be 6/12 and 4/12, respectively, and so on. In other words, the
perceptual distance again remained constant across number of elements,
but now at the smaller value of 1/6. Holography predicts that because the
differences in goodness are unaffected by the number of elements and as
the overall goodness remains constant, symmetry detection should remain
constant. A simplicity-based approach predicts that objects with more
elements are more complex and hence that comparisons will be more
difficult, in both the SvR and SvP conditions. Here, elements may mean
more contour elements but also more object parts, such as spikes and
concavities.

Results and discussion. Figure 10 shows a steady increase in
both RTs and errors with increasing number of contour elements,
regardless of condition: SvR, F(1.6, 15.8) � 47.6, MSE � 636.3,
p � .001; SvP, F(1.3, 11.8) � 12.8, MSE � 59.5, p �.01. (Where
fractionated, degrees of freedom were subject to a Greenhouse–
Geisser correction for sphericity violations.) The results are at odds
with holography’s prediction of constant performance across num-
ber of elements. Instead, these findings are consistent with a
simplicity-based account. Adding more contour elements in-
creased shape complexity by increasing the number of elements
per shape and by making the shapes more “spiky” or less “com-
pact” (e.g., as measured by the squared perimeter divided by area).
Several studies have shown that compactness strongly influences
perceived complexity (Attneave, 1957; e.g., Attneave & Arnoult,
1956; see also Hulleman & Boselie, 1999; Wagemans, Lamote, &

Van Gool, 1997). For instance, Hulleman and Boselie (1999)
asked participants to choose the most regular of two polygons.
Where the regularity was quite difficult to find, participants pre-
ferred the most compact of the two shapes, regardless of their
regularity.

We conclude from Experiments 2 and 3 that overall pattern
goodness is highly dependent on the 2-D spatial layout of the
pattern. Because holography deals only with 1-D symbol se-
quences, it cannot directly account for 2-D effects. Van der Helm
and Leeuwenberg (1996) could argue that there are ways to indi-
rectly map 1-D symbol sequences onto 2-D patterns. According to
their article (van der Helm & Leeuwenberg, 1996), such a spatial-
mapping procedure must follow a spatially contiguous path
through the pattern elements (see the General Discussion section).
The spatial contiguity may then be different for the different
spatial layouts of Figure 7, perhaps even leading to different codes.
But, if goodness depends on spatial contiguity, there is a danger
that the holography may itself be explanatorily redundant.

Claim 4: Repetitions Benefit More From Extra Local
Regularity Than Bilateral Symmetry (van der Helm &

Leeuwenberg, 1996, p. 446)

One of holography’s most interesting predictions is that local
regularities contribute more to the goodness of repetitions than to
the goodness of bilateral symmetries. Consider the bilateral sym-
metry abcdef fedcba, coded as S[(a)(b)(c)(d)(e)(f)] with W � 6/12,
and add a local regularity to its subpatterns: abba ef fe abba. The
code becomes S[S[((a))((b))],(e)(f)]]. The two regularities are
combined in a so-called transparent hierarchy, and W � 8/12 (an
increase of 2/12). Because symmetry has a point structure, the
extra identities in the hierarchically nested subpatterns contribute
only once. In contrast, if we start from the repetition abcdef abcdef,
with W � 1/12, the extra local symmetry in abba ef abba ef will
lead to the transparent hierarchical block code 2 � ((S[(a)(b)])(ef)]).
Now, there are two additional identities contributing to each block,
leading to a total W � 5/12 (an increase of 4/12). According to van
der Helm and Leeuwenberg (1996), holography thus explains why

Figure 10. Results of Experiment 3. Mean correct reaction times (RTs; A) and mean error percentage (B) are
shown for random patterns, perturbed patterns, and symmetrical (Sym) patterns as compared against random
(SvR) or perturbed (SvP) patterns.
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adding local symmetries greatly enhances the goodness of repeti-
tions but not bilateral symmetries.

Note, however, that adding local regularities does not change
the weight of evidence for the presence of a global repetition per
se. For example, the sequence abba ef cddc pq, coded as S[(a)(b)]
ef S[(c)(d)] pq, also has two local symmetries but no global
repetition. Its goodness value is W � 4/12, which is exactly 1/12
less than the W � 5/12 associated with the improved global
repetition example. In other words, the weight of evidence for the
repetition itself is still only 1/12. Thus, holography actually fails to
explain why extra local regularities improve repetition detection,
and existing data demonstrating that global regularity detection
improves with extra regularity can thus be used to falsify the
holographic account of goodness (Corballis & Roldan, 1974; Gar-
ner & Clement, 1963; Hamada & Ishihara, 1988; Palmer &
Hemenway, 1978; Royer, 1966; Wagemans et al., 1991, 1993;
also, see Wagemans, 1999, for ways in which the contribution of
local regularities may be better explained).

Figure 11 serves as another illustration of the skewed relation-
ship between local regularities and the global goodness value, W,
within holography. We trust that most readers will find the sym-
metry in Figure 11B and see it as much better than Figure 11A.
However, according to the holographic approach, Figure 11A is no
worse than Figure 11B. This is because Figure 11A actually
consists of many local bilateral symmetries in many different
orientations (see Figure 11C). Both Figures 11A and 11B therefore
receive a goodness value of W � 1/2. Note, again, how local
regularities do not appear to contribute to the overall goodness.

Claim 5: Transparent Hierarchy Dictates That ISA-
Regularities Correspond Directly to ISA-Regularities in
the Raw Pattern (van der Helm & Leeuwenberg, 1991,

1996)

We have argued that holography does not predict the increased
detectability of hierarchically combined regularities simply be-
cause the weight of evidence for one regularity does not provide
evidence for the other. Let us again put this problem aside and
accept van der Helm and Leeuwenberg’s (1996) prediction that
hierarchically combined regularities increase the overall goodness

and thus the detectability of the regularities involved. Experiment
4 tests this prediction.

Experiment 4

Consider the Glass pattern in Figure 12A, which consists of
randomly placed dot pairs, oriented in the same direction (right
diagonal). Such patterns induce a strong perceived regularity and
may therefore be assigned high goodness. Van der Helm and
Leeuwenberg (1996) encoded Glass patterns using the A-rule
(alternation), resulting in the code �(G)���( p1)( p2) . . . ( pn)�.
Here, p1–pn indicate positions of one member of each dot pair, and
G indicates the Glass relationship between dot pairs (van der Helm
& Leeuwenberg, 1996, p. 451). The A-rule has a point structure
and therefore leads to a high W within holography. Figures like
Figure 12A were used in the Glass condition of Experiment 4.

Figure 12B also consists of dot pairs, but these are now ran-
domly oriented (in any of four directions). These patterns are
bilaterally symmetrical about a vertical axis and are referred to as
the sym condition. In holography, such a pattern is coded via the
S-rule, resulting in something like S[( p1)( p2) . . . ( pn)], with
p1–pn coding the positions of the individual dots or perhaps even
the positions plus orientations of complete dot pairs. According to
holography, bilateral symmetry has a point structure and should
therefore be of high goodness.

Now consider the patterns in Figures 12C–12F. Each pattern
consists of a hierarchical combination of a Glass pattern and a
bilateral symmetry. For instance, Figure 12C is constructed by
taking a horizontal symmetry and translating it slightly in a hori-
zontal direction. Because the Glass pattern and the symmetry have
the same orientation, we called this the aligned condition. The
pattern in Figure 12D is constructed similarly, but the Glass
translation (right diagonal) is orthogonal to the axis of symmetry
(left diagonal; orthogonal condition). Both patterns can be de-
scribed by a holographic transparent hierarchy, combining the
symmetry and the Glass translation into one code: S[�((G))�/
�(( p1))(( p2)) . . . (( pn))�]. The transparency rule dictates that
each regularity described in the code corresponds directly to the
same regularity in the pattern. In other words, the regularity must
be directly accessible. In fact, because of the transparent hierarchy

Figure 11. Global versus local symmetry. A shows a pattern consisting of a set of locally symmetrical chunks,
which are pointed out in C. B shows a globally symmetrical pattern. The locally and globally symmetrical
patterns have the same W � 1/2 but differ considerably in figural goodness.
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Figure 12. Stimulus examples and results of Experiment 4. A: Baseline Glass pattern. B: Baseline symmetrical
pattern. C: Symmetry and Glass are aligned. D: Symmetry orthogonal to Glass pattern. E: Symmetry oblique to
Glass pattern. F: Glass pattern mirror reversed. Note that C, D, and E are transparent hierarchies of a symmetry
and a Glass pattern. F is also a hierarchy of a symmetry and a Glass pattern, but this hierarchy is not transparent.
G: Reaction time (RT) data for each regularity type, for trials on which the target regularity was present. H: Error
percentage data for each regularity type, for trials on which the target regularity was present. Error bars indicate
one standard error from the mean across participants. In the Detect Sym condition, participants first had to detect
the presence of a bilateral symmetry and then point out the direction of the axis. In the Detect Glass condition,
participants first had to detect the presence of a Glass pattern and then point out its direction of flow. All types
of patterns were included in all conditions.

255COMMENTS



and the point structure of bilateral symmetry as well as Glass
patterns, the code can be turned inside out without affecting the
hierarchy: �(G)�/�S[(( p1))(( p2)) . . . (( pn))]�. Looking at the
patterns in Figures 12C and 12D, one can see that this seems
indeed intuitively to be the case, as both regularities seem readily
perceivable. According to holography, the transparent hierarchy
increases W, from W � 1/2 for the patterns in Figures 12A and 12B
to W � 3/4 for the patterns in Figures 12C and 12D. This improved
goodness should thus lead to an improved detection of either
regularity, just as additional local symmetries improve the detec-
tion of a global symmetry or translation (van der Helm & Leeu-
wenberg, 1996, pp. 446–454).

Like the patterns in Figures 12C and 12D, the pattern in Figure
12E is a transparent hierarchy of a bilateral symmetry and a Glass
pattern. The symmetry (left diagonal) is now translated in a direc-
tion oblique to its axis of symmetry (namely horizontally; we call
this the sym–Glass condition). Holography predicts no difference
between the patterns in Figures 12C, 12D, and 12E. This is
because 1-D symbol sequences cannot distinguish between differ-
ent directions of translation. But even if they could, under the rule
of transparency, the underlying symmetry should still be readily
perceivable for all patterns. In contrast, we predicted that the Glass
translation in the pattern in Figure 12E would severely damage the
symmetry percept, as it destroys the local symmetry relationships
between pairs of dots (cf. the correlational quadrangles proposed
by Wagemans et al., 1993). Only by destroying the locally oriented
dot pairs (and thus by destroying the Glass regularity) can the
symmetry improve, for instance by applying a low-pass filter (for
readers who find it hard to see any symmetry, blurring the picture
by looking through the eyelashes may help).

Finally, consider the pattern in Figure 12F, which is again a
combination of a Glass pattern and a bilateral symmetry. It was
constructed by plotting half a Glass pattern and then flipping it
across the axis of symmetry (hence, we call it the Glass–sym
condition). Holography cannot capture this hierarchy because the
Glass translations in the pattern halves are in orthogonal directions.
Therefore, for instance, holography would be able to encode the
Glass pattern in the left half of the display as �(G1)�/�( p1)( p2)
. . . ( pn)� and the right half as �(G2)�/�( p1)( p2) . . . ( pn)�
(with G1 and G2 denoting different Glass relationships), but the
different Glass directions then block the possibility of coding the
symmetry between the halves (i.e., the S-rule cannot cope with G1
and G2). The overall goodness of this combination would still be
quite high but no higher than for the baseline patterns in Figures
12A or 12B (approximately 1/2). Alternatively, a holographic
perceptual system could choose to code the pattern in Figure 12F
as a bilateral symmetry instead—S[( p1)( p2) . . . ( pn)]—but this
precludes any overall coding of the Glass pattern. Therefore, under
holography, symmetry detection for the pattern in Figure 12F is
not predicted to be any better than for the pattern in Figure 12A.

Method. Nine observers detected, as quickly as they could, the regu-
larities in patterns like those in Figure 12 (see also Locher & Wagemans,
1993, and Wagemans et al., 1993, for similar manipulations). The patterns
were circular (4.2° radius) and consisted of white dots on a gray back-
ground. Each pattern was randomly generated on each trial and had one of
four orientations: vertical, horizontal, left diagonal (45° counterclockwise),
and right diagonal (45° clockwise). Participants pressed the space bar when
they detected the regularity (this was the point at which we measured RT).
The pattern then disappeared, and participants saw a display with five

response options, corresponding to the four orientations plus a “no orien-
tation” option. Participants made an unspeeded choice by pressing one of
five keys on the keyboard. The display provided feedback on whether their
choice was correct. Each participant performed two tasks on the same set
of stimuli (in counterbalanced blocks): a Glass-detection task and a
symmetry-detection task. For instance, in the Glass-detection task, when
faced with a pattern like that in Figure 12A, participants would press the
space bar and then choose “right diagonal.” In the symmetry-detection
task, for the pattern in Figure 12B, the correct response would be
“vertical.”

Results and discussion. Mean RTs and mean error percentages
are plotted in the graphs of the bottom half of Figure 12. The
graphs show the data for the conditions in which the to-be-detected
regularity was present. The results for the regularity absent con-
ditions were as follows. When participants had to detect a sym-
metry but only a Glass regularity was present (symmetry absent,
see Figure 12A), the RT was 2,247 ms and the error rate was 59%.
When participants had to detect a Glass regularity but only a
symmetry was present (Glass absent, see Figure 12B), the RT was
1,276 ms and the error rate was 26%. These were mostly time-out
errors, as observers tended to keep on looking for a possible
presence of the regularity (which also explains the large RTs).
Error rates and RTs correlated strongly (r � .94), and we therefore
limit our report to RTs. There was a significant effect of orienta-
tion in the symmetry detection, F(2.22, 17.7) � 3.9, MSE �
61,656, p � .05, but not in Glass detection, F(2.40, 19.2) � 1.6, ns.
Consistent with earlier findings (Palmer & Hemenway, 1978;
Royer, 1981; Wagemans, Van Gool, & d’Ydewalle, 1992), vertical
symmetries were detected fastest, followed by horizontal and
diagonal symmetries. However, orientation did not interact with
any other factors, and the analyses reported below were performed
on data collapsed across orientation (resulting in at least 40 data
points per cell).

First, responses were faster for Glass patterns than for bilateral
symmetries, F(1, 8) � 16.5, MSE � 177,958, p � .01. In Fig-
ure 12, Glass patterns seem to result in stronger percept than
bilateral symmetries. Indeed, they are so strong that they can either
destroy (see Figure 12E) or boost a symmetry (see Figure 12F). In
contrast, none of the conditions (except Glass–sym) suggest that
the presence of a bilateral symmetry affects Glass detection, indi-
cating that the relationship between Glass and symmetry is asym-
metrical rather than reciprocal. This is inconsistent with hologra-
phy, which predicts that Glass and bilateral symmetry regularities
are equally good and can be mutually exchanged because of
transparent hierarchy. Possibly, however, this asymmetry was
caused by stimulus parameters, such as dot spacing. Although all
patterns were made up of the same randomly placed dot pairs, the
average distance between members of a Glass dot pair is shorter
than the average distance between dots across the axis of symme-
try because of the very nature of these regularities. Holography
might be defended by stating that Glass patterns and bilateral
symmetries are of equal goodness, other things being equal. But,
given the inherently different spatial structure of the two types of
regularity, it is difficult to see how other things could ever be
equal; hence, this defense risks leading holography into
unfalsifiability.

Another possibility is that Glass patterns are perceived in an
earlier stage of the visual system. Glass patterns have been asso-
ciated with optic flow and/or texture segmentation processes,
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which may be preattentive and automatic (Dakin, 1997; Glass &
Perez, 1973; Julesz, 1981; Prazdny, 1984). In contrast, recent
evidence suggests that bilateral symmetry detection involves
higher visual processing, needing limited attentional resources
(Olivers & van der Helm, 1998). Holography does not account for
attentional effects on regularity perception and is thus difficult to
test.

We also found no improvements for the hierarchically combined
regularities of the aligned, orthogonal, and sym–Glass patterns
(see Figures 12C, 12D, and 12E), although their holographic
goodness was 1.5 times higher than the sym baseline (see Figure
12B). Whereas performance remained constant in the Glass-
detection task (as confirmed by individual t tests comparing it with
performance in the standard Glass condition, see Figure 12A, p �
.4), symmetry detection was much worse for sym–Glass patterns
(see Figure 12E), F(2.2, 17.8) � 38.2, MSE � 13,180, p � .001:
t test comparing it with the standard sym condition (see Figure
12B), t(8) � 5.78, p � .001. Both RTs and errors rose sharply.
Apparently, it is particularly hard to detect an underlying bilateral
symmetry when a Glass regularity on a different hierarchical level
destroys the superficial pattern symmetry. This result directly
contradicts the holographic prediction that all regularities in a
transparent hierarchy are readily available for perception. In the
aligned and orthogonal conditions (see Figures 12C and 12D), the
overall symmetry was not destroyed by the Glass regularity. Yet,
nor did the Glass regularity contribute to better performance for
these patterns. This finding too cannot be explained by hologra-
phy, which predicts improved performance as regularities are
combined.

We further found that in the Glass–sym condition (see Figure
12F), symmetry detection did improve, t(8) � 4.43, p � .01. In
this condition, the presence of the Glass pattern aided the percep-
tion of symmetry, again contradicting holography’s prediction.
Because holography cannot combine the symmetry and Glass
regularities in this pattern, performance should have been no better
than in the standard sym condition (see Figure 12B). Instead, the
improvement confirms earlier findings by Locher and Wagemans
(1993; see also Wagemans et al., 1993). They presented partici-
pants with bilateral symmetries of which the local elements could
be oriented randomly or parallel, perpendicular, and oblique to the
axis of symmetry (similar to the sym, aligned, orthogonal, and
Glass–sym conditions here). Consistent with our results, Locher
and Wagemans found an improvement for patterns with oblique
elements but not for patterns with parallel and perpendicular
elements. They suggested that local elements group on the basis of
similarity. In the parallel and perpendicular patterns, such group-
ing will be strong but independent of the bilateral symmetry. In
oblique patterns, however, the different textures will lead to a
strong segmentation at the axis of symmetry, thus aiding symmetry
detection.

Finally, for the Glass-detection task, performance deteriorated
in the Glass–sym condition (see Figure 12F), t(8) � 4.50, p � .01.
This result is analogous to that for the sym–Glass condition (see
Figure 12E) in the symmetry-detection task. There, the symmetry
was broken up by an incompatible Glass pattern, whereas here the
Glass pattern is broken up by an incompatible symmetry (as
opposed to the aligned and orthogonal conditions, in which Glass
and symmetry are compatible). Performance in the Glass–sym
condition may also have been slowed by task demands. As can be

seen in the pattern in Figure 12F, the Glass regularity contains two
directions. Although we told participants that they could pick
either direction for their response, the ambiguity may have slowed
them down.

Claim 6: Weight of Evidence Explains the Symmetry
Effect (van der Helm & Leeuwenberg, 1996, p. 450)

Van der Helm and Leeuwenberg (1996) also claimed that ho-
lography explains the biases in symmetry perception found by
Freyd and Tversky (1984; also Carmody, Nodine, & Locher, 1977;
King, Meyer, Tangney, & Biederman, 1976). Freyd and Tversky
presented participants with a variety of polygonlike contour
shapes, which were bilaterally symmetric except for some pertur-
bations. Participants then matched this reference shape to two
target shapes, which were identical to the reference shape save a
few small alterations: The more symmetrical target was less per-
turbed than the reference shape; the less symmetrical target was
more perturbed. Participants indicated which target shape best
matched the reference. Freyd and Tversky found that preferences
changed with the symmetry of the reference stimulus. When the
reference was highly symmetrical, observers preferred the even
more symmetrical target. When the reference was less symmetri-
cal, observers preferred the even less symmetrical option. Freyd
and Tversky concluded that there is a symmetry bias for highly
symmetrical stimuli and an asymmetry bias for less symmetrical
stimuli.

Van der Helm and Leeuwenberg (1996, see also 1999) argued
that W predicts these effects and moreover provides ecological
support for holography. They assigned a standard goodness value
to Freyd and Tversky’s (1984) reference shape: Wref � E/n, with
E being the number of identities and n the number of pattern
elements (including some noise elements). Subsequently, the more
and less symmetrical target stimuli are assigned Wmore � (E �
x)/(n � x) and Wless � (E � x)/(n � x), respectively, with x being
an added or subtracted element (x is much smaller than n). With E,
n, and x all positive, algebra shows that Wmore � Wref � Wref �
Wless. Thus, if dissimilarity is measured by difference in W be-
tween patterns, the reference is most similar to the more symmet-
rical stimulus: a symmetry bias.

However, notice that this analysis is neutral concerning the
degree of symmetry of the reference shape, which Freyd and
Tversky (1984) found to be critical. Hence, highly asymmetrical
reference shapes are also predicted (incorrectly) to lead to a
symmetry bias. To account for this, van der Helm and Leeuwen-
berg (1996) proposed that Freyd and Tversky must have con-
structed their less symmetrical stimuli in a fundamentally different
way, so that Wmore and Wless should also be derived differently.
They altered W purely by adding or removing noise elements,
while the number of identities remains constant. Thus, Wmore �
E/(n � x), whereas Wless � E/(n � x). This reverses the bias
because Wmore � Wref � Wref � Wless.

There are many other methods of calculating W, some leading to
symmetry biases and some leading to asymmetry biases. The point
is that without independent justification for switching the method
of calculation, holography does not explain the empirical data but
shows that it is general enough to predict any pattern, at will.

A second problem is that the difference in W between patterns
seems a poor measure of similarity: For example, a Glass pattern
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and a bilaterally symmetrical pattern may both have W � 1/2 yet
be judged very dissimilar.

Nevertheless, van der Helm and Leeuwenberg (1996, 1999)
relied on this insubstantial foundation to provide ecological sup-
port for holography. But, even were this foundation solid, their
subsequent ecological argument presents difficulties. They sug-
gested that in the real world the symmetry bias may help a predator
spot its partially hiding prey by enhancing the symmetry and hence
the “objectness” of the stimulus (van der Helm & Leeuwenberg,
1996, p. 452). But they also suggested that, at the same time, the
asymmetry bias has survival value, as it decreases the symmetry
(and therefore “objectness”) of the prey, so that the predator is less
likely to perceive it (van der Helm & Leeuwenberg, 1996, p. 452).
These suggestions are clearly incompatible. Moreover, whether a
symmetry or asymmetry bias is observed depends, in Tversky and
Freyd’s (1984) laboratory study, on the degree of symmetry of the
given reference stimulus. However, van der Helm and Leeuwen-
berg (1996) provided no link to which reference stimulus is ap-
propriate in natural contexts.

General Discussion

We have argued that despite its strong mathematical basis and
broad empirical scope, the holographic approach to figural good-
ness suffers from a range of fundamental theoretical and empirical
problems. The key explanatory principles, such as the distinction
between point and block structures, do not follow from the theory.
The theory shows internal inconsistencies in relation to noise
resistance and hierarchically combined regularities. Finally, across
the range of empirical phenomena that the theory addresses, the
account either is flexible enough to capture any pattern of data or
is empirically falsified.

We believe that most of these problems arise because van der
Helm and Leeuwenberg’s (1996) “theory does not prescribe in
detail how raw 1-D symbolic representations are to be obtained
[from 2-D patterns]” (p. 443), despite their earlier claims that its
1-D “principles . . . can be generalized straightforwardly to 2-D
pattern regularity” (p. 429). This generalization has yet to be
demonstrated. Currently, the account places no real constraint on
the mapping between 2-D stimuli and 1-D symbol sequences, thus
breaking the link between the mathematics of the theory and
psychological predictions. This point has been noted by Wage-
mans (1999), who pointed out that holography can detect only
certain regularities if the symbols are placed in the right order. We
have shown that the symbol order is actually rather arbitrary, as are
associated block or point structures.

Nevertheless, van der Helm and Leeuwenberg (1996, 1999)
have made initial attempts to describe a spatial-mapping proce-
dure, but unlike transparency and holography, it has (as yet) no
formal definition. Van der Helm and Leeuwenberg (1996) related
it to proximity but, more generally, also to “connectedness” (p.
443; 1999, p. 625). For instance, van der Helm and Leeuwenberg
(1996) defined a dot pattern as spatially contiguous if the dots can
be connected by a path, without the path ever crossing itself and
without it ever visiting one dot more than once. Further restrictions
are that the path should stay within one half of the pattern first, for
bilateral symmetries as well as repetitions, before moving to the
other half. Especially this latter restriction seems crucial in the
detection of the different regularities and the occurrence of point

versus block structures (cf. Wagemans, 1999). Yet, Experiment 2
has already demonstrated that this cannot be the whole story. In
that experiment, we presented repetitions differing only in width to
height ratio, in which the total number of dots remained constant
but the number of dots between two repeated dots varied. All
patterns could be holographically coded in the same way—follow-
ing van der Helm and Leeuwenberg’s (1996) spatially contiguous
path first through one half and then through the other—and should
thus have led to the same goodness. Yet, the goodness of the
patterns differed substantially. The fewer interfering elements, the
better detection became. Explaining this requires reference to the
2-D structure of the patterns. But, spatial contiguity, as described
by van der Helm and Leeuwenberg (1996), does not distinguish
between one and two dimensions.

The contour elements of outline shapes do possess an intrinsic
connectedness, and perhaps a spatially contiguous symbol se-
quence may be more easily constructed by following such con-
tours. However, Hulleman and Boselie (1999) have recently dem-
onstrated that regularities that are restricted to the contour of a
pattern do not always determine regularity detection. For instance,
equilateral polygons (but with random angles) should result in a
high goodness value, as they can be coded through the A-rule.
Contrary to this prediction, Hulleman and Boselie (1999) found
that they were indistinguishable from random polygons. Hulleman
and Boselie further found that shapes with a high degree of
bilateral symmetry along the contour but that do not have corre-
sponding object parts (as defined by convexities and concavities in
the contour; see also Baylis & Driver, 1995) are also no better than
random polygons. Moreover, we have demonstrated in Figure 3
that even with outline figures there can be many different spatially
contiguous paths (e.g., U, N, and Z routes).

Another defense of holography might attempt to connect a
holographic theory of representation to a theory of visual process-
ing. This line is adopted by van der Helm and Leeuwenberg (1999)
in response to Wagemans (1999). Van der Helm and Leeuwenberg
proposed a synthesis between Wagemans’s bootstrap model of
symmetry detection (e.g., Wagemans, 1995; Wagemans et al.,
1993) and the holographic theory of regularity detection, arguing
that certain bootstrapping procedures could be adapted to lead to
point and block structures as in the holographic framework. Van
der Helm and Leeuwenberg (1999) claimed that such a synthesis
would solve many of holography’s processing problems and pro-
vide a formal justification for the bootstrap model. According to
the resulting holographic-bootstrapping model, the visual system
searches for correlational quadrangles between pattern elements.
This search starts with a chunk of the symbol sequence and
propagates from there. According to van der Helm and Leeuwen-
berg (1999), the propagation of quadrangles proceeds exponen-
tially in bilateral symmetries and alternations, whereas it proceeds
linearly in repetitions.

However, in the light of the analysis developed here, this ac-
count does not seem compelling. First, there is no a priori reason
for why repetitions should only propagate linearly: Glass patterns,
which have the same quadrangles as repetitions, do not propagate
in this way. The reason van der Helm and Leeuwenberg (1999)
offered is that the bootstrapping propagation should be “in agree-
ment with the way representations grow holographically” (p. 627).
In other words, bootstrapping should follow a block structure for
repetitions and a point structure for Glass patterns and symmetries.
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Leaving aside concerns of circularity here, note that there is no
single holographic way in which specific regularities grow, as
discussed in the present article. Moreover, the difference in prop-
agation speed between Glass patterns and repetitions can be more
easily, and certainly more elegantly, explained by the difference in
translation distance (both spatially and temporally; e.g., Jenkins,
1983a, 1983b). Bootstrapping is slower for long-distance repeti-
tions because the members of the virtual quadrangles are harder to
find when there are more interfering elements in between. Bilateral
symmetries, conversely, are quite easy to find because bootstrap-
ping can start locally, without interference (Wagemans et al.,
1993). The visual system solves many global problems by tackling
them locally. This works well for bilateral symmetries and Glass
patterns but is problematic for repetitions. Of course, local may be
seen at different scales (Dakin, 1997; Dakin & Watt, 1994).

Perhaps one day the problem of spatial mapping will be solved
within holography. If so, however, we suggest that such a consis-
tent spatial-mapping procedure may itself be a criterion for regu-
larity, which is likely to bypass the need for any holographic
criteria. In other words, we suspect that it will be difficult to
augment holography successfully without making it redundant. In
view of van der Helm and Leeuwenberg’s (1996) representational
stance, it may be more promising to return to the traditional
assumption that figural goodness is a function of simplicity and to
use processing assumptions to explain away apparent goodness
advantages of symmetry over the equally simple repetition. Alter-
natively, it may be that a purely process-oriented (Wagemans,
1995) or transformational approach (Palmer, 1983) is ultimately
more fruitful. In our view, the visual system represents the sim-
plest regularity it can find. Finding a regularity, however, is
heavily determined by processing factors involved in attention,
spatial proximity, scale, optic flow, orientation, perspective, con-
tinuity, common fate, and object–part correspondence (Baylis &
Driver, 1995; Dakin & Watt, 1994; Glass & Perez, 1973; Olivers
& van der Helm, 1998; Wagemans et al., 1992, 1993; Wenderoth,
1994). It is important to note that if a regularity is easily found, its
goodness will be high. If a regularity is difficult to find, it will not
be represented at all, and its goodness will be low.
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