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Exemplar and distributional accounts of categorization make differing predictions for the classification
of a critical exemplar precisely halfway between the nearest exemplars of 2 categories differing in
variability. Under standard conditions of sequential presentation, the critical exemplar was classified into
the most similar, least variable category, consistent with an exemplar account. However, if the difference
in variability is made more salient, then the same exemplar is classified into the more variable, most
likely category, consistent with a distributional account. This suggests that participants may be strategic
in their use of either strategy. However, when the relative variability of 2 categories was manipulated,
participants showed changes in the classification of intermediate exemplars that neither approach could
account for.

In this article, we consider the accounts of classification given
by two successful models of categorization. Exemplar models
(e.g., Medin & Schaffer, 1978; Nosofsky, 1986) assume the cate-
gorization of a new exemplar is based on the similarity of the new
exemplars to the representations of previously encountered exem-
plars stored in memory. An alternative is that probability distribu-
tions are used to represent categories and that these distributions
are fitted by using the encountered exemplars. Classification of a
new exemplar is based on the relative likelihood of belonging to
each distribution. This alternative will be called the distributional
approach (e.g., Ashby & Townsend, 1986).

The difference between these two accounts may be illustrated
with a simple example in which the two accounts make qualita-
tively different predictions. Consider two categories (see Figure 1).
The exemplars of one category may be more variable than the
exemplars of the other category. If a critical exemplar exactly
halfway between the nearest exemplars of the two categories is
presented, it may be classified into either category. (The term
critical exemplar is used to denote a novel test exemplar exactly
halfway between the nearest neighbors of two categories.)

Exemplar models predict that the critical exemplar should be
categorized as a member of the low-variability category more
often than the high-variability category.1 Intuitively, this is be-
cause the critical exemplar is, on average, nearer in perceptual
space to the exemplars of the low-variability category and is
therefore likely to be more similar to the exemplars of the low-

variability category. Distributional models predict that the critical
exemplar is more likely to be classified into the high-variability
category. If the presumed distribution is Gaussian (see Figure 1),
then the intermediate exemplar will typically, though not defi-
nitely,2 be classified as a member of the high-variance category
because the tight bunching of the low-variance exemplars means
that the critical exemplar is more standard deviations from the
mean of the low-variance category. (It is assumed here that the
frequencies of each category are equal—in the experiments below,
there is indeed no bias in favor of one category or the other.)

In summary, the exemplar and distributional models often make
different predictions about the classification of a critical exemplar
midway between the nearest exemplars from two categories dif-
fering in variability. We evaluate participants’ performance on
such a critical exemplar in Experiment 1. This idea is extended in
Experiments 2 and 3, in which we investigate the effect of chang-
ing the relative variability of the two categories.

The effects of category variability on generalization have been
addressed in two important studies: Rips (1989) and Fried and
Holyoak (1984). Rips used a binary categorization with categories

1 The exemplar model’s exact predictions for the classification of the
critical exemplar of course depends on the particular arrangement of
exemplars. For example, if the high-variability exemplars just happen to be
nearer to the critical exemplar, the opposite prediction would be made.
However, if exemplars are randomly generated from normally distributed
categories, this is unlikely to be the case.

2 The reason it is not certain that the critical exemplar should be
categorized as a member of the high-variability category more often than
as a member of the low-variability category is because the critical exemplar
is not equidistant between the means of the two categories (when this
would always be the case). (It is worth pointing out here that if this were
the case, then an exemplar model would be able to predict classification of
the critical exemplar into the high-variability category as this category is
most likely to have the nearest exemplar.) Rather, the critical exemplar is
equidistant between the nearest neighbors of the two categories and is
therefore nearer the mean of the lower variability category. Thus, the
difference in variability between the two categories need be sufficiently
large to counter the fact that the low-variability category has the nearer
mean.
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of differing variability to dissociate similarity and categorization
judgments. Participants were presented with sentences giving in-
formation about an object’s value on a single dimension. In one
condition participants had to classify the object as a member of one
of two available categories on the basis of this information alone.
In another condition, participants were asked to choose the cate-
gory to which the object was more similar.3 The value of the object
on the selected dimension was chosen to be halfway between the
participant’s estimates of the lowest value of the high-value cate-
gory, and the highest value of the low-value category. Participants
were told this is how the test value they were given was derived.
Rips found that similarity decisions favored the low-variability
category but that categorization decisions favored the high-
variability category. Rips took the dissociation between similarity
and categorization as evidence that categorization decisions were
not based on similarity decisions. Empirical evidence from E. E.
Smith and Sloman (1994) provided a pertinent boundary condition
on this dissociation. They found that Rips’s dissociation of cate-
gorization and similarity is only obtained under conditions that
require verbal rationalization of the categorization decision.

Rips’s (1989) study leaves open the question of the effect of
category variability in perceptual categorization, the topic of the
present article, for two reasons. First, Rips used familiar semantic
categories to encourage participants to use prior knowledge from
outside the experimental context. Such knowledge is not available
for the kinds of abstract perceptual stimuli traditionally used in
perceptual categorization experiments (although it may well be
available for natural perceptual categories). Second, the effect that
Rips described does not seem to be robust in conditions most

analogous to those of a typical perceptual categorization task
(where participants do not produce verbal protocols).

Fried and Holyoak (1984) have shown that participants are
sensitive to the relative variability of perceptual categories. They
found that participants classified some checkerboard patterns
physically closer to the prototype (or mean) of a lower variability
category as members of the high-variability category. Fried and
Holyoak had predicted these findings with their category density
model and interpret these findings as support for a distributional
approach. However it is also consistent with exemplar-based cat-
egorization, as it is much more likely that there will be more
exemplars from the high-variability category near the transfer
checkerboard than exemplars from the low-variability category,
simply because the checkerboards from the high-variability cate-
gory are more scattered from their prototype. A second issue
regarding Fried and Holyoak’s interpretation is that their similarity
estimate (i.e., the number of squares in common) may lead to
incorrect assumptions about the representation of these checker-
board stimuli. To a first approximation it may be that the largest
invariant chunk of a stimulus is learned as a feature (McLaren,
1997; Palmeri & Nosofsky, 2001; Stewart, 2001; Wills &
McLaren, 1998). Because the low-variability category’s exemplars
vary less, this would lead to the creation of larger functional

3 Note that participants were not asked for similarity ratings between two
objects as is typical in predicting classification from similarity or identi-
fication (e.g., Nosofsky, 1986) but rather gave ratings of the similarity
between an object and a category.

Figure 1. A one-dimensional example of two categories differing in variability. The exemplars of the
low-variability category happen to take low values on the dimension (squares). The probability density function
from which they were generated is represented by the solid line. The exemplars of the high-variability category
take high values of the dimension (circles). The probability density function from which they were generated is
represented by the dashed line. A critical example midway between the nearest examples of the two categories
(triangle) is more likely to belong to the high-variability category but is more similar to examples of the
low-variability category.
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features for this category. If this were the case, then an exemplar
equally distant between the two categories may indeed be more
similar to the high-variability category simply because the proba-
bility of the presence of larger chunks used to represent the
low-variability category is much lower than for the high-variability
category.

What is needed is a category structure that allows the similarity
and distributional models to be distinguished, even when memory
for individual exemplars is allowed (as it is in the hugely success-
ful exemplar models). Such a structure, illustrated in Figure 1, was
offered above.

Modeling Sensitivity to Category Variability

To confirm the intuitive argument that exemplar and distribu-
tional models of categorization make opposite predictions, we
examine two existing models of categorization in this section: the
generalized context model (GCM; Nosofsky, 1986) and normal
general recognition theory (Normal GRT; Ashby & Townsend,
1986).

First consider the predictions of the GCM. In the GCM, each
encountered exemplar is represented as a point in a perceptual
space. To classify a new exemplar, the similarity between the new
exemplar and each stored exemplar is calculated. (Similarity is a
decreasing function of the distance between exemplars in percep-
tual space.) Similarities are then summed for each category. Luce’s
(1959) choice rule is used on the summed similarities to calculate
the probability that the exemplar is classified into a given category.
Figure 2A plots the probability that the exemplar is classified into
the high-variability category as a function of the exemplar’s loca-
tion. This function is referred to as the generalization gradient.
The different gradients correspond to different values of the gen-
eralization parameter, c. For broad generalization (i.e., small c) the
similarity of a given exemplar to more distant exemplars will be
larger than for narrow generalization (i.e., large c). Thus when
generalization is narrow, the generalization gradient is steeper.
Provided the exemplars are appropriately arranged, the model
predicts that the critical exemplar is most likely to be classified
into the low-variability category for any value of the generalization
parameter. The predictions here are for the GCM with a Gaussian
function (q � 2) relating similarity to distance. The predictions of
the GCM with an exponential similarity function (q � 1) do not
differ qualitatively.

We illustrate the distributional approach by using Normal GRT.
Normal GRT is an extension of standard GRT. In standard GRT
each exemplar is represented by a normal distribution in perceptual
space. Thus standard GRT would make similar predictions to the
GCM, as each model assumes (some) memory for each exemplar.
In contrast, in Normal GRT each category, rather than each ex-
emplar, is represented by a single normal distribution. Ashby
(1992) made the strong assumption that many natural categories
can be represented by a normal distribution even when the true
distribution is not normal. In Normal GRT, the category exemplars
are used to infer a population mean and variance for the normal
representation for each category. An optimal decision bound is
then calculated that divides the perceptual space into regions for
each category, so that all the exemplars represented by points in
the same region are most likely to belong to a common category.
In the one-dimensional case for two categories of unequal vari-

ance, the optimal decision bound will be a pair of points, with the
lower variability category in between the two points and the higher
variability category outside the pair. Perception is assumed to be
noisy in GRT. Thus an exemplar near the decision bound may
sometimes be perceived to fall on one side of the bound and
sometimes on the other. To apply Normal GRT to the category

Figure 2. Predictions for the probability of a high-variability-category
response plotted as a function of the stimulus value for the stimuli used in
Experiment 1. The category structure is illustrated along the top of the
figure, with one category more variable than the other. A: Predictions for
the generalized context model (GCM). The three lines correspond to
different values of the generalization parameter, c. B: Predictions for
normal general recognition theory (GRT). The three lines correspond to
different levels of perceptual noise, which is assumed to be normally
distributed with standard deviation �p.

895CATEGORY VARIABILITY



structure for Experiment 1, we used the eight exemplars for each
category to generate an estimate of the population mean and
variance of the normal distribution from which the exemplars were
generated.4 The optimal decision bound was then calculated. The
exact predictions for classification of exemplars near the decision
bound depend on the level of perceptual noise (�p). Following
Ashby and Townsend (1986), we assumed the perceptual noise to
be Gaussian. Figure 2B illustrates three generalization gradients.
The less noise, the steeper the generalization gradient. Crucially
though, the level of noise changes the slope of the generalization
gradient but does not alter the location of the optimal decision
bound.

In summary, for a critical exemplar that lies exactly between the
nearest neighbors of two categories that differ in variability, the
GCM often predicts this critical exemplar is more likely to be
classified into the low-variability category (independent of the
amount of generalization), and Normal GRT predicts that the
critical exemplar is more likely to be classified into the high-
variability category (independent of the amount of perceptual
noise).

Experiment 1

Experiment 1 was designed to discriminate between exemplar-
based classification and distribution-based classification by using a
category structure as described above. In one condition partici-
pants were given a hint telling them that the two categories
differed in variability. E. E. Smith and Sloman’s (1994) replica-
tions of Rips’s (1989) study suggest that participants categorize
stimuli into the high-variability category only when their verbal
protocols show awareness of a difference in variability between
the two categories. The hint here was included to see what effect
knowledge of the variability difference might have on participants’
classification. The method of presentation of the exemplars was
manipulated as an additional between-participants factor. During
the learning phase, exemplars were either presented sequentially or
simultaneously. We hypothesized that simultaneous presentation
should make the difference in the variability of the categories more
salient.

Method

Participants. Sixty-four undergraduate students from the University of
Warwick participated for course credit.

Design. Participants performed three binary categorization tasks.
There was a separate stimulus set for each of the three tasks. After
learning 16 training exemplars, participants classified a critical exemplar
that fell halfway between the nearest exemplar of the low-variability
category and the nearest exemplar of the high-variability category. They
then classified two further verification exemplars, one from each category,
before moving on to the next classification. There were two between-
participants factors: (a) simultaneous or sequential presentation of training
exemplars and (b) whether participants were given a hint that one category
was more variable than the other.

Stimuli. An example stimulus set is shown in Figure 3. The stimuli
used in this experiment were outline circles each with a single solid dot
somewhere on their circumference. The diameter of the circle subtended
approximately 2° of visual angle. The stimuli varied only in the position of
the dot around the circumference; this position was diagnostic of category
membership. Pilot studies used the position of the dot on a straight line, but
the performance of many participants was consistent with their reports of

using a rule, such as whether the dot was more or less than halfway along
the line, to make their decision. The stimuli here were chosen so that use
of rules like this (e.g., using horizontal, vertical, or diagonal diameters as
decision bounds) should not be possible.

For each participant, for each category, eight exemplars were generated
from a normal distribution. The low-variability category distribution had a
standard deviation of 11°, and the high-variability category had a standard
deviation of 28°. There was a gap of 56° between the nearest exemplars of
each category, with the critical exemplar lying exactly in the center of this
gap. To ensure the gap between the nearest neighbors of each category was
constant for all participants, the means of the categories needed to be
adjusted slightly for each participant. The critical exemplar was in the 45°
position for the first task, the 135° position for the second task, and the
225° position for the third task (with 0° being at the 12 o’clock position and
angle increasing counterclockwise). The relative position of the low- and
high-variability categories was counterbalanced across participants.

Because the exact predictions of the GCM and normal GRT depend on
the particular distribution of exemplars, all of the stimulus sets were
modeled to check that the critical exemplar was indeed more similar to the
low-variability category but more likely to belong to the high-variability
category. This was always the case.

Apparatus. For the sequential presentation condition, stimuli were
displayed on a 14-in (36-cm) Apple Macintosh Color Display and re-
sponses were collected by using labeled keys on a standard qwerty key-
board (the keys A to J, inclusive, were labeled A, B, C, yes, D, E, and F,
respectively). For the simultaneous presentation condition, stimuli were
presented in a 210 � 297 cm booklet and responses written into the
booklet.

Procedure. The experiment began with instructions telling participants
they would do three categorization tasks, one after the other. Participants in
the hint condition received further instructions telling them that one (but
not which) category was allowed a greater spread of dots than the other.
They were instructed to try to identify the category that had the greater
spread of dots during the experiment.

In the sequential presentation condition, each trial began with a ready
prompt. When a participant pressed yes, there was a 1.5-s blank screen
before a circle with a dot appeared on the screen for 1 s. Participants
responded as quickly and accurately as they could from stimulus onset. The
assignment of category labels to the high- and low-variability categories
was counterbalanced across participants. After 1 s, the screen was cleared,
whether the participant had responded or not. After the participant re-
sponded, the correct answer was displayed on the screen for 1.5 s, followed
by a 1.5-s blank screen before the next trial began. The feedback for the
critical exemplar was random, so participants’ attention was not drawn to
the special status of the critical exemplar (which might have affected
performance on later stimulus sets).

4 In fact, because perception is assumed to be noisy, this method only
provides the best estimate of a participant’s hypothesized mean and
variance.

Figure 3. An example of a stimulus set from Experiment 1.
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The same stimuli were used for the simultaneous presentation condition,
which began with presentation of the first stimulus set. Each set of eight
exemplars belonging to the same category was arranged in a row, inside a
rectangle, together with the category label. The two sets were placed one
above the other. The placement of the low- and high-variability categories
at the top and bottom of the page was counterbalanced across participants,
as was the assignment of labels to categories. Within a set, the exemplars
were arranged in the same (random) rank order for all participants to ensure
that if the order of the exemplars on the page affected the salience of the
variability, then it would be held constant across conditions. Participants
studied the sheet of exemplars for 1 min, and then it was removed from
sight. The critical exemplar was then presented in the center of a new piece
of paper. Participants circled the category label to which they thought the
exemplar belonged. This was repeated with the verification exemplars.

Results

Data were collapsed across all three stimulus sets. For the
sequential condition, the mean training proportion correct was high
(no hint: mean proportion correct � .81, SE � .02; hint: mean
proportion correct � .79, SE � .02) and did not differ between the
hint and no-hint conditions, t(31) � 0.85, p � .05. No training data
were collected in the simultaneous presentation condition. How-
ever, performance can be compared across the simultaneous and
sequential conditions by using the verification trials. Verification
performance averaged across all conditions was high (mean pro-
portion correct � .93, SE � .02). A two-way analysis of variance
(ANOVA) (Hint � Presentation) revealed no effect of hint, F(1,
60) � 1.56, p � .05, no effect of presentation, F(1, 60) � 0.39,
p � .05, and no significant interaction, F(1, 60) � 0.00, p � .05.
In summary, knowledge that the two categories differed in vari-
ability did not facilitate category learning and neither did presen-
tation method.

Of most interest is performance on the critical exemplar. Table
1 shows the proportion of high-variability responses averaged
across all three critical exemplars. A two-way ANOVA (Hint �
Presentation) was run. Simultaneous presentation increased the
proportion of high-variability responses, F(1, 60) � 18.56, p �
.05, as did giving a hint that the two categories differed in vari-
ability, F(1, 60) � 5.96, p � .05. There was no significant
interaction, F(1, 60) � 0.52, p � .05. Planned t tests were run to
see which means differed significantly from chance performance
of .5. For the sequential presentation conditions, the proportion of
high-variability responses was significantly below chance for both
the hint condition, t(15) � 7.31, p � .05 and the no-hint condition,
t(15) � 13.17, p � .05. For the simultaneous presentation condi-
tion, the proportion of high-variability responses was not signifi-
cantly different from chance for the no-hint condition, t(15) �

0.13, p � .05, but was significantly above chance for the hint
condition, t(15) � 3.61, p � .05.

Discussion

In this experiment a critical exemplar lying midway between the
nearest exemplars of two categories differing in their variability
was significantly more likely than chance to be classified as
belonging to the lower variability category when training exem-
plars were presented sequentially. This pattern of classification is
consistent with the prediction of exemplar models—that is, that the
critical exemplar should be classified into the more similar cate-
gory. When training exemplars were presented simultaneously,
participants were significantly more likely to classify exemplars
into the high-variability category than when they were presented
sequentially. When participants were given a hint that the two
categories differed in variability, they were significantly more
likely to classify the critical exemplar into the high-variability
category. In combination, simultaneous presentation and hint
caused participants to classify the critical exemplar into the high-
variability category more often than chance, consistent with the
predictions of distributional models—that is, that the critical ex-
emplar should be classified into the category most likely to have
generated it. However, both models were originally designed to
explain sequential categorization performance, and the data col-
lected under sequential presentation conditions here support an
exemplar account rather than a distributional account.

Note that this experiment provides no evidence that the critical
exemplar was midway between the nearest exemplars of the two
categories in participants’ psychological space. However, it is at
least reasonable to assume that the psychological-space critical
exemplar must be in the region of the test critical exemplar that
was actually presented. Therefore given the large sizes of the
effects of presentation and hint, even if the psychological-space
critical exemplar does not coincide precisely with the physical-
space critical exemplar, its classification would also be strongly
influenced by these factors.

There are two possible alternative accounts of these findings.
The first is that changing the method of presentation and providing
a variability hint alters the representation of the categories that
participants form, rather than altering the classification strategy
they use. Consider how this account would work if participants
were using an exemplar strategy in all conditions of this experi-
ment. The shift to classification of the critical exemplar into the
high-variability category with simultaneous presentation and hint
would have to be explained as exemplars of the high-variability
category being closer in perceptual space to the critical exemplar
under these conditions compared with the sequential presentation
and no-hint conditions. However, the switch from sequential pre-
sentation and no hint to simultaneous presentation and hint was
intended to have exactly the opposite effect (i.e., to draw attention
to the variability difference). Thus although this alternative ac-
count remains a possibility, it does not seem plausible. However,
consider how the changing representation account would explain
these data if participants were using a distributional strategy
throughout the experiment. In this case, switching from sequential
to simultaneous presentation and providing the variability hint
should allow participants to assign a larger variability distribution
to the more variable category in the simultaneous hint condition

Table 1
Mean Proportion of High-Variability Responses in
Experiment 1, Split by Hint and Presentation Method

Condition

Presentation

Sequential Simultaneous

Hint .37 (.09) .74 (.07)
No hint .25 (.06) .51 (.08)

Note. Numbers in parentheses are standard errors of the means.
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rather than the sequential no-hint condition. This leads to the
prediction that the critical exemplar will be classified into the
high-variability category most often in the simultaneous hint con-
dition. In the sequential condition, when the difference in variabil-
ity is not salient, participants might assume that the two categories
had equal variance. Thus as the critical exemplar is nearer to the
mean of the low-variability category, the distributional account
predicts that it should be classified into this category most often.
Both of these predictions are consistent with these data.

The second alternative account of these data is that the response
bias changes systematically between these conditions. To account
for these data, the bias for the high-variability category would have
to have increased when presentation was switched from sequential
to simultaneous presentation and a hint was provided. We return to
this possible account below.

Sensitivity of Exemplar and Distributional Models to
Changes in the Relative Variability of Categories

In Experiment 2, we investigate how changing the relative
variability of two categories should affect the classification of
intermediate exemplars. (The term intermediate exemplars denotes
any exemplars between the two categories, in contrast to the use of
the term critical exemplar.) The category structures used are
illustrated in the top panel of Figure 4 and are described in detail
in the Design and stimuli section of Experiment 2. The stimuli
were rectangles or ellipses, defined by their height and width. One
pair of categories had standard deviations in the ratio of 1:2; the
other pair had standard deviations in the ratio of 1:4. Across
conditions, the low-variability categories had equal means. The
high-variability categories also had equal means. Finally, the dis-
tance between the nearest neighbors of each category was constant
across the 1:2 and 1:4 conditions.

Given the category representation of the Normal GRT, it seems
likely that this model would be sensitive to differences in the
relative variability of two categories. This is indeed the case. All
the categories are represented using simple covariance matrices
(� � �2I) because of the symmetrical nature of the categories. In
general, with two bivariate normal categories differing in covari-
ance matrix the decision bound is quadratic (Ashby, 1992, p. 460).
Here we modeled performance for stimuli lying on the line be-
tween the two category means (i.e., height � width). As in mod-
eling for the category structure used in Experiment 1, the percep-
tual noise changes the shape of the generalization gradient but does
not bias the decision bound (i.e., the point at which a stimulus is
equally likely to be classified into either category) one way or the
other. Of interest here is the comparison of gradients for the 1:2
and 1:4 conditions. One generalization gradient for each condition
is shown in Figure 5A. (The level of perceptual noise is assumed
constant across both structures, �p � 10.) As the difference in
variability between the two categories is increased the decision
bound moves nearer to the low-variability category.

The variances of each category were chosen to keep the distance
between the nearest exemplars of each category constant across the
1:2 and 1:4 conditions. This allows an alternative comparison in
which the classification of intermediate exemplars that are the
same distance from the nearest neighbor of the low-variability
category is contrasted (i.e., with the same coordinates, relative to
the nearest neighbors). Because the distance between the nearest

neighbors of each category is held constant across the 1:2 and 1:4
conditions, intermediate exemplars that are equally distant from
the nearest neighbor of the low-variability category across condi-
tions must also be equally distant from the nearest neighbor of the
high-variability category across conditions. For comparison of
exemplars with either the same absolute coordinates (see Figure
5A), or the same coordinates relative to the nearest neighbors (see
Figure 5C), each exemplar is always predicted to be more likely to
be classified into the high-variability category in the 1:4 condition
compared with the 1:2 condition. This is always true for any level

Figure 4. The arrangement of exemplars in Experiments 2 and 3. The
open shapes represent the 1:2 condition that is used in Experiments 2 and 3.
A: For Experiment 2, the solid shapes represent the 1:4 condition. B: For
Experiment 3, the solid shapes represent the 1:2 Expanded condition (and
cover all of the low-variability category exemplars and half of the high-
variability category exemplars from the 1:2 condition.)
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of perceptual noise because perceptual noise alters only the slope
of the generalization gradient and not the location of the decision
bound.

The generalization gradients predicted by the GCM for the two
category structures are also shown in Figure 5B, with the gener-
alization parameter held constant (c � 0.05) across the two struc-
tures. The predictions here are for the GCM with a Euclidean

distance metric (r � 2) and a Gaussian similarity function (q � 2);
however, the pattern of the predictions is the same for a city block
distance metric (r � 1) and exponential similarity function (q � 1).
The predictions of the GCM are similar to those of Normal GRT.
In the 1:4 condition, the high-variability category’s exemplars are
nearer, and the low-variability category’s exemplars are further
away, from a given intermediate exemplar, compared with the 1:2

Figure 5. Predictions for the probability of a high-variability-category (High Var) response plotted as a
function of the stimulus width (or height) for Experiments 2 and 3. The label “absolute position” refers to the
actual size of exemplars. The label “relative position” refers to the size of the exemplar compared to the nearest
exemplar of the low- (or high-) variability category. A: Predictions of normal general recognition theory (GRT)
for Experiment 2 (�p � 10). B: Predictions of the generalized context model (GCM) for Experiment 2 (q � 2,
r � 2, c � 0.05). C: Normal GRT predictions for Experiment 2 shown in Panel A plotted as a function of relative
position, rather than absolute position. D: The GCM predictions for Experiment 2 shown in Panel B plotted as
a function of relative position, rather than absolute position. E: normal GRT predictions for Experiment 3 (�p

� 10). F: The GCM predictions for Experiment 3 (q � 2, r � 2, c � 0.05). In Panels E and F the gradients for
the two conditions are almost exactly coincident. Exp � expanded.
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condition. Therefore exemplars intermediate between the two cat-
egories are more likely to be classified as members of the high-
variability category in the 1:4 condition than in the 1:2 condition.
However, when the generalization gradients are measured relative
to the two nearest neighbors, this is no longer true (see Figure 5D).
When exemplars an equal distance from the nearest neighbor of
the low-variability category in each condition are compared, clas-
sification into the high-variability category is more likely in the 1:2
condition because the second nearest neighbors of the high-
variability category are nearer in the 1:2 condition than in the 1:4
condition and the second nearest neighbors of the low-variability
category are further away in the 1:2 condition than in the 1:4
condition. (Note that this follows because (a) the exemplars of the
high-variability category are more spread out in the 1:4 condition
than in the 1:2 condition and (b) the low-variability category
exemplars are less spread out in the 1:4 condition than in the 1:2
condition.) This prediction is the opposite prediction to Normal
GRT. For these category structures it is trivial to prove that this
prediction is true for all amounts of generalization.5

Experiment 2

In Experiment 2 generalization gradients were obtained for
participants after training on both the 1:2 and 1:4 conditions.
Experiment 2 sets out to find which model describes the behavior
of participants, both at the level of across-participant averages and
also at the level of individual participants. It is important to
consider performance at the level of individual participants, par-
ticularly in view of the demonstration by Maddox (1999; see also
Ashby, Maddox, & Lee, 1994) that data averaged across partici-
pants might not reflect individual participant data, especially when
large individual differences exist. Using Monte Carlo simulation,
Maddox generated data sets from either GRT or from the GCM.
When the GCM was the correct model, averaging had little effect.
However, when GRT was the correct model and therefore per-
fectly described the generated data, averaging led to a better fit for
the GCM. This implies that averaging the data alters the qualitative
structure of the data. Thus, averaged data should not be used to
compare the two models, as averaging the data biases the result in
favor of the GCM.

Method

Participants. Thirty-two undergraduates from the University of War-
wick participated for course credit or payment of £5 (U.S. $7.39).

Design and stimuli. Each participant completed two categorization
training and transfer tasks. In the training stage, participants learned to
categorize stimuli that varied in height and width into one of two catego-
ries, with trial-by-trial feedback. In the transfer stage, participants classi-
fied old training exemplars and new transfer exemplars without feedback.

The tasks differed in the category structure used (see Figure 4A). Both
category structures had two categories, one with a mean of (200,200) and
the other with a mean of (300,300) in units of pixels. The 10 exemplars of
each category were arranged in a circle around each mean. In the 1:2
condition the low-variability category was half as variable as the high-
variability category (standard deviation of 20.0 vs. 40.0 on each dimen-
sion), and in the 1:4 condition the low-variability category was about four
times less variable than the high-variability category (standard deviation
of 12.7 vs. 50.2 on each dimension). In the transfer stage, additional
exemplars intermediate in height and width between the two categories
were included to measure the generalization gradient.

The order of learning the 1:2 and 1:4 tasks was counterbalanced across
participants. To minimize carry-over effects, in one condition stimuli were
rectangles of varying height and width and in the other condition stimuli
were ellipses of varying height and width. The assignment of shape to
condition was counterbalanced across participants. The assignment of
labels to categories was also counterbalanced. Finally, the assignment of
variability to the category of either small or large stimuli was also coun-
terbalanced. That is, for half the participants, the category with the smaller
stimuli was the less variable category (as in Figure 4A), and for the other
half, the category with the larger stimuli was the more variable category
(the mirror image of Figure 4A, about the line height � width � 500).

It is not always the case that a category structure in psychological space
reflects the structure of the category in the experimenter’s choice of
physical space (e.g., Palmeri & Nosofsky, 2001). A separate experiment,
not reported here, was run in which pairwise similarity judgements were
obtained for the stimuli used. The individual differences multidimensional
scaling model (Carroll & Wish, 1974; Shepard, 1980) was used to derive
solutions for the 1:2 and 1:4 conditions. Examination of the solutions
confirmed that the ratio of the mean interexemplar distance within each
category was greater for the 1:4 condition than for the 1:2 condition. This
supports the key assumption in this experiment—that the representation of
one category was indeed more variable than the other, and further, that the
difference in variability was greater in the 1:4 condition than in the 1:2
condition.

There is some debate on the nature of the psychological representation
of rectangles (e.g., Feldman & Richards, 1998; Krantz & Tversky, 1975;
Macmillan & Ornstein, 1998; Monahan & Lockhead, 1977). Krantz and
Tversky (1975) suggested that dimensions of area (a � h � w) and shape
(s � h/w) may be more appropriate than height (h) and width (w). Further,
the space may also be subject to Weberian compression for larger heights
and widths. However, under transformation to a-s space, log(h)-log(w)
space and log(a)-log(s) space, the qualitative properties outlined in the
previous paragraph remain unaltered.6

Apparatus. Stimuli were displayed on a 14-in (36-cm) Apple Macin-
tosh Color Display. Responses were collected using labeled keys on a
standard qwerty keyboard. The keys Z and X were labeled A and B
respectively.

Procedure. Each trial started with the presentation of a stimulus until
the participant responded. Feedback was given on the screen for 1,500 ms.
The feedback was the correct category label, presented as a letter (A or
B) 50 pixels high below the stimulus. The stimulus remained on the screen
until the end of the feedback. The screen was then blank for 500 ms before
the next trial began automatically. The sequence of 100 trials comprised
five repetitions of the 20 training exemplars. In each repetition, the trials
were in a random order. The 328 transfer trials comprised eight repetitions
of 41 exemplars. Of the 41 exemplars, 20 were the old training exemplars;
the remaining 21 transfer exemplars were novel exemplars located in
between the two categories in height–width space. Within each repetition,
the 41 exemplars were displayed in a random order. The structure of a trial
was the same as in training, except the feedback was omitted. After a
participant had responded, the screen was cleared, and the next trial began
after a 500-ms pause. When participants had completed the first categori-
zation task, they moved on to a second task, which was the same as the first

5 Proof follows by writing out, for each category structure, the expres-
sion for the probability that a given intermediate exemplar will be classi-
fied into the high-variability category according to the GCM and then
showing that this value is greater for the 1:4 condition than for the 1:2
condition for all values of c, when exemplars equally distant from the
nearest neighbors of either category are compared.

6 We thank Thomas S. Wallsten for drawing these alternative potential
representations to our attention.
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except that the category structure was swapped, as was the type of shape.
No instruction that the categories differed in variability was given.

Results

Average results. Participants were very accurate in their train-
ing classifications. On average, the mean proportion of correct
responses in training was .91. A six-way ANOVA (Category Mean
and Variance Assignment � Category Label � Condition Order �
Rectangle or Ellipse � Condition � Category) was run to check
that none of the counterbalanced factors or the category structure
affected training performance. There was a significant effect of
category mean and variance assignment, corresponding to a slight
improvement in accuracy when the category with the low mean
had the lower variance (.94 vs. .91), F(1, 16) � 7.03, p � .05. This
effect was not found in transfer. There were no other significant
main effects, largest F(1, 16) � 1.42, p � .25.

Performance on old training exemplars was also excellent dur-
ing transfer. The proportion of high-variability-category responses
to old training exemplars is shown in Table 2. A six-way ANOVA
(Category Mean and Variance Assignment � Category Label �
Condition Order � Rectangle or Ellipse � Condition � Category)
revealed a main effect of category, F(1, 16) � 6.54, p � .05.
Although performance was high on training exemplars in test,
exemplars of the low-variability category were classified slightly
less accurately than exemplars of the high-variability category
(mean proportion correct � .89 versus .96). There were no other
significant main effects, largest F(1, 16) � 2.32, p � .05. This
indicates that no counterbalanced factor had a significant effect on
old training exemplar classification in transfer.

It is the performance on the new transfer exemplars that is of
interest. The responses given to each of the 21 new transfer
exemplars are collapsed into seven sets, so that responses to
stimuli whose projections onto the line height � width coincide
were in the same set. Figure 6A shows a plot of the proportion of
high-variability responses given to stimuli in each of the seven sets
as a function of their size. Figure 6A can therefore be thought of
as showing a generalization gradient. A six-way ANOVA (Con-
dition � Stimulus Set � Category Mean and Variance Assign-
ment � Category Label � Condition Order � Rectangle or
Ellipse) was run. In both the 1:2 and 1:4 conditions, the proportion
of high-variability responses to test exemplars increased as the
location of the test exemplar moved toward the high-variability
category, F(6, 96) � 185.77, p � .05 (Huynh–Feldt � � .82). In
the 1:4 condition the proportion of high-variability responses was
higher than for the 1:2 condition for every set of test stimuli, F(1,
16) � 10.52, p � .01. There was no significant interaction between

stimulus and condition, F(6, 96) � 1.67, p � .05 (Huynh–Feldt �
� 1.00). There were no other significant main effects, largest F(1,
16) � 1.06, p � .05, showing that none of the counterbalanced
factors affected responding significantly.

By analyzing the results as above, we compared classification of
exemplars that are equally distant from the mean of the low-
variability category (or the mean of the high-variability category—
the two comparisons are equivalent given the category structures
used here) across the 1:2 and 1:4 conditions. However, an exem-
plar that is equally distant from the low-variability category mean
in the 1:2 and 1:4 conditions is not equally distant from the nearest
exemplar of the low-variability category in both conditions. The
following analysis compares exemplars that are equally distant
from the nearest exemplar of the low-variability category across
the two conditions. (As the distance between the nearest neighbors
of each category was the same for both conditions, it does not
matter whether distance is measured relative to the position of the
low-variability category’s nearest exemplar or to the high-
variability category’s nearest exemplar.) Such a comparison is
shown in Figure 6B. (If one shifts the 1:2 data in Figure 6A one
step to the left, one obtains Figure 6B.) Another six-way ANOVA
(Condition � Stimulus Set � Category Mean and Variance As-

Table 2
Mean Proportion of High-Variability Responses to Old Training
Exemplars in Test for Experiment 2

Category

Condition

1:2 1:4

Low variability .11 (.03) .12 (.03)
High variability .95 (.01) .96 (.01)

Note. Numbers in parentheses are standard errors of the means.

Figure 6. The results of the transfer stage of Experiment 2. In Panel A,
the results are plotted as a function of absolute position; in Panel B, the
same results are plotted as a function of relative position.
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signment � Category Label � Condition Order � Rectangle or
Ellipse) was run. Unsurprisingly, as before, as the location of the
test exemplar got nearer the exemplars of the high-variability
category, the proportion of high-variability responses increased,
F(5, 80) � 170.01, p � .05 (Huynh–Feldt � � .87). However, now
that position is measured relative to the nearest neighbors of the
two categories, there is no difference between the generalization
gradients for the two conditions, F(1, 16) � 0.23, p � .05. There
was no stimulus by condition interaction, F(5, 80) � 0.41, p � .05
(Huynh–Feldt � � 1.00). There were no other significant main
effects, largest F(1, 16) � 1.19, p � .05, showing that none of the
factors counterbalanced across participants affected responding
significantly.

Individual participant results. When generalization gradients
were calculated for individual participants, many participants
showed very different gradients for the two conditions. The results
averaged across participants did not represent individual perfor-
mance well. Even when the effect of nearest neighbors was con-
trolled, many participants showed a difference in gradients. Fur-
ther, for many of these participants, the change was larger than
would be expected by chance. A chi-square analysis was per-
formed for each participant, with the trial as the unit of analysis.
A 2 (variability condition) � 2 (response) contingency table was
constructed for each participant containing the frequencies of low-
and high-variability responses in each condition summed across
transfer exemplars that were equally distant from the nearest
neighbors of each category. A chi-square statistic was calculated
on the basis of the hypothesis that there should be no difference in
the proportion of high-variability responses between the two con-
ditions. Yates’s continuity correction was not used, as there is no
reason to expect constant marginal totals, and the expected fre-
quencies were large (Howell, 1997, p. 146). As the assumption that
the response on each trial is independent of the response on any
other trial is unlikely to be true, the statistic was deflated to
account for trials being nonindependent (Altham, 1979; see also
Tavaré & Altham, 1983). Thirteen of the 32 participants showed a
significant difference between their responding in the two condi-
tions, 7 increasing and 6 decreasing their proportion of high-
variability responses as the difference in variability between the
two conditions increased. The probability of obtaining 13 or more
significant differences (i.e., p � .05) by chance is 1.72 � 10�9,
assuming that the number of significant results is binomially
distributed (n � 32, p � .05).

Discussion

Averaged across participants, when the difference in variability
between two categories was increased, the proportion of high-
variability responses to intermediate exemplars increased. This
result is consistent with the predictions of the GCM and of Normal
GRT. Of interest here is the result when the presence of nearest
neighbors was taken into account. This was done by comparing
exemplars that were equally distant from the nearest neighbor of
the low-variability category across the two conditions. Averaged
across participants, the generalization gradients for the two con-
ditions were virtually identical. This is inconsistent with the pre-
dictions of Normal GRT but is consistent with those of GCM
(when the amount of generalization is small). However, the indi-

vidual participant data were not well described by the average
results.

A significant minority of participants showed a significant dif-
ference in their relative position generalization gradients between
the two conditions. For about half of this minority, the relative
position generalization gradient was shifted toward the low-
variability category in the 1:2 condition compared with the 1:4
condition, consistent with the predictions of the GCM. For the
other half, the shift was in the opposite direction, consistent with
GRT. The majority of participants showed no significant change in
relative position generalization gradient. Thus at the level of indi-
vidual participants, some participants were behaving as if they
were using an exemplar strategy and not a distributional strategy,
and some participants were behaving as if they were using a
distributional strategy and not an exemplar strategy. These data
then do not provide support for one model over the other, and
instead, at least for a significant minority of participants, challenge
both models.

There is an alternative explanation: either the perceptual spaces
formed, or the response biases used, in each condition fluctuated
randomly for each participant.7 Thus, participants may all be using
the same categorization strategy, and the differences in the change
in generalization gradient between participants may instead be due
to random fluctuations. This is consistent with the observation that
for those participants who showed a significant difference in
relative position generalization gradient, half showed a shift in one
direction and half showed a shift in the other direction. We address
the possibility of such random fluctuations in Experiment 3.

Experiment 3

In Experiment 3, we used the 1:2 condition described above and
a new condition. This new condition, 1:2 Expanded, differs only
slightly from the 1:2 condition—in the 1:2 Expanded condition the
five exemplars of the high-variability category that are furthest
from the low-variability category are moved to even more extreme
points (see Figure 4B). These two conditions are designed to allow
the exemplar and distributional models to be further tested. Figure
5F shows the generalization gradients predicted by the GCM
(Gaussian similarity function, Euclidean distance metric, c � 0.05)
for the two conditions. The gradients almost exactly coincide. This
is true for the range of c parameters that produces acceptable
accuracy for the training exemplars (i.e., greater than 80% accu-
racy—participants in fact performed at about 90% accuracy). This
can be explained intuitively as follows. When classifying exem-
plars from one category, the amount of generalization must be
small enough to prevent generalization to exemplars in the other
category. When the generalization is this small, the distant exem-
plars of the high-variability category in both category structures
have only an infinitesimal level of similarity to the intermediate
exemplars and thus have a negligible role in the classification of
the intermediate exemplars. Therefore, moving these distant ex-
emplars to even more distant locations in perceptual space should
have no effect. In summary, if the GCM is to predict realistic
accuracy for classification of old training exemplars, it is con-

7 We thank Robert M. Nosofsky for suggesting this hypothesis as an
alternative explanation.
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strained to predict no difference between classification of interme-
diate exemplars between the 1:2 and 1:2 Expanded conditions.

As described above, the distant exemplars of the high-variability
category in the 1:2 Expanded structure were moved to a distant
location. This movement causes the high-variability category mean
to move to a slightly more distant location in space. Modeling with
Normal GRT for the 1:2 and 1:2 Expanded conditions shows that
the effect of the increase in variability is almost exactly canceled
out by this movement of the mean (see Figure 5E). The two
generalization gradients are almost identical and are certainly
empirically indistinguishable. Normal GRT then makes the same
prediction as the GCM—that is, that there should be no difference
in the generalization gradients for the two conditions.

Both the exemplar and distributional approaches were unable to
predict the large variation between individuals demonstrated in
Experiment 2. However, if some participants are assumed to apply
an exemplar approach and some, a distributional approach, this
variation might be explained. Our aim for Experiment 3 was to
discriminate between these two possibilities. As demonstrated
above, the GCM and Normal GRT predict no difference between
the generalization gradients for the 1:2 and 1:2 Expanded condi-
tions. However, the category structures used here are very similar
to those used in Experiment 2, so there is good reason to expect
replication of the large individual differences.

Method

This experiment differs from Experiment 2 only in the category struc-
tures used.

Participants. Thirty-two undergraduates from the University of War-
wick participated for course credit or payment of £5 (U.S. $7.39). No
participant had taken part in any other experiment in this study.

Stimuli. The stimuli in the 1:2 condition were the same as in Experi-
ment 2. A new category structure, 1:2 Expanded (see Figure 4B), replaced
the 1:4 structure.

As in Experiment 2, a separate multidimensional scaling experiment (not
presented here) was run. Using the same method as described in Experi-
ment 2, the ratio of the recovered mean within-category interexemplar
distances was greater in the 1:2 Expanded condition than in the 1:2
condition. The similarity between the intermediate exemplars and the far
exemplars of the high-variability category in both the 1:2 and 1:2 Ex-
panded conditions (when calculated as in the GCM) was negligible com-
pared with the similarity to other training exemplars, for c parameters large
enough to produce acceptable accuracy on the old training exemplars in
test. This supports the assumption that the far exemplars of the high-
variability category do not influence classification of the intermediate
exemplars, which was used in making predictions for the GCM.

Results

Average results. Participants were very accurate in their train-
ing classifications. On average, the mean proportion of correct
responses in training was .91. A six-way ANOVA (Category Mean
and Variance Assignment � Category Label � Condition Order �
Rectangle or Ellipse � Condition � Category) was run to check
that none of the counterbalanced factors, or the category structure,
affected training performance. There were no significant main
effects, largest F(1, 16) � 2.03, p � .17.

Performance on old training exemplars was also excellent dur-
ing transfer (see Table 3). A six-way ANOVA (Category Mean
and Variance Assignment � Category Label � Condition Order �

Rectangle or Ellipse � Condition � Category) was run to examine
whether any of the control factors had an effect on performance
and to check that performance on old training exemplars was equal
for each category. There was a main effect of learning order, F(1,
16) � 5.84, p � .05, that corresponds to a small (3%) accuracy
advantage for the participants learning the 1:2 condition before the
1:2 Expanded condition. Such an increase in accuracy should
sharpen a generalization gradient, but it should not lead to an
increase in the proportion of responses to one category, which is
what is of interest here. There were no other significant main
effects, largest F(1, 16) � 1.84, p � .05. This means no other
counterbalanced factor had a significant effect on old training
exemplars classification in transfer.

Each new test exemplar was of equal distance from the nearest
exemplar of the low-variability category between the two condi-
tions. (That is, the effect of nearest neighbors was controlled
across the two conditions without the adjustment required in
Experiment 2.) As in the previous experiment’s analysis the re-
sponses given to each of the 21 new transfer exemplars were
collapsed into seven sets. Figure 7 plots the generalization gradi-
ent. A six-way ANOVA (Condition � Stimulus Set � Category
Mean and Variance Assignment � Category Label � Condition
Order � Rectangle or Ellipse) was run. In both the 1:2 and the 1:2
Expanded conditions, the proportion of high-variability responses
to test exemplars increased as the location of the test exemplar
moved toward the high-variability category, F(6, 96) � 277.20,
p � .05 (Huynh–Feldt � � 1.00). There was almost no difference
between the proportion of high-variability responses in the 1:2 and
1:2 Expanded conditions, F(1, 16) � 0.25, p � .05. There was no
significant interaction between stimulus and condition, F(6,
96) � 0.61, p � .05 (Huynh–Feldt � � 0.74). None of the
counterbalanced factors had a significant effect, largest F(1,
16) � 3.88, p � .05.

Individual participant results. As for Experiment 2, when
generalization gradients were calculated for individual partici-
pants, they showed that many participants had very different
gradients for the two conditions. The results, averaged across
participants, did not represent individual performance well. When
the distant exemplars of the more variable category were moved to
be more extreme points, 8 participants showed an increase in their
proportion of high-variability responses to the transfer exemplars,
whereas the remaining 24 showed a decrease. Further, for many of
these participants the change was larger than would be expected by
chance. As before, a chi-square analysis was performed for each
participant, with the trial as the unit of analysis. Nineteen partic-
ipants showed a significant difference between their responding in
the two conditions, 4 increasing and 15 decreasing their proportion

Table 3
Mean Proportion of High-Variability Responses to Old Training
Exemplars in Test for Experiment 3

Category

Condition

1:2 1:2 Expanded

Low variability .07 (.01) .10 (.02)
High variability .93 (.01) .93 (.01)

Note. Numbers in parentheses are standard errors of the means.
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of high-variability responses as the difference in variability be-
tween the two conditions increased. The probability of obtain-
ing 19 or more significant differences (i.e., p � .05) by chance,
under the assumption that there is no difference between the
proportion of high-variability responses between the two condi-
tions is 3.52 � 10�17, assuming that the number of significant
results is binomially distributed (n � 32, p � .05).

As previously mentioned, an alternative account of these indi-
vidual participant data is to postulate random fluctuations in re-
sponse bias between the 1:2 and 1:2 Expanded conditions. This
hypothesis could certainly predict individual differences. Some
participants would decrease their bias for the high-variability cat-
egory in the 1:2 Expanded condition compared to the 1:2 condi-
tion. These participants would therefore show a decrease in high-
variability-category responses in the 1:2 Expanded condition
compared with the 1:2 condition. Similarly, some participants
could show the opposite pattern. A key prediction from this
random-response-bias hypothesis is that for any participant, the
probability of showing either pattern is .5. However only 8 out
of 32 participants did show an increase in high-variability re-
sponses between the 1:2 and 1:2 Expanded conditions. The prob-
ability of 8 or fewer participants showing an increase is .0035,
assuming a binomial distribution for the number of participants
showing an increase (n � 32, p � .5). The random-response-bias
hypothesis may therefore be rejected. It is possible that there might
have been some systematic cause of changes in response bias,
which would change the probability of increasing high-variability-
category bias between the 1:2 and 1:2 Expanded conditions from
a chance level of .5. However, because the order of each condition
and the assignment of condition to shapes was counterbalanced
across participants, it is not clear what the response bias could vary
with, other than the factor of interest—the change in category
structure.

Discussion

Moving the distant exemplars of the high-variability category to
more distant locations did not alter the generalization gradient
obtained from averaged participants’ data. This result is consistent

with the predictions of the GCM and Normal GRT. However, as in
the previous experiment, individual participant data was not well
described by the average data. For the majority of participants,
moving the distant exemplars had a large effect on their perfor-
mance on the intermediate exemplars. Both the GCM and Normal
GRT are unable to account for this result. Further, significantly
more participants than would be expected by chance showed a
decrease in the proportion of high-variability responses. Thus the
alternative hypothesis raised in the Discussion section of Experi-
ment 2—that individual differences are due to random fluctuations
between conditions in individual’s response biases or perceptual
spaces—can be rejected because this hypothesis predicts that
increases and decreases in the proportion of high-variability re-
sponses should be equally likely. The possibility that these find-
ings might be explained by fluctuations that are nonrandom is not
ruled out.

In summary, although average data are consistent with both
exemplar and distributional approaches, at the level of individual
participants the data for the majority cannot be explained by either
approach.

General Discussion

In the experiments presented in this article, we investigated
whether categorization performance is based on similarity to
stored category exemplars or the likelihood of the data in relation
to a probability distribution inferred from the data. Modeling using
an exemplar model (the GCM; Nosofsky, 1986) and a distribu-
tional model (Normal GRT; Ashby & Townsend, 1986) demon-
strated that the two accounts make qualitatively different predic-
tions for the classification of a critical exemplar exactly in-
between the nearest exemplars of two categories that differ in
variability. The exemplar model predicted classification of the
critical exemplar into the more similar, lower-variability category,
but the distributional model predicted classification into the more
likely, higher-variability category.

Experiment 1 showed that the critical exemplar was classified
into the lower variability category most often when stimuli were
presented sequentially, consistent with the predictions of the ex-
emplar model. Models of categorization were originally intended
to make predictions for sequentially presented stimuli. However,
in nonstandard conditions, in which stimuli were presented simul-
taneously and a hint was given that the two categories differed in
variability (manipulations that were intended to increase the sa-
lience of the difference in variability), the same critical exemplar
was classified into the high-variability category most often, con-
sistent with the predictions of the distributional model. Thus, under
some conditions at least, it seems that participants switched from
using an exemplar strategy to using a distributional strategy.

Further modeling demonstrated that the exemplar and distribu-
tional models make opposite predictions about the effect of in-
creasing the relative variability of the two categories on classifi-
cation of exemplars intermediate between the two categories. The
exemplar model predicted that the probability of classifying an
intermediate exemplar into the high-variability category would
decrease slightly as the difference in variability increased. At odds
with this prediction, the distributional model predicted that the
probability of classifying an intermediate exemplar into the high-

Figure 7. The results of the transfer stage of Experiment 3. Exp �
expanded.
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variability category would increase as the difference in variability
increased.

Experiment 2 demonstrated that individual participants’ classi-
fication of exemplars intermediate between two categories varied
greatly as the relative variability of the pair of categories was
increased. Some participants showed an increase in high-
variability-category responses, consistent with the predictions of
Normal GRT, and others showed a decrease, consistent with the
predictions of the GCM. The best construal for the GCM and
Normal GRT would be that both kinds of mechanism are available
to people and they can choose between them. However, this seems
to involve the cognitive system in unnecessary duplication, given
that the two approaches produce extremely similar answers under
almost all circumstances. Moreover, this possibility is eliminated
by the results of Experiment 3. Experiment 3 replicated the results
of Experiment 2 by using two pairs of categories where both
exemplar and distributional models were constrained to predict no
change in the proportion of high-variability responses to interme-
diate exemplars as relative variability was increased. The majority
of participants showed a significant change at odds with the
predictions of both the GCM and Normal GRT. At the level of data
averaged across participants, these differences disappear. That the
true form of individual participant data is obscured by averaging
further illustrates the dangers of averaging across participants
(Ashby et al., 1994; Maddox, 1999).

Exemplar and distributional models can be thought of as lying at
opposite ends of a continuum of finite mixture models, where the
number of distributions used to represent a category varies from
one, as in Normal GRT, to the number of exemplars of that
category, as in the GCM and standard GRT (Ashby & Alfonso-
Reese, 1995; Rosseel, 1996). (Ashby and Maddox, 1993, and
Nosofsky, 1990, also formalize the relationship between exemplar
and distributional models.) Also contained in this continuum are
back propagation networks with sigmoidal activation functions
(Rumelhart, Hinton, & Williams, 1986) and radial basis functions
(Moody & Darken, 1989). With small numbers of hidden units
(and hence, small numbers of free parameters in relation to the size
of the data to be modeled), neural networks are analogous to
distributional models because they can learn data only with a
particular distributional structure. But if the number of hidden
units is large in relation to the amount of data to be learned, then
the neural network becomes analogous to an exemplar model in
that any data set can be modeled, whatever its structure, simply by
learning each piece of data (each exemplar) by rote. The results of
Experiments 2 and 3 present a challenge to unitary accounts of this
kind that assume that categorization is achieved by a mechanism at
some point along the continuum between distributional and exem-
plar models.

Decision-Bound Models

Decision-bound models of categorization may be adapted to
offer a potential account of these results. Decision-bound models
include general linear classifiers (e.g., Medin & Schwanenflugel,
1981; Morrison, 1990; Nilsson, 1965; Townsend & Landon,
1983), general quadratic classifiers (e.g., Ashby, 1992; Ashby &
Maddox, 1992), and optimal decision rules (e.g., Fukunaga, 1972;
Green & Swets, 1966; Noreen, 1981; Townsend & Landon, 1983).
Decision-bound models are closely related to Normal GRT, except

that participants are assumed to estimate the parameters of the
decision bound directly, rather than calculating the bound from the
inferred normal distributions used to represent each category.

In the experiments presented in this article, there is a large,
empty region between the two categories, where participants have
no training data. Therefore, there is a large set of perfect decision
bounds that participants could use if they are estimating the bound
directly. However, the hypothesis that the individual differences
described in Experiment 3 are due to participants choosing a bound
at random from the large set of possible bounds in each condition
fails. This hypothesis predicts that participants would be as likely
to move their decision bound toward the high-variability category
in the 1:2 Expanded condition compared with the 1:2 condition as
they would be to move it away from the high-variability category.
Thus, participants would be as likely to show an increase in
high-variability-category responses across conditions as they
would be to show a decrease. The finding that the number of
participants showing either pattern differs significantly from this
chance hypothesis can be used to reject the random-decision-
bound hypothesis, just as it was used to reject the random-
response-bias hypothesis in Experiments 2 and 3. Thus the selec-
tion of the decision bound from the set of possible bounds must be
nonrandom. However, decision-bound theory does not provide a
candidate selection mechanism. Such a mechanism would also
have to account for how the location of this bound might be
influenced by knowledge and salience of the differences in vari-
ability, as demonstrated in Experiment 1.

Prototype Models

J. D. Smith and Minda (2000) reviewed the categorization
literature and found that prototype models (e.g., Homa, Sterling, &
Trepel, 1981; Posner & Keele, 1968, 1970; Reed, 1972; Rosch,
1973; Rosch, Simpson, & Miller, 1976) were able to account for
performance on novel training exemplars at least as well as exem-
plar models (although exemplar models out-performed prototype
models on old training exemplars). Following this renewed interest
in prototype models, the predictions of prototype models for cat-
egory structures used here are described below.

Prototype models predict classification of exemplars into the
category with the nearest mean. Thus, for the critical exemplar in
the category structure used in Experiment 1, prototype models
predict it should be classified into the low-variability category as
the mean of this category is nearest to the critical exemplar.
Because the model does not represent variability information, the
variability salience manipulations in Experiment 1 should not have
had any effect. The category means remain unaltered between the
1:2 condition and the 1:4 condition of Experiment 2, and thus
prototype models predict no difference in the (absolute position)
generalization gradients between the two conditions. A significant
difference was observed, contrary to the predictions of prototype
models. For Experiment 3, the motion of the extreme exemplars of
the high-variability category to more distant locations (in the 1:2
Expanded condition, compared with the 1:2 condition) will cause
the prototype model to predict more high-variability responses to
test exemplars in the 1:2 condition than in the 1:2 Expanded
condition. In Experiment 3 no significant difference was observed
in the average data, and the small numerical difference was in the
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opposite direction. In summary, prototype models are unable to
account for sensitivity to category variability displayed here.

Ashby and Gott (1988)

It is worth noting the relationship between this demonstration
that participants are sensitive to the difference in variability of two
categories and Ashby and Gott’s (1988) Experiment 3. They used
a two dimensional category structure with two categories with
equal, nonidentity covariance matrices with positive covariance
between the two dimensions (illustrated in their Figure 4). The
category means differed on a single dimension, and thus the
decision bound predicted by a minimum distance (to prototype)
classifier is a straight line of equal value on the other dimension
between the two categories. The optimal linear decision bound is
a diagonal line of positive slope between the two categories.
Participants’ classification was best described by the optimal linear
decision bound, reflecting participants’ sensitivity to the correla-
tion of the two dimensions. Thus Ashby and Gott demonstrated
that participants were sensitive to within-category covariance. In
contrast, the experiments in this article demonstrated that partici-
pants were sensitive to the difference in variability between two
categories.

Kalish and Kruschke (1997)

Kalish and Kruschke (1997) investigated decision boundaries in
a one-dimensional categorization. In their Experiment 1 they used
two overlapping uniformly distributed categories of different vari-
ance. This structure is therefore similar to that used here in
Experiment 1. Although it is perhaps unfair to use Normal GRT to
predict performance on Kalish and Kruschke’s category structure,
as their categories are not normally distributed, the structure does
lead to differing predictions for Normal GRT and the GCM. The
GCM predicts a two-step generalization gradient, where Normal
GRT predicts a one-step function. Kalish and Kruschke found that,
of 42 participants, 23 showed a one-step function (i.e., a two-step
function did not fit significantly better) and 18 showed a two-step
function. These results then provide approximately equal support
for either model.

Conclusion

Averaged across participants, under standard conditions of se-
quential presentation of training exemplars, the data presented here
favor an exemplar-similarity based account of classification rather
than a distributional account. However, under nonstandard condi-
tions, when training exemplars were presented simultaneously and
participants were told that the categories differed in variability,
performance switched to that predicted by a distributional account.
However, there were large individual differences that neither
model could account for when the relative variability of two
categories was manipulated. We are beginning to explore an al-
ternative account that differs fundamentally from those discussed
here in that the absolute magnitudes of stimulus attributes are
assumed to be unavailable, and instead that stimuli are judged
relative to one another (Stewart, Brown, & Chater, 2002).
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