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Article
Against Logicist Cognitive Science

MIKE OAKSFORD* AND NICK CHATER

It would not be unreasonable to describe Classical Cognitive
Science as an extended attempt to apply the methods of proof
theory to the modelling of thought. (Fodor & Pylyshyn, 1988,
pp. 29-30)

1. Introduction

In this paper, we shall argue that the plausibility of classical, logicist
cognitive science depends on its ability to provide a proof-theoretic
account of the defeasible inferencing which is implicated in almost every
area of cognitive activity. We shall show that such an account is unlikely
to be forthcoming and hence cognition cannot be seen as mechanised
proof theory.
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A proof-theoretic account involves three components: the specification
of (i) a formal language; (ii) a set of syntactic (i.e. proof-theoretic) rules of
inference; and (iii) a mechanistic implementation of (i) and (ii). That is,
cognition is an implemented formal logic. This is the classical, logicist
position in cognitive science and artificial intelligence (Fodor & Pylyshyn,
1988; Hayes, 1978, 1984a). Defeasible inferences are inferences which can
be defeated by additional information. Inferences licensed by classical logic
are monotonic: no additional premises can invalidate a previously derived
conclusion. This contrasts with everyday, defeasible inference which is
non-monotonic: the addition of premises may invalidate a previously
derived conclusion. In defeasible, non-monotonic inference it is possible
to add premises and lose conclusions. Defeasible inference permeates every
area of cognitive activity, Thus, at least prima facie, a logicist account
of cognition must postulate proof-theoretic rules defined for some non-
monotonic logic. We assess the practical attempt, in Al knowledge represen-
tation, to carry out this logicist programme using non-monotonic logics.
We note that such logics are able to draw only unacceptably weak disjunc-
tive conclusions; and that the theorem-proving algorithms over such logics
are computationally intractable due to their reliance on solving the NP-
complete problem of consistency checking. We suggest that the programme
of logicist cognitive science is infeasible, and reply to a number of plausible
objections to this conclusion.

The structure of the paper is as follows. We first characterise the classical,
logicist position, using the formulation of two of its most influential
exponents, Jerry Fodor and Zenon Pylyshyn, and adduce various adequacy
criteria on logicist explanations of cognitive phenomena. We then note
that human inferential processes, in common-sense reasoning, and in a
variety of specific cognitive domains, are quite generally knowledge-rich
and defeasible. These difficulties infect logicist treatments invoking uncon-
scious, implicit inferences in text comprehension, conceptual reasoning,
problem solving, perception, and even in recent accounts of human per-
formance on explicit deductive reasoning tasks. To further illustrate the
nature of the problem, we then draw on a parallel between these difficulties
and those experienced in the philosophy of science in attempting to
provide a theory of confirmation, a parallel also noted by Fodor (1983) (see
also Sperber & Wilson, 1986). A specific attempt to deal with defeasible
inference using non-monotonic logics (Reiter, 1985), which has been pro-
posed within the tradition of knowledge representation in Al, is then
critically examined. We draw the general moral that non-monotonic logics
licence only unacceptably weak conclusions, and cannot be compu-
tationally implemented in real time. There are a number of proposals
which appear to circumvent these problems. However, we argue, case by
case, that such proposed logicist solutions succumb to the difficulties that
we raise or amount to a retreat from the logicist position, and conclude
that logicist cognitive science is ill-founded.
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2. Logicist Cognitive Science

Fodor and Pylyshyn (Pylyshyn, 1973, 1984; Fodor, 1975, 1980, 1983, 1987;
Fodor, Bever & Garrett, 1974; Fodor & Pylyshyn, 1988) have, over a number
of years, argued that folk-psychological explanation, in terms of the ascrip-
tion of propositional attitudes such as beliefs and desires, must be recon-
structed in any proper account of cognitive activity. According to this
view, to have a propositional attitude is to stand in a certain relation (the
relation of believing, desiring or whatever) to a mental representation, the
content of which is the object of the propositional attitude. Since the
contents of propositional attitudes are described in natural language, the
interpretation of the corresponding mental representations must be at
the level of everyday objects and relations. This is the substance of the
Representational Theory of Mind (e.g. Fodor, 1980). Folk psychology
explains behaviour in terms of inference over propositional attitudes.
Hence, a representationalist reconstruction of folk psychology must pro-
vide mechanisms for drawing inferences over the representations which
capture the content of the propositional attitudes. These mechanisms are
typically taken to be formal operations over syntactically structured rep-
resentations. That is, mental operations are taken to apply purely in virtue
of the structural properties of the representations. These syntactic mental
operations must be coherent with respect to the semantics of the represen-
tations being manipulated. This is the substance of the Computational
Theory of Mind (Fodor, 1980). Currently, the only way in which the
semantic coherence of formal structural manipulation may be guaranteed
is by showing that each manipulation of the representations corresponds
to a sound proof-theoretic derivation in some appropriately interpreted
formal language. In other words, the language of mental representation
constitutes a logic, in which mental representations correspond to well-
formed-formulae, and manipulations over them correspond to sound logi-
cal inferences. According to this view, a central task of cognitive science
is to characterise the logical language of mental representation, the proof
theoretic rules defined over it, and the content of the representations
employed in the production of particular behaviours.

For the logicist, this provides a complete psychological explanation of
performance of those behaviours. This proof-theoretic psychological expla-
nation is autonomous (Fodor & Pylyshyn, 1988, p. 66; Chater & Oaksford,
1990) from the biological substrate underlying perception, memory, action
and so on. Lower level biological explanations are taken to be independent
from, and to fall outside the domain of, psychological explanation. This
position may be elucidated by considering the three levels of explanation
that David Marr (1982) took to constitute a complete account of the perform-
ance of a cognitive task. The claim that cognition is proof theory amounts
to a restriction on the form of the level 1 (computational) theory. That is,
a computational theory of some task must be specified (or at least must
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be specifiable) as a proof theory over some interpreted logical language,
and particular representations used in the performance of the task. Further,
the logicist position also places restrictions on the form of the level 2
(algorithmic) theory. That is, it must characterise the theorem proving
mechanism which animates the proof theory. This theorem-prover
instantiates the control regime which determines which inferences are
made when, in the performance of the task. This mechanism is defined
over the formal properties of the logical expressions over which it is
operating. It is these first two levels which the logicist takes to constitute
psychological explanation. A level 3 (implementational) theory should con-
stitute an account of how the theorem-prover specified at level 2 is
instantiated in biological hardware. For the logicist this level is below,
and largely independent of, the level of psychological explanation.

The classical, logicist cognitive science picture may be decomposed into
four claims:

. Cognition is computation.

Computation is formal.

. Formal computation is mechanised proof theory.

The internal language over which the proof theory is defined is
interpretable at the level of everyday objects and relations.

il o I

Within the framework of cognitive science, claim 1 must surely be taken
as axiomatic. There is, however, substantial room for debate about the
implications and status of claims 2, 3 and 4.

2. Computation is formal. That is, computational processes operate
purely in terms of the form, syntax or shape of the symbolic structures
over which they are defined. For example, consider the formal inferences
of modus ponens (MP) and modus tollens (MT):

MP:p =g, p+q
MT:p — g, q + p.

These may be computed without reference to the meanings of the prop-
ositions p, g or the meaning of the connective —. The premise ‘p — g4’ is
not treated as an atomic, unstructured lump, but as having syntactic
structure: as having ‘p’, ‘=’, and ‘q" as constituents. From the point of
view of formal computation, all that matters for the application of modus
ponens is that the ‘p’ in the second premise has the same shape as the ‘p’
on the left hand side of the first premise; and that the ‘g’ of the conclusion
has the same shape as the ‘g’ on the right hand side of the first premise.
This applies, mutatis mutandis, for modus tollens. Formal processes need
not, as in this case, involve logical inference. List manipulation, sorting
algorithms, sequences of procedural instructions etc. all count as formal,
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since they are defined over the shape rather than the content of their
inputs.

Given the wide range of processes and schemes which have been taken
to be computational models of cognition, the claim that computation is
formal is not strictly true. Or rather, the requirement that computation is
formal is prescriptive of the way in which Fodor and Pylyshyn (1988) would
like the term ‘computation’ to be used, rather than descriptive of the way
in which it is used in the range of literatures involved with mechanistic
models of thought. For example, the mechanism of holographic memory,
analogue computational methods, genetic learning algorithms and connec-
tionism are not syntactic—the representations over which they operate
typically have no syntactic structure. A possible confusion may arise, since
these computational mechanisms can be simulated to an arbitrary degree
of accuracy (and in some cases, perfectly) by the formal operations of
a digital computer. However, any system (formal or otherwise) can be
represented by formulae in some formal language, and its behaviour
modelled by structure-sensitive operations over those formulae. It is in
virtue of this fact that the general purpose digital computer is general
purpose.

3. Formal computation is mechanised proof theory. Relevant information
is represented as a set of formulae in a logical language, and computation
proceeds by the operation of a theorem-prover for that language. The
theorem-prover decides which proof-theoretic rule to apply when. Prima
facie, theorem proving is a very particular form of computation. Again a
possible confusion arises, since any computation can be simulated by the
operation of an appropriate theorem-prover. Since any computation can
be simulated on a Turing machine, for any computer program, there will
be a corresponding Turing machine, with identical input—output behav-
iour. Any Turing machine can be axiomatised in first order logic (Boolos
& Jeffrey, 1980), and hence any computation can be implemented on a
theorem-prover for first order logic. Although any computation can be
implemented in this way, almost invariably they are not.

4. The internal language over which the proof theory is defined is
interpretable at the level of everyday objects and relations. The formulae
over which the proof theory operates could, in principle, have an arbitrary
semantics. Since the logicist takes propositional attitudes to be relations
to these formulae, the contents of (at least some of) these formulae must
correspond to the objects of beliefs and desires. In particular, therefore,
the semantics of these formulae will make reference to everyday objects
and properties—to tables, chairs, people, colours, feelings, and so on. It is
hence unsurprising that the atomic terms of knowledge representation
formalisms in artificial intelligence and cognitive psychology (such as
semantic nets, schemas, production rules, and so on) stand in close corre-
spondence with the lexical items of natural language. Indeed, for the sake
of transparency, the atomic terms in Al knowledge representation are
typically borrowed from the vocabulary of natural language. For example,
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a program which encodes knowledge about an average taxpayer might
start as follows (Clocksin & Mellish, 1984, p. 87):

average_taxpayer (X) :-
not(foreigner(X)),
not((spouse(X,Y), gross__income(Y,Inc),Inc>3000)),
gross__income(X,Inc), ...

Of course, the logicist is not restricted to postulating representations
defined at the level of tables and chairs. For the purposes of modelling
specific cognitive processes, such as language understanding, perception
and so on, the interpretations of the symbols may be phonetic, phonemic
or syntactic categories, auditory and visual features, and the like.

The conjunction of assumptions 2, 3 and 4 constitutes a strong hypothesis
about the nature of mental representations and mental processes. Having
characterised the logicist picture, we now discuss certain adequacy criteria
to which such an account should, at least in principle, be able to conform.

3. Adequacy Criteria for Logicist Explanation

We shall outline two main adequacy criteria which the logicist programme
must be able to meet. Firstly, the proof-theoretic rules of inference defined
over the postulated logical language (or languages) are capable of charac-
terising the inferences implicated in human cognition. That is, the proof-
theoretic rules must capture what we take pre-theoretically to be the
semantically appropriate defeasible inferences. In Susan Haack’s (1978)
terminology, the logic(s) should be capable of respecting the appropriate
depraved semuntics (Haack, 1978, p. 188). So in the case of a non-monotonic
logic for defeasible reasoning, the interpretation of the formalism must
map appropriately onto our common sense or depraved understanding of
defeasible inference. Some suitable non-monotonic logic must therefore
capture the range of inferences which common sense licenses or, in other
words, it should be complete with respect to the depraved semantics. By
loose analogy with the notion of completeness in classical logic with
respect to a standard formal semantic interpretation, we shall call this the
completeness* criterion. So a complete* logicist explanation in some domain
must provide a logical language and set of inferential rules which at least
roughly captures our intuitions about inference in that domain.
Secondly, logicist explanation should, in principle, be able to provide a
unified account of the cognitive processes within some domain, which
covers each of Marr’s (1982) explanatory levels. We shall call the constraint
that such a unified explanation can be provided the coherence criterion. A
coherent logicist account would provide a specification of a logical language
in which knowledge is represented, and a proof theory defined over that
language (level 1); a theorem-prover for that proof theory (level 2); and an
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explication of how that theorem-prover is implemented in the brain (level
3).
A coherent logicist explanation must, among other things, be able to
provide a level 2 algorithm appropriate to the level 1 proof theory, and to
implement the level 2 algorithm in neural hardware. In practice the logicist
is wont to insist that these relationships need not constrain theorising at
each of the 3 levels. Indeed, one of the methodological appeals of the
logicist view is that the implicit independence of each of the levels appears
to licence the pursuit of high-level cognitive theorising, while we remain
in comparative ignorance of the operation of the brain. This tenet of the
logicist view (Fodor & Pylyshyn, 1988) presumably depends upon the
following reasoning. Neural hardware (level 3) is surely able to implement
such a simple symbolic device as a Turing machine or equivalent. But
since any computable algorithm can be computed by a Turing machine,
neural hardware appears to place no constraint at all on the algorithms
which are psychologically plausible. Moreover, as long as the level 1 theory
of the task domain, specified in terms of a set of proof theoretic axioms,
is decidable, then there will be many level 2 algorithms for performing
the task. By the previous argument, any such algorithm must be
implementable at level 3, since any algorithm can be implemented in a
Turing machine. So, according to the logicist, psychological explanations
at levels 1 and 2 are relatively independent, that is they are autonomous
(Chater & Oaksford, 1990) from the (level 3) biological substrate.

This line of reasoning may be taken to establish that almost any expla-
nations postulated at each of the three levels are likely to be in principle
compatible. To establish that logicist explanation is coherent, this weak, in
principle, compatibility between explanatory levels must be supplemented
by a strong in practice compatibility. That is, the level 1 proof theory must
have a level 2 theorem proving algorithm which is not just computable
but computationally tractable. Moreover, this level 2 algorithm must be
able to run (level 3) on biological hardware with real-time characteristics
compatible with the speed and effectiveness of observed behaviour.
Indeed, only given a unified explanation of each of these levels can precise
psychological predictions be made about the character of real-time per-
formance.

The mere fact that we have a decidable set of proof-theoretic axioms (at
level 1), guarantees only that there is a computable theorem proving
algorithm; it does not guarantee that any such algorithm is computationally
tractable. In principle computability results are sadly no guide to practical
computational feasibility. Moreover, although any computable algorithm
can be implemented on a Turing machine, and although the biological
substrate is able to implement an arbitrary Turing machine, the nature of
the biological substrate and the way in which the algorithm is implemented
in that substrate will crucially affect the run time of the algorithm. Hence
the nature of the hardware of the brain may considerably constrain the
class of psychologically plausible algorithms.
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Hence there are two species of doubt which may be raised concerning
the coherence of the logicist programme. Firstly, it may be doubted that
it is possible to implement theorem-proving algorithms postulated by the
logicist in biological hardware such that they satisfy the real-time pro-
cessing characteristics of cognitive performance. Secondly, in many
psychological tasks, it may be doubted that there exists a tractable level 2
theorem-proving algorithm which instantiates the postulated level 1 the-
ory. We have argued elsewhere (Chater & Oaksford, 1990) that the first
species of doubt, the constraint that level 2 algorithms must be biologically
implemented, militates strongly against the feasibility of an autonomous
Logicist account. In this paper, with regard to the coherence of the logicist
position, we concentrate on the second of these concerns: tractability. We
argue that there may be no tractable algorithms appropriate to the level 1
theory which the logicist is forced to postulate. Moreover, logicist expla-
nation must be not only tractable but complete*. That is, the level 1 theory
must actually be able to account for human inferential processes. We shall
argue that the logicist account is also inadequate in this regard: it seems
unlikely that a proof-theoretic level 1 account of human inferential pro-
cesses will be forthcoming.

Since we are arguing against logicist approaches to cognition on the
grounds that they may be unable to account for the defeasibility of human
inference, it is incumbent upon us to show that human inference is defeas-
ible, across a range of cognitive domains. It is to this task that we now
turn.

4. The Defeasibility of Human Inference

Human knowledge is inherently revisable—expectations are routinely dis-
confirmed, norms violated, and what is certain today is discredited tomor-
row. Human knowledge is also invariably partial and inferences must be
drawn on the fly with incomplete knowledge of the relevant facts. The
ability to reason and act appropriately in the face of overwhelming ignor-
ance is one of human cognition’s most remarkable and important achieve-
ments, and poses one of psychology’s greatest challenges. In a mysterious
and changing world, every conclusion is revisable and every premise open
to question.

Consider, for example, the process of boiling an egg. Perhaps Egon has
learnt from experience that if he puts an egg in boiling water then five
minutes later the egg will be medium boiled. Having put the egg in the
water as usual, Egon infers that the egg will be ready for his breakfast in
five minutes. Such inferences, however, are radically defeasible. After all,
there might be a power failure, an earthquake, Egon’s careless brother
may upset the pan, there may be salt in the water, the egg may be at
altitude in an Everest base-camp, and so on. In these situations, Egon’s
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inference that the egg will be ready to eat in five minutes time will be
defeated.

Such inference is difficult to capture within a proof-theoretic framework.
It is a feature of most standard logics that if a conclusion follows from
some set of premises, then it still follows when additional premises are
added. Logics in which this property holds are monotonic logics. Such
logics are, at least prima facie, inappropriate for modelling inference in
examples such as the above. According to a monotonic system of inference,
if Egon infers that his egg will be ready five minutes after putting it in
the boiling water he will be unable to revise this conclusion. So, for
example, he must necessarily continue to expect his egg to be medium
boiled even after his brother has knocked over the pan. In other words, if
Egon were to reason according to a monotonic logic, then he would be
unable to revise his tentative conclusions however strong the evidence to
the contrary. This appears to imply that the proof theory that the logicist
must postulate to deal with common-sense reasoning must be non-mono-
tonic.

Non-monotonicity is required to model not just examples such as the
above, but to capture non-demonstrative inference in general. Consider,
for example, inductive reasoning, in which a general rule must be derived
from a set of specific instances. This mode of reasoning is notoriously non-
monotonic—however many premises of the form ‘Raven A is black’, ‘Raven
B is black’ etc. are entertained, the inductive conclusion that ‘All ravens
are black’ may be defeated by a single additional premise ‘Raven N is
white’. The defeasibility of induction has led many to doubt that induction
is a justifiable species of inference at all. Whether or not induction is
philosophically justifiable, people manifestly induce general laws on which
to base their reasoning and action, from specific observations. So, whether
or not there is a philosophical theory of induction, there must be a psycho-
logical theory of induction. Moreover, for classical, logicist cognitive science
the form of this theory must be proof-theoretic. That is, for the logicist,
induction, and all other species of non-demonstrative inference, must be
assimilated to deduction.

In philosophy, other forms of non-demonstrative inference are typically
seen as derivative on induction (Peirce, 1931-1958). In the above example,
we assumed that Egon had induced the law that putting the egg in boiling
water results in a medium boiled egg five minutes later. Having put a
particular egg in boiling water, he applies this law to make the specific
prediction that the egg will be medium boiled in five minutes. An inference
from a particular occurrence of the antecedent of an inductive law, to a
particular occurrence of the consequent of that law, is known as eductive
inference. As we noted above, eductive inference, like inductive inference,
is non-monotonic. Similarly, Egon’s brother, who has also induced this
law, may infer that the egg was put in boiling water five minutes earlier,
from the fact that Egon is about to eat a medium boiled egg. Such an
inference from a particular occurrence of the consequent of an inductive
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law, to a particular occurrence of the antecedent of that law, is known as
abductive inference or inference to the best explanation. Abductive infer-
ence is again notoriously non-monotonic. That the egg is medium boiled
does not necessarily mean that it must have been in boiling water for five
minutes—Egon may have boiled it for two minutes in the pressure cooker.

These non-monotonic modes of inference are implicated throughout
almost every area of cognitive activity. The implicit inferences underlying
text comprehension depend on the application of prior world knowledge
to fill out and elaborate the information given in the text (Bransford &
Johnson, 1972, 1973; Bransford, Barclay & Franks, 1972; Bransford & McCar-
ell, 1975; Clark, 1977; Minsky, 1975; Stenning & Oaksford, 1989). All such
implicit inferences can be defeated by subsequent sentences contradicting
our implicit conclusions. Theories of concepts which are concerned to
capture the family resemblance or prototype structure of human categoris-
ation implicitly recognise the defeasibility of semantic knowledge. So,
although not all birds can fly, the prototypical bird is represented as flying,
the majority of exemplar birds fly, the probability that a bird flies is high,
etc. depending on the theory that one considers (Rosch, 1973, 1975; Medin
& Schaffer, 1978; Nosofsky, 1986). According to modern constructivist
theories of perception, much of perceptual processing is taken to involve
inference to the best explanation about the state of the environment, given
perceptual evidence. The defeasibility of such inference is evidenced by
the possibility of perceptual illusion and error (Gregory, 1977; Fodor &
Pylyshyn, 1981; MacArthur, 1982). Non-demonstrative modes of inference
have even been argued to encroach upon apparently deductive tasks such
as conditional reasoning (Oaksford, 1988; Byrne, 1989; Oaksford, Chater
& Stenning, 1990). Thus, the whole of cognitive performance depends
upon non-monotonic inferential processes. If these cannot be elucidated
within the logicist, proof-theoretic framework, then almost every interest-
ing cognitive phenomenon will fall outside the scope of logicist psychologi-
~al explanation.

5. Non-monotonicity and Confirmation in Science

Prima facie, the logicist programme is analogous to the Logical Positivist’s
attempts to provide a theory of confirmation for scientific theories (Carnap,
1923, 1950; Hempel, 1952, 1965). Roughly, it was hoped that such a theory
could be axiomatised as an inductive logic, which has the form of
deduction in reverse. The claim was that in induction a statement is
confirmed by the truth of its deductive consequences, whereas in
deduction the truth of a statement guarantees the truth of its deductive
consequences. Unfortunately, the axioms of such putative inductive logics
could not be made mutually consistent and generated many paradoxes.
For example, from very minimal assumptions about the form of an induc-
tive logic it is possible to prove that any hypothesis confirms any other
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hypothesis (Goodman, 1983, originally 1954). The proof is trivial, and
exploits the fact that confirmation appears to flow in both directions
between hypotheses and their consequences. Consider two arbitrary
hypotheses H and H'. The conjunction H A H' has H as a consequence,
and hence, since confirmation is supposed to be deduction in reverse, H
confirms H A H'. If H A H' is true then H' must be true—so according to
any sensible confirmation theory surely H A H' must confirm H'. Indeed
presumably the strength of this confirmation should be the greatest poss-
ible, since if H o H' is true, then H' is definitely true—i.e. maximally
confirmed. We have concluded that H confirms H A H' and H A H' confirms
H'. Assuming transitivity, which again seems necessary for any inductive
logic able to support the elaborate chains of confirmation in science, this
means that H confirms H' (and, of course vice versa). Since H and H'
were chosen arbitrarily, we have the paradoxical conclusion that any two
hypotheses confirm each other.
Further, Goodman's (1983) famous ‘grue’ predicate

(Vx(x is grue at t «— (x is green & t < year 2000) v
(x is blue & t = year 2000)))

showed that the problems of confirmation theory could not be resolved
by purely formal considerations. Every emerald which has so far been
observed is both grue and green. Yet the induction to all emeralds are green
will continue to be true after the year 2000, whereas the induction to all
emeralds are grue will clearly fail from the year 2000, after which no emeralds
will be grue. In Goodman’s terms, ‘green’ is a projectible predicate where
‘grue’ is not. The projectibility of predicates such as ‘green’ and the non-
projectibility of predicates such as ‘grue’ could not inhere in their formal
properties; the projectibility of a property could not be dependent on the
shape of the predicate symbol used to denote it!

Fodor (1983) raises further problems for the procedures of inductive
confirmation: such non-demonstrative fixation of belief is both isotropic
and Quinean.

By saying that confirmation is isotropic, I mean that the facts
relevant to the confirmation of a scientific hypothesis may be
drawn from anywhere in the field of previously established
empirical (or, of course, demonstrative) truths. Crudely: every-
thing that the scientist knows is, in principle, relevant to determin-
ing what else he ought to believe. (p. 105)

By saying that scientific confirmation is Quinean, I mean that the
degree of confirmation assigned to any given hypothesis is sensi-
tive to properties of the entire belief system. (p. 107)

That confirmation is Quinean is indicated by criteria of theory preference
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which are based on global properties of a system of scientific beliefs.
Properties such as simplicity, plausibility, conservatism or projectibility
(see above) are global properties in just this sense. Fodor (1983) argues
that such global properties cannot be handled by any current theory of
confirmation—and that, in consequence, there is no serious theory of
scientific confirmation.

The failure of a logicist account of science does not, of course, necessarily
entail that a logicist account of mind will be similarly unsuccessful. How-
ever, there is reason to suppose that ordinary everyday common-sense
inference may be relevantly analogous to confirmation in science, and
hence that a logicist account of one may stand or fall with a logicist account
of the other. Jerry Fodor (1983), although a staunch advocate of a proof-
theoretic account of mind, argues for the analogy very eloquently. He notes
that the problem of confirmation in science maps rather directly onto the
everyday, commonsense reasoning problem of knowing how to update
one’s beliefs, given that one has performed some action—the notorious,
and ubiquitous frame problem in Al Fodor considers the predicament of
an artificial robot acting on the world, and trying to revise its beliefs
appropriately in consequence:

How . .. does the machine’s program determine which beliefs the
robot ought to reevaluate given that it has embarked upon some
or other course of action? What makes the problem so hard is
precisely that it seems unlikely that any local solution will do. . . .
the following truths seem to be self-evident: First, that there is no
fixed set of beliefs ... that ... are the [only] ones that require
reconsideration . . . Second, new beliefs don’t come docketed with
information about which old beliefs they ought to affect . . . Third,
the set of beliefs apt for reconsideration cannot be determined by
reference to the recency of their acquisition, or by reference to
their generality, or by reference to merely semantic relations
between the contents of the belief and the description under which
the action is performed . .. etc. Should any of these propositions
seem less than self-evident, consider the special case of the frame
problem where the robot is a mechanical scientist and the action
performed is an experiment. Here the question ‘which of my
beliefs ought I to reconsider given the possible consequences of
my action’ is transparently equivalent to the question “What, in
general, is the optimal adjustment of my beliefs to my experi-
ences?”. This is, of course, exactly the question that a theory of
confirmation is supposed to answer. (Fodor, 1983, p. 114)

The frame problem is simply a particular example of a problem in which
defeasible, non-demonstrative inference must be performed in a knowl-
edge-rich domain.
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. as soon as we begin to look at ... processes ... of non-
demonstrative fixation of belief we run into problems that have a
quite characteristic property. They seem to involve isotropic and
Quinean computations; computations that are . . . sensitive to the
whole belief system. This is exactly what one would expect on the
assumption that non-demonstrative fixation of belief really is quite
like scientific confirmation, and that scientific confirmation is itself
characteristically Quinean and isotropic. (Fodor, 1983, pp. 114-5)

Of course, Fodor, couches his discussion in terms of the fixation of belief.
The same difficulties will arise for the management of any data-base over
a knowledge rich domain, whether or not the statements in that data-base
may appropriately be interpreted as beliefs.!

Let us sum up the argument so far. Quite generally, it seems that in
domains in which mental processes are held to be inferential, that inference
will typically be non-demonstrative, defeasible inference. Hence the chal-
lenge of modelling non-demonstrative inference within a proof-theoretic
framework is central to the feasibility of a logicist account. Yet the failure
of Logical Positivism to assimilate non-demonstrative inference to a
deductive framework, the failure to devise a successful inductive logic, the
inability to account logically for scientific knowledge and theory change,
and the like, raise the suspicion that the logicist programme in cognitive
science and artificial intelligence may be unworkable. The analogy with
the philosophy of science serves to indicate the magnitude of the problem
confronting researchers who are attempting to develop non-monotonic
logics.

Suggestive as such general theoretical considerations are, the proof of
the logicist pudding is, of course, entirely in the eating. If the logicist
framework does appear to provide a plausible account of defeasible infer-
ential processes, then the general theoretical qualms that we have raised

! Fodor is concerned to outline an interesting and important distinction—between
central processes of non-demonstrative belief fixation, which are Quinean and iso-
tropic; and domain specific processes, in which the inferential processes are not
dependent on the whole belief system, but only on a prescribed set of information,
relevant to that domain. Fodor takes the demarcation between the former central
processes and the latter informationally encapsulated processes to distinguish areas in
which cognitive science is likely to prove infeasible from areas in which progress
may be made. Note that domain specific systems may involve non-demonstrative
inference, and that this inference may be Quinean and isotropic relative to all the
knowledge encoded in the module. So the nondemonstrative defeasible inference that
appears to be implicated in putatively domain specific processes involved in language
understanding and perception may be just as problematic as the central processes of
common-sense inference. With regard to our concern in this paper, the key distinction
is not between domain-specific and central processes but between processes which
involve knowledge-rich defeasible inference and are at least prima facie problematic
for a logicist account, and those which do not. Of course, it is possible that this
distinction is in practice rather trivial, all human inference being of the former kind.
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may be put aside. Moreover, profound and heretofore unrealised impli-
cations for the philosophy of science would result. In the following section
we therefore examine the current stage of the logicist attempt to account
for defeasibility, as embodied in the field of knowledge representation in
Al, and argue (i) that logicist accounts fail, and (ii) that they fail in
principled ways.

Firstly, the proof-theoretic rules for the non-monotonic logics that have
been proposed to capture defeasibility do not adequately capture knowl-
edge-rich human non-demonstrative inference—using the terminology
that we introduced above, such logics are not complete*. In particular,
non-monotonic logic appears able to generate only unacceptably weak
disjunctive conclusions. Secondly, such non-monotonic logics do not pos-
sess any tractable algorithms—that is, the computational resources
required by theorem-provers for such logics increase explosively as the
number of formulae over which we must reason increases. Prima facie, this
appears to rule out a proof-theoretic view of cognition for domains in
which a large amount of knowledge must be taken into account. In short,
the proof-theoretic account of defeasibility does not give the right inferen-
tial behaviour, and is computationally intractable. Given the extent to
which almost every cognitive task involves defeasible, non-demonstrative
inference, the domain of the proof-theoretic account may perhaps be
unexpectedly limited.

6. Artificial Intelligence and the Logicist Approach to Defeasible
Inference

A central challenge of logicist cognitive science is to provide a proof theory
and theorem-proving methods which capture non-monotonic inference.
Workers in artificial intelligence have faced this challenge most directly,
in attempting to build systems which can reason about real-world, com-
mon-sense domains, using mechanised proof theory (for a general intro-
duction to this approach, see Charniak & McDermott, 1985). In this section,
we discuss two difficulties with this approach. Firstly, that non-monotonic
inference licences only unacceptably weak conclusions; and secondly, that
such theorem proving for such logics is computationally intractable.

In order to cope with the defeasibility of inferential rules in examples
such as the above, it is necessary to devise a logical scheme in which
defeasible rules may be encoded. A wide variety of superficially very
different non-monotonic logics have been proposed. The best known are
McCarthy’s (1980) circumscription, Reiter’s default logic (1980, 1985), McDer-
mott and Doyle’s (1980) non-monotonic logic I, McDermott’s non-monotonic
logic II (1982), and Clark’s predicate completion (1978). The problems that
we shall raise appear to apply equally to all of these approaches (Hanks
& McDermott, 1985, 1986; Shoam, 1987, 1988).
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6.1 Non-monotonic Logics and Weak Conclusions

For concreteness we shall consider a formalisation of defeasible inference
which introduces a meta-theoretic M operator into the object language of
a standard logic (Reiter, 1980, 1985). Defeasible rules (in Al terminology,
default rules) are encoded as follows:

¢ A\ Me = ¥

This formula reads: |y can be inferred from ¢ as long as -\ is not provable,
given the axioms of the system. So the intuitive interpretation of Mg is
that - cannot be proved given I' (the set of logical axioms which govern
the behaviour of the connectives) and A (the non-logical axioms which
encode the domain specific knowledge of the system). In other words, it
is consistent to infer  from I' U A and ¢. The M operator has the unusual
property of introducing the meta-theoretic concept of deducibility (+) into
the object language—i.e. My is equivalent to I' U A w . (This logically
inelegant manoeuvre may be avoided by interpreting the M operator as a
modal operator, and providing a possible worlds semantics for the
resulting logic (McDermott & Doyle, 1980). Which formulation is used
makes no difference to the inferences that can be drawn, or to the theorem-
proving algorithms employed.)

.Returning to our example of Egon and the egg, suppose that Egon tells
his brother that he has just put an egg in boiling water. Egon’s brother’s
relevant prior knowledge may be encoded in axioms (A) of something like
the following form:

1. (egg,) in boiling water at t /\ M((egg,) medium boiled at t + 5
minutes) —> (egg,) medium boiled at t + 5 minutes

2. (egg) in pressure cooker at t /\ M((egg;) hard boiled at t + 5
minutes) — (egg,;) hard boiled at t + 5 minutes

3. (egg,) medium boiled at t + 5 — not (egg,) hard boiled at t + 5
4. (egg;) hard boiled at t + 5 — not (egg;) medium boiled at t + 5
(The non-default premises 3 and 4 simply encode the fact that an egg

can not be both hard boiled and medium boiled at the same time)

He now knows that a particular egg (egg,) is in boiling water and adds 5
to A:

5. egg, in boiling water

Since, 5 matches the first conjunct of the antecedent of 1 the possibility
arises that egg, will be medium boiled at t + 5. Since, it is not possible to
derive the negation of this proposition from 1 to 5, then this conclusion
is consistent with the data base—M(egg, medium boiled at t + 5 minutes)—
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the second conjunct of the antecedent of 1 is also satisfied. So, the conse-
quence that this egg will be medium boiled in five minutes may legit-
imately be inferred.

Egon’s brother now walks into the kitchen, and observes that the egg
must be in the pressure cooker (it is the only pan on the stove). In our
formalism, this amounts to adding 6 to 1-4.

6. egg, in pressure cooker

Since 6 matches the first conjunct of the antecedent of 2 the possibility
arises that egg, will be hard boiled at t + 5. Since it is not possible to
derive the negation of this proposition from 1-4 and 6, then this conclusion
is consistent with the data base—M(egg, hard boiled at t + 5 minutes)—
the second conjunct of the antecedent of 2 is also satisfied. So, the conse-
quence that this egg will be hard boiled in five minutes may legitimately
be inferred.

Yet this situation may seem paradoxical. From 1-4 and 5 we have the
conclusion that the egg is medium boiled at t + 5 (and hence, by 3, it is
not hard boiled). On the other hand, from 14 and 6 we have the conclusion
that the egg is hard boiled at t + 5 (and hence, by 4, it is not medium
boiled). This may seem counterintuitive if we are used to monotonic logics.
For in such a logic all the conclusions that follow from any subset of 1-6
must follow from the complete set. In particular, 1-6 would imply that the
egg is both hard boiled and not hard boiled—that is, the axioms are
inconsistent. However, since the logic is non-monotonic, inconsistency
does not follow.

The cases in which the egg is medium boiled and hard boiled are what
are known as distinct extensions of 1-4. Which extension is obtained
depends on which default rule is used first. If rule 1 is used first to infer
that the egg is medium boiled, rule 3 can be used to infer that it is not
hard boiled. In this extension, it is inconsistent to assume that the egg is
hard boiled—that is M((egg;) hard boiled at t + 5 minutes) cannot be
satisfied, the contrary default rule 2 is blocked, and hence no contradiction
results. Similarly, we can consider the extension in which rule 2 is used
first. In this case, the egg is inferred to be hard boiled, and hence, by
rule 4, it cannot be medium boiled. Thus, rule 1 cannot apply, and no
contradictory conclusion is derived. Given that there are two possible
extensions of 1-6, what conclusions can be derived? The only valid con-
clusions are those that hold in all extensions—so rather than inferring any
particular extension, we may infer only the disjunction of all extensions. In
the present case, this is simply that:

7. egg, hard boiled V egg, medium boiled

This disjunctive conclusion is not intuitively adequate (that default logics
give only such weak conclusions amounts to what McDermott (1986) calls
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the ‘you don’t want to know’ problem. From the point of view of prediction
and action, you don’t want to know that the egg will be either medium or
hard boiled—you want to know which!). The performance of the system
contrasts with human reasoning. If we know that the egg is in boiling
water and that it is in the pressure cooker, then we will unambiguously
infer that it will be hard boiled at t + 5. Whereas the system has no way
of resolving conflicting default conclusions, at least in cases such as this,
such resolution is an effortless feature of human cognition. Hence, to
model human performance, the system must be able to determine how
conflicting pieces of inconclusive evidence bear upon the inferences that
may be drawn. In other words, the system must solve the problem of
appropriately revising its beliefs in the face of incomplete and conflicting
information. Yet this is the problem of non-demonstrative inference. So in
trying to explain non-demonstrative inference, by invoking non-mono-
tonic logics, we have succeeded only in raising it again. Given the failure
of Logical Positivist attempts to reconstruct non-demonstrative inference
proof-theoretically, perhaps the failure of Al to tackle the same problem
is unsurprising.

Despite this worrying state of affairs, within the Al community there
have been attempts to tackle the problem of resolving incomplete and
conflicting evidence by using domain-specific heuristics. Such heuristics
are intended to differentiate acceptable from unacceptable extensions of
the logical system. In view of the generality of the problem which such
heuristics are attempting to solve, it is not surprising that they have been
criticised as inadequate (Hanks & McDermott, 1985; Israel, 1980). Moreover,
insofar as cognitive processes are taken to be semantically justified—i.e.
to correspond to valid derivations at the level of proof theory—the postu-
lation of such heuristics in the control strategy of the theorem-prover consti-
tutes a retreat from the logicist position. However, let us assume that the
problem of resolving conflicting and incomplete information could be
solved by some set of heuristics. Even given this (apparently
counterfactual) assumption, the logicist proof-theoretic programme
appears to be infeasible.

6.2 Non-monotonic Logics and Computational Complexity

To complete the programme of Logicist Cognitive Science, it must be
possible to construct tractable algorithms which embody the non-mono-
tonic proof theory. In particular, the introduction of the M operator, or
equivalent, requires the ability to check whether or not some premise is
consistent with the current contents of the data-base (I' U A). Thus, any
invocation of a default rule requires a complete consistency check over the whole
data-base. However, as we shall see consistency checking is computationally
intractable.

Consistency checking constitutes a general class of problems in com-
plexity theory called satisfiability problems. In this section, we note the
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intractability of such problems, and the consequent implausibility of the
proof-theoretic account of non-demonstrative inference.

There are two approaches to computational complexity: a priori analysis
and a posteriori analysis (Horowitz & Sahni, 1978). A posteriori analysis
involves the observation of the run-time performance of an actual
implementation of an algorithm, as the size of the input, n, is systematically
varied. Such empirical observations can generate approximate values for
best, worst and typical case run-times. A more theoretically rigorous
approach is to attempt to derive an expression which captures the rate at
which the algorithm consumes computational resources, as a function of
the size of n. The crucial aspect of this function is what is known in
complexity theory as its order of magnitude, which reflects the rate at which
resource demands increase with n. For present purposes, the relevant
resource is the number of times the basic computational operations of the
algorithm must be invoked. Orders of magnitude are expressed using the
‘O’ notation:

0O(1) < O(logn) < O(n) < O(nlogn) < O(n?) < O(n®) ... < O(nf) . ..
< 0O@2M ...

For example, O(1) indicates that the number of times the basic operations
are executed does not exceed some constant regardless of the length of the
input. O(n?) < O(n?) ... < O(n') indicate that the number of times the
basic operations are executed is some polynomial function of the input
length, such algorithms are polynomial time computable (strictly speaking
this class includes all algorithms of order lower than some polynomial
function, such as O(logn), O(nlogn)).

Within complexity theory an important distinction is drawn between
polynomial-time computable algorithms (O(n’) for some n), and algorithms
which require exponential time (for example, O(2") or worse). As n increases,
exponential-time algorithms consume vastly greater resources than poly-
nomial-time algorithms. This distinction is usually taken to mark the
difference between tractable algorithms (polynomial time) and intractable
(exponential time) algorithms. Applying these distinctions to problems, a
problem is said to be polynomial time computable if it can be solved by
a polynomial time algorithm. If all algorithms which solve the problem are
exponential-time, then the problem itself is labelled ‘exponential-time
computable’.

An important class of problems whose status is unclear relative to this
distinction is the class of NP-complete problems. ‘NP’ stands for non-
deterministic polynomial time algorithms. Problems which only possess
polynomial time algorithms which are non-deterministic are said to be ‘in
NP’. NP-complete problems form a subclass of NP-hard problems. A prob-
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lem is NP-hard if satisfiability reduces to it (Cook, 1971).2 A problem is
NP-complete if it is NP-hard and is in NP. There are problems which
are NP-hard which are not in NP. For example, the halting problem is
undecidable, hence there is no algorithm (of any complexity) which can
solve it. However, satisfiability reduces to the halting problem which thus

rovides an instance of a problem which is NP-hard but not NP-complete.
The class of NP-complete problems includes such classic families of prob-
lems as the travelling salesman problems—the prototypical example of
which is the task of determining the shortest round-trip that a salesman
can take in visiting a number of cities. It is not known whether any NP-
complete problem is polynomial-time computable, but it is known that if
any NP-complete problem is polynomial-time computable, then they all
are (Cook, 1971). All known deterministic algorithms for NP-complete
problems are exponential-time, and it is widely believed that no poly-
nomial-time algorithms exist. In practice, the discovery that a problem is
NP-complete is taken to rule out the possibility of a real-time tractable
implementation.

Unfortunately for the proof-theoretic programme of logicist cognitive
science, consistency checking, like all satisfiability problems, is NP-com-
plete. Hence an instantiation of a non-monotonic logic, which invokes a
consistency check over the whole data-base every time a default rule is
used, appears to be a hopelessly unpromising account of real-time defeas-
ible human inference which is invoked rapidly and effortlessly in almost
every cognitive task.

6.3. Do We Need to Appeal to Non-monotonicity?

We have argued against the logicist approach to cognitive science by
showing that human inference is defeasible, that proof theory must there-
fore be defined for a non-monotonic logic, and that theorem proving for
such a logic is incomplete* and intractable. The opponent of the proof-
theoretic programme may agree with these points but argue that the appeal
to non-monotonicity is unnecessary to defeat the logicist programme. In
particular, it may be argued that computational intractability bites equally
for standard, monotonic logics. After all, in almost any logic the general
problem of deciding whether a given finite set of premises logically implies
a given conclusion is NP-complete (Cook, 1971), and, of course, checking
the validity of arguments is equivalent to checking the consistency of sets
of propositions. According to this line of thought, the considerations of
defeasibility and non-monotonicity that we have stressed appear to be
wholly beside the point. However, there is a crucial difference between

? The satisfiability problem is to determine whether a formula is true for some assign-
ment of truth values to the variables. ‘Reduces’ is a technical term of complexity
theory, see Horowitz & Sahni (1978, p. 511).
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the monotonic and non-monotonic cases. In monotonic logic, if a set of
premises is consistent any application of a rule of inference will maintain
consistency. This contrasts with the non-monotonic case, where each time
a rule is applied, a new consistency check must be performed. So, if
consistency checking is a problem for monotonic logics, it is a far greater
problem for non-monotonic logics. Hence models of thought based on
proof theory are severely undermined by the defeasibility of human infer-
ence, and the consequent postulation that the logic of thought must be
non-monotonic. For the logicist, proof theory is supposed to be the basis of
all cognitive activity (in common-sense reasoning, language, perception). If
the logic of that proof theory is non-monotonic, and hence rule application
is intractable, then the logicist position is surely untenable.

However, there are a number of possible logicist responses to this
negative conclusion. We now consider these one by one.

7. Objections and Replies

7.1 Worst Case versus Typical Case

The a priori intractability results that we have considered are worst-case
analyses. In practice the possibility remains that in typical cases, non-
monotonic reasoning may be effected without exhausting the available
computational resources. The most direct way to test this hypothesis is to
perform an a posteriori analysis of actual average-case run-times of
implemented non-monotonic logics. However, to the best of our knowledge,
no such implementations exist. Of course, in computer science, theory is
often developed in advance of its implementation in real systems. Such a
situation is healthy if there is some reason to believe that implementations
may be forthcoming—this does not appear to be the case in current
approaches to defeasibility in the knowledge representation literature. This
is of particular concern for artificial intelligence and cognitive science in
which successful implementation is taken as the benchmark of theoretical
rigour and adequacy. It is not, of course, possible to distinguish reliably
between progressive and degenerating research programmes, between
temporary puzzles for, and outright falsifications of, some line of research
(Lakatos, 1970). However, increasing theoretical elaboration and decreasing
practical success is surely a straw in the wind.

7.2 Heuristics, Tractability and Completeness*

Apart from the above, there is another reason why a priori intractability
results are not necessarily taken to rule out the possibility of practical
computation. No algorithm—i.e. no procedure that is guaranteed to solve
the computational problem—may be tractable, and yet there may be more
or less reliable heuristics which often solve the problem, or at least provide
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something close enough to the solution to be useful. These heuristics need
not necessarily be computationally intractable. Computational tractability
may be bought at the price of the reliability of the procedures. Given
that human inference is manifestly unreliable—we are always jumping to
conclusions, forgetting to take into account important considerations, and
so on—it may seem plausible that an appropriate set of heuristics may be
the basis of human defeasible inference. In discussing heuristics as a
method of solving a particular case of the problem of defeasible inference,
the frame problem, Fodor says:

The idea is that, while non-demonstrative confirmation (and
hence, presumably the psychology of belief fixation) is isotropic
and Quinean in principle, still, given a particular hypothesis, there
are, in practice heuristic procedures for determining the range of
effects its acceptance can have on the rest of one’s beliefs. (Fodor,
1983, p. 115)

We noted above that such heuristics have been appealed to in the attempt
to overcome the tendency of non-monotonic logics to give unavoidably
weak disjunctive conclusions. Appropriate heuristics might, perhaps, sys-
tematically favour some possible extensions of knowledge-base over
others—heuristics which take account of the structure of the world could,
it may be hoped, show systematic bias in favour of what we intuitively
consider to be the right extensions. Thus, the operation of the heuristics
implicitly encodes knowledge about the world. This approach has indeed
been pursued in the knowledge representation literature. Let us consider
a famous problem in non-monotonic reasoning, the Yale shooting problem
(Hanks & McDermott, 1985), and consider a heuristic designed to favour
the ‘right’ answers,

A gun is loaded at some time, and fired at a person at some later time.
The problem is to determine whether or not the person ceases to be alive.
It is assumed that the firing of a loaded gun at a person is invariably fatal.
Further, we assume two defeasible rules: that (i) if a gun is loaded at some
time, then it will typically continue to be loaded at some later time; and
(ii) if a person is alive at some time, that person will typically be alive at
some later time. This scenario creates a problem analogous to the one we
raised earlier with respect to Egon and the egg. For any non-monotonic
or defeasible reasoning system two contrary, albeit defeasible, conclusions
are warranted: either the person is not alive at some later time or he is
alive at some later time (Hanks & McDermott, 1986). Observe that this
example is a specific application of non-monotonic logics to the frame
problem (see Fodor’s comments quoted above). The scenario creates the
problem of how to appropriately revise one’s beliefs concerning the person
being alive or dead given that a shooting has taken place.

Specific proposals concerning how to resolve the problem of multiple
inconsistent extensions of a non-monotonic theory all invoke some method
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of preferring one extension over another. Hanks and McDermott (1986)
propose that if conclusions in two extensions are contraries, then an earlier
defeasible conclusion should defeat later defeasible conclusions. Thus, in
the Yale shooting problem, since rule (i) is invoked earlier than rule (ii)
in the chain of reasoning, the intermediate defeasible conclusion that the
gun is loaded when it is fired is to be preferred over the defeasible
conclusion that the person is alive after the gun has been fired. This
‘solution’ is justified on the basis of reflections on the nature of causality
(Shoam, 1986). However, although this move resolves the problem in
favour of the putatively desired defeasible conclusion—that the person is
dead at the later time—such a preference for one extension over another
is not legitimised within the logical system. Moreover, Loui (1987) observes
that although this heuristic may accord with intuition in the Yale shooting
problem, there are many other examples where intuitions are violated if
the heuristic is applied across the board. Thus, although such a temporal
precedence heuristic may occasionally allow the right conclusion (although
even this is disputed, see Loui, 1987), it is not guaranteed to do so.

Other methods for preferring one extension over another (e.g. Poole,
1985; Nute, 1985, 1986; Loui, 1986) all involve explicitly ‘encoding the
preference information’ (Loui, 1987, p. 291). Thus the decision about what
defeasible inferences are licensed is external to the inference regime, and
reflect purely heuristic assumptions usually concerning the nature of caus-
ality. Relative to the isotropic nature of non-demonstrative inference it
is doubtful whether any of these heuristic assumptions are of general
applicability. Moreover, all of these assumptions are Quinean, they reflect
global properties of our causal knowledge. However, in their implemen-
tation in non-monotonic logics they are imposed externally by the pro-
grammer. But to complete the proof-theoretic programme such properties
need to be shown to emerge from the structure of our world knowledge
and can not be imposed by fiat. Hence all these ‘solutions’ fail to be
complete®.

It is important to note that the kind of heuristics proposed above to
circumvent the incompleteness* of non-monotonic logics are distinct from
the _qually non-logical decisions enforced by any practical implementation
of logic in for example PROLOG. Practical theorem proving requires vari-
ous non-logical control decisions to be made in the search strategy of the
theorem prover, for example, to employ backward chaining only, to use
loop checkers and to employ the ‘cut’ operator (Hogger, 1984). These
decisions involve the control strategy of an implementation of logic and
as such are wholly independent of the knowledge to be encoded in a
particular data-base. However, the heuristics proposed above specifically
involve the very knowledge which is to be encoded. As we stated above, this
involves making heuristic assumptions about how beliefs are appropriately
updated. But this is precisely the problem which, on the proof-theoretic
logicist account, non-monotonic logics were invoked to resolve! McDermott
(1986) proposes a retreat to proceduralism in which it is admitted that no
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semantic justification for the heuristics proposed will be forthcoming. We
will discuss this option further below, but observe now that it directly
contradicts Fodor and Pylyshyn’s logicist account of cognitive science.

It seems that appeal to heuristics is unlikely to repair the incompleteness*
of non-monotonic reasoning; and that, in any case, to the extent that
world-knowledge is embodied in heuristics rather than represented in the
logical language over which the proof theory is defined, the appeal to
heuristics amounts to a rejection of the logicist account of inference. A
further proposal, mentioned by Loui (1987), is to make reasoning domain
specific. If only information relevant to a specific domain is employed in a
particular inference then certain desirable consequences may follow. First,
if a formal account of relevance can be defined, then it may be possible to
logically delimit the sets of premises over which reasoning takes place.
This may satisfy the completeness* criterion. Second, by restricting the
premises to the relevant ones, n may be suitably restricted to satisfy the
tractability criterion. We now turn to two proposals concerning the concept
of relevance.

7.3 Relevance

Relevance logic restricts the concept of deducibility such as to avoid the
well known paradoxes of material implication ‘D’. For example, it seems
bizarre that A D (B D A) is a theorem for arbitrary A and B, if ‘D’ is held
to capture an intuitive notion of implication. Anderson & Belnap (1975)
define a notion of relevant entailment which employs a system of indices
which attach to assumptions. The indices guarantee that a logical relation
of relevance exists between the antecedent and consequent of a conditional
statement. Only assumptions B, which rely on assumptions A, will allow
‘=’ (relevant entailment) to be introduced such that A — B. That is, A —
B can only be concluded when A is part of the subproof of B. In this
precise logical sense A is relevant to B. It has been proposed by, for
example Haack (1978), that this notion of relevant entailment could assist
in avoiding the conclusion that confirmation is Quinean. Instead of the
whole of scientific knowledge being the unit of confirmation she suggests
that it could be just the relevant subset in Anderson and Belnap’s sense.
Moreover, Levesque (1988) proposes that relevant entailment may be used
to effect a tractable selection of relevant premises from a data base for
subsequent reasoning processes.

However, in reasoning in defeasible domains relevant entailment still
violates both the completeness* and tractability criteria. Even supposing
relevant entailment were employed, default rule application would still
remain intractable (Levesque, 1988). There are also strong grounds to
question whether relevant entailment is complete*. In introducing the
complete* criterion we noted that formal concepts must respect the
depraved semantics for the informal concepts they encode. However, it
seems that the notion of deductive relevance captured in relevant entail-
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ment far from exhausts the ways in which one piece of knowledge may
be relevant to another piece of knowledge. First, Fodor (1983) observes
that in science, knowledge in one domain may be relevant to another
domain analogically. Strictly, considerations of analogical reasoning move
outside the domain of confirmation into the domain of scientific discovery.
For example,

what's known about the flow of water gets borrowed to model the
flow of electricity, what's known about the structure of the solar
system gets borrowed to model the structure of the atom. (Fodor,
1983, p. 107)

However, analogical reasoning processes are part of our non-demonstrative
reasoning abilities and as such require explanation by the mechanisms
which purport to account for those abilities.

Second, relevant entailment accounts for relevance between
propositions—it is a purely structural notion. However, our intuitions
about relevance appear to be crucially dependent on lexical rather than
structural properties of statements. For example, the fact that Fred having
a heart is relevant to Fred’s having palpitations depends not on the struc-
ture of the two propositions, but on the meaning of ‘heart’, ‘palpitation’
and the causal structure of the world which putatively links the two.
Further, it appears that relevance is not determined by the extension of the
relevant properties. According to the well-worn philosophical example,
having a heart and having kidneys are co-extensive—so if Fred has either
property he has them both. However, although Fred’s having a heart may
be relevant to his having palpitations, his having kidneys may not be.

This clearly suggests that ‘relevance’ is an intensional concept and hence
it might be expected that a well-defined concept of relevance would be
forthcoming via an appropriate possible worlds semantics. However, the
provision of a proper semantics for relevance logics is notoriously difficult:

The relevance logicians run the risk of turning logical validity into
a clumsy thing. The difficulties they have in providing their largely
proof-theoretic theories with a proper semantics may be regarded
as a symptom of this. The semantic theories which have thus far
been put forward tend to lack the explanatory power which is to
be expected from theories which purport to say what relevance
means. (Veltman, 1985, pp. 42-3)

In sum, it would appear that relevance logic fails to meet both our criteria.
Default rule application remains intractable and there are grounds for
considerable doubt over whether relevant entailment is sufficient to cap-
ture the numerous ways in which one piece of knowledge may be relevant
to another piece of knowledge.

However, relevance logic does not exhaust attempts to define a notion
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of relevance which may be of more general applicability. Relevance Theory
(Sperber & Wilson, 1986) is an attempt to account for how a person’s
peliefs may be appropriately updated which takes a less restricted view
of relevance and also incorporates various processing requirements which
bear on the issue of tractability. Sperber and Wilson (1986) first emphasize
a disanalogy between their account of the spontaneous and almost instan-
taneous updating of beliefs which occurs in sentence comprehension and
the reflective and time consuming updating of beliefs which occurs in
scientific theorising. It is the former which they are concerned to explicate.
They suggest that the inferential processes underlying sentence compre-
hension must exploit only the accessible information. Sperber and Wilson
(1986) then outline what we will term a hybrid inferential regime consisting
of a restricted deductive mechanism and a non-logical component which
is responsible for updating the confirmation strengths which attach to
propositions stored in memory. The restricted logical component, which
contains no introduction rules, is motivated primarily by issues of tracta-
bility but also represents a substantive claim about the nature of peoples’
inferential processes in language comprehension. Sperber and Wilson
(1986) are careful to emphasize that they do not intend their notion of
confirmation strength to be conflated with the assignment of subjective
probabilities to propositions which are explicitly manipulated in judging
the relative strengths of those propositions. ‘Confirmation strength’ is to
be understood as a purely processing notion determined by a proposition’s
prior history of being accessed from memory.
The concept of relevance is defined relative to a context C.

Extent condition 1: an assumption is relevant in C to the extent that
its contextual effects in C are large.

Extent condition 2: an assumption is relevant in C to the extent that
the effort required to process it in C is small.

Contextual effects and processing effort are defined in terms of the hybrid
inferential regime introduced above. There is a trade off between these
two ‘extent conditions’ in determining the relevance of an assumption.
The notion of relevance thus defined may not be helpful given our
present concerns, since it appears to beg the very question we were hoping
the concept of relevance would answer. That is, how do we choose from
all we know the relevant items to update in response to new information.
The above definition is relativised to a context C, which is understood as
the old information available from the immediately prior discourse and
from memory for encyclopaedic or world knowledge. Sperber and Wilson
(1986, pp. 132-7) argue convincingly that the whole of the latter may be
included in C, although it is suggested that this would violate extent
conditions 1 and 2 of the definition. However, since relevance is defined
in terms of C, delimiting C's extent by appeal to relevance would be
viciously circular. Thus to avoid the charge of circularity independent
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grounds are required to delimit C. Sperber and Wilson (1986, p. 138) appeal
to the fact that in cognitive psychology and cognitive science knowledge
is generally agreed to be compartmentalised into ‘schemata’, ‘frames’,
‘scenarios’, and ‘prototypes’. However, it was precisely in search of prin-
cipled grounds for this compartmentalisation that we embarked upon this
discussion of relevance! ‘Schemata’, ‘frames’, ‘scenarios’ and ‘prototypes’
are precisely the names appropriated to the domain specific units of
knowledge which it was hoped that the concept of relevance would provide
thereby delimiting the isotropy of confirmation. It seems, therefore, that
relevance theory, in order to define a restricted notion of relevance appro-
priate to sentence comprehension, must presuppose a solution to the more
global problem of relevance, which is our present concern.

Apart from this, there are general problems for relevance theory. We
will mention just two. First, Sperber and Wilson’s (1986) account of their
inferential mechanism seems to leave no room for errors of interpretation.
These must be possible since the assumptions recruited from encyclopaedic
memory in discourse are often of a defeasible elaborative form (Stenning &
Oaksford, 1989). Such elaborative inferences can be defeated by subsequent
discourse, and hence must be cancelled. This of course suggests that the
logic of the inferential component is going to be non-monotonic even
in sentence comprehension. Thus although introduction rules have been
excluded to the benefit of the system'’s tractability, default rules will have
to be included which, as we have seen, are unlikely to enhance the
tractability of the system. Second, how the confirmation strengths are used
and updated is currently opaque. The proposal is that as a proposition in
memory is accessed more often so its ability to be accessed is enhanced.
Thus its strength does not have to be explicitly represented. However, in
a symbolic, deductive system, on the lines Sperber and Wilson (1986)
propose, we can see no way of implementing this proposal. In a symbol
system it matters not one jot how often an item is accessed, every time it
is accessed it will be accessed in the order dictated by the program—unless
some parameter is attached to the item which is updated each time it is
accessed so that the higher the parameter the more likely it is to be
accessed. But this is exactly the approach Sperber and Wilson eschew.

It appears that current notions of relevance are inadequate to the task
of determining the relevant domains of knowledge which are updated in
response to new information. Neither relevance logic nor relevance theory
provide any grounds for believing that such an account is likely to be
forthcoming.

7.4 Better Ontology

It might be thought that the locus of the problem for the logicist programme
is the insistence that the rules encoding our common-sense knowledge
adopt our everyday ontology of tables, chairs and so on—i.e. the ontology
implicit in folk-psychological propositional attitude ascriptions. Perhaps
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according to some more fine-grained ontology, what appear to be defeas-
ible rules can be reconstructed as exceptionless generalisations, thus obvi-
ating the need for non-monotonic reasoning. A search for deterministic
rules underlying apparently non-deterministic phenomena is analogous
to Einstein’s deterministic ‘hidden variable’ interpretation of quantum
mechanics. However, the very error prone nature of most human percep-
tion, inference and action appears to militate against the possibility that
people actually employ such an ontology. Any explanation of cognition
must surely account for making mistakes, changing our minds, reviewing
our beliefs in the light of new information etc. It appears necessary to
explain the defeasibility of human inference, and impossible to explain it
away.

Further, to retreat to the postulation of an alternative ontology, which
does not correspond to everyday objects and relations, amounts to giving
up point 4 in our characterisation of logicist cognitive science. This may
not be a concern to many working on formalising common-sense know-
ledge. For example, Hayes (1984b) attempts to formalise our implicit under-
standing of the behaviour of liquids by postulating representational primi-
tives which do not correspond one to one with the everyday concepts
provided by pre-theoretic intuitions. Such primitives must be postulated
in any case to handle inferential processes in specific cognitive domains:
as we noted above, a variety of linguistic representations appear to be
implicated in language understanding; a complex range of representations
is computed in perceptual processes; and so on.

The rejection of everyday properties and relations as the basis for internal
representation does, however, constitute a significant retreat for the logicist
position of Fodor and Pylyshyn (1988). Fodor (e.g. 1987) and Pylyshyn
(1984) argue that scientific cognitive explanation must be founded on foik-
psychological explanation. Specifically, they advocate the Representational
Theory of Mind according to which to have a propositional attitude is to
stand in a certain relation (the relation of believing, desiring or whatever)
to a mental representation. The content of this mental representation is
the object of the propositional attitude. Since the contents of propositional
attitudes are described in natural language, the interpretation of the corre-
sponding mental representations must be at the level of everyday objects
and relations. No everyday properties and relations, no theory of prop-
ositional attitudes.

7.5 Domain-specificity

We have observed that as the size of the knowledge-base increases, the
complexity of consistency-checking becomes unacceptable, and non-mono-
tonic logics over that knowledge-base become infeasible. If, however,
knowledge can be encoded in small, isolated sets of domain-specific axi-
oms, perhaps the complexity of consistency checking may be kept within
acceptable bounds. However, it is not sufficient to maintain consistency
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within domains; consistency must be maintained between domains, on the
proof-theoretic story. As we noted above, Fodor (1983) is committed to the
view that common-sense inference is precisely a domain which does not
admit such modularisation. In particular, he notes common-sense inference
is isotropic. That is, any piece of knowledge may be made to bear on any
other—there are no proscribed boundaries over which inferential processes
cannot operate.

We have already seen that general principles like relevance fail to provide
a basis for the compartmentalisation of knowledge into specific domains.
Such general principles are required since otherwise it is opaque as to
how such compartmentalisation is achieved, other than by fiat, from the
flux of information which an organism receives in interacting with its
environment. However, let us suppose, counterfactually, that such com-
partmentalisation can be achieved. We now present an example which
demonstrates the soundness of Fodor’s intuition that domain specificity
can not be the rule in knowledge based systems (on the assumption that
such demonstration may still be required).

On any reasonable principles of modularisation, seismographic know-
ledge is unlikely to be included in the domain-specific knowledge that
allows Egon to predict that his egg will be medium boiled in five minutes.
However, suppose Egon is boiling his egg at the seismographic station
monitoring the San Andreas fault. Egon notices the meter reading shoot
off the scale. He infers that the building will be knocked flat in a few
seconds and rushes out of the door. He subsequently realises that his egg
will not be ready as usual, since the pan is unlikely to remain on the stove.
So his knowledge of seismology seems to be implicated in explaining his
expectations about eating eggs. It could reasonably be countered that Egon
might not, in practice, make this inference in such a desperate situation.
However, if knowledge were organised into completely isolated, domain-
specific modules, he could not, in principle, make this inference, which
seems counterintuitive. Insofar as inference can be based on premises from
more than one knowledge domain, the axioms of each must be mutually
consistent. So, since any knowledge domain may bear on any other, the
global consistency of the entire knowledge-base must be maintained,
according to the proof-theoretic view. So appeals to domain-specificity
cannot alleviate the problems of consistency checking for the proof-theor-
etic view of common-sense reasoning.

7.6 Explicit and Implicit Inference

One line of retreat for the logicist is to grant that proof-theory does not
account for defeasible inference in common-sense reasoning, language
processing, perception and the like. Perhaps though, it can account for our
explicit, conscious reasoning abilities. In explicit reasoning, only a very
few premises can be entertained (Wason & Johnson-Laird, 1972; Evans,
1982; Johnson-Laird, 1983). Since in these cases the input length n is small,
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the onset of the combinatorial explosion of consistency checking may be
avoided. Indeed, some generally intractable exponential-time algorithms
can out-pe.rform generally tractable polynomial-time algorithms for small
n. The conjecture that this is so might be supported by the fact that, given
more than about three premises, in an explicit reasoning task, rea:soning
performance degrades catastrophically (Johnson-Laird, 1983, pp. 44-5).

There are two reasons why even this retreat may be untenable. Firstly
performance in explicit deductive reasoning tasks is extremely poor what:
ever the number of premises involved. This is, at least prima facie, puzzlin
if the bas‘is of our inferential performance is proof theory (Oaksfo;d Chate%
& Ster_mmg, 1990). Secondly, performance even on explicit de’ductive
reasoning tasks appears to be infected by the effects of stored world
knowledge (Cheng & Holyoak, 1985; Cheng, Holyoak, Nisbett & Oliver
1986; Oaksford, 1988; Byrne, 1989; Cosmides, 1989; Evans, 1989). To modei
the interaction between the small number of explicitly given premisses
and th.E huge amount of implicit world knowledge appears to require (i)
that n is, after all, very large; and (ii) that a non-monotonic logic may be
required to model the influence of defeasible world knowledge on deduct-
ive reasoning performance.

7.7 Can Probabilities Help?

In d‘is‘cussing ‘relevance’ we mentioned that Sperber and Wilson (1986)
exPl_mtly. reject the idea of attaching subjective probabilities to prop-
ositions in memory. We now consider the possibility that so doing may
g0 some way to resolving the problems we have raised. There seem to be
two major ways in which probabilities may help. First, the defeasibility
of rules which embody peoples’ world knowledge need not be encoded as
default rules, rather it could be conceded that all such rules are treated
as probabi]istic. This appears to satisfy the tractability criterion, since
consistency checking over the whole data-base would no lonéer be
required. However, we have also observed, in discussing non-monotonic
logics and relevance, that defeasible inference regimes are required to
solve the more general problem of which rules are to be updated in
response to new information, i.e. the ubiquitous frame problem in Al
Treating all the rules which encode encyclopaedic world knowledge as.
probabilistic does not resolve the problem of which rules apply in a given
context. Further problems, which relate to the completeness* criterion, also
arise for this putative probabilistic solution. ’
‘Per‘haps the most principled way of assigning probabilities to rules is
given _by Adams’ (1966, 1975) probability semantics. Logically, rules are
conditional statements, and hence concern centres on how probabilities
should attach to conditionals. Adams suggests that the probability of a
conditional, P(if ¢, then ), is the conditional probability of § given ¢.
I-Iowfever, this proposal is subject to a well known triviality result due to
Lewis (1976), the upshot of which is that such an assignment of probabilit-
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ies is only possible on the assumption that ¢ and { are not themselves
logically complex conditional statements. This result seriously restricts the
scope of Adams’ theory in representing very simple reasoning problems
(Veltman, 1985, p. 40) and thus strongly suggests that such a proposal fails
to meet the completeness* criterion.

Further grounds to believe that probabilistic rules will fail to be com-
plete* are suggested by examples where probabilistic rules appear to act
as blocks to further empirical inquiry. An example due to Alice ter Meulen
(1986) can be adapted to illustrate the problem. She poses the question of
what response is appropriate on encountering a complaisant donkey, given
you believe that all donkeys are stubborn. The latter rule can be represented
as a conditional statement and hence we may ask how it is to be revised
in the light of this putative counter-example. Assuming that one such
donkey is not taken to falsify the rule outright, the probabilistic suggestion
would appear to be that a minor adjustment in the conditional probability
assigned to the rule is required. Having made the adjustment, you can
proceed on your way. However, surely it is at least possible that you want
to inquire into why this particular donkey does not conform to your
aforementioned belief that all donkeys are stubborn. On so inquiring, you
may discover that the animal was circus trained, and hence you would be
advised to encode the information that all donkeys are stubborn except
circus trained donkeys. Such an adjustment would surely better equip you
to draw appropriate inferences on next encountering a donkey at the circus,
than the minor adjustment to the conditional probabilities suggested by
the probabilistic alternative. It would appear that only if no such default
information could be found (i.e. no hidden variables can be discovered,
see above) would the probabilistic alternative be necessitated. Again it
would appear necessary to explain the defeasibility of human inference,
and impossible to explain it away.

A second proposal concerning how probabilities may help involves
employing probabilities to determine which rules apply in which contexts.
Thus rules are not soft and probabilistic but hard and logical. However,
which rules apply is given by their probabilities of applying in a given
context. This proposal is indistinguishable from Relevance Theory, except
in the explicit use of probabilities which at least avoids the opaqueness
of confirmation strengths in Sperber and Wilson (1986). If rules have prob-
abilities assigned indicating their likelihood of applying in a given context,
then at least two things are required: (i) a probability assignment to each
rule for each possible context, (ii) a means of determining the current context.
However, as with relevance theory, (ii) is just a restatement of the current
problem. If the current context could be determined, then the problem we
have invoked probabilities to resolve would not arise. Moreover, (i)

requires that each rule has a probability assigned for every possible context.

Not only is this an impossible requirement—the range of possible contexts
is simply not known—the spectre of intractability must again loom very
large. In, for example, computational accounts of abductive reasoning in
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medical diagnosis, which employ Bayesian inference, the number of stored
a priori and conditional probabilities increases explosively with the number
of diseases and symptoms (Charniak & McDermott, 1985). Yet such a
knowledge base must be regarded as trivial in comparison to the whole
of world knowledge. In sum, there are strong grounds for believing that
the probabilistic approach will be subject to intractability problems and
for believing that such approaches violate the completeness* criterion.

7.8 Parallelism

From the discussion so far, it might be thought that the computational
intractability of non-monotonic inference applies only to serial machines,
in which computational operations must be executed one after the other.
Perhaps an appeal to the parallelism of the brain may alleviate the problem
of computational intractability. However, at best, appeals to parallelism
can only reduce the time-complexity of a computationally explosive algor-
ithm by a constant factor. All that this can do is slightly delay the onset
of the computational infeasibility. Given that the proof-theoretic view of
mind requires consistency checking over a data-base which encodes the
whole of an individual’s common-sense knowledge (so that n is, presum-
ably, very large), the minor gains induced by appeal to parallelism are
unlikely to be significant.

7.9 Semantic Methods of Proof

Within the psychology of reasoning, there is an important debate about
whether or not human deductive reasoning is mediated by proof theoretic
rpethods (Piaget, 1953; Henle, 1962; Braine, 1978), or by semantic methods
of proof, such as mental models (Johnson-Laird, 1983). Carrying this debate
over to non-demonstrative inference, it might be thought that such seman-
tic methods may provide an alternative to the standard proof-theoretic
approach. However, such semantic methods of proof work by consistency
checking. The validity of an inference from A,, A, ... A, to a conclusion
C, is established by attempting to show that A,, A, ... A, & -C is not
consistent. The consistency check is performed by systematically
attempting to find a model according to which each of A}, A, ... A, & -C
are true. Since consistency checking, of whatever form, is NP-complete, as
the number of premises in the data-base increases, the computation
becomes intractable, and inferences cannot be made, even in a monotonic
logic. Although semantic methods such as mental models may elegantly
account for some explicit deductive reasoning tasks, they offer no prospect
of providing more tractable mechanisms for reasoning in knowledge-rich
domains.
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7.10 Proceduralism

McDermott (1986) argues that the failure of proof-theoretic methods in Al
to adequately account for non-monotonic reasoning requires that the
attempt to provide a semantics for knowledge representation formalisms
must be abandoned. Yet this move amounts to abandoning the project of
accounting for defeasible reasoning. If symbolic structures are assigned no
semantics, then they have no representational content—that is, they are
not about anything. Yet reasoning processes are defined in virtue of the
content of the representations that they manipulate; to describe an infer-
ence as valid, justified, legitimate is to appeal to the interpretation of the
symbolic structures. For example, the inference from A and A — B to B is
valid since if A and A — B are both true, then B must be frue. Yet
uninterpreted formulae, which are all that the proceduralist can counten-
ance, cannot be true or false.

The only retreat is to appeal to some form of Functional Role Semantics
(see Block, 1986, for a review and references). That is, the idea that symbols
can acquire meanings via their intrinsic relations to other symbols. This
idea is usually illustrated (see for example, Lloyd, 1989, pp. 24-5) by an
analogy with learning the meaning of a term either in a foreign language
or in an unfamiliar idiolect of a speaker’s own language. A previously
unencountered term may be acquired and used appropriately simply by
observing its relations to other words, and its grammatical contexts of
use. A speaker may finally become competent enough to use the term
appropriately to utter truths without ever having learned the precise deno-
tation of the term, i.e. without access to the full semantic content of the
symbol. However, it is generally agreed that this story can not work for
all the terms of a language (Lloyd, 1989). At least some, more likely the
majority, of the terms of a speaker’s language must be such that the speaker
has access to their full semantic content. Without such access no sense
could be attached to talk of ‘using a term appropriately to utter truths’. It
is important to observe that Fodor himself does not believe a word of the
functional role story (see, Fodor, 1987). Although this view is easily con-
flated with Fodor’s (1980) methodological solipsism, there is nothing methodo-
logical about it, this is solipsism pure, simple and indefensible. Without
appeal to full semantic content, cognitive science does not have a story to
tell about its central explanatory concept, i.e. representation.

Quite generally, proceduralism abandons all notions of reasoning and
inference, be they deductive, inductive, eductive or abductive. Very gener-
ally, it is hard to imagine what a cognitive science (logicist or otherwise)
could look like, without the notion of representation.

8. Conclusions

We have argued that the plausibility of logicist cognitive science depends
on its ability to provide a proof-theoretic account of defeasible inference
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which is implicated in almost every area of cognitive activity. We assessed
the practical attempt.in Al to carry out this proof-theoretic programme
using non-monotonic logics, and noted (1) that such logics are able to
draw only unacceptably weak disjunctive conclusions; and (2) that the
theorem-proving algorithms over such logics are computationally intrac-
table due to their reliance on the NP-complete problem of consistency
checking. We drew the conclusion that the programme of logicist cognitive
science is infeasible, and replied to a number of plausible objections to
this conclusion.

If logicist cognitive science constitutes an inappropriate framework in
which to model cognition, the question arises of what alternative approach
can be provided, which maintains both semantic interpretability and com-
putational tractability. In discussing the central dogmas of logicist cogni-
tive science, we repeatedly urged that the range of computational systems
available is far from exhausted by the traditional symbolic approach.
Nevertheless, it is beyond dispute that this is the approach which has
been most thoroughly investigated, in part because of its early promise in
providing a physicalist grounding for human cognitive processes. How-
ever, in virtue of this fact, it is the approach about which most is known
relative to its abilities to handle cognitive phenomena. From the issues
raised here concerning the defeasibility of human cognitive processes, it
is clear that the conclusion of these investigations is that classical logicist
cognitive science is inadequate. Therefore, it may well be time to explore
the space of possible computational schemes for more adequate, albeit as
yet less well understood, alternatives.

In this regard, recent work on distributed systems such as neural net-
works (e.g. Rumelhart & McClelland, 1986; McClelland & Rumelhart, 1986)
and classifier systems (Holland, Holyoak, Nisbett & Thagard, 1986), may
perhaps constitute the beginnings of an alternative approach to mechan-
isms which deal with defeasible inference (Shastri, 1985; Derthick, 1987;
Chater & Oaksford, 1990). Both Shastri (1985) and Derthick (1987, 1988)
provide efficient implementations of algorithms for Bayesian inference
and default reasoning respectively, which exploit connectionist systems.
However, both implementations are hand-wired and thus do not exploit
the principle advantage of connectionist systems, i.e. their ability to learn.
Connectionist learning is notoriously slow, and thus our suggestion that
such systems may aid in overcoming the objections to the logicist pro-
gramme we raise in this paper may seem suspect. Complexity results for
connectionist learning algorithms are as bad (in fact usually worse) than
the non-monotonic systems we criticise. However, like is not being com-
pared with like. In the case of non-monotonic systems the complexity of
inference not learning was under discussion: these systems do not possess
learning mechanisms. With regard to inference in Connectionist systems,
once a network has learned, it draws inferences as rapidly as it takes to
propagate activity from input to output. This pattern of complexity mirrors
the human case whereas that of non-monotonic reasoning systems does
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not. Human learning is a slow process, but once some piece of knowledge
is in place inference over it is effortless. Connectionist systems appear to
display precisely the same complexity profile.
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