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Connectionism, Learning and Meaning

MORTEN H. CHRISTIANSEN & NICK CHATER

There is an apparent anomaly in the notion that connectionism, which is fundamentally a
new technology, has considerable philosophical significance. Nonetheless, connectionism
has been widely viewed as having implications for symbol grounding, notions of structured
representation and compositionality, as well as the issue of nativism. In this paper, we
consider each of these issues in detail and find that the current state of connectionism does
not warrant the magnitude of many of the philosophical conclusions drawn from it. We
argue that connectionist models are no more ‘grounded’ than their classical counterparts. In
addition, since connectionist representations typically are ascribed content through semantic
interpretation based on correlation, connectionism is prone to a number of well known
philosophical problems facing any kind of correlational semantics. However, we suggest that
philosophy may be ill advised to ignore the development of connectionism, particularly if
connectionist systems prove to be able to learn to handle structured representations.
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representation, semaastics.

1. Introduction

The surge of interest in neural networks has created an impact across a remarkably
broad range of disciplines—from electrical engineering (Graf et al., 1988) physics
(Hopfield, 1982) and mathematics (Cybenko, 1989) to the biological and cognitive
sciences (McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986),
artificial intelligence (Derthick, 1987) and computer science (Fahlman, 1988).
What may appear incongruous is that this remarkable influence has been widely
considered to have significant philosophical implications too (Clark, 1989; Church-
land, 1986; Horgan & Tienson, 1987; Churchland, 1989; Bechtel & Abrahamsen,
1991; Ramsey et al., 1991). Indeed, it has been argued that neural networks have
important ramifications for one of the most abstract areas of philosophy—the theory
of meaning (Cottrell, 1987; Cussins, 1990; Harnad, 1990b, 1992).

At first blush, this state of affairs is surprising since, after all, neural networks are
fundamentally a technology—a set of tools and methods which can be applied to a
wide variety of practical and modelling tasks. Across the spread of disciplines caught
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up in the study of neural networks most either apply formal methods well suited to
describing and analyzing the behaviour of neural networks or are domains to which
neural network modelling techniques can usefully be applied. Yet philosophy in
general, and theory of meaning in particular, appear to stand in neither of these
relations to neural networks—philosophical methods do not appear obviously
helpful in elucidating network behaviour and it seems almost incoherent that neural
networks could in some sense model or solve some philosophical problem.

In this paper, we argue that the purported philosophical implications of connec-
tionism for the theory of meaning are, at least in many cases, illusory. Before doing
so let us dwell briefly on why, despite this apparent poor fit, neural networks have
been taken to have far reaching philosophical implications. The answer, of course,
is that neural networks in their connectionist guise have been seen as providing a new
metaphor for the mind. Of particular interest is the suggestion that connectionism is
seen as providing a new account of the nature of mental representation, which is held
to have a wide variety of philosophical ramifications. It is not always entirely clear
which aspects of neural network computation are philosophically significant,
although the fact that connectionist representations are typically distributed as well as
superpositional and are usually learnt appears to be particularly important, as we shall
see below. In any case, whatever the precise characteristics that do the philosophical
work in connectionist modelling might be, connectionist models are interesting
because they are different: different from the classical, symbolic view of cognitive
processing which has dominated cognitive psychology and cognitive science since
their inception (Fodor, 1975, 1987; Pylyshyn, 1984).!

However, it is still a controversial issue whether or not neural networks should
be viewed as displacing symbolic accounts of mind or as a medium in which
symbolic processes can be run (e.g. Clark, 1989; Fodor & Pylyshyn, 1988;
Smolensky, 1988). Pinker & Prince (1988) have dubbed these positions eliminativist
connectionism and implementational connectionism, respectively. At first sight, at
least, it seems that neural networks will be of philosophical significance only for
eliminative connectionists. It is hard to imagine how a new implementation could
have any great philosophical implications at all. However, full scale eliminativism
i1s a very radical position indeed and few in cognitive science would embrace it.
There are, though, intermediate positions which allow symbolic representations
and operations, but which still accord a connectionist substrate considerable
importance in explaining cognition (e.g. Chater & Oaksford, 1990a; Clark, 1989;
Harnad, 1990a). The arguments we consider for the philosophical significance of
connectionism typically embrace both symbolic and connectionist explanations of
cognition.

In discussions of symbolic and connectionist approaches to cognitive science, the
historical predominance of the symbolic view has meant that, to some extent at least,
the ground rules concerning what key cognitive phenomena must be explained
and what counts as a good explanation, have been set in largely symbolic terms
(van Gelder, 1992). Thus, if connectionism amounts to a genuinely new paradigm
for the understanding of mind, there is a very real danger of falling into what we will
call the ‘tncommensurability trap’. That is, connectionist models may be unfairly
judged either because they fail to fit the classical standards or because when they are
made to fit the resulting explanation looks forced and unattractive. The danger is
analogous to that of judging vegetarian food by the standards of the butcher. After
all, connectionism—construed as a new paradigm (e.g. Schneider, 1987)—may
involve a revolutionary reconstruction of the field from new fundamentals, leading
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to changes in methodology and basic theoretical assumptions. Since rival paradigms
prescribe different sets of standards and principles, connectionist and classical
approaches to cognitive science may also differ on what constitute meaningful and
legitimate scientific questions. Due to this incommensurability, discussions between
proponents of different paradigms on the issue of paradigm choice often become
circular. Each group will tend to praise their own and criticize the others party’s
paradigm with arguments based on their own paradigm. In other words, when
comparing and assessing the individual explanatory power of rival paradigms,
the incommensurability trap constitutes a non-trivial methodological obstacle to
negotiate since it involves engaging in the process of radical translation (Quine,
1960). Or so much philosophy of science would have us to believe (e.g. Kuhn,
1970). In any case, there are signs that communication is becoming difficult and
hence it is imperative that the merits of connectionism are judged from ‘within’, i.e.
on its own terms, not through the looking glass of the classical paradigm.> However,
the opposite danger is equally real—symbolic models can look unattractive from a
connectionist perspective. This raises the danger of ignoring all that has been learnt
from the symbolic approach and simply starting the project of understanding the
mind afresh.

In particular, it is not possible to discuss the relationship between connectionism
and the theory of meaning without flirting with these dangers, since traditional
theory of meaning is concerned with symbolic, linguistic representations. So, for
example, we shall break our discussion below into two parts—first discussing the
semantics of primitive terms and then the issue of compositional semantics. This
very distinction comes out of the theory of meaning for languages and need not
necessarily be appropriate for other types of representation (if there are any).
However, theories of meaning for languages are the only theories of meaning that we
have—there is no alternative to which the connectionist can turn. In the main, this
has meant that philosophical implications of connectionism have been viewed as
fitting into a standard semantic framework: as either concerning fixing the meaning
of primitives, or compositional semantics.

So far, we have considered the possible importance of connectionism for seman-
tics. Equally interesting is the significance of semantic issues for connectionism
itself. Ascribing meaning to connectionist networks involves implicitly making
assumptions about what it is for a state of a network to represent. Without a theory
of meaning, whether explicit or implicit, it is impossible to view networks as possess-
ing or developing representations at all. More generally, seeing a connectionist
network, or any other system, as a computer at all, is dependent on being able to
ascribe meaning to the states of the system. Otherwise its internal states are not
appropriately viewed as processing information at all, but simply as passing through
sequence of states; the network will be viewed simply as an informational ‘black
box’, where only inputs and outputs are interpreted, and those by fiat. Hence, the
semantics of connectionist networks which we will discuss extensively below is of
both practical as well as philosophical interest.

The structure of the paper is as follows. In Section 2, we give a brief exposition
of the classical approach to cognitive processing in which the main object of a theory
of meaning is to elucidate the semantic content of the internal language of thought.
One of the largest problems facing this approach is the problem of establishing the
right referential links between internal representations and the external world. Much
optimism has been invested in connectionism as providing the means for referential
grounding of semantic primitives through learning. We therefore address some of
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the philosophical problems standing in the way of this project in Section 3,
specifically the fact that connectionist representations, at least presently, are no more
grounded than their symbolic counterpart (basically because they are developed
from pre-processed input), and, more generally, that obtaining the correct correla-
tions between internal representations and external objects is a non-trivial matter
(i.e. it involves problems concerning error, underdetermination, non-existing
entities, and the difference between properties and propositions). Whether or not
connectionism will be able to ground semantic primitives, it does need to develop
some kind of compositional semantics, if it is to be a true rival to the symbolic
paradigm. Consequently, Section 4 discussed the issue of learning complex seman-
tic representations in connectionist models. In particular, we outline what kind of
compositionality we should envisage and point to initial steps taken in the direction
of truly structure sensitive manipulations of connectionist representations. Since
learning is one of the leading motivations behind connectionist modelling, we devote
the last section to a discussion of issue of nativism in relation to symbolic as well as
connectionist models. Specifically, we find that connectionism may provide the
prospect of a better explanation of cognitive development.

2. The Classical View of Computation and Cognition

The classical view, baldly stated, is that cognitive processes are defined over sen-
tences of an internal language in virtue of their form (Fodor, 1981). In particular,
the classical model of cognition rests on two major claims. Firstly, psychological
explanation is best carried out in terms of an internal language of thought. Second,
this internal language involves a machine-implementable physical symbol system
(Newell & Simon, 1976) with structure sensitive transformations of symbolic
expressions on the level of syntax, i.e. classical representation of mental states can
be implemented on computers. The classical paradigm consists of the synthesis of
these two claims.

If, in principle, syntactic relations can be made to parallel semantic relations, and if, in principle, you
can have a mechanism whose operations on formulas are sensitive to their syntax, then it may be
possible to construct a syntactically driven machine whose state transitions satisfy semantical criteria
of coherence. Such a machine would be just what’s required for a mechanical model of the semantical
coherence of thought; correspondingly, the idea that the brain is such a machine is the foundational
hypothesis of classical cognitive science. (Fodor & Pylyshyn, 1988, p. 30.)

They sum up this position in the slogan that cognition is mechanized proof theory.
Actually, this position is rather stronger than the view that cognition is symbol
manipulation, since it is by no means always appropriate to view symbol manipula-
tion as a theorem proving (Chater & Oaksford, 1990b; Oaksford & Chater, 1991).

Like natural and logical languages, the internal language is assumed to consist of
a finite stock of atomic primitives and a finite set of ways of combining these
primitives (Dowty et al., 1981). These modes of combination can be applied
arbitrarily often, to give an infinite set of possible internal formulae. Specifying a
semantics for such a language involves specifying (i) the meanings of the primitives
of the language and (ii) a compositional semantics for that language, which specifies
how the meanings of the parts of a complex expression contribute to the meaning of
the whole, given each possible mode of combination. Below we shall see that
connectionism has been viewed as potentially impacting on both of these aspects of
semantics.
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What have been taken as the philosophical implications of the classical position?
The most direct impact has been that the classical view allows (although it by no
means requires) that the contents of internal formulae may be identified with the
contents of mental states: propositional attitudes usually viewed as computational
relations to mental representations (Fodor, 1975; Field, 1978). So, for example, the
belief, desire or hope that P, for a proposition P, amounts to standing in the
appropriate relation to an internal formula which expresses P. Where mental states
are explained in terms of propositions represented by internal sentences, concepts are
explained in terms of the properties represented by internal predicates. So, to have the
concept DOG, DOG-WITH-ONE-LEG or whatever, is to possess an internal
formula which expresses the properties of being a dog or being a one-legged dog.
This position is attractively parsimonious in ontological terms: while there appear
prima facie to be two sorts of entities with semantic properties, languages and mental
states, there are, at root, only one, since the semantic properties of the latter are
derivative on the former.

According to this picture, an important concern of the theory of meaning is to
explain the basis for the semantic properties of internal languages. The project has
a rather different character to the project of explaining the basis of the semantics of
external natural language. It must be conducted in the absense of any detailed
understanding of the nature of this language, and the social and conventional aspects
of meaning in natural language appear to be relevant to the semantics of an internal
language. Within philosophy there has been extensive debate concerning whether
the meaning of external languages is derivative on the meaning of mental states
(Grice, 1957) or whether, as behaviourists and others have advocated, the meaning
of mental states is derivative on language behaviour (e.g. Quine, 1960). For those
who believe the former, as has become orthodox in the foundations of cognitive
science (e.g. Fodor, 1975), an account of meaning for internal languages is a neces-
sary prerequisite for providing an account of meaning for external languages too.
Thus, elucidating the meaning of internal states may be viewed as the fundamental
issue in the theory of meaning. The question of what a theory of meaning for internal
languages could look like, or whether such a project is feasible at all, has been
extensively discussed (Dretske, 1981, 1988; Churchland, 1986; Fodor, 1987, 1990;
Stich, 1983; Schiffer, 1987; McGinn, 1989).

Although the classical account of cognition finds the semantics of the external
natural language to be individuated by the semantics of the internal language of
thought, the argument behind the postulation of the latter goes in the opposite
direction, i.e. from external language to internal representation. The argument is
based on the observation that natural language is' describable in symbolic terms
where the symbols correspond to words that can be composed systematically into
meaningful complex expressions, sentences, according to a recursively specified
syntax.”? The important link to the internal language of thought is that we use the
external language to verbalize (and communicate to others) the contents of our
thoughts—or, rather, we use natural language constructs to express the content of
our mental representations. However, we can only think (and say) what our mental
representations allow us to represent. So, the argument goes, the syntactic as well as
semantic systematicity and productivity of the external language must therefore
mirror the underlying nature of the internal language of thought by copying its -
combinatorial syntax and semantics (e.g. ¢f. Fodor & Pylyshyn, 1988). The upshot
of this argument with respect to connectionism is that the systematicity of cognitive
competences requires mental representations with constituent structure. While
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Classical models are defined over structured representations, Fodor & Pylyshyn
(1988) and Fodor & McLaughlin (1990) argue that connectionist models do not
have constituent structure and can therefore not have any compositional semantics.
As a result, they conclude that connectionism #pso facto does not provide the repre-
sentational substrate required by a theory of cognition; specifically, it cannot support
the systematicity of cognitive capacities. We shall consider this issue further below—
but first we turn our attention to the ascription of semantic content to connectionist
representations.

3. Connectionism and the Semantics of Primitives

One problem facing theories of meaning relying on the classical account of cognitive
processing is that the relation between the primitives of a symbolic system and their
semantic content is essentially arbitrary. The meaning of the most basic constituents
are projected onto them by the observer through semantic interpretation. That is,
the meaning of a symbolic system is external to the system itself since it is fundamen-
tally parasitic on the meanings in the head of the observer; or, in more philosophical
terms, the atomic symbols have no intrinsic meaning. It is therefore always possible
to re-interpret the basic symbols, to ascribe them a different content and in this way
change the semantic significance of the overall behaviour of the system. The possi-
bility of an externally imposed arbitrary re-interpretation of the representational
primitives—originally a cornerstone in Searle’s (1980) Chinese room parable (for a
discussion, see Harnad, 1989, 1990a; Boden, 1990; Churchland & Churchland,
1990; Dyer, 1990a, b; Searle, 1990; Chalmers, 1992—for a critical review of these,
see Christiansen, 1992a), more recently glossed the ‘symbol grounding problem’
(Harnad, 1990b)—has plagued the classical paradigm for a long time.

The advent of connectionism has given rise to optimistic expectations regarding
a solution to the problem of grounding the semantic primitives of computational
systems, be that within a hybrid symbolic/connectionist architecture (e.g. Harnad,
1989, 1990a, b, 1992; Harnad et al. 1991) or an entirely connectionist system (e.g.
Cottrell 1987; Smolensky, 1988). These expectations have manifested themselves in
statements such as, for example, “nets are one possible candidate for the mechanism
that learns the sensorimotor invariants that connect arbitrary names (elementary
symbols?) to the nonarbitrary shapes of objects” (Harnad er al. 1991, p. 1; their
brackets), “networks are self-organizing systems that learn to represent the impor-
tant features of their environment” (Cottrell, 1987, p. 68), and “connectionism
offers significant resources for explaining how representations are about other
phenomena and so possess intentionality” (Bechtel, 1989, p. 553). In other words,
connectionism allegedly promises a way of providing a computational system with
a perceptual ‘hook-up’ to the external world such that the semantics of its internal
representations becomes grounded.

The argument behind this (at least presently) undue optimism with respect to a
connectionist grounding of semantic primitives can be expounded as follows (this
exposition is a summary of van Gelder’s, 1992, discussion). The basic observation
is that, through learning, connectionist models (with hidden units) are able to
develop internal distributed representations that structurally mirror the structure
inherent in the externally given input. More specifically, the vectors that correspond
to the individual patterns of activation over the hidden units are often conceived as
points in a multidimensional state space. The exact location of a given vector is
determined by the specific values of its constituents; i.e. by its internal configuration.
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As a result, similar vectors are mapped into similar locations in space. The degree
of similarity between vectors—the ‘distance’ between them in space—can be
measured using a variety of standard vector comparison methods (e.g. cluster
analysis or trajectory analysis). Due to the superpositional and highly distributed
nature of the networks in question, representations that are structurally similar—i.e.
that have similar internal structure or, more precisely, have similar vector
configurations—end up as ‘neighbouring’ positions in state space. Thus, structurally
related input representations will invoke relatively ‘adjacent’ representations in hid-
den unit space.

It is important to notice from a computational perspective that these similarities
have causal significance. The behaviour of a network, being a complex dynamical
system, is causally dependent on the current pattern of activation over the hidden
units, i.e. on the current representation’s particular location in space. In other
words, the specific location in space of a given representation will causally effect how
it is processed. Since the internal structure of such distributed representations corre-
sponds systematically and in an essentially non-arbitrary way to the structural
configuration of the input representations, allowing us to project any semantic
interpretation we might assign the input onto the appropriate positions in vector
space, and since variations of position in state space are causally efficacious, the
processing of a network can be seen as being determined systematically according to
the semantic content of the distributed representations.

Judging from this exposition it would seem to be the case that connectionist
representations can be assigned content in an essentially non-arbitrary way, since
their internal structure (given successful training) will correlate with structural con-
tingencies in the input and produce a non-arbitrary representation, i.e. connectionist
representations appear to be able to possess at least some bona fide intrinsic content.
However, the internal states of present day connectionist networks appear to be no
more ‘grounded’ than their symbolic counterparts (also ¢f. Bechtel, 1989; CIiff,
1990; Sharkey, 1991). Crucially, the distributed representations in question are only
non-arbitrary in relation to the structure of the given input representations, not
in relation to what the latter are representations of, i.e. the entities they refer to in
the outside world. Consequently, similarity is defined as a relation between input
representations and not as a relation to the appropriate external objects they are
to represent. Furthermore, since the input representations provided by the
programmer are typically pre-structured and of a highly abstract nature, it is always
possible to give a network’s input representations a different interpretation, thus
changing the projected content of the internal distributed representations. This has
been mirrored empirically by the fact that only a few experiments have been carried
out with ‘real’ sensory-type data (in sense of not having been pre-processed by
the programmer) and then, as we shall see exemplified below, with a mostly
unsuccessful outcome. So, whatever semantic content we might want to ascribe to
a particular network, it will always be parasitic on our interpretation of that network,
i.e. parasitic on the meanings in the head of the observer.

There is, however, a sense in which connectionist representations are non-
arbitrary, i.e. the inter-representational relations in a network are essentially non-
arbitrary. In contrast to symbolic systems in which the atomic symbols have no
relation to each other (albeit that complex symbols have non-arbitrary inter-rela-
tions), distributed representations are non-arbitrarily related to each other in state
space. Whereas atomic symbols designating similar objects have no (non-coinciden-
tal) relation to each other, connectionist representations of similar object represen-
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tations in the input will end up as neighbouring points in state space. Thus,
connectionist networks provide us with a kind of non-arbitrary representational
‘shape’ that allows a notion of inter-representational similarity. The important
ability of connectionist networks to generalize derives from these similarity relations
between representations corresponding to structurally similar input. Despite the
non-arbitrariness of these inter-relations and their grounding of a robust notion of
representational similarity, the extra-representational links are still fundamentally
arbitrary and therefore ungrounded.

3.1. Correlational Semantics

So far, we have pursued the possibility that learnt connectionist representations may
be of significance for the theory of meaning as if the meaning of such representations
were well understood. In fact, as we shall see, this is not at all the case—meaning in
connectionist networks presents a philosophical problem rather than offering philo-
sophical solutions.

Fundamentally, connectionists attach meaning to the states of a network on the
basis of what those states correlate with. For example, in Hinton’s (1986) model of
learning family trees, a unit is said to represent nationality or generation in a family
if it correlates with these properties in the input. More generally, connectionist units
or patterns of activation are viewed as picking out categories, with which they
correlate, and which specify their meaning. Thus the network is viewed as acquiring
the corresponding concept (of, say, nationality or generation).

For concreteness we shall focus on connectionist models which can be plausibly
viewed as involving concept or category learning. In such cases, the learning process
can be viewed as learning to correlate the activity of a unit or a pattern of activation
over a set of units with some significant aspect of the input (also ¢f., e.g. Goschke &
Koppelberg, 1991; Hatfield, 1991).* Examples include unsupervised category learn-
ing of all sorts (Carpenter & Grossberg, 1988; Linsker, 1988; Finch & Chater,
1992), and supervised approaches (e.g., Kruschke, 1990) and incidental learning
(Hinton, 1986; Elman, 1990, 1991a). This follows tradition in pattern recognition
and statistical classification (Duda & Hart, 1973). A similar ‘correlational’ style of
semantics is presupposed within the ‘animal concepts’ literature (e.g. Herrnstein,
Loveland & Cable, 1976; Cerella, 1982; D’Amato & Van Sant, 1988; Chater &
Heyes, in submission) and in the interpretation of the activity of real neurons (e.g.
Schurg-Pfeiffer & Ewert, 1981). For example, Lea (1984) suggests that to have a
concept is to have “... some unique mental structure which is active when and only
when an instance of that concept is present in the external, physical environment or
when associated concepts are active in the mental environment” (p. 270). According
to this view, having the X concept is simply a matter of being able to perceptually
discriminate Xs from non-Xs; and such discrimination abilities are just what
paradigmatic animal concept experiments aim to test. This correlational account of
what it is to have a concept has a counterpart in philosophy as what Jerry Fodor calls
the “crude causal theory” of meaning (1987, 1990). A similar correlational account
1s also closely related to Dretske’s (1981) proposal that conceptual structures carry
the information that is their content in digital form.

However, there are serious philosophical problems concerning not only a con-
nectionist semantics based on causal correlation but also, in general, the adequacy
of correlational semantics as the basis of any theory of meaning. These problems
concern the matter of misrepresentation, underdetermination, representing non-ex-
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isting things and capturing propositions rather than properties. We will address
these problems in turn in the following sections and emphasize their impact on a
connectionist semantics.

3.1.1. The problem of error. The fundamental challenge to the correlational view is
allowing for the possibility of categorization error. People routinely make both false
positive and false negative errors. Mistaking a pattern of shadows for a face at the
window is an instance of the former; failing to see a dark figure in the bushes is a case
of the latter. Yet the correlational view without some added machinery is unable to
countenance the possibility that we have the concept PERSON and that we make
such mistakes. For the content of the concept [equally, the meaning of the corre-
sponding state, or for Harnad (1990b, 1992) what the internal state ‘names’] is
determined by what it correlates with—and the fact of error shows that it does not
correlate with instances of people.

As Fodor (1987) points out, the programme of informational semantics within
philosophy is concerned with attempting to patch up such problems with correla-
tional accounts. A number of proposals have been made (see, e.g. Stampe, 1977;
Millikan, 1984; Dretske, 1986, 1988; Fodor, 1987, 1990; Chater, 1989a;
Christiansen, 1992b)—although none are widely considered to be satisfactory.
Rather than attempting to survey the range of possible responses, we shall consider
just two suggestions about how this problem can be addressed (Fodor, 1984a;
Stampe, 1977), which may particularly appeal to connectionists. We contend that
other approaches are no more successful.

The first suggestion is that content is fixed during the learning of the concept,
rather than determined by subsequent performance, outside the learning period,
when mistakes may occur (Dretske, 1981). The idea is that the correlation holds
within the learning period (fixing the content correctly), but not necessarily after-
wards (allowing for the possibility of error). This position is particularly interesting
in the present context, in view of the importance of learning in connectionist
systems. However, Fodor (1984b) points out that this view is quite unworkable,
since all the difficulties for a correlational view recur within the learning period. Let
us put aside the difficulty that a single error in the data to be learned (a parent
accidentally calling a donkey a horse, perhaps) would leave the learner forever
blighted with a non-standard concept, by disrupting the correlation. The real
difficulty stems from the fact that the relevant property can never be determined by
the training set alone; even if the learner is given perfect feedback about which of a
set of things are people and which are not, forming the concept PERSON involves
an inductive generalization from a finite set of instances. Which concept has been
formed cannot therefore be determined from the correlation observed in the training
set alone, since all manner of different properties will fit that training set, but differ
elsewhere, such as the pathological PERSON-OR-FACE-LIKE-SHADOWS or
PERSON-NOT-IN-CAMOUFLAGE. Which of these concepts has been formed is
determined by how the system has generalized from the training set, i.e. how it would
respond to stimuli outside the training set. Subsequent errors, after the learning
period has been completed (assuming that some such boundary can be enforced),
demonstrate that generalization has been imperfect; the correlation is violated and
the concept has not been learned after all. Thus, appeal to learning fails to reconcile
the possibility of learning a concept with proneness to occasional mis-classification.

The second suggestion is that while errors may occur on difficult cases (perhaps
when the stimulus is degraded in some way), the correlation that fixes content need
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only hold in clear cases. As with appeal to the learning period, the idea is to partition
performance into two classes, one in which correlation determines the concept in
play (and which is necessarily error-free) and a second class in which the correlation
need not be maintained, thus allowing for errors. Unfortunately, however, as Fodor
(1990) forcefully argues, what counts as a clear case cannot be specified indepen-
dent of the concept being learnt. Chater & Heyes (in submission) consider the
example of the confusion that commonly occurs at night between a star and the
lights of a plane, leading to spurious plane identification. According to appeal to
clear cases, it appears legitimate to explain this away, since planes are only confused
in this way when they are viewed from a considerable distance and in the dark. In
good viewing conditions, perhaps an internal structure does correlate perfectly with
the presence of planes. However, while daytime is optimal and nighttime suboptimal
for detecting planes, nighttime is optimal for detecting planes or stars (since you can
see instances of both at night) and daytime is suboptimal (since only some
instances—planes—are visible). So optimality could equally be invoked to argue that
the internal mental structure is a PLANE-OR-STAR concept, which correlates
properly at night, but imperfectly during the day. The general moral is that the
distinction between a class of ‘good’ cases, where the correlation is supposed to
hold, and ‘poor’ cases, in which error is possible is unconstrained without some
independent notion of good and bad case; and such a notion does not appear to be
forthcoming.

Thus, according to the correlational position, concepts are defined in such a
way that there can be no such thing as ‘getting it wrong’. Since the content of the
concept is whatever the activity of the mental structure correlates with, mis-
classification is impossible. The ‘learning’ and ‘optimality’ responses are just two of
a number of responses which attempt to allow for error by attempting to distinguish
two kinds of situations: one kind in which performance determines what content the
representation has, and hence what concept it corresponds to; and one kind which
is ‘non-optimal’ (Stampe, 1977; Fodor, 1984a), not ‘normal’ (in a teleological,
non-statistical sense) (Millikan, 1984), or outside the learning period (Dretske,
1981). However, as in the case of optimality, it is extremely difficult to see how to
define the distinction between the two classes in a non-circular way.

It may be, of course, that a satisfactory solution to these difficulties can be
found—indeed the project of informational semantics is wedded to the hope that it
can. While the correlational view, in its least elaborated state, directly ties up with
intuitive ascriptions of content to hidden units in connectionist networks, there is,
of course, no way of knowing whether a more sophisticated and satisfactory theory
of content will tie up in an equally attractive way. Indeed, Fodor’s (1987) most
recent and ingenious suggestion, which relies on the ‘asymmetrical dependence’ of
counterfactuals underwriting categorization in ‘errorless’ versus ‘error-tolerant’
situations, and Millikan’s (1984, 1986) advertence to evolutionary considerations
do not seem applicable to connectionist networks in any straightforward way.’

3.1.2. The problem of underdetermination. In the discussion of error, we noted
incidentally that learning a concept from a set of exemplars involves nductive
inference: inferring a general rule from a set of examples. In neural network terms,
this amounts to curve fitting, with the exemplars as the data points and the network
architecture specifying the family of curves (e.g. Broomhead & Lowe, 1988;
Mackay, 1991). We noted that which inductive rule (i.e. which curve) has been
chosen cannot be determined by the training set alone, but is revealed in how the
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system would behave given arbitrary test items. It is, of course, notorious that
networks trained on a given training set will generalize in unexpected ways. This is
particularly true if the network has too many degrees of freedom (i.e. too many
weights and biases) relative to the size of the data set and hence does not need to
find interesting regularities in the data set (Moody, 1992); networks which show
extreme versions of this problem are said to solve their tasks by ‘table look-up’.

An early example of the problem of underdetermination with respect to the
application of neural networks to ‘real’, un-processed data is the (now legendary)
failure of the optical perceptron.® This network was developed in the mid-1960s at
the Stanford Research Institute with the purpose of detecting tanks hidden amongst
bushes. It consisted of a large number of optical masks with photodetectors that
produced weighted sums of photographic input. The network was trained success-
fully to differentiate between photos of bushes and photos with tanks amongst the
bushes. It was also able to generalize to photos that had not been presented to it
previously during the learning phase. To be certain that the network had really
learned to recognize tanks, a new set of photos was taken and presented to the
network. However, this time the network failed completely to categorize the photos.
Apparently, the network had not learned to recognize tanks but to differentiate
between photos of different light intensity. A closer examination of the photos used
to train the network indicated that there was a large difference in intensity between
the batch of photos which had tanks in them and the batch of photos with bushes
only.

Yet the problem of underdetermination is deeper than these examples suggest—
it cannot be resolved by generalization tests, however ingenious. Consider, for
example, a network successfully trained on the above ‘tank discrimination’ task.
Suppose that we discover exactly which complex structural properties of the photos
the network has learned to respond to. The network might respond positively when
presented with any stimulus containing one of a set of contour relationships, hues
and so on. Let us assume that stimuli which have these properties usually look, to
the human eye, like a tank. Indeed, we may label, after Fodor (1990)—who calls this
the ‘disjunction problem’—the relevant complex constellation of properties of the
stimulus ‘that-tanky-look’. It is likely that such findings would prompt the
announcement that we now know the perceptual basis upon which this kind of
network distinguishes tanks from non-tanks, categorizes tanks or applies the concept
TANK.

This portrayal of the data certainly seems to be legitimate, but unfortunately,
there appear to be equally legitimate alternatives. On the one hand, it might be
argued that such research really shows that the network does not have the concept
TANK at all, but merely the concept of THAT-TANKY-LOOK. Indeed, the latter
interpretation might hypothetically be supported by data indicating that the net can
be foxed by camouflaged tanks or theatre mock-up tanks. So, although in everyday
life tanks and instances of ‘that-tanky-look’ are perfectly correlated, it is clear from
the cases in which they are not correlated that it is the latter, rather than the former,
to which the net is responding. The prima facie viability of this option then presents
a dilemma. Either sensitivity to mere correlates of this property (such as ‘that-tanky-
look’), rather than to the property itself, is sufficient for the possession of the
corresponding concept (TANK) or it is not.

If sensitivity to mere correlates of the relevant property is not sufficient, then
there is both good news and bad news. The good news is that an investigation of the
bases of network discrimination (filling out what ‘that-tanky-look’ amounts to)
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automatically specifies what concept or category the network is using. The bad news
is that the network must be ascribed a concept the referent of which is ultimately a
state of its input ‘sensors’ (e.g. THAT-AN-INPUT-WITH-THAT-TANKY-
LOOK-IS-PROJECTED-ON-THE-SENSORS). In the light of these sceptical
considerations, it seems that however the data turned out, networks could only
be expected to learn concepts of THAT-TANKY-LOOK/BUSH-LIKE/TREEISH
variety, rather than bona fide concepts.

Suppose, on the other hand, that one assumes that in order to possess a concept,
it is sufficient to be sensitive to perceptual correlates of the corresponding property.
That is, to have a concept of TANK, it is necessary only to be sensitive to some
correlated complex perceptual property. We will continue to call any such hypothe-
tical property ‘that-tanky-look’. Again, there is both good news and bad news. The
good news is that this more lenient view allows the possibility of networks learning
everyday concepts, since this requires detecting, say, tanks reliably most of the time.
So what is the bad news? While we can ascribe concepts of the kind TANK, BUSH
or TREE to a network, we can only do so relative to some characterization of the
environment. Consequently, very different concepts may be ascribed depending on
which characterization of the environment is chosen. Since, according to this view,
concept ascription is a matter of correlation and correlation is fundamentally relative
to a specification of the domains of values being correlated, concept ascription must
also be domain-relative.

This may be illustrated by visuo-motor coordination in frog and toad. Much is
known about the frog’s visual system, the frog’s range of motor outputs and how the
two are related (Lettvin et al., 1959; Ingle, 1983; Schurg-Pfeiffer & Ewert, 1981). As
an idealization, let us assume that we know precisely which visual stimuli will elicit
the predatory movement ‘snapping’. In particular, suppose that it is triggered by the
projection of any dark, round, moving blobs within a certain range of sizes, projected
onto the frog’s retina. So, if the frog were sitting in a Scottish stream and the
projection of moving black blobs correlated with the presence or passage of flies
across the stream, then, according to this ‘lenient’ approach to concept ascription,
the frog might legitimately be described as having the concept FLY. However, in this
situation, the frog may also be ascribed more specific or more general concepts.
After all, since, by hypothesis, the only passing flies will be natives of Scotland, the
blobs would correlate just as well with ‘Scottish flies’ as with ‘flies’. Similarly, again
by hypothesis, the only passing flies would also be the only passing flying insects and
hence the frog might be described as having the concept FLYING-INSECT. The
range of possible concept ascriptions can be extended at will and hence appear to be
completely unconstrained (see Chater & Heyes, in submission, for discussion of
these issues in the context of animal concepts).

3.1.3. The problem of non-existing entities. A further problem for causal/correlational
accounts of meaning is explaining the origin of the meaning of terms such as
UNICORN or EPICYCLE which have no instances and hence cannot be either
causally implicated in producing, or correlated with, internal states (see, e.g. Fodor,
1987). These symbols cannot be ‘grounded’ by some state of a network which comes
to correlate the presence of unicorns or epicycles in the environment; for these are
never present in the environment—they do not exist. Problems with non-existent
universals has plagued philosophy since Hume. The only proposed solution for a
causal/correlational view is that the meaning of non-existents is composed out of the
meaning of more primitive terms, which do exist. So, the story goes, unicorn means
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horse with a central horn, and since horses, central things and horns all exist, then
unicorn inherits its meaning from them.

This view presupposes that terms for things which do not exist can be defined in
terms of things that do. This position appears to have the rather radical consequence
that every term must have a definition. For suppose that a term X does not have
a definition; then it must refer to something real; hence Xs must exist. Thus a
semantic fact (concerning definability) appears to be revealing about a metaphysical
fact (whether there are Xs). On the face of it, this means that we could learn what
there is in the world, simply by examining language, which seems to be absurd
[although arguments from semantics to metaphysics have been attempted (e.g.
Kripke, 1972) and rebutted (Salmon, 1982)]. So it seems that we must conclude
that every term must be definable in terms of other terms. The thesis that some terms
have good definitions is highly controversial; the thesis that all terms do is so radical
that it has not, to our knowledge, ever been advanced.

3.1.4. Propositions and properties. Whether or not it is possible to patch up the
informational view to get around the preceding difficulties, the correlational
account, construed as a method of fixing the meaning of concepts is in any case victim to
a much more fundamental problem (Chater, 1989a).” The problem is that while the
correlational approach at least promises to provide an account of how internal states
(e.g. internal states of a network) can represent propositions, it provides no account
at all concerning how they can represent properties. Since concepts are mental repre-
sentations which stand for properties, this also means that the correlational view
provides no account of what it is for an internal state to correspond to a concept.

So far, we have been relying on the intuition that a state will come to represent
the property of, say, being red, if that state is active in the presence of redness and
not otherwise. Speaking roughly, the state is supposed to correlate with the property
of being red. However, as stated, this is simply incoherent—how can a state, which
is located in space and time, correlate with a property, which is an abstract object,
independent of space and time? The answer appears to be obvious—the state of the
system correlates not with the property itself, but with zokens of that property.

This, however, is not good enough. Sensitivity to tokens of properties pre-
supposes the ability to recognize the relevant rokens. What it is to recognize a token
and that a token is an instance of a property is a matter concerning which the
correlational theory is silent. Let us elucidate this using the example of detecting
redness. The red-detecting unit responds each time red is in view, i.e. the state of the
cell correlates with a state of the world, that red is present (and in the visual field,
and not too distant to be seen, and not occluded by another object—Ilet us put these
complications to one side). However, is the cell sensitive to tokens of redness (e.g.
that this pen or that cup is red, but that that jumper is not)? It is not—it does not
signify that any particular token is red. If anything the state of the detector has
existential force: it represents the fact that some token or other is red. It certainly
does not ascribe the property of redness to any particular token.

This is not just a quibble—the difference between being able to represent
the unanalyzed (in philosophical terminology holophrastic) proposition that red is
present, and being able to segregate parts of the world and selectively ascribe
properties to them is enormous. The representations licensed by the correlational
view amount to a set of binary features, which specify red/not-red, fly/not-fly,
person/not-person, with, of course, all the problems notoriously inherent in such a
primitive representation. There is, for example, no way, even in principle, of binding
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these features together (there is no way of representing that it is the person who has
a red face and that the fly sits on the end of her nose), representing which tokens
share particular properties, how many red things there are in a particular scene and
so on. To achieve this, we require a language in which to couch structured descriptions
of the world, segregating the world into a complex set of tokens, each of which can
individually be ascribed properties. The advantages of a structured description over
simple binary feature representations are too well known in the literature on compu-
tational approaches to perception and other areas of cognition to bear repetition
(see, e.g. Marr, 1982). The important point is that it is only for systems with such
structured representations that we can talk of properties, rather than whole, unana-
lyzed propositions, being represented at all and that correlational accounts are
equipped only to fix the meaning of whole propositions. In particular, then, the
correlational account (and mutatis mutandis causal accounts of related sorts) cannot
fix the meaning of primitives of an internal system of (structured) representation. So,
for example, the hope that a neural network could effect so-called symbol grounding
by learning appropriate correlations between states of the network and aspects of the
world appears to be illusory.

The upshot of this discussion should not, perhaps, be surprising. Unless a system
embodies a structured internal language with an associated set of primitives, it is
difficult to see how it could possibly throw light on the semantics of those primitives.
The networks that we have considered so far are not concerned with structured
representation. In short, no internal language and no symbol system, no symbols
to ground. The conclusion is, then, not that network computation is necessarily
irrelevant to the theory of meaning for semantic primitives; rather, it is that connec-
tionism can be relevant only if structured representations are somehow embodied in
a network. It is therefore to this issue that we now turn.

4. Learning Complex Representations in Connectionist Systems

One way of approaching the problem of dealing with structured representation in
connectionist models is to ‘hardwire’ symbolic structures directly into the architec-
ture or the network. Much early work in, for example, connectionist knowledge
representation (e.g. Hinton, 1981; Touretzky & Hinton, 1985; Rumelhart ez al.,
1986; Derthick, 1987) and natural language processing (e.g. McClelland &
Kawamoto, 1986) adopted this implementational approach. Although such
connectionist re-implementations of symbolic systems might have interesting
computational properties and even be illuminating regarding the appropriateness
of a particular style of symbolic model for distributed computation (Chater &
Oaksford, 1990a), they do not appear to have much philosophical significance
(if any). However, there is the promise that connectionism may be able to do more
than simply implement symbolic representations and processes; in particular, that
networks may be able to learn to form and use structured representations. The most
interesting models of this sort typically focus on learning quite constrained aspects
of natural language syntax. These models can be divided into two classes, depending
on whether preprocessed sentence structures or simply bare sentences are presented.

The less radical class (e.g. Hanson & Kegl, 1987; Pollack, 1988, 1990; Stolcke,
1991; Sopena 1991) presupposes that the syntactic structure of each sentence to be
learnt is given. The task of the network is to find the grammar which fits these
example structures. This means that the structured aspects of language are not
themselves learned by observation, but are built in. These models are related to
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statistical models approaches to language learning such as stochastic context free
grammars (Brill ez al., 1990; Jelinek ez al., 1990) in which learning sets the prob-
abilities of each grammar rule in a prespecified context-free grammar, from a corpus
of parsed sentences.

The more radical models have taken on a much harder task, that of learning
syntactic structure from strings of words, with no prior assumption of a particular
syntactic structure to the grammar. The most influential approach is to train simple
recurrent networks (SRNs) developed by Jordan (1986) and Elman (1988). These

‘networks provide a powerful tool with which to model the learning of many aspects
of linguistic structure (e.g. Elman, 1990, 1991a; Norris, 1990; Cottrell & Plunkett,
1991; Shillcock et al., 1991); there has also been some exploration of their compu-
tational properties (Chater, 1989b; Cleeremans ez al., 1989; Servan-Schreiber et al.,
1989, 1991; Chater & Conkey, 1992). The presence of recurrent connections allows
past activation to influence current output, which means that output can respond to
sequential structure in the input. The extent to which such networks can be taught
to learn interesting sequential structure depends on the learning algorithm
employed. A natural approach is to apply the backpropagation training algorithm
which has proved so successful in training non-recurrent feedforward networks to
learn interesting static input—output patterns.

It is fair to say that these radical models have so far reached only a modest level
of performance. In general, it seems to be possible to learn simple finite state
grammars, but more complex grammars, such as phrase structure grammars have
not been learnt [although Elman (1991a) claims to be able to train a SRN to learn
a limited instance of recursion)]. The gulf between finite state and phrase structure
grammars is a vast one—and it is not clear whether current network models will be
able to cross it. It may be that only by pursuing the less radical line, by building in
more structure into the network itself, that complex linguistic structures will be
learnable. Given the negative results of standard language learning theory (e.g.
Gold, 1967; Pinker, 1979, 1984; Osherson ez al., 1986), which show that even finite
state language cannot be reliably learned from (positive) examples alone, there is
reason for scepticism regarding the possibility of a connectionist breakthrough
[although see Elman (1991b) for the opposite view]. It is, however, simply too early
to tell.

Having pondered the difficulty of connectionist modelling of structured repre-
sentation in natural language, we may suspect that connectionism leaves the general
issues of structured representation and the associated compositional semantics
unresolved. As we shall see now, there are indeed indications that this might be the
case.

4.1. Connectionism and Compositionality

We noted above that the allegedly most revolutionary consequences of connec-
tionism concerns the nature of connectionist representation (also ¢f., e.g. Bechtel,
1989; Haugeland, 1991; Sharkey, 1991, 1992; van Gelder, 1991; Niklasson &
Sharkey, 1992—but see Hanson & Burr, 1990; Cummins, 1991 for different views).
Typically the focus has been on devising connectionist networks which are able to
deal with problems for which the symbolic approach invokes syntactically structured
representations. This is clearly exhibited in the debate initiated by Fodor’s &
Pylyshyn’s (1988) attack on connectionism (see, e.g. Smolensky 1987, 1988;
Chalmers, 1990b; Chater & Oaksford 1990a; Fodor & McLaughlin, 1990;
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Oaksford, Chater & Stenning, 1990; van Gelder, 1990, 1992). In contrast to
the intensive studies of structural combination of constituents in connectionist
models not much have been said about semantic composition in connectionist
networks—unless in rather vague terms (e.g. Goschke & Koppelberg, 1991). Of
course, as we noted above, without some kind of semantic interpretation, we cannot
view a system, whether symbolic or connectionist, as processing information or
computing at all; in the present context, this might involve a compositional semantics
for the structured representation, to show how the meaning of complex structures
is related to the meaning of their parts. We shall briefly return to the question of
semantic interpretation below.

It has been suggested that the classical notion of compositionality may be
unnecessarily restrictive from the point of view of connectionist systems (i.e. the
classical understanding of compositionality may induce an instance of the in-
commensurability trap—forcing connectionist systems into an inappropriate
framework). This classical notion is labelled as concatenative (or ‘syntactic’)
compositionality, which “must preserve tokens of an expression’s constituents (and
the sequential relations among tokens) in the expression itself” (van Gelder, 1990,
p. 360). :

A broader notion, functional compositionality, does not demand the preservation
of constituents in compound expressions. What is needed is a general and reliable
mechanism that can produce composite expressions from arbitrary constituents and
later decompose them back into their original constituents. As an example of
functional compositionality, van Gelder (1990) points to Godel numbering, which
is a one-to-one correspondence between logical formulae and the natural numbers.
For instance, on a given scheme the proposition P will be assigned the Gdodel
number 32, whereas a logical expression involving P as a constituent, say (P&Q),
would be assigned the Godel number 51342984000. It is clear that the Godel
number for (P&Q) does not directly (or syntactically) contain the Gddel number for
P. Still, by applying the prime decomposition theorem we can easily determine the
Gédel numbers for its primitive constituents. Thus, we have constituency relations
without concatenative compositionality. Since distributed networks using super-
imposed representation effectively ‘destroy’ the constituents of composite input
tokens, they do not qualify as having concatenative compositionality. However, this
is not irreversible because the original constituents can be recreated in the output.®

There is a danger that this would leave connectionist representations with the
same status as, for example, data-compressed, or otherwise encrypted, files on a
standard computer—as being useful only as storage but not for processing. For
a genuinely connectionist account of representing and processing with structured
representations, it is necessary to be able to manipulate the functionally com-
positional representations directly as van Gelder stresses. In the case of Gdodel
numbering, operations which are sensitive to compositional structure (e.g. infer-
ences) will not correspond to a (readily specifiable) function at the arithmetic level.
Hence, performing logical inference over Gddel numbers is a rather hopeless
endeavour. Notice too, the compositional semantics which can be easily defined over
logical representations will have no (readily specifiable) analog at the level of G6del
numbers.

What is important, from the present point of view, is whether or not connec-
tionist networks can handle (and, in particular, learn to handle) problems which are
standardly viewed as requiring structured representations. That is, can connectionist
representations attain what we shall call ‘apparen’ compositionality. If apparent
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compositionality can be learnt, then there are two possibilities concerning the nature
of the representations that the network employs. It could be that, on close analysis,
the net is found to have devised a standard, concatenative compositional representa-
tion. Alternatively, the network might behave as #f it used structured representations,
without using structured representations at all. In the former case, it would seem
appropriate to say that the network representations are compositional (in the
standard sense); in the latter, that the network is not using a compositional represen-
tation (also in the standard sense). What is required, it appears, is not a new notion
of compositionality, but the attempt to devise networks which can behave as if they
had structured representations, followed by an analysis of their workings. Of course,
there is a third possibility: that representations within networks do implement
compositionality, but in some heretofore unknown way, unlike that used by classical
systems (with appropriate operations over it, and an appropriate semantics). This
possibility would cause us to revise the notion of compositionality, much as the
discovery of non-Euclidean geometry enlarged and changed the notion of straight
lines, parallel and so on. It will only be possible to develop a specifically connec-
tionist notion of compositionality, or even know if this possibility is coherent at
all, post hoc, i.e. by analyzing networks that exhibit apparent compositionality.’ In
other words, what kind of compositionality we should ascribe connectionist
representations is an empirical question, which can only be answered by empirical
investigation.

Recently, research efforts have therefore been made towards defining operations
that work directly on the encoded distributed representations themselves, instead of
their decomposed constituents. Chalmers (1990a) devised a method by which a
simple feed-forward, backpropagation network—dubbed a transformation network
(TN)—was to manipulate compact distributed representations of active and passive
sentences according to their syntactical structure. First, a recursive auto-associative
memory (RAAM) network (Pollack, 1988) was trained to encode distributed repre-
sentations of the sentence structures. Chalmers then trained the TN to transform
compact representations of active sentences into compact representations of passive
sentences, i.e. he trained the network to associate the RAAM-encoded distributed
representations of active sentences with their distributed passive counterpart. In a
similar vein, Niklasson & Sharkey (1992) successfully applied the same combination
of RAAM' and TN to (a subpart of) the domain of logical axioms. These empirical
investigations have shown that it is possible to devise models, such as the TN, that
can manipulate the compact distributed representations in a structure sensitive way.
However, with respect to the semantics of these encoded representations, we still
have to decompose than into their symbolic parts before we can perform any semantic
interpretation of them. What connectionism is in need of is some kind of composi-
tional semantics devised at the level of the compact distributed representations and
the operations defined directly over them; that is, a bona fide connectionist semantics
that does not have to revert to semantic interpretation of the decoded constituents on
the symbolic level.

In closing this section, it is worth mentioning that when addressing the issue
of connectionist compositionality there is a potential danger of falling into the
incommensurability trap. As pointed out by Sharkey (1991), the division between
semantics and structural considerations might be somewhat artificial, since such a
division seems to be collapsed in much connectionist research. The situation could
be seen to parallel that of the classical/connectionist debate concerning implicit vs.
explicit rules. When a connectionist model behaves as if it has rules, although no
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rules have been programmed into it, does that warrant saying that the model has
‘implicit’ (or ‘fuzzy’) rules? Such talk about implicit rules is in danger of forcing
connectionism into a symbolic mold by trying to apply a particular concept, i.e. the
classical notion of a computationally efficacious rule, to connectionism. On this
view, even our own notion of apparent compositionality could get us trapped in the
claws of incommensurability. Nevertheless, bearing this in mind, re-interpretation
of old terminology seems to be the only productive way forward for a research
programme still in its infancy. Furthermore, whereas the ability of nets to deal with
structured representations is equivocal, their aptness for learning seems to be more
clearcut; so perhaps, as we shall see next, it is with respect to questions of learning
and nativism that their principal philosophical significance resides.

5. Learning and Nativism

Symbolic models of cognition appear to offer relatively little scope for learning. For
example, for Fodor & Pylyshyn (1988) cognition is mechanized proof theory over a
data-base of facts couched in a language of thought. Such a system can learn by
adding facts to its data-base, but it is not clear how to learn a more elaborate internal
language in which facts can be expressed. Thus, according to the symbolic view of
the mind, the set of possible mental states and concepts appears to be fixed. This line
of radical nativism has been pressed by Fodor (1975, 1981; and the various contri-
butions to Piatelli-Palmarini, 1980), who argues that concept learning is, in a certain
sense, impossible and that a nativist conclusion with respect to the language of
thought is therefore inevitable. The argument is simply that learning is a matter of
generating and testing hypotheses and hence that any hypothesis that can be framed
must already be representable by the system. Consider, for example, a child learning
the meaning of the word ‘dog’. To be able to generate the correct hypothesis at all,
the child must be able to internally represent some predicate which means dog.
However, the argument goes, this requires that the child already has the concept
DOG. This leads to the conclusion that learning the meaning of a new word does
not involve concept learning at all, but simply involves learning to associate internal
and external languages appropriately. The expressive power of the internal language
is fixed; and thus must be specified innately.

Do the nativist arguments apply equally to connectionist models as well?
Certainly connectionist learning can be viewed as a kind of hypothesis generation
and test—the hypotheses are embedded in the weights of the network, the test is the
measure of network performance (such as sum-squared error), and the procedure
for generating new hypotheses, given the successes or failures of past hypotheses, is
given by the learning algorithm. Hence, the above argument applies, just as before:
anything that a network can represent after learning, must have been generated as
a hypothesis; hence it must have been possible to represent it prior to learning;
hence the representational power of a connectionist system cannot change through
learning. An obvious objection is that the representation genuinely has been learnt
during training and was not present to start with—after all, the initial weight values
are typically set randomly. While this is correct, it does not contradict Fodor’s
argument, which concerns not what a network happens to represent, but what it is
able to represent. Fodor is arguing that any hypothesis and test procedure cannot
increase what is potentially representable. For example, a simple perceptron (i.e. a
network with only one layer of adjustable weights and a single output unit which is
on if the input exceeds a certain threshold and off otherwise) is able to represent only
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linearly separable categories (Minsky & Papert, 1969). This is a limitation of the
architecture—it specifies what the network is able to learn in principle and cannot
be altered by learning. According to this line of thinking, neural network and
symbolic systems are both equally trapped at a fixed level of representational power,
which cannot be increased by learning. The problems that Fodor raises appear to
apply equally to both cases.

There is a sense in which Fodor’s argument, when considered at the most
general level, becomes entirely trivial. Fodor notes that what can, in principle, be
represented by a system cannot increase. However, in the same uninteresting sense,
potential of any sort cannot increase. In particular, for a system to learn or do
anything, it must necessarily have had the potential to learn or do that thing in the
first place, i.e. a system can only fulfill its potential, not exceed it. For example, if
Fred has the potential to jump 6 feet high, then he must have had that potential (in
the relevant, vacuous sense) when he was a child; or, to give another example,
learning geography or physics does not change the potential for learning geography
or physics—for anything that is actually learned must have been potentially learnable
beforehand. It is in this trivial sense that the representational potential of a network
or symbolic system is fixed (strictly, representational potential, like all potential need
not be static, but can only decrease). In addition, Fodor’s argument, couched in
general terms so as to apply to any learning system (specifically any system which
learns by hypothesis generation and test, although it is not at all clear that there are
learning methods which do not conform to this stricture) is thus analogous to an
even more general argument that learning anything is in a certain sense impossible.

The real issue, then, is not whether representational potential can increase, but
how a system can learn to represent new things. That is, we want to be able to say
that a system which has learnt to distinguish Xs from non-Xs after a long period of
training, is now able to represent a distinction that it could not previously represent.
This intuition applies equally well to symbolic and connectionist systems. So, for
example, Winston’s (1975) classic model of learning the structure of arches from
instances and non-instances involves a system composing representational primi-
tives in a new way (see also Lenat, 1982). Or in a connectionist context, a system
which learns to divide words into syntactically interesting categories from raw
data (Elman, 1990; Finch & Chater, 1992) involves complex weight adjustment to
represent these distinctions. Symbolic models, by presupposing an entire system of
representation, appear to involve stronger nativist assumptions that connectionist
networks (which only presuppose a particular network architecture and a choice of
input and output representation). However, as Fodor (1981) points out, the
fact that there appear to be no or almost no good definitions of terms (of non-
mathematical domains, at least) means that the advocate of a symbolic approach to
learning is forced into a more nativist position still: if a term has no good definition,
it cannot be constructed by composing a set of primitives according to the methods
of symbolic learning, and hence it must be innate. Thus, while a trivial argument
for representational nativism applies to symbolic and connectionist systems alike,
the real nativist considerations apply only to the former. Given the flexibility of
human cognition and development, such nativism is extremely difficult to accept.
In learning music, physics or sailing we seem to learn entirely new sets of concepts
which are at once not definable in terms of previous understanding and which it
seems highly implausible to view as innate.

Together, the discussion of learning in this section and the discussion of struc-
tured representation in the previous section leads to the conclusion that symbolic
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models are good at structured representation and poor at learning; whereas connec-
tionist networks are good at learning but (at least presently) poor at structured
representation. This suggests that the connectionist project of attempting to learn
structured representations may provide a bridge between the two approaches—
providing an account of how networks can embody structured representations, and
providing an account of how the representational power of a symbolic system can
genuinely increase (in the most optimistic scenario, increase from nothing).
Whether or not it will be possible to, in this way, vindicate the representational
power of neural nets and dissolve the symbolic theorists’ enforced nativism
cannot be known a priori. As we saw in the last section, early signs are at best
equivocal. However, what is clear is that the challenge of learning complex
structured representations is fundamental to elucidating the philosophical implica-
tions of connectionism.

6. Conclusion

We began this paper by noting the prima facie anomaly of the philosophical excite-
ment surrounding connectionism, particularly in regard to the theory of meaning.
Instead, we have put forward what we believe to be a more realistic characterization
of the present stage of the connectionist research programme, arguing that much of
this excitement is indeed unfounded. In the light of our comments, a natural reac-
tion might be to suggest that the theory of meaning should ignore connectionism.
As we have seen, connectionism has so far not solved the problem of how
primitive representations can be grounded—in fact, the interpretation of states of
connectionist networks has usually presupposed a familiar correlational approach to
fixing the content of semantic primitives, a view with a range of serious difficulties.
Equally, networks have not yet given a fresh perspective on how complex represen-
tations can be built out of simpler components—either traditional compositional
mechanisms are built into a connectionist system, or, if learning is used, the resulting
system rarely appears to be a genuine substitute for the symbolic alternative.

Nonetheless, we suspect that it would be a mistake for the theory of meaning to
neglect future connectionist developments. Connectionism is still in its infancy and
the representations that can be developed may become increasingly philosophically
interesting, particularly with regard to connectionist models of tasks usually viewed
as involving structured symbolic representations. In this connection, it is important
to notice that there is a growing bulk of evidence from research into concepts
and categorization which argues against the straightforward mode of semantic
concatenative compositionality of the symbolic approach (e.g. Murphy & Medin,
1985; Barsalou, 1987; Brooks, 1987; Lakoff, 1987; McCauley, 1987; Medin &
Wattenmaker, 1987; Hampton, 1988; Medin & Shoben, 1988; Chater ez al., 1990—
for an overview, see Christiansen, 1992d). An increasing number of connectionists
(e.g. Hofstadter, 1985; Bechtel, 1989; Goschke & Koppelberg, 1991) argue that
connectionism might be able to accommodate these results by devising a different,
essentially non-classical, way of composing complex meanings from more primitive
parts.

Still, although it may be a mistake to expect connectionism to solve philosophical
problems, it may pose important philosophical challenges. For example, providing a
representational account of the operation of a connectionist system which has self-
organized into a system using complex, structured representations, and the way in
which it developed, would provide an extremely interesting and important test-bed
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for accounts of meaning. However, it should be noticed that there are problems with
the theory of meaning per se—not only with respect to classical and connectionist
models—and it could be the case that no such theory is possible at all (¢f. Schiffer,
1987). In any case, connectionism might, at least, provide a way out of the represen-
tational nativism into which classical symbolic theorists are forced and perhaps open
the way for a more acceptable account of cognitive development. Of course,
which philosophical challenges connectionism will generate, as well as its potential
significance as a new metaphor for the mind, cannot be decided a priori through
philosophical investigation. Rather, it is an empirical issue—only time, and the
vigorous development of connectionist research techniques, will tell.
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Notes

1. Since only fully distributed, superpositional networks, trained through some kind of learning
procedure, are fundamentally different from the classical symbolic models (e.g. ¢f. Sharkey, 1991;
van Gelder, 1991, 1992), we will only address the potential philosophical implications of this kind
of connectionist models.

2. For example, much of the criticism of connectionism launched by Fodor & McLaughlin (1990) as
well as Fodor & Pylyshyn (1988) does not stem from inconsistencies or incoherence within the
theoretical framework of connectionism. Instead, it stems from the tendency on behalf of Fodor and
collaborators to couch connectionism in the terminology of the classical processing paradigm (also
¢f- van Gelder, 1992). Similarly, another non-classical approach to cognition—situation theory—has
also been victim of the same kind of terminologically based criticism: “Fodor thinks that computation
is formal. So when I argue that thought is not formal, he annoyingly charges me with claiming that
thought are not computational. 1 suppose Fodor is so caught up in his own identification of formal
with computational as to be unable to maintain the distinction” (Barwise, 1989, pp. 156-157).

3. For a connectionist-inspired criticism of the alleged necessity of recursion in accounts of natural
language behaviour, see Christiansen (1992c).

4. Although we recognize the importance of superposition in connectionist models (e.g. van Gelder,
1991, 1992; Sharkey, 1992), this particular issue is orthogonal to the following discussions of the
philosophical problems facing a connectionist semantics based on correlational content. Super-
position is essentially about inter-representational relations, not about the relationship between
representations and the external world.

5. However, connections between networks and evolution (Bechtel, 1989; Goschke & Koppelberg,
1991) or biological function (Hatfield, 1991) may be relevant here.

6. Thanks to Marvin Minsky (personal communication) for providing the details of this piece of early
neural network research.

7. Thanks are due to Jerry Seligman for extensive discussion of this point.

8. The idea is that representations can have functional compositionality in virtue of standing in an appro-
priate one-to-one correspondence with representations which have concatenative compositionality.
The general form of this usage is: given any two sets X (say, the set of logical formulae) and Y (say,
the Gédel numbers for these formulae) which stand in one-to-one correspondence, any property P
(say, being compositional) of X could be said to licence Y’s having the property functional P (say,
being functionally compositional). That is, given any two sets in one-to-one correspondence, the
properties of one will be the ‘functional’ properties of the other and vice versa. So, for example, given
a one-to-one mapping between the set of even numbers and the set of odd numbers, the latter could
be said to be functionally divisible by 2.

9. Of course, it is likely that any such notion would be included as a subclass of functional composi-
tionality (as is the case with concatenative compositionality)—but functional compositionality
per se does not put us any further forward to finding such a notion.
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10. Actually, they applied a slightly modified version of the RAAM which in addition to the encoding and
decoding of distributed representations also was trained to distinguish whether the input—output
representations were atomic (i.e. not distributed) or complex (i.e. distributed).
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