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We review here the logic of neuropsychological inference in the context of
connectionist modelling, focusing on the inference from double dissociation to
modularity of function. The results of an investigation into the effects of
damage on a range of small artificial neural networks that have been trained to
perform two distinct mappings (rules vs exceptions), suggest that a double
dissociation is possible without modularity. However, when these studies are
repeated using sufficiently larger and more distributed networks, which are
presumably more psychologically and biologically relevant, double dissoci-
ations are not observed. Further analysis suggests that double dissociation
between performance on rule-governed and exceptional items is only found
when the contribution of individual units to the overall network performance
is significant, and hence that such double dissociations are merely artefacts of
scale. In large, fully distributed systems, a wide range of damage produces only
a single dissociation in which the main regularities are selectively preserved.
Thus, in this context, connectionism appears to create no additional problems
for the traditional neuropsychological inference.

INTRODUCTION

Cognitive neuropsychology aims to inform theories of normal cognitive
function by looking at the way in which the cognitive system breaks down in
patients with brain damage. The inference from patterns of breakdown to
normal function is, however, notoriously difficult, and the nature of such
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inferences depends on the theories of normal function that are under
consideration (Caramazza, 1984; Gregory, 1961; Shallice, 1988). The
methodology of cognitive neuropsychology is rooted in “box and arrow”
cognitive models, in which the architecture of the cognitive system is
specified in very broad terms. Patterns of neuropsychological breakdown
are assumed to correspond to selective damage to specific boxes and arrows.
Conversely, observed patterns of deficit are used to constrain how such box
and arrow models should look. The augmentation of the box and arrow
models with neural network models of a wide range of the cognitive
processes that neuropsychology has studied, thus poses the question: How, if
at all, should the methodology of cognitive neuropsychology respond to the
introduction of connectionist modelling techniques? It is this issue that this
paper addresses.

We begin by considering the logic of cognitive neuropsychological
inference in quite abstract terms, and then concentrate on a specific
methodological principle, the inference from double dissociation to
modularity of function. Double dissociation has been of central metho-
dological importance because it promises to allow the neuropsychologist to
map out the structure of the cognitive system. We review past work on the
reliability of such inference for box and arrow models and in neural network
models. We then present a range of simulations which show double
dissociations between rule and sub-rule/exception performance in small
feedforward neural networks. However, as we scale up towards larger, more
realistic, distributed systems, only a single dissociation persists. The
generality and implications of this work are considered and we suggest that
some types of damage can be extrapolated more confidently than others
from lesion studies on small-scale artificial neural network systems to
patterns of breakdown that can be expected in the brain. Finally, we examine
the methodological implications of neural network simulations for cognitive
neuropsychology. :

THE LOGIC OF NEUROPSYCHOLOGICAL
INFERENCE

To elucidate the nature of practical neuropsychological inference, we first
consider the ideal conditions for such inference, and then consider what
simplifying assumptions must be made in practice, where such conditions do
not generally hold.

In the ideal case, predictions concerning likely cognitive deficit can be
derived if the cognitive system is understood (i) in terms of the computations
being performed, (ii) the way that those computations are implemented in
the neurophysiology of the brain, and (iii) if the specific damage that a
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particular patient or class of patients has suffered is known in detail' (for
other discussions of the logic of neuropsychological inference, see
Caramazza, 1986; Ellis, 1987; Shallice, 1988). Given these prerequisites, it is
possible to derive predictions about the cognitive deficits that will be
associated with each pattern of damage and these predictions can then be
compared with observed cognitive deficits, and conjectures about (1), (ii) and
(iii) can be revised accordingly. From the point of view of cognitive neuro-
psychology, interest focuses on how neuropsychological data can lead to the
revision of (i), the computational theory of the cognitive system.

In practice, however, knowledge of (i), (ii) and (iii) is conjectural, and
specified only in the broadest terms. Regarding (i), the cognitive system is
often specified only at the level of large-scale architectural organisation,
typically in the standard box and arrow notation. Recently, rather more
detailed connectionist style models have also been considered. Regarding
(ii), the neural implementation of cognitive processes is generally not
explicitly considered at all, apart from some considerations of cerebral
localisation, largely because detailed information is not available. Regarding
(iii), the lesion damage can only be identified at a gross level, and damage is
often diffuse in any case. Since (i), (ii) and (iii) are known in such little detail,
detailed direct predictions of likely patterns of cognitive deficit cannot be
derived and compared with the observed patterns of deficits found in
neuropsychological patients. How, then, can neuropsychological data
constrain cognitive theory?

A bold, but perilous, path is to make strong simplifying assumptions
concerning (i)-(iii) in order to obtain predictions concerning likely patterns
of damage. For box and arrow models, the key assumption is that brain
damage leads to selective damage to particular “boxes” and “arrows”.
Furthermore, it is assumed that impaired performance reflects directly the
operation of this damaged system, rather than being complicated by
compensatory cognitive strategies (Plaut, in press a). A potential problem is
that, even given this assumption, it may not be clear what predictions can be
made, unless the boxes and arrows are specified in detail (Seidenberg, 1988).
In neural network models, the crucial simplifying assumption is that brain
damage can be modelled as involving the removal of, or disturbance to,
particular processing units and/or connections. One attractive feature of
such models is that, given this assumption, it is possible to derive detailed,

'There is a hidden assumption here, that aspects (i) and (ii) of the cognitive system are the
same across the entire patient population. If different patients have different cognitive systems
even in the normal state, attempts to infer these various structures from the range of observed
pathologies will be incredibly difficult. The “principle of universality” (Caramazza, 1986) need
not always be entirely an article of faith however, since evidence can be drawn from
experimental studies on the normal population.
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quantitative predictions (e.g. Bullinaria, 1994¢c; Hinton & Shallice, 1991;
Patterson, Seidenberg, & McClelland, 1989; Plaut & Shallice, 1993; Plaut, in
press a).

It is now clear how neuropsychological data can help decide between
alternative cognitive level accounts. The predictions of each of these
theories are derived, using appropriate simplifying assumptions. The degree
to which the neuropsychological data favour one theory over the rest
depends on (1) how well that theory predicts the data and (2) how well the
other theories predict the data. That is, the degree to which neuro-
psychological data confirm a given theory depends on the extent to which
that theory is relatively well able to predict those data when compared with
alternative theories under consideration. A corollary of this view of the logic
of neuropsychological inference is that the strength of the inference from
data to a particular theory depends on which other theories are under
consideration. In this paper, we shall be concerned with the degree to which
extending the class of theories of cognitive processes to include
connectionist theories requires revision of standard neuropsychological
inferences, which were developed with a narrower class of theories—
roughly box and arrow models—in mind.

In principle, any aspect of the behaviour observed in neuropsychological
patients could be used as data to tell apart different cognitive theories.
However, in practice, particular attention is paid to certain patterns of deficit
across different patients, which are thought to provide especially strong
evidence in deciding between theories. Specifically, we concentrate below
on one pattern of patient data which has been viewed as central to neuro-
psychological inference to theories of normal function—that is, double
dissociation.

THE DOUBLE DISSOCIATION INFERENCE

The cornerstone of cognitive neuropsychology is the inference from double
dissociation (Teuber, 1955) to modularity of function. Two tasks, A and B,
doubly dissociate across a patient population if there are some patients who
have normal or near normal performance on A, but impaired performance
on B, and there are some patients with the reverse pattern of deficit. The
double dissociation inference passes from the observation of such a pattern
of double dissociation to the conclusion that A and B cannot be subserved by
the same cognitive machinery. More strictly, although tasks A and B may to
some extent draw on the same aspects of the cognitive system, there must be
parts of the cognitive system specific to A and others which are specific to B.
In box and arrow terms, the conclusion is that at least some box or arrow
must be involved in A but not in B, and some box or arrow must be involved
in B but not in A.
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The double dissociation inference has been applied across a broad range
of cognitive tasks. An example that is particularly relevant to the discussion
below is the dissociation between the reading of irregular words and the
reading of nonwords: An extreme case of surface dyslexia, K.T. (McCarthy
& Warrington, 1986), showed normal accuracy for reading nonwords and
regular words, but was severely impaired at reading exception words. An
extreme case of phonological dyslexia, W.B. (Funnell, 1983), could not read
nonwords at all, but was still able to read most regular and irregular words
(85% correct from a set of 712 widely varying words). This double
dissociation between nonword and irregular word reading has been used to
motivate the distinction between a sublexical reading route which stores
regular grapheme-to-phoneme correspondences (GPCs) and hence can
pronounce nonwords, and a whole-word lexical/semantic route which must
be used for irregular words (e.g. Coltheart, 1985; Coltheart, Curtis, Atkins,
& Haller, 1993; Morton & Patterson, 1980). Figure 1 shows one possible box
and arrow account of the processes underlying reading and spelling, which
embodies the putative distinction between lexical and sublexical routes.

In the light of the earlier discussion, the validity of the inference from
double dissociation to a particular theory of the modular organisation of the
cognitive system under study depends on (1) how well that theory predicts
the double dissociation and (2) how well the other theories predict a double
dissociation. The validity of (1) and (2), and hence how well double
dissociations can distinguish between rival accounts of the functional
organisation of the cognitive system, depends on the class of theories under
consideration. Let us consider the situation where this class includes just box
and arrow models, and where it also includes neural networks.

Boxes and Arrows

Any box and arrow model that has some component which is selectively
used for task A and another which is selectively used for task B can predict a
double dissociation given the standard assumption that brain damage
corresponds to selective damage to a particular box or arrow. Thus point (1)
is straightforward.

"Point (2), however, is less clear-cut. First, there will be many different
modular architectures which can lead to a double dissociation. All that is
required is that for both tasks, there is some component involved only in that
task. That there is such a component says nothing about the function of that
component, and nothing about how it fits into the rest of the cognitive
system. So, for example, it is prima facie consistent with the double
dissociation between long- and short-term memory that the memory system
consists of a very large and complex array of modules, all of which are shared
between short- and long-term memory, except for two modules, one of
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FIG.1. One possible “box and arrow” account of reading and spelling based on the dual-route
reading model of Coltheart et al. (1993).

which has some function or other specific to remembering information over
long periods and one which has some function or other specific to
remembering information over short periods. Second, double dissociations
between two tasks can in principle occur even when there is no specific
dedicated module for either task (Dunn & Kirsner, 1988; Shallice, 1988; see
Chater & Ganis, 1991, for a simple illustrative example). Shallice (1988)
notes, for example, that a processing continuum (such as is found in
topographic maps in the visual cortex, in which regions of cortex correspond
to regions of the visual field) can give rise to double dissociations, even

—
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though the visual cortex may not be divided up into isolable modules. Chater
and Ganis (1991) show that damage to a simple electrical circuit can give rise
to a double dissociation between two very simple binary switching tasks.
While this system is made of simple, modular components, Chater and Ganis
found that all of the components are involved in the normal performance of
both tasks; that is, no module is task-specific, as would be expected according
to the standard inference from double dissociation to modularity of
function.

The claims concerning what can be learnt from double dissociations are
often put more strongly, however. For example, Marin, Saffran and
Schwartz (1976, pp. 869-870) state that: “At the very least ... [observed
double dissociations] ... should yield a taxonomy of functional subsystems.
It may not tell us how these subsystems interact—but it should identify and
describe what distinct capacities are available”. That is, they argue that
double dissociations should specify the components of a box and arrow
model of a cognitive system. As we have seen, such claims are not justified,
even if consideration is limited to modular systems.

Neural Networks

Since the double dissociation inference is intended to map out, or at least
constrain, the architecture of the cognitive system under study in terms of
boxes and arrows, it might seem that neural network models are necessarily
irrelevant to this aspect of neuropsychological methodology. Neural
network models, the argument might go, are concerned with a level of detail
below that of the box and arrow diagram. Most straightforwardly, they may
be construed as models of the operation of particular components of such a
model, alevel of detail double dissociation does not aim to uncover. This line
of reasoning suggests that cognitive neuropsychology can proceed without
concern for neural network models of cognition (see, e.g. Kosslyn, Flynn,
Amsterdam, & Wang, 1990, for this point of view). The reason that this line
of argument is not convincing is that it does not consider the possibility that a
single neural network, without any obvious box and arrow structure, might
be able to produce double dissociations, which would mislead the cognitive
neuropsychologist into postulating a modular structure where none was
present.

So, to focus on the class of examples with which we will be concerned
below, neural network approaches have frequently aimed to model rule-
governed and rule exceptional behaviour in using a single network, whereas
box and arrow models, such as that shown in Fig. 1, treat them as separate.
Rumelhart and McClelland (1986), Pinker and Prince (1988), Pinker (1991),
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MacWhinney and Leinbach (1991) and Bullinaria (1994b) discuss the
English past tense; Seidenberg and McClelland (1989), Besner, Twilley,
McCann and Seergobin (1990), Coltheart et al. (1993), Plaut and
McClelland (1993) and Bullinaria (1994a; 1994c) discuss reading; Brown,
Loosemore and Watson (1994) and Bullinaria (1994b) discuss spelling.
Hence, in terms of the discussion of neuropsychological methodology above,
neural network models enlarge the class of theories concerning normal
function. From the point of view of neuropsychological inference, the crucial
question is what predictions do such models make about the patterns of
breakdown. Focusing on double dissociations between performance on the
processing of rule-governed and exceptional items, a central issue is whether
a “single route” model of rule and non-rule behaviour can give rise to double
dissociations. If it can, then the inference from double dissociation to
modularity of function appears to be under threat, in this context at least; if it
cannot, the traditional inference does not seem to be challenged by neural
network accounts. We shall discuss this question and examine some relevant
case studies below.

Wood (1978) and Sartori (1988) discuss simple demonstration simulations
which seem to give rise to dissociation-like effects on simple pattern
association tasks. Shallice (1988, p. 254), however, argues that these cases
are not persuasive, since mere associations rather than independent tasks
are dissociated and because the experiments are very small scale.
Furthermore, he argues that the small scale of these experiments means that
individual units and connections play an important role in the functioning of
the system and this is unlikely to be true in more realistic neural networks,
where function is distributed over a very large number of units and
connections, so that no particular component of the system has a large
influence on its overall behaviour. He goes on to conclude that “there is as
yet no suggestion that a strong double dissociation can take place from two
lesions within a properly distributed network”.

In the light of these suggestive but inconclusive findings, an obvious next
step is to conduct a systematic series of case studies on somewhat larger
networks. Furthermore, given the centrality of inferences concerning
performance on rule-governed and exceptional items for much neuro-
psychology, it is interesting to consider a simplified task domain in which
‘there are two kinds of mapping, one which is in accordance with a rule and
another which provides exceptions to that rule. We are therefore led to
consider explicit case studies in which small neural networks are trained on
such a pair of tasks, systematically lesioned and examined for evidence of
dissociation between the tasks.
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SMALL-SCALE NEURAL NETWORK
SIMULATIONS

In this section, we begin by outlining some of the general problems
encountered when attempting to simulate brain damage in artificial neural
networks. We then describe two simple toy models that represent many
features of the real data discussed previously and present some typical
learning and damage results.

General Considerations

We noted earlier that the patterns of breakdown that may be predicted from
a cognitive level account of function depend on, among other things, how
that account is implemented in the brain, and hence how real brain damage
is likely to affect the cognitive level. We also noted that, in standard box and
arrow accounts, little is said concerning the relationship between cognitive
and neural levels. The assumption, often implicit, is that boxes and arrows
correspond to areas and pathways in the brain, and that damage to a
localised brain region may thus result in the removal of one or more boxes
and/or arrows at the cognitive level of description.

Neural network models of cognition promise, by contrast, to model
different types of damage much more directly. By viewing artificial neural
networks (ANNS) as (vastly oversimplified) counterparts of real networks of
neurons, the patterns of damage between ANNs and real neural systems can
be equated. Thus, removing a hidden unit from an ANN can be viewed as
analogous to removing a neuron in a real neural system; removing a
connection may be viewed as analogous to the removal of a synapse or
dendrite; the rescaling of weights in an ANN can be viewed as analogous, for
example, to change in the balance of neurotransmitters. But, of course, these
analogies are very distant. The relevance of ANN simulations for neuro-
psychology depends on the assumption that the simplifications ANNs
embody are not crucial with respect to the effects of damage: the effects must
be supposed similar for any network-like system.

It is not possible to distinguish confidently aspects of behaviour which are
common to all network-like systems, including the nervous systemn.
However, it is possible to consider a range of different artificial cases, to see
which aspects of behaviour under damage are consistent, and which vary
capriciously, and to attempt to back up empirical findings with theoretical
analysis. This at least allows more informed speculation about what might be
expected from damage in the nervous system.

There is a wide range of factors that may be varied in artificial neural
network simulations. The architecture of the network (e.g. feedforward vs
recurrent networks, the number of hidden units, whether the network is fully
or sparsely connected, and so on) may potentially affect the patterns of
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breakdown observed when the network is damaged. Also, it is possible that
using different learning algorithms to train the network will result in
different network configurations with different breakdown patterns.
Furthermore, even when the architecture and learning algorithm are held
constant, very different network configurations can result if a different
representation of the problem is chosen (i.e. different representations of the
input and output patterns). Highly localist input and output codes might, for
example, be expected to induce different hidden unit representations in the
network from very distributed input and output representations; and this in
turn might have an impact on the selectivity of damage to those hidden units.
Another factor that may potentially affect the results is the way in which the
network is damaged—whether hidden units are removed, or connections
removed, or noise is added to the weights on the connections, or the values of
the weights are globally rescaled, and so on (e.g. Small, 1991). Finally, even if
we chose a particular network architecture, trained and damaged in a
particular way, on a fixed representation of the problem, it is still possible
that a variety of different results might be obtained. This is because ANNs
are notoriously dependent on the precise values of their parameters, such as
the learning rate, and the particular small random weights assigned before
training begins (e.g. Fahlman, 1988; Kolen & Pollack, 1991; Kramer &
Sangiovanni-Vincentelli, 1989).

To be able to draw general conclusions with complete confidence, it would
be necessary to explore extensively all of these sources of variation together.
Since the number of combinations is enormous, we must limit ourselves, in
practice, to exploring a very restricted subset of possibilities. For example, in
the present study, we consider only the standard fully connected
feedforward network architecture with one hidden layer, since this is by far
the most widely used architecture in connectionist cognitive modelling. We
shall discuss the implications of this restriction on pp. 260-261. This still
leaves the important architectural question concerning the number of
hidden units used. Specifically, should the network be near minimal—that is,
have nearly the minimum number of units and connections necessary to
solve the given problem? Or should a much larger number of hidden units
than needed to solve the problem be used? Using near-minimal ANNSs often
speeds up the training, improves the generalisation and makes it easier to
understand the representations that have been learnt in the hidden layer. In
earlier work on such near-minimal systems (Bullinaria & Chater, 1993), we
found that double dissociations can occur with the kind of rule/exception
mapping tasks that we discuss in this paper. We shall see later, however, that
with highly non-minimal network configurations such double dissociations
are not found.

It would appear quite unlikely that results obtained from near-minimal
network configurations are psychologically and biologically relevant. The
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number of units available to the brain is very large, and it is not clear how
small numbers of units might be segregated out for the solution of particular
problems. Furthermore, to obtain near-minimal configurations, the number
of units required to solve a given problem must be known beforehand, and
this information is not available when learning begins. Finally, near-minimal
networks are not tolerant to damage, since even small lesions will result in a
breakdown in performance. Thus, such networks do not match the brain’s
robustness to damage. For this reason, we concentrate on non-minimal
networks in this paper. In particular, we shall start with networks with about
ten times as many hidden units than are actually needed and then consider
how our results change as we use more or less.

Closely related to our choice of architecture is the choice of
representations. In ANN models of word-naming and past tense acquisition,
for example, a wide range of different representations of the problem has
been used, imposing very different demands on the learnin gsystem. Indeed,
some such models would not work at all without their carefully chosen
representations. For example, the original NETtalk model of reading
(Sejnowski & Rosenberg, 1987) requires the training data to be pre-
processed in order to align the letters and phonemes, and MacWhinney and
Leinbach’s (1991) past-tense learning model requires the training data to fit
into a series of templates. In this paper, we bypass these problems of
representation by choosing an abstract set of training data that mimics the
important features found in many realistic problems.

Once we have decided on a particular network and training data, we have
to choose a learning algorithm. Almost all connectionist cognitive models
are trained by some variant of gradient descent learning, most notably
back-propagation, and this kind of method is our focus here.? Within the
class of gradient descent learning methods, previous studies (e.g. Plaut &
Shallice, 1993) have indicated that the main results actually show very little
learning algorithm dependence. In this study, we shall concentrate on a

_particular form of gradient descent learning, using the conjugate gradient

algorithm (Kramer & Sangiovanni-Vincentelli, 1989). Finally, we need to
check that our results do not depend significantly on the parameters used by
the learning algorithm nor the different small random initial weights prior to

"The other main class of supervised connectionist learning procedures, which are seldom used
in cognitive modelling, are constructive learning algorithms, in which the number of units
involved in solving the problem is not fixed, but is itself determined by learning. For
comparison, we initially conducted a number of experiments with perhaps the best known of
these procedures, namely cascade correlation (Fahiman & Lebiere, 1990). These algorithms
tend to produce near-minimal networks, which are not the focus of interest here. As we noted
above, with fixed near-minimal networks trained by gradient descent, double dissociations
between rules and exceptions are observed, and this applied also to networks generated using
cascade correlation.
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training. By using conjugate gradient learning with line searches, we avoid
the well-known problems caused by using an inappropriate fixed step size for
the gradient descent.’ For different initial weights we do expect slightly
different results, in the same way that different real brains show individual
idiosyncrasies, but we will hopefully find consistent trends across all cases.

Finally, once trained, there are then many different forms of network
damage that need to be considered (Small, 1991). The most obvious are the
removal of subsets of units and connections, but we also need to consider the
various possible changes to the weights and activations. We shall
concentrate on five types of damage which should be fairly representative of
the possibilities: (1) global reduction of weights by rescaling; (2) global
reduction of weights by subtraction; (3) addition of Gaussian random noise
to all weights; (4) removal of hidden units; and (5) removal of connections.
Later we shall examine how relearning after damage can affect
performance.

Learning and Damage

The forms of double dissociation that we shall investigate are between
regularities and their exceptions, where the exceptions may consist of
isolated examples, or may themselves be governed by sub-regularities. The
degree to which the fundamental regularity has been grasped is assessed, in
patients and in computational models, by testing whether the regularity can
be generalised successfully to novel items. The degree to which the
“exceptions are grasped may be assessed directly, by testing performance on
those exceptions. The question of interest is: Do people use separate
mechanisms to deal with the regular and exceptional cases? As we discussed
above, in the domains of reading and spelling, double dissociations have
been taken to provide strong evidence for distinct mechanisms: surface
dyslexics appear to show intact knowledge of the regularities, but impaired
knowledge of the exceptions, whereas phonological dyslexics appear to
show the opposite profile (e.g. Coltheart et al., 1993; Shallice, 1988). Closely
related issues arise regarding rules and exceptions in morphological
processing, such as the processing of verb inflections (e.g. Pinker, 1991).
Reading, spelling and verb inflection in English follow a whole series of
rules, sub-rules and exceptions. In this section, we shall use artificial versions

*Conjugate gradient training operates by choosing an appropriate direction in weight space
dependent upon the current gradient on the error surface and the previous step direction. A
search along this direction is then carried out to find a step size that gives an acceptably near
optimal decrease in error. There are necessarily free parameters that determine the accuracy to
which this line search is carried out, but these are generally found to be much less crucial to the
final network performance than a poor choice of fixed step size in an algorithm such as
back-propagation.
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of these “quasi-regular” mappings in which we have abstracted out their
essential features: rules, sub-rules and exceptions. This allows us to examine
the basic possibilities free of many of the problems discussed above and also
make our results applicable much more widely. Later we shall see that our
results do also hold for the more realistic mappings from which they were
derived.

Thus, to begin with, we simulated populations of small feedforward
networks, with one hidden layer, trained on two different quasi-regular
mappings. The first mapping involved learning a rule and a less frequent
sub-rule; the second involved learning a rule with a number of totally
random exceptions. Each network was then lesioned in the five ways
described above and the output performances determined for the two
training data subsets and the corresponding generalisation test set. The
performance in each case was measured as the percentage of output patterns
produced correctly, so that the types and degrees of dissociations could be
compared between different networks and tasks.

Each network was trained using the conjugate gradient learning algorithm
(Kramer & Sangiovanni-Vincentelli, 1989) to reduce the sum-squared error
on the output activations. Normally such networks will converge to a state
where they have learned all the main regularities but few (if any) of the
sub-regularities or exceptions. This is fine if the exceptions are merely noise
in the training data which we generally do not want to learn anyway. If, as
here, we do want to learn the exceptions as well, we need to use a different
error measure (e.g. cross entropy as in Hinton, 1989) or modify the learning
process (e.g. by introducing a sigmoid prime offset as in Fahlman, 1988). For
the present study, we used a sigmoid prime offset of 0.1 during the early
stages of training (for a discussion of the need to do this in more realistic
models of reading and spelling, see Bullinaria, 1994a; 1994b). This, of course,
slows down the learning because the line search direction is no longer
optimal, but it eventually resulted in perfect performance on the training
data in all our simulations. Experiments with different values of sigmoid
prime offset and different “turning off” points indicate that the precise
values do not qualitatively affect our main conclusions.

The first set of simulations involved networks with 9 input units, 100
hidden units and 9 output units that were trained to learn a rule and sub-rule.
The training data consisted of the identity map, except that when the first
four bits are 1111 or 0000, the last three bits are flipped (e.g. 101010101 —
101010101 but 111110101 — 111110010). A random subset of half the full set
of 512 possible patterns was used for training (giving 224 “rules” and 32
“sub-rules”) and the remaining 256 patterns were used for testing
generalisation.

We trained 10 networks starting from different small random initial
weights until the total output error score was less than 0.0001 (on p. 257 we
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discuss the effect of using different stopping criteria). Each network then
had perfect performance on both the training and generalisation data. (An
output unit was deemed to be producing the “correct” output if its activation
error was less than 0.5, and an output pattern was deemed to be “correct” if
each output unit was “correct”.) The networks were then lesioned in the five
ways described above with the level of damage gradually being increased in
about 25 steps until the network failed to produce any correct output
patterns at all. At each step, we calculated the difference between the
percentage of rule items for which the output was incorrect and the
percentage of sub-rule items for which the output was incorrect. This
provides a measure of dissociation between performance on rule and
sub-rule items.

Two cases must be considered, depending on the direction of the
dissociation. First, the sub-rule items may be more impaired than the rule
items. The strongest possible selective impairment of sub-rule items would
score 100, meaning that 100% of sub-rule items are lost, and 0% of rule items
are lost. Second, the rule items may be more impaired than the sub-rule
items. The strongest possible selective impairment of rule items would also
score 100, meaning that 100% of rule items are lost, and 0% of sub-rule items
are lost.

For each network, the maximum dissociation in each of these two
directions observed during each sequence of damage was recorded. These
maximal dissociations were then averaged over 20 damage runs of each type

for each of the 10 networks. Table 1 summarises the mean dissociations
between rules and sub-rules. To give some idea of the range of values
obtained, the strongest and weakest dissociations are also given. The figures
in this table, and subsequent tables, are the differences in the percentage of
items lost as described in the previous paragraph.

Table 2 shows the corresponding dissociations between the generalisation
and sub-rule performance (i.e. the difference in performance on the
generalisation test set compared with that on the sub-regular training
items). In psychological terms, rule performance corresponds to per-
formance on the most regular items; sub-rule performance corresponds to
performance on irregulars (specifically, those irregulars which are
covered by a sub-regularity, rather than being completely irregular);
generalisation performance corresponds to grasp of the rule(s) governing

- the stimuli.

The results show clearly that dissociations can occur in both directions.
This shows that double dissociations can occur even in networks with many
more hidden units than are actually needed. But the dissociations are
stronger where the sub-rule is selectively lost, than where the rule is
selectively lost. This difference is particularly clear in the cases of global
weight changes.
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TABLE 1
Rule/Sub-rule, 100 Hidden Units
Form of damage Sub-rules lost Rules lost
Max | Mean | Min Min | Mean Max
Global scaling of weights 90.6 88.7 84.4 0.0 0.7 3.6
Global reduction of weights 97.8 86.5 75.0 0.0 0.0 0.0
Adding noise to weights 746 | 420 7.1 0.0 2.9 17.4
Removing hidden units 74.6 319 22 0.0 13.1 51.3
Removing connections 87.5 45.1 2.2 0.0 124 38.9
TABLE 2

Generalisation/Sub-rule, 100 Hidden Units

Generalisation/Exception, 100 Hidden Units

Form of damage Sub-rules lost Generalization lost
Max | Mean| Min | Min | Mean | Max
Global scaling of weights 90.6 87.8 82.6 0.0 0.6 3.1
Global reduction of weights 95.5 85.3 73.7 0.0 0.0 0.0
Adding noise to weights 701 | 393 7.6 0.0 3.7 22.8
Removing hidden units 73.2 29.8 0.9 0.0 14.0 46.9
Removing connections 86.6 | 43.8 04 0.0 12.9 37.9
TABLE 3
Rule/Exception, 100 Hidden Units
Form of damage Exceptions lost Rules lost
Max | Mean | Min Min | Mean Max
Global scaling of weights 100.0 | 100.0 | 100.0 0.0 0.0 0.0
Global reduction of weights 89.6 77.9 71.2 0.0 0.0 0.0
Adding noise to weights 91.2 | 675 | 421 0.0 0.1 3.8
Removing hidden units 63.8 | 39.1 7.9 0.0 37 25.8
Removing connections 88.8 57.9 20.8 0.0 0.1 8.8
TABLE 4

Form of damage Exceptions lost Generalization lost
Max | Mean | Min | Min | Mean | Max

Global scaling of weights 100.0 | 99.7 | 99.1 0.0 0.1 0.5

Global reduction of weizhts 829 71.3 55.9 0.4 3.7 7.3
Adding noise to weights 86.7 | 614 | 34.1 0.0 3.0 15.7
Removing hidden units 57.6 31.3 2157 0.0 7.2 25.4
Removing connections 792 | 521 | 221 0.0 1.1 12.9
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The second set of simulations also involved networks with 9 input units,
100 hidden units and 9 output units, but here they were trained to learn a rule
with random exceptions. The training data consisted of the identity map,
except for 16 random input patterns which each mapped to a random output
pattern. A random subset of half the full set of 512 possible input patterns
was used for training (giving 224 “rules” and 16 “exceptions”) and the
remaining 256 input patterns were used for testing generalisation.* The
lesioning procedure was the same as above and the resulting dissociations
are shown in Tables 3 and 4. Again we find double dissociations and again
the magnitude of the dissociations in which the rule is lost is smaller than the
reversed dissociations. In fact, this asymmetry is significantly larger here
than in the previous simulations. Also, we see that the generalisation results
again mirror closely the training data results. Indeed, this mirroring applies
not just on average, but can also be seen in individual damage runs.

We noted above that early small-scale neural network simulations (e.g.
SanorLlQSS;VVood,1978)werecﬂﬂcmedasunreaﬁsﬂcbecausetheyar&not
fully distributed (Shallice, 1988). A particular problem that has been
observed in the past with simulations such as ours is that the results can be
obscured by dissociations that are merely artefacts of the input and output
representations (e.g. Bullinaria & Chater, 1993; Shallice, 1988). If a single
input or output unit on its own has an effect on the network output, then we
are at the very least in violation of the assumption of full distribution. If the
state of that single unit also has a significant determining effect on the class of
the whole pattern, then damage to that unit can also result in artefactual
dissociations.

We have chosen our toy problems carefully to minimise these problems,
but to check this point we repeated the above simulations using more
distributed input and output codings. We did this by replacing each “0” bit in
the training data by the four bits “0011” and each “1” by “1100”. Apart from
the obvious increase in the number of input and output units from 9 to 36,
this also makes the codes error-correcting (e.g. Dietterich & Bakiri, 1991). If
the output of the network is deemed to be whichever of “0011” or “1100” is
closest to the actual network output activations, then any one of the network
output bits can be completely wrong without affecting the overall output.

Tables 5 and 6 show the dissociation results for the rule/sub-rule task with
our new distributed representation and Tables 7 and 8 show the
corresponding results for the rule/exeption case. From these we see that, for
all types of damage apart from hidden unit removal, the dissociations with

“The 16 exceptional training patterns were: 000000111, 001001111; 111111101, 000101011;
100100011, 110000011; 100001100, 101000101; 011001100, 001000011; 111001101, 001010100;
100100101, 000111011; 111010001, 011010101; 101111100, 111010010; 110100110, 011101111;
000011001, 110110100; 110111010, 101011100; 100100110, 111111001; 000011010, 100001001;
011110000, 110011110; 101101001, 000001110, '
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TABLE 5
Rule/Sub-rule, Distributed Representation, 100 Hidden Units
Form of damage Sub-rules lost Rules lost
Max | Mean | Min | Min | Mean Max
Global scaling of weights 100.0 | 100.0 | 100.0 0.0 0.0 0.0
Global reduction of weights 100.0 | 95.6 83.0 0.0 0.0 0.0
Adding noise to weights B6.2 | 56.7 | 20.5 0.0 0.8 16.1
Removing hidden units 76.3 33.9 0.9 0.0 14.4 48.0
Removing connections 100.0 | 712 299 0.0 1.0 19.2
TABLE 6

Generalisation/Sub-rule, Distributed Representation, 100 Hidden Units

Form of damage

Sub-rules lost

Generalization lost

Max | Mean | Min Min | Mean Max
Global scaling of weights 100.0 | 100.0 | 100.0 0.0 0.1 0.9
Global reduction of weights 100.0 | 95.5 79.0 0.0 0.2 1.8
Adding noise to weights 82.1 53.9 22.8 0.0 1.8 17.4
Removing hidden units 77.7 30.1 7.5 0.0 16.3 55.8
Removing connections 100.0 | 68.6 29.9 0.0 2:3 20.1
TABLE 7
Rule/Exception, Distributed Representation, 100 Hidden Units
Form of damage Exceptions lost Rules lost
Max | Mean | Min Min | Mean Max
Global scaling of weights 100.0 | 100.0 | 100.0 0.0 0.0 0.0
Global reduction of weights 100.0 | 96.6 91.7 0.0 0.0 0.0
Adding noise to weights 983 | 876 | 66.2 0.0 0.0 1.2
Removing hidden units 62.5 35.3 3.8 0.0 49 28.3
Removing connections 99.6 89.0 71.7 0.0 0.0 0.4
TABLE 8

Generalisation/Exception, Distributed Representation, 100 Hidden Units

Form of damage

Exceptions lost

Generalization lost

Max | Mean | Min Min | Mean Max
Global scaling of weights 100.0 | 100.0 | 100.0 | 0.0 0.0 0.4
Gilobal reduction of weights S6.6 91.3 835 0.8 2.1 3.3
Adding noise to weights 942 | 802 | 589 0.0 2.9 9.1
Removing hidden units 50.2 24.7 04 0.0 116 34.5
Removing connections’ 943 | 820 | 577 0.0 29 9.4
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the sub-rules/exceptions lost have been increased while those with the
rules/generalisation lost have been decreased (we shall examine exactly why
this happens on pp. 252-257). The lack of changes for the hidden unit
removal case is easily understood. The network weights are invariably highly
correlated within each block of four input or output units. Thus the effect of
the removal of each hidden unit has essentially the same effect as in the less
distributed case.

These preliminary simulations appear to suggest that double dissociations
between rules and exceptions can occur in a distributed system which does
not have separate routes for dealing with rule-governed versus exceptional
items. This appears to indicate that the inference from double dissociation to
modularity of function may not be reliable for this kind of case. But, as we
shall see, this impression is misleading, since this pattern of results is not
repeated when larger, more realistic networks are used.

SCALING UP AND DOWN

We have found that dissociations are surprisingly common in our small-scale
neural networks and that double dissociations ¢an be found within a single
‘network. This appears to support the claims of those who have attempted to
cast doubt on the inference from double dissociation to modularity of
function (e.g. Chater & Ganis, 1991; Dunn & Kirsner, 1988; Ganis & Chater,
1991; Sartori, 1988; Wood, 1978). However, as we shall see, a more detailed
investigation suggests otherwise. In this section, we present the results of
further simulations which indicate that the double dissociations disappear as
we scale up to more realistically sized networks. In the next section, we
attempt to understand the underlying causes of the dissociations we find, and
then we investigate the effects of relearning after damage.

The Toy Models

The first important feature to note about our toy models is that the
performance of a typical small-scale network does not generally degrade
smoothly as we increase the degree of a particular type of damage. For
example, Fig. 2 shows how the performance typically deteriorates as we
remove random hidden units from a distributed rule/sub-rule network of the
type described above. We not only see that the curves are far from smooth,
but also that many of the largest dissociations are due to the random
fluctuations in these curves. In fact, it is easy to check that, despite the
network having many times the number of hidden units required to learn the
data, there are still some units that on their own have a significant effect on
the outputs. Consequently, the neural network cannot be considered to be
“fully distributed” in the sense of Shallice (1988). This finding has important
implications for all forms of network damage: As we increase the number of
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FIG.2. Typical performance fall off due to damage by hidden unit removal of the distributed
rule/sub-rule network with 100 hidden units.

hidden units, it is possible that the network will become more distributed,
causing all the damage curves to smooth out and leave us with only a single
dissociation or with no dissociation at all.

Interestingly, we have found that damage by weight-scaling always gives a
dissociation with the sub-rule or exceptions lost preferentially. While
weight-scaling has a potentially direct neural interpretation, as mentioned
above, in terms of changes in levels of neurotransmitters, this finding is
perhaps of more interest because it can be viewed as indicative of what will
be found as we scale up to very large, very distributed networks. The idea is
that in a highly distributed network with a very large number of hidden units,
removing large numbers of random connections or units will effectively have
a global scaling effect on other parts of the system (since the specific effects
of particular aspects of the damage will tend to average out). We may
therefore expect that this form of single dissociation will be all we get as we
scale up to larger networks. As we shall see, this expectation appears to be
well founded.

Each output unit activation is given by the sigmoid of the sum of the
contributions (i.e. activations X connection weights) from each hidden unit.

The output is assumed to be “on” if its value is above 0.5, and “off”

otherwise. The former occurs if the sum of contributions (including the
threshold) is positive, and the latter occurs if the sum of contributions is
negative. This means that the effect of damage on a network is only
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significant when the sum of contributions to one or more output units
changes sign. At this point, a previously correct output will be judged to be
incorrect.

This observation suggests a measure of the “vulnerability” of an output
unit’s performance on a given training pattern—the absolute magnitude of
individual contributions to the unit, as a fraction of the absolute magnitude
of the sum of contributions to that unit (Sanger, 1989). To see why this
measure is useful, consider the following two cases. At one extreme, the
output may be composed of many small, and roughly equal, contributions,
each having the same sign. In this case, removing any particular hidden unit
cannot significantly change the output—if there are many small
contributions which are, say, positive, then the output will still be positive
even if one or more of these is removed. At the other extreme, the output
may be the average of many contributions, of large size, which cancel out
because some are positive and some are negative. In this case, the absolute
value of the individual contributions might even be larger than the absolute
value of the sum of the contributions (i.e. the proportion of the total would
be greater than 1). If hidden units associated with these large contributions
are removed, then the sum of contributions may change sign, so that the
output unit will change its response.

Naively, we would expect each individual contribution to become less
important as we scale up to more hidden units. The larger the number of
individual contributions we sum together, the less important we might expect
any givenindividual contribution to be. Specifically, we would predict that the
individual contributions will become smaller as a proportion of the total.

To test this requires a specific measure of the importance of individual
contributions for a network relative to a given set of training patterns. A
natural measure is the percentage of training patterns for which some output
unit receives an individual contribution greater than a specific proportion of
the total. If a network is highly distributed, then few training patterns will
involve contributions which are a large proportion of the total contribution
to any output unit. Therefore, performance on these training patterns is
likely to be reasonably robust to damage. If a network is poorly distributed,
then large contributions may be important for many training patterns, and
hence such patterns will be vulnerable to damage. Specifically, the loss of an
individual contribution over 1.0 of the total can change the output unit from
“on” to “off” or vice versa; hence performance on that pattern will no longer
be correct. Similarly, the removal of two contributions of 0.5, and more than
three contributions of 0.3, could have the same effect. The number of
patterns which contain these large contributions are therefore a measure of
the “vulnerability” of these patterns to damage in which one, two or more
hidden units may be removed.
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Figure 3 shows a typical plot of the percentage of patterns dependent on
individual contributions greater than 1.0, 0.5 and 0.3 of the total contribution
for some output unit, plotted against the number of hidden units in the
network. Rule and sub-rule patterns are plotted separately. We see that, for
our rule/sub-rule problem with distributed representations, the number of
important contributions do indeed decrease in the expected manner with the
number of hidden units. In particular, we see that we need more than 150
hidden units to ensure that no single hidden unit has a significant effect on
the output patterns, and to be sure that no unlucky combinations of two or
three units have a significant effect, we need to go beyond 600 hidden units.
We also see that the sub-rule patterns are more prone to having large
contributions than the more regular items. A similar set of curves are found
for the rule/exception case, except that there the size of contributions falls
off faster with the number of hidden units. Clearly, the details of such curves
will be rather problem (and learning algorithm) dependent and would have
to be checked explicitly for each case.

We have argued above that brains presumably allocate many more hidden
units (neurons) to solving a problem than are actually required, so we may
expect them to be operating in a region where all the individual
contributions are very small and all the damage curves are very smooth.
Thus, for our simulations to be an acceptable approximation to what is
happening in real brains, we need to check that our networks are operating
in'a similar regime. Our results, such as those shown in Fig. 3, suggest that
this can mean having to use tens, if not hundreds, of times more hidden units
than are actually required to solve the problem.

Tables 9 and 10 show the dissociations obtained for the distributed
rule/exception networks when we increase the number of hidden units to
600. We see that the dissociations with the rules lost have now virtually
disappeared (compared with the corresponding 100 hidden unit case of
Tables 7 and 8). The only instances remaining are caused by random
fluctuations in the hidden unit removal damage curves at relatively late
stages of damage (when the number of hidden units has become quite small
again and hence individual contributions are more crucial). For example,
Fig. 4 shows how a typical large dissociation (of 13.3%) with predominantly
rules lost arises after 80% damage (corresponding to 480 out of 600 hidden
units removed) in a run otherwise dominated by a dissociation with the
exceptions lost. As before, the generalisation/exception results mirror the
rule/exception results. As we increase the number of hidden units further,
we will be left with only the single dissociation with the least regular patterns
lost first.

Finally, to confirm our intuitions, we consider decreasing the number of
hidden units to 40. Tables 11 and 12 show that we do indeed find the
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FIG.3. The number of training patterns dependent on contributions greater than 0.3, 0.5 and
1.0 of the total versus the number of hidden units in the network, for the rule/sub-rule problem
with distributed representations.

—&— Rules (Train)
—O— Exceptions (Train)
—— Rules (Gen.)

Form of damage Exceptions lost Rules lost

Max | Mean | Min | Min | Mean | Max
Global scaling of weights 100.0 | 100.0 | 100.0 | 0.0 0.0 0.0
Global reduction of weights 69.6 65.8 61.7 0.0 0.0 0.0
Adding noise to weights 942 | 832 | 575 0.0 0.0 0.4
Removing hidden units 69.2 | 396 | 179 0.0 3.3 17.5
Removing connections 100.0 | 96.0 | 86.2 0.0 0.0 0.0

TABLE 10

Generalisation/Exception, Distributed Representation, 600 Hidden Units

Percentage Correct
3
L

Form of damage Exceptions lost Generalization lost
Max | Mean | Min Min | Mean Max
Global scaling of weights 100.0 | 100.0 | 100.0 0.0 0.0 0.0
Global reduction of weights 61.4 58.6 53.1 0.8 2.1 3.9
Adding noise to weights 918 | 767 [ 51.0 0.0 0.9 6.0
Removing hidden units 57.5 31.0 14.5 1.7 11.2 24.5
Removing connections 100.0 | 91.5 774 0.4 2.1 4.5
TABLE 11
Rule/Sub-rule, Distributed Representation, 40 Hidden Units
Form of damage Sub-rules lost Rules lost
Max | Mean | Min Min | Mean Max
Global scaling of weights 100.0 | 93.2 | 804 0.0 0.0 0.0
Global reduction of weights § 100.0 | 865 | 67.9 0.0 0.3 2.7
Adding noise to weights 80.8 | 5l1.1 14.3 0.0 2.7 254
Removing hidden units 59.4 27.8 0.9 0.0 11.4 43.8
Removing connections 90.6 58.0 3.7 0.0 3.7 38.8
TABLE 12

Generalisation/Sub-rule, Distributed Representation, 40 Hidden Units

L) b T - T
20 40 60 80 100
Percentage of Units Removed

FIG. 4. Typical performance fall off due to damage by hidden unit removal of the distributed
rule/exception network with 600 hidden units.

Form of damage Sub-rules lost Generalization lost
Max | Mean| Min || Min | Mean | Max

Global scaling of weights 100.0 | 89.1 [ 76.3 0.0 4.9 10.3
Global reduction of weights || 100.0 | 849 | 616 0.0 4.9 152
Adding noise to weights 77.2 4.8 3.6 0.0 8.6 19.2
Removing hidden units 513 | 216 0.0 0.0 14.5 47.3
Removing connections 91.1 54.0 10.3 0.0 6.7 51.8
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TABLE 13
Rule/Exception, Reading Model, 300 Hidden Units

Form of damage Exceptions lost Rules lost

Max | Mean | Min | Min | Mean | Max

Global scaling of weights 54.2 52.1 50.0 2.1 2.1 21

Global reduction of weights 47.9 46.8 | 458 0.0 0.0 0.0

Adding noise to weights 50.0 34.5 18.8 0.0 0.3 2.1
Removing hidden units 52.1 271 12.5 0.0 4.9 18.8
[RemOVing connections 56.2 35.6 18.8 0.0 33 12.6

TABLE 14
Generalisation/Exception, Reading Model, 300 Hidden Units

Form of damage Exceptions lost Generalization lost
Max | Mean | Min | Min | Mean | Max

Global scaling of weights 492 | 470 | 448 2.3 2.4 26
Global reduction of weights 414 | 386 35.7 2.3 35 47
Adding noise to weights 573 | 33.1 18.9 0.2 438 16.4
Removing hidden units 45.8 26.9 8.6 T2 55 125
Removing connections 503 | 32.0 8.1 0.0 75 25.4

expected increase in strength of the double dissociations (compared with the
corresponding 100 hidden unit case of Tables 5 and 6).

- The pattern of results obtained with properly distributed, and reasonably
large-scale, networks constrasts with that found with small, less distributed
networks. As the size of the network increases, and the network becomes
increasingly distributed, the pattern of double dissociation gives way to
single dissociation: exceptions are lost while rules are preserved, but not the
other way round. If the brain does indeed use highly distributed
representations over very large numbers of units, then we should not expect
double dissociations between rules and exceptions from a single system. So
the inference from double dissociation to modularity of function may, with
regard to rules and exceptions, be more reliable than small-scale network
simulations would suggest.

More Realistic Models

We have argued that our toy models capture the essential features of a class
of more realistic processes. In this sub-section, we summarise the results
obtained from some more realistic models that confirm this claim.

The most well-known realistic example of a quasi-regular mapping is that
between the orthographic and phonological representations in a language
such as English. The double dissociation of interest there is that observed
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between performance on novel and irregular items in reading and spelling
(e.g. Coltheart et al, 1993; Shallice, 1988). In reading, the double
dissociation is evidenced by the dissociations found in patients with surface
dyslexia (i.e. selective impairment of reading irregular words) and patients
with phonological dyslexia (i.e. selective impairment of the rules as
evidenced by poor reading of nonwords). In spelling, the double dissociation
is evidenced by the corresponding dysgraphic syndromes.

Bullinaria (1994a) discusses a simple model of reading aloud (i.e.
text-to-phoneme conversion). It is essentially a NETtalk style model
(Sejnowski & Rosenberg, 1987) with a modified learning algorithm that
obviates the need to pre-process the training data. It uses a simple localist
representation for its inputs (i.e. one unit for each of 26 letters) and outputs
(i.e. one unit for each of 38 phonemes including a phonemic null). The
complete input layer consists of a moving window of 13 blocks of 26 units and
the output layer consists of 2 blocks of 38 units. The most highly activated
unit of each output block gives the phonemes corresponding to the letter
activated in the central input block in the context of the letters in the other
mput blocks. Numerous variations of this basic system are discussed in detail
in Bullinaria (1994a). We shall concentrate on two such networks with
a single hidden layer of 300 units trained by back-propagation on the ex-
tended Seidenberg and McClelland (1989) corpus of 2998 monosyllabic
words. These networks both achieved 100% performance on the training
data and averaged 98% generalisation performance on a standard set of
nonwords.

To test the effects of damage, we used the exception words and regular
controls of Taraban and McClelland (1987) and the regular nonwords of
Glushko (1979). Tables 13 and 14 summarise the dissociations obtained by
following the same lesioning procedures as used for our toy models.

We see that the pattern of dissociation is very similar to those obtained
above, with the surface dyslexic (exceptions lost) dissociations most
pronounced. Some fairly large dissociations with the rules/generalisation
lost do occur, although these do not approach the large dissociations found
in patients with acquired phonological dyslexia. A closer examination of the
damage curves indicates that these instances invariably correspond to major
fluctuations in the damage curves, often when the overall performance is
significantly degraded. On the basis of our abstract studies, we would predict
that as the number of hidden units in such a model is increased further, single
dissociations with rules preserved and exceptions lost would come
increasingly to predominate.

A further indication of the generality of these findings is that similar
patterns of performance after damage are observed in related models
of spelling (Bullinaria, 1994b) and past tense acquisition (Bullinaria,
19944).
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UNDERSTANDING THE DISSOCIATIONS

In this section, we attempt to understand the underlying causes of the
dissociations we find in our networks. By studying these causes, we can hope
to gain a better conception of their generality and hence their potential
relevance to the interpretation of neuropsychological data.

An analysis of the internal representations (i.e. patterns of hidden unit
activations) learnt by the reading model (Bullinaria, 1994c) gave a fairly
clear understanding of how various forms of damage to that model all result
in symptoms similar to acquired surface dyslexia (with exceptions lost more
than the regulars), whereas nothing results in anything like acquired
phonological dyslexia (with the generalisation lost but not the training data).
In this section, we shall abstract out the essential features of this analysis and
apply it to our toy models.

The network’s output weights project out particular directions in hidden

unit activation space corresponding to each output unit. For each input
pattern, each such projection is simply the sum of the contributions
discussed above (i.e. the network’s output before being passed through the
sigmoid). During the training process, the network simultaneously learns
these projection vectors and assigns each input pattern a point in hidden unit
activation space with large positive or negative projections corresponding to
output activations of “1” or “0”. By plotting these projections for a typical
output unit during learning and damage, we can gain a useful insight into
what is happening.
" During the early stages of training, the main regularities dominate the
weight changes resulting in the exceptions being over-regularised. As the
training proceeds, the exceptions are eventually learnt correctly, but they
remain with higher error scores (i.e. less binary activations and smaller
projections) than the regular items. Figure 5 shows a typical set of learning
curves, the sum of the contributions to one particular output unit for 16
representative training patterns.

Despite the similarity between the dissociation patterns we observe, the
corresponding damage curves are somewhat different for the different types
of damage. We shall look at various typical damage plots for the 600 hidden
unit distributed rule/exception networks. The corresponding plots for
networks with less hidden units are similar but with larger statistical

~ fluctuations.

Figure 6 shows the effect of global weight-scaling which results in very
smooth curves that are essentially like the training curves in reverse. It is
thus easy to understand how the strong (exceptions lost) dissociations occur
here and why we never see the reversed dissociation. The damage
trajectories due to global weight reductions by constant amounts are merely
a rough approximation of this.

i
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FIG.5. Typical learning curves for a rule/exception network.
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FIG. 6. Typical damage by weight-scaling plots for a rule/exception network.
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In a network with many hidden units and where the contributions to each
unit’s activation are all very small and insignificant, removing a random
subset of connections will be a good approximation to global weight-scaling,
so we can expect similar damage plots.” This is confirmed explicitly by Fig. 7.
We can thus also understand how the dissociations arise with this kind of
damage.

Itis clear from our results thus far, that the same simple argument will not
apply to the removal of hidden units. In this paper, we have considered only
ANNSs with a single hidden layer. Can we draw any conclusions from these
results for networks in which this biologically highly artificial restriction has
been removed? In a multi-layer ANN, it seems reasonable to expect that, as
we have found with removing connections in a single hidden layer network,
removing random sets of hidden units would also approximate global
weight-scaling and give similar damage plots. However, in a single hidden
layer network, hidden unit removal is equivalent to scaling only the output
weights, which is equivalent to merely squashing the outputs (since all the
thresholds are small). Thus all the errors are due to fluctuations away from
the smooth case, as seen in Fig. 8. Since the exceptions/sub-rules start off
nearest the cross-over line, it is not surprising that they exhibit most errors
and hence we get our single dissociation. Since the errors here necessarily
arise from the fluctuations, it is easy to see why the dissociations do not scale
as clearly as with the other forms of damage.

Damage by adding noise to the network weights gives a fundamentally
_ different set of plots,® as shown in Fig. 9. Again the errors are predominantly
the exceptions/sub-rules simply because the curves are fairly laminar and
these cases start off nearest the cross-over line.

We have seen, for each type of damage, the importance of the regularity of
the training patterns. Our explanation of what is happening implies that the
greater the regularity difference between the two tasks, the greater the
accuracy of the single dissociation. This is confirmed by the trend from
double to single dissociation as we went from the sub-rule training data of
Tables 1 and 2 to the true exceptions training data of Tables 3 and 4.

*Suppose the total input into an arbitrary unit is composed of N contributions {x;} distributed
with mean X and maximum x_, much less than the total contribution NX. If N is sufficiently
large, then (to good approximation) randomly removed contributions will follow the same
distribution as the full set of contributions and hence leave the mean contribution X constant
while reducing N to N' (at least if N is still large). The total contribution is thus scaled from NX
to N'X = (N'/N)NX, which is equivalent to simply scaling the weight in each contribution by
(N'/N).

®In the notation of Footnote 5, to first approximation, both the mean contribution X and
number of contributions N remain constant. All the changes are due to random fluctuations not
averaging out.

Sum of Contributions

Sum of Contributions
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FIG.7. Typical damage by connection removal plots for a rule/exception network.
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FIG.8. Typical damage by hidden unit removal plots for a rule/exception network.
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FIG.10. Dependence of mean dissociations after damage on the amount of training originally
received by a rule/exception network.
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Our conclusion here seems to be that we can understand how damage to
large-scale neural networks will give rise to a single dissociation determined
by the regularity in the training data. This is simply because the network
learning algorithm naturally acquires the regularities in their training data
earlier and more strongly. It seems unlikely that large homogeneous
feedforward networks will ever produce dissociations that are not simply a
consequence of the regularity of their training data.

Now that we understand what is happening during training and damage,
we are in a position to assess the effect of changing the stopping criterion for
the network training. We can see from Fig. 5 that once all the exceptions
have been learnt (around epoch 60), the distribution of total contributions
remains qualitatively the same during further training. The effects of
damage will also be qualitatively the same. The only difference will be the
relative significance of random fluctuations in the damage. Consequently,
we should expect the dissociations we find to be largely independent of the
stopping criteria. This is easily checked explicitly. Figure 10 shows the mean
dissociations obtained for the network of Fig. 5 with the training stopped at
various stages (solid lines for the exceptions lost dissociations, dashed lines
for the rules lost dissociations). We see that our main conclusions are indeed
independent of the stopping criterion. The only major trend as we increase
the amount of training is the slight reduction in size of the exception lost
dissociation obtained by hidden unit removal.

In the reading model, the output representation is more complicated, with
the network outputs determined by competition within each block of output
units. Nevertheless, we come to similar conclusions there (for details of the
corresponding analysis in that case, see Bullinaria, 1994c).

RELEARNING AFTER DAMAGE

In this section, we consider the issue of relearning after damage, which is
often an important factor in determining the performance of neuro-
psychological patients. It is possible that, even if rule/exception double
dissociations do not occur when full distributed networks are damaged, such
dissociations could emerge when the network is retrained. We present
simulations which suggest that relearning does not provide a mechanism for
generating such double dissociations.

Neurological patients often (but not always) show a rapid improvement in
performance after a lesion occurs (Geschwind, 1985; Plaut, in press a). This
phenomenon has a ready explanation in connectionist terms. Given that
there will still be a large amount of information left in the network even after
damage, it should not be surprising that relearning after damage proceeds at
a much faster rate than the original learning process (Hinton & Sejnowski,
1986; Sejnowski & Rosenberg, 1987). This can be seen clearly in Fig. 11,
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which shows the relearning curves after 300 hidden units are removed from

one of our 600 hidden unit distributed rule/exception networks. The damage

leaves the network with 75.8% performance on the regular training data and

37.5% on the exceptions (i.e. a 38.3% dissociation). After only six epochs of

relgarnmg, the network regains perfect performance on all the training data.

;l;s would typically take about 150 epochs during the original learning
ge. '

Aside from its intrinsic interest, the phenomenon of rapid relearning in
patients and in networks might potentially upset the conclusions that we
have dr.awu so far. Double dissociations are typically observed in patient
populations where there has been significant time during which relearning
may have occurred. Hence, the performance of such patients may perhaps
be better modelled not by networks which are merely trained and damaged
such as those we have considered so far, but by networks which are retraine(i
after damage. Hence, to establish our conclusion that double dissociations
between rules and exceptions do not occur in fully distributed networks, we
need to be confident that this also applies to networks that have experienced
some retraining,

To. see why this should be so, let us reconsider the initial pattern of
learning, as shown in Fig. 5. The regularities dominate the training data, so
when there are significant errors on them, they dominate the weight changes
and drag the exceptional patterns with them. It is only when the regularities
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FIG. 11. Relearning curves after damage by hidden unit removal for a rule/exception
network.
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are learnt reasonably well (i.e. when they contribute less to the total network
error score than the relatively few exceptions) that the weight changes can
begin to work on getting the exceptions right.

We have seen that, for sufficiently large-scale networks, the errors caused
by damage are primarily on the exceptions, so we generally expect any
relearning to simply correct these errors and eventually we achieve perfect
performance again. The relearning curves will be like the original learning
curves from about epoch 15 in Fig. 5, and so we can expect an enhanced
exceptions lost dissociation or a reduced dissociation. There will be no new
(rules lost) dissociations created by relearning here.

The only cases where there are large errors on the regular patterns are
when the network’s performance on everything is rather poor and when we
have chance fluctuations causing the errors. If we have all round poor
performance, the learning will be like that from a very early epoch in Fig. 5.
Small amounts of relearning will enhance any exceptions lost dissociation
and larger amounts will eventually correct all the errors. Exactly what
happens as we relearn in cases where there are chance fluctuations will
depend on details of the numbers involved, but any differential learning
rates will always favour the regularities as can be seen occurring in Fig. 11.

It follows that small amounts of relearning may sometimes enhance or
create a dissociation with the exceptions lost but never the reverse
dissociation. Large amounts of relearning will eventually correct all the
errors as long as there remain sufficient computational resources to do so. In
cases where the remaining network resources are limited (e.g. very few units
or connections remain), it will be the learning of the exceptions that suffers.
We conclude that relearning here does not provide an alternative
mechanism for creating double dissociations in realistic neural networks.

IMPLICATIONS FOR NEUROPSYCHOLOGY

For two representative problems, we have obtained double dissociations
between rules and exceptions in small artificial neural networks. However,
we have shown that as we scale up towards larger, more distributed and
presumably more realistic networks, the double dissociation disappears,
leaving us with a single dissociation in which the most regular mappings are
more resilient to damage. We have also seen how this pattern of behaviour
can be conveniently understood in terms of learning and damage trajectories
in hidden unit activation space.

These basic results are confirmed by mere realistic models of reading,
spelling and past tense acquisition. Unfortunately, for these more realistic
problems, the dissociations will rarely be as clear-cut as we have found in our
toy models. There will generally be complex hierarchies of rules, sub-rules
and exceptions in the training data that are inevitably confused further by
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the effects of frequency, noise and differences in training experiences. The
fsonclusion that we can only find a single (regularity-dependent) dissociation
in a fully distributed system holds, though finding the appropriate testing
examples to demonstrate this clearly will not always be easy.

O‘ur. results do not mean that we can never get double dissociation in a
realistic neural network system. Obviously, it is easy enough to construct a
neural ne‘twork implementation of a “box and arrow” model and selectively
fiamgge it to produce the double dissociations. However, this has no
Implications for cognitive neuropsychology beyond the implications of the
underlying boxes and arrows.

Smce; our simulations have not covered the whole range of imple-
mentational possibilities, our results cannot necessarily imply that it is never
possible to obtain double dissociation between rules and exceptions in
homogeneous neural networks. Rather, this work may be viewed as setting a
cl.'la.lle{}ge to modelling researchers to show that rule/exception double
dissociations can occur in such networks, We suggest that such a challenge
cannot be met; but this conclusion will only be more firmly established (or
overturned) by further attempts to meet this challenge. Itis to be hoped that,
by performing the contribution analysis and checking the damage plots as
discussed in this paper, it will be clear in future simulations whether they are
sufﬁciently large scale for the damage results to be reliable. This should help
avoid the premature suspicion of the traditional cognitive neuropsy-
chological methodology that has occurred previously (e.g. Chater & Ganis
1991; Ganis & Chater, 1991: Sartori, 1988; Wood, 1978). ,

Unfortunately, our results suggest that “sufficiently large scale” will often
be “extremely large scale” and beyond our computational resources. Is there
anything that can be done about this? Comparing the results obtained for
networks of different sizes, we find that it is the global scaling of weights for
small networks that gives the best indication of the effects of damage that
will be obtained in the corresponding large-scale networks. One reason for
this is that global rescaling is a simple deterministic form of damage which
h.aS an effect on every part of the network. By contrast, the effect of other
kmd.s of damage, such as the removal of units or connections, will depend
crucially on random factors such as the particular units or connections being
removed, and since small-scale networks tend not to be fully distributed,
these random effects can be quite significant. These latter kinds of random
damage effects will be negligible in large-scale, fully distributed networks, in
which individual connections or units do not play a crucial role, and the full
ef'fect. of damage corresponds to the sum of a large number of such
contributions which combine to give relatively smooth global effects.
According to this analysis, global rescaling gives valuable insights, even
when using small networks, since the effects of damage are evenly
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distributed throughout the whole network in a manner that for large
networks offers a good approximation to the other forms of damage.

The simulations reported in this paper address directly the reliability of
the double dissociation inference in the context of mappings involving rules
and exceptions. What of the double dissociation inference more generally?
Our analysis of the logic of double dissociation inference shows that each
case should be taken on its merits: it may be that some double dissociation
inferences are more reliable than others. Moreover, we have argued that the
validity of the inference depends on the class of computational models under
consideration. Hence, an important goal for future connectionist neuro-
psychology is to assess the extent to which connectionist models invalidate
or support patterns of neuropsychological inference devised in the context
of box and arrow models. But we would urge caution upon connectionist
researchers challenging the double dissociation inference in any domain. As
our results make clear, results from small-scale cases may not be
representative of more realistic networks, and that a systematic analysis such
as that conducted here would be necessary to establish that the double
dissociation inference is not valid in some other context.

We should also note that in this paper we have been concerned purely with
simple feedforward networks. Is it possible that recurrent networks will
behave significantly differently? If the recurrent connections are simply
supplying additional context information, it seems unlikely that they will
make much difference, since we would expect this information to be treated
in the same way as additional inputs to a feedforward network. If they are
implementing more complicated structures, such as output buffers or basins
of attraction, then it will clearly be necessary to carry out a more detailed
analysis of each case. The minimum set of checks outlined in this paper can
still be applied to ensure that the network is sufficiently large to avoid the
small-scale artefacts.

In this connection, an interesting case for future study not covered here is
Plaut’s observation of a double dissociation between “abstract” words
(specifically, words coded by sparse patterns) and “concrete” words (coded
by less sparse patterns) in simulations of deep dyslexia (Plaut & Shallice,
1993; Plaut, in press b). Here the dissociation is based on sparseness rather
than regularity in the training data and the lesions that result in double
dissociation occur at two separate locations within a relatively complicated
recurrent network.

Inference from double dissociation to modularity of function, like neuro-
psychological inference in general, is a difficuit matter, as we have discussed
above; but our studies suggest that neural network models may not,
thankfully, introduce further problems of interpretation, at least in the
context of dissociations between rules and exceptions. More generally, we
conclude that claims (e.g. Chater & Ganis, 1991; Ganis & Chater, 1991;
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Sartori, 1988; Wood, 1978) that connectionist modelling casts doubt upon
the inference from double dissociation to modularity of function are as yet
unjustified.
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