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Chapter 11

Sequence Processing with
Recurrent Neural Networks

Nick Chater and Peter Conkey

11.1 Introduction

A large number of interesting cognitive tasks are sequential in nature; they
involve the integration and use of information over an extended period of time.
Examples include the perception and production of speech, the control of
complex movements, and the integration and analysis of perceptual input over
successive time-frames. Such tasks pose important challenges for the use of
neural networks in modelling aspects of cognition.

The most widely used neural net architecture is composed of ordered
layers, such that the units in each layer connect only to units in successive
layers. Thus, in such “feedforward” networks, activation flows unidirectionally
from the initial “input” layer to the final “output” layer. Such networks are
typically trained on a finite set of input-output pairs. The most popular method
of training such networks is to use the back-propagation algorithm (Rumelhart,
Hinton & Williams, 1986a). During learning, for each input, the desired “target”
output is compared with the actual output of the network, and the disparity
between the two is computed. The overall performance of the network is
measured by the square of the disparities between the actual and desired
output of the network, summed over each input-output pair. This error
measure is then “back-propagated” through the network, in order to discover
to what extent the value of each of the network’s units and weights influence
the disparity between actual and target output (that is, the partial derivative of
the error is calculated with respect to both the activation level of each unit, and
the weight on each link). These partial derivatives specify how the values of the
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weights may be adjusted in order to reduce the squared error. By performing
gradient descent in error space, the back-propagation algorithm reconfigures
the network so that the difference between the desired and actual output of the
network is gradually reduced. A variety of related gradient descent methods
have been explored, which use rather more complex minimisation strategies
than the steepest descent of back-propagation (see, for example, Fahlman, 1988;
Webb, Lowe & Bedworth, 1988).

Back-propagation is able to train a variety of interesting input-output
mappings. However, since the output of a feedforward network is influenced
only by its current input, at first sight it seems that such networks must be
inappropriate for dealing with sequential structure in time. Responding to
sequential structure requires the output of the network to be a function of not
just its current input, but of the history of recent inputs. Nonetheless,
feedforward networks trained by the back-propagation learning algorithm have
been widely applied to the processing of sequential inputs, using a variety of
methods. Following a discussion of possible approaches and of the relationship
between them, we focus on the performance and limitations of the particular
approach that we shall term the “copy-back” strategy (Elman, 1988, 1990;
Jordan, 1986a,b). We shall focus on small artificial problems so that analysis is
relatively straightforward, and will also consider how the copy-back regime
learns sequences generated by a very simple artificial grammar.

11.2 Back-propagation and finding sequential structure

11.2.1 Explicitly representing the past

We saw above that the output of a feedforward network is purely a function of
its current input, and noted that this would appear to rule out the possibility
that such networks can respond selectively to temporal sequences. One way of
circumventing this problem is simply to decouple the notion of state (which
composes the sequences that the network is to respond to) from the pattern of
activity over the input units of the network. Thus, in order to give the network
access to m states at successive times, the input units can be divided into m
blocks, each representing the state at a particular time. This most
straightforward approach is used in a variety of models (Elman, 1990, cites
Cottrell, Munro & Zipser, 1987; Elman & Zipser, 1988; Hanson & Kegl, 1987).
Elman points out three drawbacks with this approach to this way of
representing time:
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(1) The past states of the sequence must be buffered before being
presented simultaneously, and biology provides no clear examples of
this sort of buffering. More generally, it seems undesirable that past
states must be explicitly remembered and manipulated by any
additional buffering processes which must be prespecified, rather
than learnt by the network.

(2)  The amount of past state history that the network takes into account is
hardwired, in the choice of the number of past states that are put into
the input, rather than learnt by the network.

(3) Such an approach does not capture the invariance of the same
temporal pattern presented at different absolute times. Elman gives
an example in which the state at each time-step is represented by the
activation of a single input unit. Then the following pattern vectors
might represent the same pattern, shifted in absolute position in time:

2:1.3.79.731:00.0
{Fi0:0:0:1:3-.7.97.8:4

However, from the point of view of a network, these input patterns
are very dissimilar (consider, for example, their dot-product). A
network may, of course, learn to categorise both patterns as instances
of the same pattern if separately presented with examples of both.
However, crucially, it will be unable to learn to generalise its
recognition of a pattern that it has only seen in some of the possible
positions to an unseen position. This is a special case of the general
problem of position invariant recognition, which is very difficult to
learn using feedforward networks trained with back-propagation.

Elman uses these three limitations to motivate his move to a recurrent
network architecture — that is, to relax the restriction that connections must be
feedforward, thereby permitting activation from past inputs to recirculate in the
network so that this can influence the current output. Rather than considering
this scheme directly, however, let us show how attempts to overcome certain of
the problems that Elman identifies have led to intermediate approaches to the
representation of time. This will provide a convenient basis for making
comparisons with those methods of training networks which use the back-
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propagation algorithm. First, let us consider a very slight variant of the present
approach which addresses the third, and most serious problem.

11.2.2 Using temporal windows

In the approach above, we have been implicitly assuming that the input units
are devoted to the past states at various absolute times (perhaps at times 1, 2,
...m). If the past states are encoded in this way, the third problem indeed arises
— the network will learn patterns by their absolute temporal position, and be
unable to recognise a pattern that has been shifted in absolute position. Since
the inputs represent time absolutely, it is hardly surprising that the outputs will
depend on absolute rather than relative temporal position. Alternatively, the
input units may represent states in a moving temporal “window.” That is,
using a window of m time-slots, at time f, the input units may be devoted to
representing the states at times ¢, t-1, t-2..., f-m+1. At each time-step the
network produces an output based on the current input. Now the output of the
network is sensitive to relative rather than absolute temporal structure. As the
temporal window passes over the pattern, the same sequence of “frames” will
be produced, regardless of the absolute temporal location of the pattern.
Sejnowski and Rosenberg’s (1987) NETtalk is a well-known example of a
system which employs such a strategy. The network is trained to produce the
phoneme which “corresponds” to the middle letter of a seven letter window of
text.

11.2.3 Delay links

Although the use of a moving temporal window addresses the third, and most
important problem that Elman raises, of responding to relative rather than
absolute temporal position, the other two problems remain. The past states
must be remembered and manipulated externally, and the amount of past
history that the network may take into account is prespecified. The first
problem may be tackled by generalising the moving window strategy —
introducing delay links.

Using temporal windows, the hidden units receive inputs from sets of
input units which represent each of, say, n states. This requires that the present
state and n-1 past states are stored and imposed on the appropriate input units.
However, it is not strictly necessary to reduplicate units for storing the input at
each time-step. An alternative strategy is to employ delay links — i.e., links for
which the output values are a function of the input values at some previous
time-step, rather than the present time-step. So an alternative to using n sets of
input units to feed into the hidden layer of the network is to use a single set of
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Figure 1. A simple temporal window network (left) with four input nodes, one for each
of four times, two hidden nodes and one output node. On the rightis the
corresponding delay-link network with just a single input node. The delay values
on the delay links are indicated inside the boxes on the links. The labels A-J on
the links indicate the correspondence between links in the two networks.

input units for which the connection between input and hidden unit is present
with delay 0, 1...n-1 (Figure 1). Of course, the use of delay links does not mean
that the values of past need not be stored. Rather, they are stored in delay links
rather than in the activation of the input units. The apparent computational
economy in having fewer units is thus more apparent than real. In particular,
the number of connections and biases in the network is not reduced.

The back-propagation algorithm may be used to train the network with
delay links in precisely the same way that it trains the corresponding “moving
window” feedforward network — indeed, the delay-link network may be
thought of simply as a notational variant of the moving window counterpart.
However, thinking in terms of delay links suggests natural generalisations
outside the domain of the “moving window” approach. In particular, instead of
simply having delay links between input and the first layer of hidden units,
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Figure 2. A simple delay-link network (right) with one input node, two hidden nodes
and one output node. There are delay links with values of between 0 and 3
between the input and hidden layers, and delay links with values Oand1
between the hidden and output layer. This implies that the output of the network
is determined by the activity of the input units over five time-steps in total. On
the left is the corresponding feedforward network. The labels A-L on the links
indicate the correspondence between links in the two networks.

delay links may be used between hidden layers, and between hidden and
output layers.

This use of delay links to extract structure from a time-varying input has
been used to recognise phonemes in noisy environments (Waibel et al., 1987). It
is interesting to note how a network with more than one layer of delay links
may be “unfolded” into a standard feedforward network (Figure 2).

Notice that in the feedforward counterpart, many of the links must be
constrained to be equal. Thus the time-delay notation is more compact since it
does not require that the same weights be copied at several locations. The
unfolded feedforward network notation is, however, useful for comparing the
various ways in which networks may be designed to be sensitive to structure in
time, as we shall see below.
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11.2.4 Simple recurrent networks

The remaining point that Elman raises is that ideally a network should be able
to decide how large a temporal window it requires to solve a particular
problem. In the networks that we have considered so far, the degree to which
the network is able to look back in time is, by contrast, fixed by the architecture
of the network (the size of the moving input window or time-delay on each of
the delay links). What is required is some way of allowing the learning
algorithm which structures the developing network to control the extent to
which past states are preserved. Further, the learning algorithm should also be
able to determine which aspects of the past input states are preserved and
which are discarded.

Even in the approaches that we have discussed so far, the learning
algorithm has some control over which aspects of the past input are taken into
account. In all these cases a fixed number of past states are connected so that
they may influence the output of the network. However, if, say, only the most
recent three states are actually useful in determining the appropriate output,
then the connections to the other redundant states will typically be small and
play no role in determining actual output after learning has taken place.
Similarly there is a sense in which the network is able to determine which
aspects of past input states are to play a role in determining output and which
are not. If, for example, each state consists of a two-bit vector, only one bit of
which is relevant to the output at future times, then the connections to the
relevant bit will be appropriately adjusted by the learning algorithm, and
connections to the irrelevant bit will be turned off. However, this is rather an
inefficient procedure. The entire past input history (over some long time
period) must be remembered, and the network learns to pay attention to the
relevant parts of this history and to ignore the irrelevant parts. It would be
more satisfactory to have the network choose from the outset which aspects of
which past states should be remembered. This suggests that the memory for the
past states should not be fixed, but adjusted by the network itself. It is
interesting to consider how this might be achieved.

Suppose that we employ a scheme in which the input units encode only the
present states. If the network has a conventional feedforward architecture, then
its output will be determined only by the present input states, since the activity
generated by an input state percolates through the network at each time-step.
However, if the network has recurrent connections within its architecture,
activation from past inputs will “recirculate” around the network, thus
enabling it to have a continuing influence on the output units at future time-
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steps. For such a network, the output will be a function of the whole input
history, rather than simply the previous input.

To the extent that the recurrent connections mediate the influence of
previous states on current output, they constitute a “memory” for that input.
Crucially, unlike the prespecified memories utilised in the network models
above, a memory implemented by recurrent connections may be adjusted
dynamically by a learning algorithm as the network evolves. The adjustment of
the recurrent connections may thus control both how far back the network
“remembers” and which aspects of past state are either stored or discarded as
irrelevant. In principle, this approach is an extremely attractive way of allowing
networks to learn structure in time. The time-varying signal is presented over a
single set of input units, and the network must learn to configure itself so that it
recirculates the information from previous inputs that are required to produce
the appropriate output. There is no need for past inputs to be stored in extra
sets of input units or delay links. (Although such a network does not require
that past input values are stored when it is running, it may require these in
order to adjust the weights appropriately, a point to which we shall return
below.)

Such simple recurrent networks (SRNs) were developed by Jordan
(1986a,b) and Elman (1988) and provide a powerful tool with which to model
the learning of many aspects of linguistic structure (for example, Elman, 1990,
1991; Shillcock, Levy & Chater, 1991; Weckerly & Elman, 1992) and there has
been some exploration of their computational properties (Chater, 1989;
Cleeremans, Servan-Schreiber & McClelland, 1989; Servan-Schreiber,
Cleeremans & McClelland, 1991). The presence of recurrent connections allows
past activation to influence current output, which means that output can
respond to sequential structure in the input. The extent to which such networks
can be taught to learn interesting sequential structure depends on the learning
algorithm employed. A natural approach is to apply the back-propagation
training algorithm which has proved so successful in training non-recurrent
feedforward networks to learn interesting static input-output patterns.

Below, we shall discuss various ways in which this approach to training
neural networks to learn sequences can be followed, and discuss what is learnt
in a simple artificial language learning experiment. The structure of the
discussion is as follows. First we discuss a number of ways in which the back-
propagation algorithm can be adapted to train recurrent networks to learn
sequences, concentrating on two options, Elman’s (1990) “copy-back” scheme,
and back-propagation through time (Rumelhart, Hinton & Williams, 1986a,b).
We note that there are theoretical reasons to suppose that the copy-back regime
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Copy Back
with delay 1

Figure 3. A simple recurrent network (right) with one input node, one output node,
and two hidden nodes with recurrent connections. Left is shown the
corresponding copy-back network. The labels 1-8 on the links indicate the
correspondence between links in the two networks. The “copy” links (with delay
value boxes) are simply a mechanism for ensuring that the copy units have the
pattern of activation generated by the hidden units at the previous time-step.
These links are not modifiable connections but have a fixed weight of 1, and a
time delay of 1. Thus the copied pattern is an undistorted version of the previous
hidden unit pattern. The “copy” units are linear, with a bias of zero.

will learn less well, and this conclusion is borne out in our simulations.
However, the copy-back approach is computationally inexpensive and has
provided impressive results in a number of language processing tasks. In the
next section, we investigate the scope of this method further, and follow Elman
in investigating the nature of the hidden unit representations developed for a
network which learns to predict the next element in sequences generated by a
simple grammar. A number of very different measures over the hidden units
are found to generate very similar syntactic/semantic clustering. These clusters
are also shown to be implicit in the statistics of the sequences learnt. This
suggests that network performance can usefully be analysed in terms of the
statistical structure of the input sequences, and that the applicability of SRNs to
real natural language data can be assessed by analysing relevant aspects of its
statistical structure.
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11.3 Training simple recurrent networks

11.3.1 Copy-back or back-propagation through time?

Adapting back-propagation to a recurrent network can be thought of in two
stages. First, the network is “unfolded” into a feedforward network which has
the same behaviour, and then this feedforward network can be trained in the
standard way. There are many ways in which this unfolding can be achieved.

The most popular method involves unfolding the network by providing an
additional input — the “context” units — which corresponds to the values of
the hidden units at the previous time-step (Elman, 1990) (Figure 3). The context
units are dependent on the previous inputs, amongst which is the previous
value of the context units. Hence the behaviour of the network is influenced not
just by the current input but by the sequence of past inputs. While activation is
propagated forwards through the network from arbitrarily far back in time,
error is only propagated back to the context units.

An alternative approach is to unfold the network through several time-
steps (Rumelhart et al., 1986a,b) so that each weight has several “virtual
incarnations” and to back-propagate through the resulting network (Figure 4).
The overall weight change is simply the sum of the changes recommended for
each incarnation. This “back-propagation through time” can in principle be
back-propagated through the entire training history of the network (Rohwer,
personal communication) but is typically implemented by unfolding through a
small number of time-steps. The copy-back scheme can be viewed as a special
case of back-propagation through time, in which the back-propagation of error
stops at the first copy of the hidden units — the context units. (There are also a
number of other ways of training such networks, such as Williams & Zipser
(1989) and Zipser (1990) who show how explicitly unfolding the net can be
avoided; Fahlman (1991) and Mozer (1988) who concentrate on training nets
where only self weights on the hidden units can be recurrent; and Pearlmutter
(1990) who shows how to extend this method to continuous time tasks.)

The more the network is unfolded, the better the approximation of the
feedforward network to the underlying recurrent network, and the better the
network learns to respond to sequential material. The minimal unfolding
embodied in the copy-back scheme should therefore produce the poorest
learning, although it uses the least computational resources. This is borne out in
the comparative studies below.

A natural assumption is that the number of steps back that error is
propagated will precisely fix the number of previous steps the network can
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Figure 4. A simple recurrent network (left) with one input node, one output node, and
two hidden nodes with recurrent connections. On right is shown the
corresponding feedforward network unfolded for four time-steps. The labels 1-8
on the links indicate the correspondence between links in the two networks —
each link with the same label has the same weight value.
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Back-Propogation
of error

Copy Back
with delay 1

Figure 5. The copy-back back-propagation scheme for training recurrent networks. Top
left is the copy-back instantiation of a simple recurrent network. The flow of
back-propagation through is indicated by the double arrows. This flow of back-
propagation is also shown for the network expanded into a feedforward network.
Notice that back-propagation flows back only for the first “copy” of the recurrent
network, rather than through the whole of the feedforward network. The labels
1-8 on the links indicate the correspondence between links in the two networks.
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learn about. If this were true, the copy-back scheme would only be able to
respond to the current and previous input, and would thus not be able to learn
any interesting sequences. However, as long as the relevant temporally distant
information “percolates through,” even in some degraded form, to a point in
the unfolded network to which error is propagated, the weights forward of that
point can be adjusted to utilise that information successfully. Hence, the last
point in the network to which error is propagated forms a “bottleneck,”
through which temporally more distant information must pass if the network is
to be able to learn to respond to it (see Figure 5) (Chater, 1989). If the
information about temporally distant inputs which is required for solving a
particular problem is, as it happens, implicit in the hidden units values at the
bottleneck (in such a way that the network after the bottleneck can extract it),
then it will be possible to solve the problem. If not, the network will be unable
to solve the problem, since it has no mechanism for adjusting the weights prior
to the bottleneck so that the information is received successfully.

These considerations suggest that an important factor determining whether
or not an SRN will be able to respond to temporally distant material is whether
or not the relevant information is useful for predicting intervening material. If it
is, then the network will tend to encode the information during the intervening
time, and hence it is more likely to reach the bottleneck. In many sorts of
sequential material, including natural language, the same kinds of information
will be useful for both short- and long-term prediction, and hence a copy-back
strategy stands a chance of responding to inputs from well into the past.
However, in a task in which temporally distant information is not useful for
predicting intervening material, learning with the copy-back scheme should be
poor. Below, we report a paradigm example of such a task, the task of learning
to be a delay-line.

While our primary interest in this first set of simulations was comparing
the performance of copy-back and back-propagation through time, a secondary
interest was in the effect of using or not using context units in back-propagation
through time. If the network is unfolded several time-steps, the contribution of
the context units at the bottleneck to the final output may be very small, and the
large number of intervening layers may make it difficult to learn to respond to
this input, even if it is informative. From a theoretical point of view, not using
context units is attractive, since the network can then be viewed as learning a
fixed input-output set (or a sample from a fixed distribution), and hence the
proof that back-propagation performs gradient descent is valid. For most
problems, the presence or absence of context units seems to have little effect on
performance, and we discuss this briefly below.



282 N. Chater and P. Conkey

We report simulations on three very simple tasks using binary sequences,
discrete XOR, continuous XOR and learning to be a delay-line.

11.3.2 Simulations

Discrete XOR. Consider a binary sequence in which two out of three bits are
generated at random, and the third is the XOR of the previous two. The task is
to attempt to predict the next value in the sequence. This task is difficult, since
only every third bit is in principle predictable. Optimal performance is the
correct prediction of these bits, and an output of 0.5 otherwise.

Architecture Hidden Average squared error
units

Position 1 Position 2 Position 3
copy-back 4 0.278 £0.003 0.273+0.003 0.16 £0.02
copy-back 7 0.282£0.002 0.288+0.002 0.11%0.01
copy-back 10 0.283£0.001 0.289+0.002 0.10£0.01
unfolded with contexts 2 0.267 £0.004 0.271+£0.002 0.20+0.02
unfolded with contexts 3 0.276 £0.004 0.280+0.003 0.16+0.03
unfolded with contexts - 0.275+0.004 0.280+0.004 0.18+0.03
unfolded with contexts B 0.278 £0.004 0.283+0.003 0.12+0.02
5 unfolds no contexts 2 0.268 £0.004 0.270£0.004 0.19 +£0.02
5 unfolds no contexts 3 0.282+£0.003 0.285+0.003 0.12+£0.01
5 unfolds no contexts 4 0.281 £0.003 0.286 £0.003 0.11 £0.02
5 unfolds no contexts 5 0.289 £ 0.001 0.287 £ 0.001 0.089 + 0.004

Table 1. Performance on the discrete XOR task with 50 epochs of training.

Copy-back and back-propagation schemes (both with and without context)

were trained on XOR (Table 1). The results were averaged over 50 trials, with 50
training epochs over 3000 input-output pairs with learning rate 0.1 and
momentum 0.9. For back-propagation through time, the net was unfolded 5
time steps (these factors are constant through all the simulations we report
here). The weights were initialised randomly between -5 and 5. If the weight
starts are very much smaller than this, “copy-back” learning is slow. One
explanation for this is that when the inputs to the processing units are small,
the sigmoid activation function is nearly linear. Thus, the network closely
approximates a layered network of linear units, which is known to be unable to

compute XOR.
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For a network of a given size, performance is far better with back-
propagation through time than using the copy-back scheme, which requires far
more hidden units to attain comparable results. This pattern is consistently
obtained in a comprehensive range of simulations (Conkey, 1991) (notice that
the standard deviations of the errors obtained are small in all these
simulations).

Turning to our second concern, performance using back-propagation
through time is not significantly different with or without context, despite the
fact that context could in principle have provided very useful information,
because the “no context” network may not be able to determine from just five
time-steps which bits are predictable and which are not. If the last five bits were

...01110

then the third and fifth bits are both the XOR of their predecessors. In this case
it is not in principle possible for these unfolded nets without context units to
know whether the next bit is the result of an XOR or is random. There is not
enough information in the training input to uniquely determine the phase at
which inputs are predictable. Since this ambiguity occurs in almost 60% of cases
in the training set, the ability to use past context to disambiguate (effectively
storing a regular “pulse” indicating which bits are predictable) would be
advantageous. However, it appears that the network is not able to learn to
utilise this information in practice.

Continuous XOR. A much easier sequential analogue of the XOR task is
what we call continuous XOR. In this problem the input sequence is just a
string of random bits and the output at each time-step is the XOR of the current
and last inputs. So input and output might be:

Input:...01100011101...
Output: ...101001001 1...

The task is much easier than “discrete XOR,” since a correct prediction can
always be made, and hence the output can be determined purely on the basis of
the last two inputs, rather than having to pay attention to the larger context to
give information concerning the pattern of predictability and unpredictability
in the sequence. The results obtained on this task are shown in Table 2. Both
copy-back and unfolded networks learn this task fairly easily although for the
same (small) number of hidden units the unfolded network performs better.
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Architecture Hidden Learning Av.squared

units rate error
copy-back 2 0.1 0.1485
copy-back 3 0.1 0.0425
copy-back L 0.1 0.0131
unfolded 2 0.1 0.0927
unfolded 3 0.1 0.0034

Table 2. Learning performance on continuous XOR.

Learning to be a delay-line. The analysis of the copy-back learning algorithm
above suggested that it should be poor at learning to respond to temporally
distant input, unless the temporally distant information has been used in
intermediate predictions. This suggests that while in many interesting problems
(such as that of learning a grammar with some recursive structure, detailed in
Elman 1991) the net can respond to temporally distant information, this will be
extremely difficult if the nature of the distant dependency is unrelated to the
intervening material. The simplest such task is learning to be a delay-line — to
reproduce a random binary input stream delayed by several time-steps.

A recurrent network with n+1 hidden units can act as a delay-line of n,
given appropriate weights. One intuitively attractive solution is for the hidden
units to act as buffers for the input so that one unit has output at time ¢ of i(t)
another i(t-1) and so on back to i(f—n). Figure 6 illustrates weights that would
implement this solution for a delay-line of three in a network with four hidden
units.

Table 3 shows a typical sample of results. While back-propagation through
time is able to learn the delay-line task quite well (and with only n+1 hidden
units for small delays n), the copy-back scheme can only learn to respond to
small delays with relatively large numbers of hidden units. This is explicable in
terms of the theoretical discussion above — the more hidden units the more
likelihood that relevant information will by chance percolate through the

network and thus that the network will be able to learn to use this information. Figure 6. A handwired delay-line of three, using four hidden units, shown both as a
Learning performance is also very much less consistent with the copy-back recurrent network (top left) and expanded as a feedforward network (right). The
regime. flow of activation from the input at three time-steps back to the current output is

indicated by double arrows. The labels 1-5 on the links indicate the
correspondence between links in the two networks. This localist solution was not
adopted by the networks trained by back-propagation through time.
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Architecture Delay Hidden Learning Av.squared Passes

units rate error

copy-back 1 2 0.05 0.22 >100
copy-back 1 2 0.10 0.21 > 100
copy-back 1 3 0.05 0.20 > 100
copy-back 1 3 0.10 0.16 > 100
copy-back 1 4 0.05 0.13 >100
copy-back 1 4 0.10 0.097 >100
unfolded 1 2 0.10 0.001 3

copy-back 2 3 0.05 0.254 >100
copy-back 2 3 0.10 0.256 >100
copy-back 2 4 0.05 0.262 > 100
copy-back 2 4 0.10 0.260 > 100
copy-back 2 7 0.05 0.278 > 100
copy-back 2 7 0.10 0.264 >100
copy-back 2 10 0.05 0.160 >100
copy-back 2 10 0.10 0.239 > 100
unfolded 2 3 0.10 0.031 3

Table 3. Learning to be a delay-line.

The inability of the copy-back scheme to learn to respond to long time
delays contrasts with good performance reported predicting dependencies in
small-scale language tasks where the intervening material is relevant (Elman,
1991).

The results of these experiments bear out the theoretical analysis that back-
propagation through time leads to better learning than the copy-back scheme.
However, back-propagation through time is computationally more expensive,
and the copy-back scheme may be able to learn many interesting tasks. One
particularly intriguing result is that the averaged hidden unit patterns appear
to encode the syntactic/semantic categories for a toy grammar (Elman, 1990).
The studies reported below repeat, extend and analyse this result, and argue
that such a clustering is to be expected given the statistics of the sequences
learnt.

Sequence processing

Lexical category Word
NOUN-HUMAN man, woman, boy, girl
NOUN-ANIMATE cat, mouse, dog
NOUN-INANIMATE book, rock, car

NOUN-AGRESSOR
NOUN-FRAGILE
NOUN-FOOD
VERB-INTRANSITIVE
VERB-TRANSITIVE
VERB-AGENT/PATIENT
VERB-PERCEPTUAL
VERB-DESTROY

dragon, monster, lion
glass, plate

cookie, bread, sandwich
think, sleep, exist

like, chase

move

smell, see

break, smash

VERB-EAT

eat

Table 4. Word categories used by Elman (1988, 1990).

Word 1 Word 2 Word 3
NOUN-HUM VERB-EAT NOUN-FOOD
NOUN-HUM VERB-PERCEPT NOUN-INANIM
NOUN-HUM VERB-DESTROY NOUN-FRAG
NOUN-HUM VERB-INTRAN

NOUN-HUM VERB-TRAN NOUN-HUM
NOUN-HUM VERB-AGPAT NOUN-INANIM
NOUN-HUM VERB-AGPAT

NOUN-ANIM VERB-EAT NOUN-FOOD
NOUN-ANIM VERB-TRAN NOUN-ANIM
NOUN-ANIM VERB-AGPAT NOUN-INANIM
NOUN-ANIM VERB-AGPAT

NOUN-INANIM VERB-AGPAT

NOUN-AGRESS VERB-DESTROY NOUN-FRAG
NOUN-AGRESS VERB-EAT NOUN-HUM
NOUN-AGRESS VERB-EAT NOUN-ANIM
NOUN-AGRESS VERB-EAT NOUN-FOOD

Table 5. Sentence types used by Elman (1988, 1990).
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Figure 7. Clustering by current word.

11.4 Incidently recognising linguistic structure

Elman 1988; 1990) used the copy-back regime to train a net to predict the next
item in a continuous text sequence, generated by a simple grammar shown in
Tables 4 and 5.

Whereas Elman represented each “word” by a random bit vector, we used
a completely localist representation, thus using 29 input units to represent the
29 words. As in Elman’s simulations there is no explicit marker for the end of a

glass
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Figure 8. Clustering by predicted word.

sentence. One hundred and fifty hidden units and 150 corresponding context
units were used.

Conditional probabilities for the next word, given the sentence s fa .
calculated from the data set. The RMS errors relative to this benchmark Wikie
0.2 per pattern in both cases, whereas Elman obtained 0.05. This difference may
be a result of our choice of a localist input representation. We then fol] Swed
Elman in cluster analysing the hidden unit activation evoked on presentation of
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Figure 9. Clustering by change of hidden unit pattern.

each word. These were averaged to give a single 150 element vector for each of
the 29 words.

The results from a typical net (Figure 7) do not give as good a clustering as
that obtained by Elman. There is poor separation of nouns and verbs, and some
confusion between different classes of each. Clustering on the basis of current
input may not be the best measure, since the hidden unit values must encode
previous input relevant to prediction, not just the current word. We also
clustered hidden unit states averaged by the entire sentence so far. Hence a
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Figure 10. Conditional probabilities clustered by preceding word.

more attractive alternative is to average hidden unit patterns together on the
basis of the word predicted.

This measure, which completely cross-classifies the data with respect to the
original measure, does indeed produce much better clusters, shown in Figure 8.
Using this measure the clusters obtained well reflect the underlying syntactic
categories of the grammar, with, for example, nouns being separated from
verbs, and different kinds of nouns being very well segregated and verbs
segregated somewhat less precisely.
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A further possibility is to cluster not the hidden unit pattern associated
with an incoming word, but the change in hidden unit representation brought
about by that word. Again a good clustering is obtained (Figure 9), comparable
in quality with that obtained by clustering with respect to the target word.

It seems that a variety of measures of hidden unit values produce clusters
corresponding to linguistically interesting categories. There would appear not
to be an “optimal” clustering of this data set to which all of these measures are
approximating, since each of the measures considered above correspond to
statistics of the data sets, which can be directly measured. For example, Elman’s
original measure of averaging hidden units on the basis of the past word
corresponds to grouping words by the conditional probabilities of successive
words. We measured this quantity directly, and then cluster analysed (Figure
10) to produce remarkably similar results to those obtained from the network
(Figure 7) — this means that the network is successfully sampling the relevant
statistic. Similar results can be obtained by comparing the two other measures
with statistical analogues (clustering words on the basis of the conditional
probabilities of the preceding words, and the change in conditional
probabilities expected after a word is input, respectively). Since the copy-back
scheme is sampling these statistics successfully, there seems to be no room for
improvement using back-propagation through time, and thus we predict that
the clusters from back-propagation through time will produce similar results.
The limitation on performance is the structure of the data rather than nature of
the network used.

These results suggest that the hidden unit patterns that recurrent neural
networks develop can be viewed as reflecting quite directly the statistical
structure of the sequences learnt. Furthermore, particular statistical measures of
hidden unit activation may closely correspond to a related statistic of the
sequence itself.

11.5 Conclusions and future directions

The first set of simulations reported confirmed the theoretically motivated
expectation that the back-propagation through time is superior to (the less
expensive) copy-back training for learning sequential structure. Experiments
with large copy-back networks suggest that the hidden unit representation is
successfully sampling statistics of the underlying sequential material, and we
predict that back-propagation through time should, therefore, produce very
similar clusters. Of course, if the underlying grammar, and hence the relevant
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statistics, are more complex, then back-propagation through time may be able
to sample these statistics better.

To what extent can it be expected that the performance of SRNs on simple
artificial grammars can be scaled up to deal with more complex artificial
grammars, and even real natural language data? This is, in practice, an
important issue, since training SRNs becomes very difficult as the language to
be learnt becomes more complex. One reason for this is that as the language
becomes more complex the next word is less and less predictable, and hence the
error score can be reduced less by learning. For example, suppose that we
assume a localist coding for words, and that we assume that in a given context
there are ten equally likely next words. The best prediction that the network
can make is to assign 0.1 activation to the ten units corresponding to each of
these words, and to assign O to all of the other units. This minimizes the
expected sum squared error, but this is still rather high: namely (0.12+ 0.12+
0.12+ 0.12+ 0.12+ 0.12+ 0.12+ 0.12+ 0.12+ 0.92) = 0.9. In particular, the error is
very little different from the expected sum squared error of 1 if the network
uniformly predicted that all units would be off.

This suggests three interesting avenues for further research:

(1) Investigation of the relationship between statistical analysis of the
hidden unit representations and direct analysis of the original data
set, both using the copy-back and back-propagation through time

regimes.

(2) Exploration of real natural language data directly by cluster analysing
using simple statistics to explore what peformance can be expected
from a neural network model. Since extracting the relevant statistics
directly is far less computationally expensive than training an SRN,
this may be heuristically extremely useful. Furthermore, the statistical
approach will be possible, even when the size of the lexicon and the
complexity of the grammar is such that an SRN cannot be successfully
trained. This might, for example, reveal in principle limitations on the
power of an SRN type approach, and thus direct attention away from
attempts to find tricks to make an SRN architecture learn in certain
kinds of large- scale problem.

(3) Investigation to discover whether statistics which are revealing of
linguistic structure can be implemented more directly in a network,
so that a full-size network can be built which is able to handle real
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natural language data. These last two avenues have recently been :
explored by Finch and Chater (1991, 1992, this volume) with apter 12

encouraging results.

Learning Syntactic Categories:
A Statistical Approach

Steven Finch and Nick Chater

12.1 The bootstrapping problem

The acquisition of language is remarkably swift and successful despite the
exquisite complexity of what is acquired and the incomplete and errorful
character of the data upon which acquisition is based. The problem is
particularly difficult, since both the categories over which linguistic rules are
defined, and the rules themselves must be found (if both of these must be
learnt, rather than being prespecified). That is, the learner faces a
“bootstrapping” problem (Finch & Chater, 1991, 1992): linguistic rules
presuppose the linguistic categories in terms of which they are stated; and the
validity of linguistic categories depends on whether or not they support
perspicuous linguistic rules. Given this interdependence of rules and
categories, it is not clear how acquisition can occur, except by searching the vast
number of possible of categories /rules combinations at once.

The bootstrapping problem arises in the acquisition of all aspects of
linguistic structure, whether phonological, syntactic or semantic. Indeed,
similar problems arise in learning the structure of almost any new domain. For
example, in learning an academic subject, say elementary physics, learners
must somehow acquire both the relevant concepts and the correct rules of
inference defined over those concepts. For example, learners must grasp the
concepts of momentum, force and so on, as well as the rules for how these
concepts can be manipulated and interrelated. The bootstrapping problem is
acute since these two projects are thoroughly interdependent — understanding
the concepts presupposes some understanding of the rules in which they figure,
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