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ABSTRACT. Rational analysis (Anderson 1990, 1991a) is an empirical program of at-
tempting to explain why the cognitive system is adaptive, with respect to its goals and the
structure of its environment. We argue that rational analysis has two important implications
for philosophical debate concerning rationality. First, rational analysis provides a model for
the relationship between formal principles of rationality (such as probability or decision
theory) and everyday rationality, in the sense of successful thought and action in daily life.
Second, applying the program of rational analysis to research on human reasoning leads to
a radical reinterpretation of empirical results which are typically viewed as demonstrating
human irrationality.

Rationality appears fundamental to the understanding of minds and be-
havior. In clinical psychology, as well in the law, it appears to be of
fundamental importance to be able to draw a boundary between sanity and
madness, between rationality and irrationality. In economics, and increas-
ingly, other areas of social science, human behavior is explained as the
outcome of “rational choice”, concerning which products to buy, whom to
marry, or how many children to have (Becker 1975, 1981; Elster 1986).
But assumptions of rationality may go much deeper still – they seem to
lie at the heart of the folk psychological style of explanation in which we
describe each other’s minds and behavior (Cherniak 1986; Fodor 1987).
Assumptions of rationality also appear equally essential to interpret each
other’s utterances and to understand texts (Davidson 1984; Quine 1960).
So rationality, in an intuitive sense, appears to be at the heart of the explan-
ation of human behavior, whether from the perspective of social science or
of everyday life. Let us call this everyday rationality: rationality concerned
with people’s beliefs and actions in specific circumstances.

In this informal, everyday sense, most of us, most of the time, are
remarkably rational. In daily life, of course, we tend to focus on occa-
sions when reasoning or decision making breaks down. But our failures of
reasoning are only salient because they occur against the background of
rational thought and behavior which is achieved with such little apparent
effort that we are inclined to take it for granted. Rather than thinking of
our patterns of everyday thought and action as exhibiting rationality, we
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think of them as just plain common sense – with the implicit assumption
that common sense must be a simple thing indeed. People may not think
of themselves as exhibiting high levels of rationality – instead, we think
of people as “intelligent”, performing “appropriate” actions, being “reas-
onable” or making “sensible” decisions. But these labels refer to human
abilities to make the right decisions, or to say or think the right thing
in complex, real-world situations – in short, they are labels for everyday
rationality.

Indeed, so much do we tend to take the rationality of commonsense
thought for granted, that realizing that commonsense reasoning is im-
mensely difficult, and hence our everyday rationality is thereby immensely
impressive, has been a surprisingdiscovery, and a discovery made only in
the latter part of the twentieth century. The discovery emerged from the
project of attempting to formalize everyday knowledge and reasoning in
artificial intelligence, where initially high hopes that commonsense know-
ledge could readily be formalized were replaced by increasing desperation
at the impossible difficulty of the project. The nest of difficulties referred
to under the “frame problem” (see, e.g., Pylyshyn 1987), and the problem
that each aspect of knowledge appears inextricably entangled with the rest
(e.g., Fodor 1983) so that commonsense does not seem to break down into
manageable “packets” (whether schemas, scripts, or frames, Minsky 1977;
Schank and Abelson 1977), and the deep problems of defeasible, or non-
monotonic reasoning, brought the project of formalizing commonsense to
an effective standstill (e.g., McDermott 1987). So the discovery is now
made – it is now clear that everyday, commonsense reasoning is remark-
ably, but mysteriously, successful in dealing with an immensely complex
and changeable world and that no artificial computational system can begin
to approach the level of human performance. Hence, the sentiment with
which we began: Most of us, most of the time, are remarkably rational.

But in addition to this informal, everyday sense of rationality, con-
cerning people’s ability to think and act in the real world, the concept
of rationality also has another root, linked not to human behavior, but to
mathematical theories of good reasoning. These theories represent one of
the most important achievements of modern mathematics: Logical calculi
formalize aspects of deductive reasoning; axiomatic probability formalizes
probabilistic reasoning; the variety of statistical principles, from sampling
theory (Fisher 1922, 1925/1970) to Neyman–Pearson statistics (Neyman
1950), to Bayesian statistics (Keynes 1921; Lindley 1971), aim to form-
alize the process of interpreting data in terms of hypotheses; utility and
decision theory attempt to characterize rational preferences and rational
choice between actions under uncertainty. According to these calculi,
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rationality is defined, in the first instance, in terms of conformity with
specific formal principles, rather than in terms of successful behavior in
the everyday world.

The two sides of rationality raise the fundamental question of how they
relate to each other: How are the general principles of formal rationality
related to specific examples of rational thought and action described by
everyday rationality? This question, in various guises, has been widely
discussed – in this article, we shall outline a particular conception of the
relation between these two notions, focussing on a particular style of ex-
planation in the behavioral sciences, rational analysis (Anderson 1990).
We will argue that rational analysis provides a good characterization of
how the concept of rationality is used in explanations in psychology, eco-
nomics and animal behaviour, and provides an account of the relationship
between everyday and formal rationality, which has implications for both.
Moreover, this view of rationality leads to a re-evaluation of the implica-
tions of data from psychological experiments which appear to undermine
human rationality. We argue that, on the contrary, experimental evidence
demands a change concerning which formal account defines the normative
standard in experimental tasks.

This paper thus has two linked goals. The first goal is to outline what
we take to be the standard role of rationality in the explanation of mind and
behavior, in disciplines as diverse as experimental psychology, animal be-
havior and economics – we take rational analysis to be a paradigm for such
an explanation. The second goal is to draw out some of the implications
of the rational analysis perspective for the interpretation of experimental
data which appears to show that human behavior is non-rational. We argue,
instead, that human behavior is rational, if the appropriate normative stand-
ard for that behavior is adopted. Specifically, a wide range of empirical
results in the psychology of reasoning have been taken to cast doubt on
human rationality, because people appear to persistently make elementary
logical blunders. We show that, when the tasks people are given are viewed
in terms of probability, rather than logic, people’s responses can be seen as
rational.

The discussion falls into three main parts. First, we discuss formal
and everyday rationality, and various possible relationships between them.
Second, we describe the program of rational analysis as a mode of ex-
planation of mind and behavior, which views everyday rationality as
underpinned by formal rationality. Third, we apply rational analysis to
re-evaluating experimental data in the psychology of reasoning.
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1. RELATIONS BETWEEN FORMAL AND EVERYDAY RATIONALITY

Formal rationality concerns formal principles of good reasoning – the
mathematical laws of logic, probability, or decision theory. At an intuitive
level, these principles seem distant from the domain of everyday rationality
– how people think and act in daily life. Rarely, in daily life, do we accuse
one another of violating the laws of logic or probability theory or praise
each other for obeying them. Moreover, when people are given reasoning
problems that explicitly require use of these formal principles, their per-
formance appears to be remarkably poor. People appear to persistently fall
for logical blunders (Evans et al. 1993), probabilistic fallacies (e.g., Tver-
sky and Kahneman 1974) and to make inconsistent decisions (Kahneman
et al. 1982; Tversky and Kahneman 1986). Indeed, the concepts of logic,
probability and the like do not appear to mesh naturally with our everyday
reasoning strategies: these notions took centuries of intense intellectual
effort to construct, and present a tough challenge for each generation of
students.

We therefore face a stark contrast: the astonishing fluency and success
of everyday reasoning and decision making, exhibiting remarkable levels
of everyday rationality; and our faltering and confused grasp of the prin-
ciples of formal rationality. What are we to conclude from this contrast?
Let us briefly consider, in caricature, some of the most important possibilit-
ies, which have been influential in the literature in philosophy, psychology
and the behavioral sciences.

1.1. The Primacy of Everyday Rationality

This viewpoint takes everyday rationality as fundamental, and dismisses
the apparent mismatch between human reasoning and the formal principles
of logic and probability theory as so much the worse for these formal
theories.

This standpoint appears to gain credence from historical considera-
tions – formal rational theories such as probability and logic emerged
as attempts to systematize human rational intuitions, rooted in everyday
contexts. But the resulting theories appear to go beyond, and even clash
with, human rational intuitions – at least if empirical data which appears
to reveal blunders in human reasoning is taken at face value.

To the extent that such clashes occur, the advocates of the primacy
of everyday rationality argue that the formal theories should be rejected
as inadequate systematizations of human rational intuitions, rather than
condemning the intuitions under study as incoherent. It might, of course,
be granted that a certain measure of tension may be allowed between
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the goal of constructing a satisfyingly concise formalization of intuitions,
and the goal of capturing every last intuition successfully, rather as, in
linguistic theory, complex centre embedded constructions are held to be
grammatical (e.g., ‘the fish the man the dog bit ate swam’), even though
most people would reject them as ill-formed gibberish. But the dissonance
between formal rationality and everyday reasoning appears to be much
more profound than this. As we have argued, fluent and effective reasoning
in everyday situations runs alongside halting and flawed performance on
the most elementary formal reasoning problems.

The primacy of everyday rationality is implicit in an important chal-
lenge to decision theory by the mathematician Allais (1953). Allais
outlines his famous “paradox”, which shows a sharp divergence between
people’s rational intuitions and the dictates of decision theory. One version
of the paradox is as follows. Consider the following pair of lotteries, each
involving 100 tickets. Which would you prefer to play?

A. B.

10 tickets worth $1,000,000 1 ticket worth $5,000,000

90 tickets worth $0 8 tickets worth $1,000,000

91 tickets worth $0

Now consider which you would prefer to play of lotteries C and D:

C. D.

100 tickets worth $1,000,000 1 ticket worth $5,000,000

98 tickets worth $1,000,000

1 ticket worth $0

Most of us prefer lottery B to lottery A – the slight reduction in the prob-
ability of becoming a millionaire is offset by the possibility of the really
large prize. But most of us also prefer lottery C to lottery D – we don’t
think its worth losing what would otherwise be a certain $1,000,000, just
for the possibility of winning $5,000,000. This combination of responses,
although intuitively appealing, is inconsistent with decision theory, as we
shall see. Decision theory assumes that people should choose whichever
alternative has the maximum expected utility. Denote the utility associated
with a sum of $X by U ($X). Then the preference for lottery B over A
means that:

10/100.U($1,000,000) + 90/100.U($0) < 1/100.U(1)

($5,000,000) + 8/100.U($1,000,000) + 91/100.U($0)
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and, subtracting 90/100.U($0) from each side:

10/100.U($1,000,000) < 1/100.U($5,000,000)(2)

+8/100.U($1,000,000) + 1/100.U($0)

But the preference for lottery C over D means that:

100.U($1,000,000) > 1/100.U($5,000,000)(3)

+98/100.U($1,000,000) + 1/100.U($0)

and, subtracting 90/100.U($1,000,000) from each side:

10.U($1,000,000) > 1/100.U($5,000,000)(4)

+8/100.U($1,000,000) + 1/100.U($0)

But (2) and (4) are in contradiction.
Allais’s paradox is very powerful – the appeal of the choices that de-

cision theory rules out is considerable. Indeed, rather than condemning
people’s intuitions as incorrect, Allais argues that the paradox undermines
the normative status of decision theory – that is, Allais argues that everyday
rational intuitions take precedence over the dictates of a formal calculus.

Another example arises in Cohen’s (1981) discussion of the psychology
of reasoning literature. Following similar arguments of Goodman (1954),
Cohen argues that a normative or formal theory is “acceptable. . . only so
far as it accords, at crucial points with the evidence of untutored intuition”
(Cohen 1981, 317). That is, a formal theory of reasoning is acceptable only
in so far as it accords with everyday reasoning. Cohen uses the following
example to demonstrate the primacy of everyday inference. According to
standard propositional logic the inference from (5) to (6) is valid:

If John’s automobile is a Mini, John is poor, and
if John’s automobile is a Rolls, John is rich.

(5)

Either, if John’s automobile is a Mini, John is rich, or
if John’s automobile is a Rolls, John is poor.

(6)

Clearly, however, this violates intuition. Most people would agree with (5)
as at least highly plausible; but would reject (6) as absurd. A fortiori, they
would not accept that (5)implies(6) otherwise they would have to judge
(6) to be at least as plausible as (5)). Consequently. Cohen argues that
standard logic simply does not apply to the reasoning that is in evidence in
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people’s intuitions about (5) and (6). Like Allais, Cohen argues that rather
than condemn people’s intuitions as irrational, this mismatch reveals the
inadequacy of propositional logic as a rational standard. That is, everyday
intuitions have primacy over formal theories.

But this viewpoint is not without problems. For example, how can
rationality be assessed? If formal rationality is viewed as basic, then the
degree to which people behave rationally can be assessed by comparing
performance against the canons of the relevant normative theory. But if
everyday rationality is viewed as basic, assessing rationality appears to be
down to intuition. There is a danger here of losing any normative force to
the notion of rationality – if rationality is merely conformity to each other’s
predominant intuitions, then being rational is like a musician being in tune.
On this view, rationality has no absolute significance; all that matters is that
we reason harmoniously with our fellows. But there is a strong intuition
that rationality is not like this at all – that there is some absolute sense in
which some reasoning or decision making is good, and other reasoning and
decision making is bad. So, by rejecting a formal theory of rationality, there
is the danger that the normative aspect of rationality is left unexplained.

One way to re-introduce the normative element is to define a pro-
cedure that derives normative principles from human intuitions. Cohen
appealed to the notion of reflective equilibrium (Goodman 1954; Rawls
1971) where inferential principles and actual inferential judgements are it-
eratively bought into a “best fit” until further judgements do not lead to any
further changes of principle (narrow reflective equilibrium). Alternatively,
background knowledge may also figure in the process, such that not only
actual judgements but also the way they relate to other beliefs are taken
into account (wide reflective equilibrium). These approaches have, how-
ever, been subject to much criticism (e.g., Stich and Nisbett 1980; Thagard
1988). For example, there is no guarantee that an individual (or indeed a set
of experts) in equilibrium will have accepted a set of rational principles, by
any independent standard of rationality. The equilibrium point could, for
example, leave the individual content in the idea that the Gambler’s fallacy
is a sound principle of reasoning.

Thagard (1988) proposes that instead of reflective equilibrium, devel-
oping inferential principles involves progress towards an optimal system.
This involves proposing principles based on practical judgements and
background theories, and measuring these against criteria for optimal-
ity. The criteria Thagard specifies are (i) robustness: principles should
be empirically adequate; (ii) accommodation: given relevant background
knowledge, deviations from these principles can be explained; and (iii)
efficacy: given relevant background knowledge, inferential goals are sat-
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isfied. Thagard’s (1988) concerns were very general: to account for the
development of scientific inference. From our current focus on the re-
lationship between everyday and formal rationality, however, Thagard’s
proposals seem to fall down because the criteria he specifies still seem to
leave open the possibility of inconsistency, i.e., it seems possible that a sys-
tem could fulfill (i) to (iii) but contain mutually contradictory principles.
The point about formalisation is of course that it provides a way of ruling
out this possibility and hence is why a tight relationship between formality
and normativity has been assumed since Aristotle. From the perspective
of this paper, accounts like reflective equilibrium and Thagard’s account,
which attempts to drive a wedge between formality and normativity, may
not be required. We argue that many of the mismatches observed between
human inferential performance and formal theories are a product of using
the wrong formal theory to guide expectations about how people should
behave.

An alternative normative grounding for rationality seems intuitively
appealing good everyday reasoning and decision making should lead to
successful actionfor example, from an evolutionary perspective, we might
define success as inclusive fitness, and argue that behavior is rational to
the degree that it tends to increase inclusive fitness. But now the notion of
rationality appears to collapse into a more general notion of adaptiveness.
There seems to be no particular difference in status between cognitive
strategies which lead to successful behavior, and digestive processes that
lead to successful metabolic activity. Both increase inclusive fitness; but
intuitively we want to say that the first is concerned with rationality, which
the second is not. More generally, defining rationality in terms of outcomes
runs the risk of blurring what appears to be a crucial distinction – between
minds, which may be more or less rational, and stomaches, that are not in
the business of rationality at all.

1.2. The Primacy of Formal Rationality

Arguments for the primary of formal rationality take a different starting
point. This viewpoint is standard with mathematics, statistics, operations
research and the “decision sciences” (e.g., Kleindorfer et al. 1993). The
idea is that everyday reasoning is fallible, and that it must be corrected by
following the dictates of formal theories of rationality.

The immediate problem for advocates of the primacy of formal ration-
ality concerns the justification of formal calculi of reasoning: Why should
the principles of some calculus be viewed as principles of good reasoning,
so that may even be allowed to overturn our intuitions about what is ra-
tional? Such justifications typically assume some general, and apparently
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incontrovertible, cognitive goal; or seemingly undeniable axioms about
how thought or behavior should proceed. They then use these apparently
innocuous assumptions and aim to argue that thought or decision making
must obey specific mathematical principles.

Consider, for example, the “Dutch book” argument for the rationality
of the probability calculus as a theory of uncertain reasoning (de Finetti
1937; Ramsey 1931; Skyrms 1977). Suppose that we assume that people
will accept a “fair” bet: that is, a bet where the expected financial gain is 0,
according to their assessment of the probabilities of the various outcomes.
Thus, for example, if a person believes that there is a probability of 1/3 that
it will rain tomorrow, then they will be happy to accept a bet according to
which they win two dollars if it does rain tomorrow, but they lose one dollar
if it does not. Now, it is possible to prove that, if a person’s assignment of
probabilities to different possible outcomes violates the laws of probability
theory in any way whatever, then it is possible to offer them a combination
of different bets, such that they will happily accept each individual bet as
fair, in the above sense, but wherewhatever the outcomethey are certain
to lose money. Such a combination of bets – where one side is certain
to lose – is known as a Dutch book; and it is seems incontrovertible that
accepting a bet that you are certain to lose must violate rationality. Thus,
if violating the laws of probability theory leads to accepting Dutch books,
which seems clearly irrational, then obeying the laws of probability theory
seems to be a condition of rationality.

The Dutch book theorem might appear to have a fundamental weakness
– that it requires that a person willingly accepts arbitrary fair bets. But,
in reality of course, this might not be so – many people will, in such
circumstances, be risk aversive, and choose not to accept such bets. But
the same argument applies even if the person does not bet at all. Now
the inconsistency concerns a hypothetical – the person believes that if the
bet were accepted, it would be fair (so that, a win, as well as a loss, is
possible). But in reality, the bet is guaranteed to result in a loss – the
person’s belief that the bet is fair is guaranteed to be wrong. Thus, even
if we never actually bet, but simply aim to avoid endorsing statements that
are guaranteed to be false, we should follow the laws of probability.

We have considered the Dutch book justification of probability theory
in some detail to make it clear that justifications of formal theories of
rationality can have considerable force.1 Rather than attempting to simul-
taneously satisfy as well as possible a myriad of uncertain intuitions about
good and bad reasoning, formal theories of reasoning can be viewed, in-
stead, as founded on simple and intuitively clearcut principles, such as that
accepting bets that you are certain to lose is irrational. Similar justifications
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can be given for the rationality of the axioms of utility theory and decision
theory (Cox 1961; von Neumann and Morgenstern 1944; Savage 1954).
Moreover, the same general approach can be used as a justification for
logic, if avoiding inconsistency is taken as axiomatic. Thus, there may
been good reasons for accepting formal theories of rationality, even if
much of the time, human intuitions and behavior strongly violates their
recommendations.

If formal rationality is primary, what are we to make of the fact that,
in explicit tests at least, people seem to be such poor probabilists and
logicians? One line would be to accept that human reasoning is badly
flawed. Thus, the heuristics and biases program (Kahneman and Tversky
1973; Kahneman Slovic and Tversky 1982), which charted systematic
errors in human probabilistic reasoning and decision making under un-
certainty, can be viewed as exemplifying this position (see Gigerenzer
and Goldstein 1996), as can Evans’ (1982, 1989) heuristic approach to
reasoning. Another line follows the spirit of Chomsky’s (1965) distinc-
tion between linguistic competence and performance – the idea is that
the people’s reasoning competence accords with formal principles, but in
practice, performance limitations (e.g., limitations of time or memory) lead
to persistently imperfect performance when people are given a reasoning
task.

Reliance on a competence/performance distinction, whether implicitly
or explicitly, has been very influential in the psychology of reasoning:
for example, mental logic (Braine 1978; Rips 1994) and mental models
(Johnson-Laird 1983; Johnson-Laird and Byrne 1991) theories of human
reasoning assume that classical logic provides the appropriate competence
theory for deductive reasoning; and flaws in actual reasoning behavior are
explained in terms of “performance” factors.

Mental logic assumes that human reasoning algorithms correspond to
proof-theoretic operations (specifically, in the framework of natural deduc-
tion, e.g., Rips 1994). This viewpoint is also embodied in the vast program
of research in artificial intelligence, especially in the 1970s and 1980s,
which attempted to axiomatize aspects of human knowledge, and view
reasoning as a logical inference (e.g., McCarthy 1980; McDermott 1982;
McDermott and Doyle 1980; Reiter 1980, 1985). Moreover, in the philo-
sophy of cognitive science, it has been controversially suggested that this
viewpoint is basic to the computational approach to mind: the fundamental
claim of cognitive science, according to this viewpoint, is that “cognition
is proof theory” (Fodor and Pylyshyn 1988, 29–30; see also Chater and
Oaksford 1990).
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Mental model views concur that logical inference provides the com-
putational level theory for reasoning, but provides an alternative method
of proof. Instead of standard proof theoretic rules, this view uses a “se-
mantic” method of proof. Such methods involve search for models (in the
logical sense) – a semantic proof that A does not imply B might involve
finding a model in which A and B both hold. Mental models theory uses a
similar idea, although the notion of model in play is rather different from
the logical notion.2 How can this approach show that A does imply B?
The mental models account assumes that the cognitive system attempts to
construct a model in which A is true and B is false; if this attempt fails,
then it is assumed that no counterexample exists, and that the inference is
valid (this is similar to “negation as failure” in logical programming (Clark
1978)).

Mental logic and mental models assume that formal principles of
rationality–specifically classical logic – (at least partly) define the stand-
ards of good reasoning. They explain the non-logical nature of people’s
actual reasoning behavior in terms of performance factors, such as memory
and processing limitations.

Nonetheless, despite its popularity, the view that formal rationality has
priority in defining what good reasoning is, and that actual reasoning is
systematically flawed with respect to this formal standard, suffers a fun-
damental difficulty. If formal rationality is the key to everyday rationality,
and if people are manifestly poor at following the principles of formal
rationality (whatever their “competence” with respect to these rules), even
in simplified reasoning tasks, then the spectacular success of everyday
reasoning in the face of an immensely complex world seems entirely
baffling.

1.3. Everyday and Formal Rationality Are Completely Separate

Recently, a number of theorists have suggested what is effectively a hybrid
of the two approaches outlined above. They argue that formal rationality
and everyday rationality are entirely separate enterprises. For example,
Evans and Over (1997) distinguish between two notions of rationality:

Rationality1: Thinking, speaking, reasoning, making a decision,
or acting in a way that is generally reliable and efficient for
achieving one’s goals.

Rationality2: Thinking, speaking, reasoning, making a decision,
or acting when one has a reason for what one does sanctioned
by a normative theory. (Evans and Over 1997, 2)
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They argue that “people are largely rational in the sense of achieving their
goals (rationality1) but have only a limited ability to reason or act for
good reasons sanctioned by a normative theory (rationality2)” (Evans and
Over 1997, 1). If this is right, then achieving one’s goals can be achieved
without following a formal normative theory – i.e., without there being
a justification for the actions, decisions or thoughts which lead to suc-
cess: rationality1 does not require rationality2. That is, Evans and Over are
committed to the view that thoughts, actions or decisions which cannot
be normatively justified can, nonetheless, consistently lead to practical
success.

But this hybrid view does not tackle the fundamental problem we out-
lined for the first view sketched above. It does not answer the question:why
do the cognitive processes underlying everyday rationality consistently
work? If everyday rationality is somehow based on formal rationality, then
this question can be answered, at least in general terms. The principles of
formal rationality are provably principles of good inference and decision
making; and the cognitive system is rational in everyday contexts to the
degree that it approximates the dictates of these principles. But if everyday
and formal rationality are assumed to be unrelated, then this explanation is
not available. Unless some alternative explanation of the basis of everyday
rationality can be provided, the success of the cognitive system is again
left entirely unexplained.

1.4. Everyday Rationality is Based on Formal Rationality: An Empirical
Approach

We seem to be at an impasse. The success of everyday rationality in guid-
ing our thoughts and actions must somehow be explained; and it seems
that there are no obvious alternative explanations, aside form arguing that
everyday rationality is somehow based on formal reasoning principles,
for which good justifications can be given. But the experimental evid-
ence appears to show that people do not follow the principles of formal
rationality.

There is, however, a way out of this impasse. Essentially, the idea is to
reject the idea that rationality is a monolithic notion that can be defined
a priori, and compared with human performance. Instead, we treat the
problem of explaining everyday rationality as an empirical problem of
explaining why people’s cognitive processes are successful in achieving
their goals, given the constraints imposed by their environment. Formal
rational theories are used in the development of these empirical explana-
tions for the success of cognitive processes – but which formal principles
are appropriate, and how they should be applied, is not decided a priori;
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but in the light of the empirical success of the explanation of the adaptive
success of the cognitive process under consideration.

According to this viewpoint, the apparent mismatch between normative
theories and reasoning behavior suggests that the wrong normative theories
may have been chosen; or the normative theories may have been misap-
plied. Instead, the empirical approach to the grounding of rationality aims
to “do the best” for human everyday reasoning strategies – by searching
for a rational characterization of how people actually reason. There is
an analogy here with rationality assumptions in language interpretation
(Davidson 1984; Quine 1960). We aim to interpret people’s language so
that it makes sense; similarly, the empirical approach to rationality aims to
interpret people’s reasoning behavior so that their reasoning makes sense.

Crucially, then, the formal standards of rationality appropriate for ex-
plaining some particular cognitive processes or aspect of behavior are not
prior to, but are rather developed as part of; the explanation of empirical
data. Of course, this is not to say that, in some sense, formal rationality
may be prior to, and separate from, empirical data. The development of
formal principles of logic, probability theory, decision theory and the like
may proceed independently of attempting to explain people’s reasoning
behavior. But which element of this portfolio of rational principles should
be used to define a normative standard for particular cognitive processes
or tasks, and how the relevant principles should be applied, is constrained
by the empirical human reasoning data to be explained.

It might seem that this approach is flawed from the outset. Surely, any
behavior can be viewed as rational from some point of view. That is, by
cooking up a suitably bizarre set of assumptions about the problem that
a person thinks they are solving, surely their rationality can always be
respected; and this suggests the complete vacuity of the approach. But this
objection ignores the fact that the goal of empirical rational explanation
is to provide an empirical account of data on human reasoning. Hence,
such explanations must not be merely possible, but also simple, consistent
with other knowledge, independently plausible, and so on. In short, such
explanations are to be judged in the light of the normal canons of sci-
entific reasoning (Howson and Urbach 1989).3 Thus, rational explanations
of cognition and behavior can be treated as on a par with other scientific
explanations of empirical phenomena.

This empirical view of the explanation of rationality is attractive, to the
extent that it builds in an explanation of the success of everyday rationality.
It does this by attempting to recruit formal rational principles to explain
why cognitive processes are successful. But how can this empirical ap-
proach to rational explanation be conducted in practice? And can plausible
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rational explanations of human behavior be found? The next two sections
of the paper answer these questions. First, we outline a methodology for
the rational explanation of empirical data – rational analysis. We also il-
lustrate a range of ways in which this approach is used, in psychology,
and the social and biological sciences. We then use rational analysis to
re-evaluate the psychological data which has appeared to show human
reasoning performance to be hopelessly flawed, and argue that, when ap-
propriate rational theories are applied, reasoning performance may, on the
contrary, be rational.

2. THE PROGRAM OF RATIONAL ANALYSIS

The project of providing a rational analysis for some aspect of thought or
behavior has been described by the cognitive psychologist John Anderson
(e.g., Anderson 1990, 1991a). This methodology provides a framework for
explaining the link between principles of formal rationality and the prac-
tical success of everyday rationality not just in psychology, but throughout
the study of behavior. This approach involves six steps:

1. Specify precisely the goals of the cognitive system.
2. Develop a formal model of the environment to which the system is

adapted.
3. Make minimal assumptions about computational limitations.
4. Derive the optimal behavior function given 1-3 above. (This requires

formal analysis using rational norms, such as probability theory and
decision theory.)

5. Examine the empirical evidence to see whether the predictions of the
behavior function are confirmed.

6. Repeat, iteratively refining the theory.

According to this viewpoint, formal rational principles relate to explaining
everyday rationality, because they specify the optimal way in which the
goals of the cognitive system can be attained in a particular environment,
subject to “minimal” computational limitations. The assumption is that the
cognitive system exhibits everyday rationality – i.e., successful thought
and action in the everyday world – to the extent that it approximates the
optimal solution specified by rational analysis.

The framework of rational analysis aptly fits the methodology in many
areas of economics and animal behavior, where the behavior of people
or animals is viewed as optimizing some goal, such as money, utility, in-
clusive fitness, food intake, or the like. But Anderson (1990, 1991a) was
concerned to extend this approach not just to the behavior of whole agents,
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but to structure and performance of particular cognitive processes of which
agents are composed. Anderson’s program has led to a flurry of research in
cognitive psychology (see Oaksford and Chater 1998a, for an overview of
recent research), from areas as diverse as categorization (Anderson 1991b;
Anderson and Matessa 1998; Lamberts and Chong 1998), memory (An-
derson and Milson 1989; Anderson and Schooler 1991; Schooler 1998),
searching computer menus (Young 1998) and natural language parsing
(Chater et al. 1998). This research has shown that a great many empirical
generalizations about cognition can be viewed as arising from the rational
adaptation of cognitive system to the problems and constraints that it faces.
We shall argue below that the cognitive processes involved in reasoning
can also be explained in this way.

The three inputs to the calculations using formal rational principles,
goals, environment, and computational constraints, each raise important
issues regarding the connection between formal rational principles and
everyday rationality. We discuss these in turn, and in doing so, illustrate
rational analysis in action in psychology, animal behavior and economics.

2.1. The Importance of Goals

Everyday thought and action is focussed on achieving goals relevant to the
agent. Formal principles of rationality can help specify how these goals are
achieved, but not, of course, what those goals are. The simplest cases are
economic in spirit. For example, consider a consumer, wondering which
washing machine to buy. Goals are coded in terms of the subjective “utilit-
ies” associated with objects or events for this particular consumer. Each
washing machine is associated with some utility (high utilities for the
effective, attractive, or low energy washing machines, for example); and
money is also associated with utility. Simple decision theory will specify
which choice of machine maximizes subjective utility. Thus goals enter
very directly; people with different goals (here, different utilities) will be
assigned different “rational” choices. Suppose instead that the consumer
is wondering whether to take out a service agreement on the washing
machine. Now the negative utility associated with the cost of the agree-
ment must be balanced with the positive utility of saving possible repair
costs. But what are the possible repairs; how likely, and how expensive,
is each type? Decision theory again recommends a choice, given utilities
associated with each outcome, and subjective probabilities concerning the
likelihood of each outcome.

But not all goals may have the form of subjective utilities. In evolu-
tionary contexts, the goal of inclusive fitness might be more appropriate
(Dawkins 1977); in the context of foraging behavior in animals, amount



108 NICK CHATER AND MIKE OAKSFORD

of food intake or nutrition gained might be the right goal (Stephens and
Krebs 1986). Moreover, in some cognitive contexts, the goal of thought
or action may be disinterested curiosity, rather than the attempt to achieve
some particular outcome. Thus, from exploratory behavior in children and
animals to the pursuit of basic science, a vast range of human activity ap-
pears to be concerned with finding out information, rather than achieving
particular goals. Of course, having this information may ultimately prove
important for achieving goals; and this virtue may at some level explain
the origin of the disinterested search for knowledge (just as the prospect
of unexpected applications may partially explain the willingness of the
state to fund fundamental research). Nonetheless, disinterested inquiry is
conducted without any particular goal in mind. In such contexts, gaining,
storing or retrieving information, rather than maximizing utility, may be
the appropriate specification of cognitive goals. If this is the goal, then
information theory and probability theory may be the appropriate formal
normative tools, rather than decision theory.

This aspect of rational analysis is at variance with Evans and Over’s
distinction between two forms of rationality, mentioned above. They ar-
gue that “people are largely rational in the sense of achieving their goals
(rationality1) but have only a limited ability to reason or act for good
reasons sanctioned by a normative theory (rationalty2)” (Evans and Over
1997, 1). But the approach of rational analysis attempts to explainwhy
people exhibit the everyday rationality involved in achieving their goals
by assuming that their actions approximate with would be sanctioned by a
formal normative theory. Thus, formal rationality helpsexplaineveryday
rationality, rather than being completely separate from it.

To sum up, everyday rationality is concerned with goals (even if the
goal is just to “find things out”); knowing which formal theory of rational-
ity to apply, and applying formal theories to explaining specific aspects of
everyday cognition, requires an account of the nature of these goals.

2.2. The Role of the Environment

Everyday rationality is concerned with achieving particular goals, in a par-
ticular environment. Everyday rationality requires thought and action to be
adapted (whether through genes or through learning) to the constraints of
this environment. The success of everyday rationality is, crucially, success
relative to a specific environment – to understand that success requires
modeling the structure of that environment. This requires using principles
of formal rationality to specific the optimal way in which the agent’s goals
can be achieved in that environment (Anderson’s Step 4) and showing that
the cognitive system approximates this optimal solution.
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In psychology, this strategy is familiar from perception, where a key
part of understanding the computational problem solved by the visual
system involves describing the structure of the visual environment (Marr
1982). Only then can optimal models for visual processing of that en-
vironment be defined. Indeed, Marr (1982) explicitly allies this level of
explanation with Gibson’s “ecological” approach to perception, where the
primary focus is on environmental structure.

Similarly, in zoology, environmental idealizations of resource deple-
tion and replenishment of food stocks, patch distribution and time of
day are crucial to determining optimal foraging strategies (Gallistel 1990;
McFarland and Houston 1981; Stephens and Krebs 1986).

Equally, in economics, idealizations of the “environment” are crucial
to determining rational economic behavior (McCloskey 1985). in microe-
conomics, modeling the environment (e.g., game-theoretically) involves
capturing the relation between each actor and the environment of other
actors. In macroeconomics, explanations using rational expectations the-
ory (Muth 1961) begin from a formal model of the environment, as a set
of equations governing macro-economic variables.

This aspect of rational analysis contrasts with the view that the concerns
of formal rationality are inherently disconnected from environmental con-
straints. For example, Gigerenzer and Goldstein (1996) propose that “the
minds of living systems should be understood relative to the environment
in which they evolvedrather thanto the tenets of classical [i.e., formal]
rationality . . . ” (p. 651) (emphasis added). Instead, rational analysis aims
to explainwhyagents succeed in their environment by understanding the
structure of that environment, and using formal principles of rationality to
understand what thought or action will succeed in that environment.

2.3. Computational Limitations

In rational analysis, deriving the optimal behavior function (Anderson’s
Step 4) is frequently very complex. Models based on optimising, whether
in psychology, animal behaviour or economics, need not, and typically do
not, assume that agents are able to find the perfectly optimal solutions to
the problems that they face. Quite often, perfect optimisation is impossible
even in principle, because the calculations involved in finding a perfect
optimum are frequently computationally intractable (Simon 1955, 1956),
and, moreover, much crucial information is typically not available. Indeed,
formal rational theories in which the optimization calculations are made,
including probability theory, decision theory and logic are typically com-
putationally intractable for complex problems (Cherniak 1986; Garey and
Johnson 1979; Good 1971; Paris 1992; Reiner 1995). Intractability results
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imply that no computer algorithm could perform the relevant calculations
given the severe time and memory limitations of a “fast and frugal” cog-
nitive system. The agent must still act, even in the absence of the ability to
derive the optimal solution (Gigerenzer and Goldstein 1996; Simon 1956).
Thus it might appear that there is an immediate contradiction between
the limitations of the cognitive system and the intractability of rational
explanations.

There is no contradiction, however, because the optimal behavior func-
tion is an explanatory tool, not part of an agent’s cognitive equipment.
Using an analogy from Marr (1982), the theory of aerodynamics is a
crucial component of explaining why birds can fly. But clearly birds
know nothing about aerodynamics, and the computational intractability of
aerodynamic calculations does not in any way prevent birds from flying.
Similarly, people do not need to calculate their optimal behavior func-
tions in order to behave adaptively. They simply have to use successful
algorithms; they do not have to be able to make the calculations that would
show that these algorithms are successful. Indeed, it may be that many of
the algorithms that the cognitive system uses may be very crude “fast and
frugal” heuristics (Gigerenzer and Goldstein 1996) which generally ap-
proximate the optimal solution in the environments that an agent normally
encounters. In this context, the optimal solutions will provide a great deal
of insight into why the agent behaves as it does. However, an account of the
algorithms that the agent uses will be required to provide a full explanation
of their behaviour (e.g., Anderson 1993; Oaksford and Chater 1995a).

This viewpoint is standard in rational explanations across a broad
range of disciplines. Economists do not assume that people make com-
plex game-theoretic or macroeconomic calculations (Harsanyi and Selten
1988); zoologists do not assume that animals calculate how to forage op-
timally (e.g., McFarland and Houston 1981); and, in psychology, rational
analyses of, for example, memory, do not assume that the cognitive system
calculates the optimal forgetting function with respect to the costs of re-
trieval and storage (Anderson and Schooler 1991). Such behavior may be
built in by evolution or be acquired via a long process of learning – but it
need not require on-line computation of the optimal solution.

In some contexts, however, some on-line computations may be re-
quired. Specifically, if behavior is highly flexible with respect to envir-
onmental variation, then calculation is required to determine the correct
behavior, and this calculation may be intractable. Thus the two leading
theories of perceptual organization assume that the cognitive system seeks
to optimize on-line either thesimplicity (e.g., Leeuwenberg and Boselie,
1988) or likelihood (Helmholtz 1910/1962; see Pomerantz and Kubovy
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1987) of the organization of the stimulus array. These calculations are
recognized to be computationally intractable (see Chater 1996). This fact
does not invalidate these theories, but it does entail that they can only
be approximated in terms of cognitive algorithms. Within the literature
on perceptual organization, there is considerable debate concerning the
nature of such approximations, and which perceptual phenomena can be
explained in terms of optimization, and which result from the particular
approximations that the perceptual system adopts (Helm and Leeuwenberg
1996).

It is important to note also that, even where a general cognitive goal is
intractable, a more specific cognitive goal relevant to achieving the general
goal may be tractable. For example, the general goal of moving a piece in
chess is to maximise the chance of winning. However, this optimisation
problem is known to be completely intractable because the search space
is so large. But optimising local goals, such as controlling the middle of
the board, weakening the opponent’s king, and so on, may be tractable.
Indeed, most examples of optimality-based explanations, whether in psy-
chology, animal behaviour or economics, are defined over a local goal,
which is assumed to be relevant to some more global aims of the agent.
For example, evolutionary theory suggests that animal behaviour should
be adapted so as to increase an animal’s inclusive fitness, but specific ex-
planations of animals’ foraging behaviour assume more local goals. Thus,
an animal may be assumed to forage so as to maximise food intake, on
the assumption that this local goal is generally relevant to the global goal
of maximising inclusive fitness. Similarly, the explanations concerning
cognitive processes discussed in rational analysis in cognitive psychology
concern local cognitive goals such as maximising the amount of useful in-
formation remembered, maximising predictive accuracy, or acting so as to
gain as much information as possible. All of these local goals are assumed
to be relevant to more general goals, such as maximising expected utility
(from an economic perspective) or maximising inclusive fitness (from a
biological perspective). At any level, it is possible that optimisation is
intractable; but it is also possible that by focusing on more limited goals,
evolution or learning may have provided the cognitive system with mech-
anisms that can optimise or nearly optimise some more local, but relevant,
quantity.

The observation that the local goals may optimised as surrogates for the
larger aims of the cognitive system raises another important question about
providing rational models of cognition. The fact that a model involves
optimising something does not mean that the model is a rational model.
Optimality is not the same as rationality. It is crucial that the local goal
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that is optimised must be relevant to some larger goal of the agent. Thus,
it seems reasonable that animals may attempt to optimise the amount of
food they obtain, or that the categories used by the cognitive system are
optimised to lead to the best predictions. This is because, for example, op-
timising the amount of food obtained is likely to enhance inclusive fitness,
in a way that, for example, maximising the amount of energy consumed
in the search process would not. Determining whether some behaviour is
rational or not therefore depends on more than just being able to provide
an account in terms of optimisation. Therefore rationality requires not just
optimising something but optimising something reasonable. As a definition
of rationality, this is clearly circular. But by viewing rationality in terms of
optimisation, general conceptions of what are reasonable cognitive goals
can be turned into specific and detailed models of cognition. Thus, the
program of rational analysis, while not answering the ultimate question
of what rationality is, nonetheless provides the basis for a concrete and
potentially fruitful line of empirical research.

This flexibility of what may be viewed as rational, in building a rational
model, may appear to raise a fundamental problem for the entire rational
analysis program. It seems that the notion of rationality may be so flexible
that whatever people do, it is possible that it may seem rational under
some description. So for example, to pick up an example we have already
mentioned, it may be that our stomachs are well adapted to digesting the
food in our environmental niche. Indeed they may even prove to be optim-
ally efficient in this respect. However, we would not therefore describe the
human stomach as rational, because stomachs presumably cannot usefully
be viewed as information processing devices, which approximate, to any
degree, the dictates of normative theories of formal rationality. Stomachs
may be well or poorly adapted to their function (digestion), but they have
no beliefs, desires or knowledge, and make no decisions or inferences.
Thus, their behavior cannot be given a rational analysis and hence they can-
not be related to the optimal performance provided by theories of formal
rationality. Hence the question of the stomach’s rationality does not arise.

In this section, we have seen that rational analysis provides a mode of
explaining behavior which clarifies the relationship between the stuff of
everyday rationality, reasoning with particular goals, in a specific envir-
onment, with specific computational constraints, and apparently abstract
principles of formal rationality in probability theory, decision theory or
logic. Formal rational principles spell out the optimal solution for the in-
formation processing problem that the agent faces. The assumption is that
a well-adapted agent will approximate this solution to some degree.
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3. RE-EVALUATING EMPIRICAL DATA ON HUMAN REASONING

We began by discussing the controversy concerning the relationship
between formal theories of rationality and the everyday notion of the ra-
tionality that underlies effective thought and action in the world. We have
seen how everyday rationality can be underpinned by principles of formal
rationality in rational analysis. We now consider how rational analysis can
be applied to explaining data on human reasoning gained from laboratory
tasks. The rational analysis approach allows us to see laboratory perform-
ance, which has typically been viewed as systematically nonrational, as
having a rational basis. This diffuses a crucial tension at the heart of the
psychology and philosophy of rationality – between the manifest success
of cognition in dealing with the complexities of the everyday world, and
the apparently stumbling and flawed performance on laboratory reasoning
tasks.

Everyday rationality is a matter of being adapted to the structure and
goals in the real world. Thus, rational explanation, whether in animal be-
havior, economics or psychology, assumes that the agent is well-adapted to
its normal environment. However, almost all psychological data is gained
in a very unnatural setting, where a person performs an artificial task in the
laboratory. Any laboratory task will recruit some set of cognitive mechan-
isms that determine the participant’s behaviour. But it is not obvious what
problem these mechanisms are adapted to solving. This adaptive problem
is not likely to be directly related to the problem given to the participant by
the experimenter, precisely because adaptation is to the natural world, not
to laboratory tasks. In particular, this means that participants may fail with
respect to the task that the experimenter thinks they have set. But this may
be because this task is unnatural with respect to the participant’s normal
environment. Consequently people may assimilate the task that they are
given to a more natural task, recruiting adaptively appropriate mechanisms
which solve this, more natural, task successfully.

In the area of research known as the “psychology of deductive reason-
ing” (e.g., Evans et al. 1993; Johnson-Laird and Byrne 1991; Rips 1994),
people are given problems that the experimenters conceive of as requiring
logical inference. But they consistently respond in a non-logical way. Thus,
human rationality appears to be called into question (Stein 1996; Stich
1985, 1990).

But the perspective of rational analysis suggests an alternative view.
We argue first that everyday rationality is founded on uncertain rather than
certain reasoning. This suggests that probability provides a better starting
point for a rational analysis of human reasoning than logic. Second, we
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argue that a probabilistic rational analysis of classic “deductive” reasoning
tasks provides an excellent empirical fit with observed performance. The
upshot is that much of the experimental research in the “psychology of de-
ductive reasoning” does not engage people in deductive reasoning at all –
but rather engages strategies suitable for probabilistic reasoning. Thus, the
field of research appears to be crucially misnamed! But more importantly,
probabilistic rational analysis helps resolve the tension between apparently
poor laboratory reasoning performance, and the conspicuous success of
everyday rationality. Laboratory performance is rational after all, once the
appropriate rational standard is adopted.

We now illustrate this approach by sketching, in varying degrees of
detail, the probabilistic rational analysis of three key “deductive” reasoning
tasks: Wason’s selection task, conditional inference, and syllogistic reason-
ing. We then briefly reconsider empirical evidence on human probabilistic
reasoning, and how it relates to the probabilistic reasoning framework that
we have developed.

3.1. Wason’s Selection Task

Wason’s selection task (Wason 1966, 1968) is perhaps the most intensively
studied task in the psychology of reasoning, and perhaps the “deductive”
reasoning task that has raised the greatest concerns about human rationality
(e.g., Cohen 1981; Stein 1996; Stich 1985, 1990; Sutherland 1992).

In the selection task, people must assess whether some evidence is
relevant to the truth or falsity of a conditional rule of the formif p then
q, where by convention “p” stands for the antecedent clause of the condi-
tional and “q” for the consequent clause. In the standard abstract version
of the task, the rule concerns cards, which have a number on one side and
a letter on the other. The rule isif there is a vowel on one side(p), then
there is an even number on the other side(q). Four cards are placed before
the subject, so that just one side is visible; the visible faces show an “A” (p

card), a “K” (not-p card), a “2” (q card) and a “7” (not-q card). Subjects
then select those cards they must turn over to determine whether the rule
is true or false. Typical results were:p andq cards (46%);p card only
(33%),p, q andnot-q cards (7%),p andnot-q cards (4%) (Johnson-Laird
and Wason 1970).

The task subjects confront is analogous to a central problem of experi-
mental science: the problem of which experiment to perform. The scientist
has a hypothesis (or a set of hypotheses) which they must assess (for the
subject, the hypothesis is the conditional rule); and must choose which
experiment (card) will be likely to provide data (i.e., what is on the reverse
of the card) which bears on the truth of the hypothesis.
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In the light of the epistemological arguments we have already con-
sidered, it may seem unlikely that this kind of scientific reasoning will
be deductive in character. Nonetheless, the psychology of reasoning has
viewed the selection task as paradigmatically deductive (e.g., Evans 1982;
Evans et al. 1993), although a number of authors have argued for a non-
deductive conception of the task (Fischhoff and Beyth-Marorn 1983; Kirby
1994; Klayman and Ha 1987; Rips 1990).

The assumption that the selection task is deductive in character arises
from the fact that psychologists of reasoning have tacitly accepted Pop-
per’s hypothetico-deductive philosophy of science. Popper (1959/1935)
assumes that evidence can falsify but not confirm scientific theories. Falsi-
fication occurs when predictions that follow deductively from the theory
do not accord with observation. This leads to a recommendation for the
choice of experiments: only to conduct experiments that have the potential
to falsify the hypothesis under test.

Applying the falsificationist account to the selection task, the recom-
mendation is that subjects should only turn cards that are potentially
logically incompatible with the conditional rule. When viewed in these
terms, the selection task has a deductive component, in that the subject
must deduce which cards would be logically incompatible with the con-
ditional rule. According to the rendition of the conditional as material
implication (which is standard in the propositional and predicate calculi,
see Haack 1978), the only observation that is incompatible with the condi-
tional ruleif p thenq is a card withp on one side andnot-q on the other.
Hence the subject should select only cards that could potentially produce
such an instance. That is, they should turn thep card, since it might have a
not-q on the back; and thenot-q card, since it might have ap on the back.

This pattern of selection is rarely observed in the experimental results
outlined above. Subjects typically select cards that couldconfirmthe rule,
i.e., thep andq cards. However, according to falsification the choice of
theq card is irrational, and is an example of so-called “confirmation bias”
(Evans and Lynch 1973; Wason and Johnson-Laird 1972). The rejection of
confirmation as a rational strategy follows directly from the falsificationist
perspective.

We have argued that the usual standard of “correctness” in the selection
task follows from Popper’s hypothetico-deductive view of science. Reject-
ing the falsificationist picture would eliminate the role of logic, and hence
deduction, in the selection task. The hypothetico-deductive view faces
considerable difficulties as a theory of scientific reasoning (Kuhn 1962;
Lakatos 1970; Putnam 1974). This suggests that psychologists should
explore alternative views of scientific inference that may provide differ-
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ent normative accounts of experiment choice, and hence might lead to a
different “correct” answer in the selection task. Perhaps the dictates of
an alternative theory might more closely model human performance, and
hence be consistent with the possibility of human rationality.

Oaksford and Chater (1994) adopted this approach, adapting the
Bayesian approach to philosophy of science (Earman 1992; Horwich 1982;
Howson and Urbach 1989), rather than the hypothetico-deductive view,
to provide a rational analysis of the selection task. They view the selec-
tion task in probabilistic terms, as a problem of Bayesian optimal data
selection (Good 1966; Lindley 1956; MacKay 1992). Suppose that you
are interested in the hypothesis that eating tripe makes people feel sick.
Should known tripe-eaters or tripe-avoiders be asked whether they feel
sick? Should people known to be, or not to be, sick be asked whether they
have eaten tripe? This case is analogous to the selection task. Logically,
you can write the hypothesis as a conditional sentence, if you eat tripe (p)
then you feel sick (q). The groups of people that you may investigate then
correspond to the various visible card options,p, not-p, q andnot-q. In
practice, who is available will influence decisions about which people you
question. The selection task abstracts away from this factor by presenting
one example of each potential source of data. In terms of our everyday
example, it is like coming across four people, one known tripe eater, one
known not to have eaten tripe, one known to feel sick, and one known not
to feel sick. The task is to decide whom to question about how they feel or
what they have eaten.

Oaksford and Chater (1994, 1996) suggest that hypothesis testers
should choose experiments (select cards) to provide the greatest “expected
information gain” in deciding between two hypotheses: (i) that the task
rule, if p thenq, is true, i.e.,ps are invariably associated withqs, and (ii)
that the occurrence ofps andqs are independent. For each hypothesis,
Oaksford and Chater (1994) define a probability model that derives from
the prior probability of each hypothesis (which for most purposes they
assume to be equally likely, i.e., both = 0.5), and the probabilities ofp

and ofq in the task rule. They define information gain as the difference
between the uncertaintybefore receiving some data and the uncertainty
after receiving that data where they measure uncertainty using Shannon–
Wiener information. Thus Oaksford and Chater define the information gain
of dataD as:

Information before receivingD:

I (Hi) = −
n∑
i=1

P(Hi) log2P(Hi)
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Information after receivingD:

I (Hi|D) = −
n∑
i=1

P(Hi|D) log2P(Hi|D)

Information gain:

Ig = I (Hi)− I (Hi|D)
They calculate theP(Hi|D) terms using Bayes’ theorem. Thus informa-
tion gain is the difference between the information contained in theprior
probability of a hypothesis (Hi) and the information contained in the
posteriorprobability of that hypothesis given some dataD.

When choosing which experiment to conduct (that is, which card to
turn), the subject does not know what that data will be (that is, what will
be on the back of the card). So they cannot calculate actual information
gain. However, subjects can computeexpectedinformation gain. Expected
information gain is calculated with respect to all possible outcomes, e.g.,
for thep card, the possible outcomes with regard to what will be found on
the back of the card areq andnot-q; and the calculation also averages over
both hypotheses (that the rule is true, or thatp andq are independent).

Oaksford and Chater (1994) calculated the expected information gain
of each card assuming that the properties described inp andq are rare.
This is an appropriate default because in typical everyday rule such asif its
a raven then its black, only a small minority of things satisfy the antecedent
(most things are not ravens) or the consequent (most things are not black).
(Klayman and Ha 1987, make a similar assumption in accounting for re-
lated data on Wason’s (1960), 2-4-6 task.) With this ‘rarity’ assumption,
the order in expected information gain is:

E(Ig(p)) > E(Ig)) > E(Ig(not-q)) > E(Ig(not-p))

This corresponds to the observed frequency of card selections in Wason’s
task:p > q > not-q > not-p and thus explains the predominance ofp

andq card selections as a rational inductive strategy. Oaksford and Chater
(1994) also show how their model generalises to all the main patterns
of results in the selection task (for discussions of this account see Al-
mor and Sloman 1996; Evans and Over 1996; Laming 1996; Klauer, in
press, and for responses and developments see Oaksford and Chater 1996,
1998b, 1998c; Chater and Oaksford, in press, a). Specifically, it accounts
for the non-independence of card selections (Pollard 1985), the negations
paradigm (e.g., Evans and Lynch 1973), the therapy experiments (e.g.,
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Wason 1969), the reduced array selection task (Johnson-Laird and Wason
1970), work on so-called fictional outcomes (Kirby 1994) and deontic
versions of the selection task (e.g., Cheng and Holyoak 1985) including
perspective and rule-type manipulations (e.g., Cosmides 1989; Gigerenzer
and Hug 1992), the manipulation of probabilities and utilities in deontic
tasks (Kirby 1994), and effects of relevance (Sperber et al. 1995; Oaksford
and Chater 1995b).

We noted above that the philosophy of science that underlies the “de-
ductive” conception of the selection task can be questioned. The current
consensus is that scientific theories do not deductively imply predictions,
and hence that the general problem of choosing which experiment to
perform (or analogously, which card to turn in the selection task) can-
not be reconstructed deductively. Further, Oaksford and Chater’s (1994)
probabilistic account provides a better model of human performance on
the selection task. According to this model, people do not use deduction
when solving the selection task, rather they use a probabilistic inferential
strategy.

3.2. Conditional Inference

The selection task is perhaps the most celebrated “deductive” reasoning
task. However, the conditional inference task is perhaps the task that seems
most unequivocally to engage deductive reasoning processes. For example,
Rips (1994) uses this task in introducing his mental logic theory of reas-
oning. If human reasoning is not deductive even in this task, then it seems
unlikely that other areas of human reasoning will be well explained in
deductive terms. For this reason, the conditional reasoning task is a par-
ticularly crucial test-case for theories of reasoning that employ deductive
logic as a computational level theory.

In the standard conditional inference task, participants see a conditional
rule, if p thenq, an additional premise (p, q, not-p or not-q) and are asked
whether a given conclusion (again,p, q, not-p or not-q) follows. Consider
the simplest form of the task, where the premises arep and if p thenq,
and participants decide whetherq follows. This appears to be an example
of the paradigmatic deductive inference ofmodus ponens.Rips’s (1994)
central example of deductive inference has this form:

If Calvin deposits 50 cents, he’ll get a coke.
Calvin deposits 50 cents
Therefore, Calvin will get a coke

(1)

Interpreting this natural language argument involves applying a standard
logical analysis, which presupposes that it should be viewed in deduct-
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ive terms. However, this inference seems to be a typical example of a
probabilistic or uncertain inference, and not an instance of the deductive
reasoning at all, despite Rips. Calvin won’t get the coke if the machine is
broken, if the cokes have run out, if the power is turned off, and so on.
That is, additional premises can overturn the conclusion, which deductive
inference does not allow. Thus, although the task isintendedas a test
of deductive reasoning, the subject may be more likely tointerpret the
reasoning materials so that it involves uncertain, probabilistic reasoning.

The question for the psychology of reasoning, then, is which account
of how people interpret and reason with the materials in the task provides
the best fit with reasoning performance. It turns out that the experimental
data support the claim that people treat such inferences as defeasible
rather than deductive. Work on conditional inference indicates that subjects
interpret conditional sentences as default rules (Holyoak and Spellman
1993) even in laboratory tasks (Oaksford et al. 1990). Byrne (1989)
and Cummins et al. (1991) have shown that background information de-
rived from stored world knowledge can affect inferential performance
(see also, Markovits 1984, 1985). Specifically they showed that addi-
tional antecedents influence the inferences conditional statements allow.
For example:

If you turn the key the car starts.(2)

Additional Antecedent:You are out of petrol.(3)

(2) could be used to predict that the car will start if you turn the key. This is
an inference bymodus ponens.However, including information about an
additional antecedent (3) defeats this inference (Byrne 1989). Moreover,
confidence reduces in this inference for rules that possess many alternative
antecedents even when this information is only implicit (Cummins et al.
1991). Additional antecedents also affect inferences bymodus tollens.If
the car does not start, you can infer that you didn’t turn the key, unless
you are out of petrol. Explicitly providing information about alternative
antecedents undermines the use ofmodus tollens(Byrne 1989) and re-
duces confidence in rules that possess many alternative antecedents even
when this information is only implicit (Cummins et al. 1991). This result
was very striking, and unexpected, within the context of the psychology of
reasoning. However, in the light of the uncertainty of everyday reasoning,
it is just what we would expect. Human inferences about coke machines,
as about the rest of the external world, are defeasible

In sum, the experimental data seem to show that people treat condi-
tionals in laboratory reasoning tasks as default rules. So it seems that
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even the everyday inferences that some reasoning researchers regard as
paradigmatic examples of deduction, like (1), are not examples of deduct-
ive inference at all. If defeasibility infects even such paradigmatic cases
of deductive reasoning, then it threatens to leave the advocate of deductive
reasoning with no everyday reasoning at all to explain.

Conditional inferences, like the everyday examples with which we in-
troduced this paper, involve two premises, one conditional, IfA thenB,
and one categorical, either,A, not-A, B, or not-B. For example, given
If A thenB, and not-A, people are asked to say whether, not-B follows.
Endorsing this argument is to endorse the logical fallacy of denying the
antecedent (DA). Interesting biases arise when negations are used in the
conditional premise, e.g., If not-A, then not-B, and not-A, therefore not-
B is an instance of the valid inference form modus ponens (MP). Evans
(1977, 1993) observed a bias towards accepting conclusions containing a
negation, like the MP inference above (using a different rule an affirmative
conclusion follows by MP, e.g., If not-A, thenB, not-A, thereforeB).

This effect, which Evans et al. (1993) callsnegative conclusion bias,
may have a straightforward explanation on the assumption that people
endorse arguments to the extent that the conditional probability of the
conclusion given the categorical premise is high. This will depend on the
probabilities ofA and ofB and on the conditional probability relating the
two. So if we look at DA, the conditional probability that reeds to be high is
P (not-B | not-A). The probability of a negated category is higher than an
affirmative category (Oaksford and Chater 1994; Oaksford and Stenning
1992), e.g., the probability that you are not drinking whiskey as you read
this paper is higher than the probability that you are. To illustrate very
simply how negative conclusion bias could arise, let us assume that you
believe the rule is false. On the account of Wason’s selection task outlined
above, this means that you believe thatA andB are independent. Con-
sequentlyP (not-B | not-A) = P (not-B), i.e., you should endorse the DA
inference if the probability of the conclusion is high. And because negated
conclusions have a higher probability than affirmative conclusions, the
former should be endorsed more often. In sum, the probabilistic rational
analysis that we developed for the selection task appears to carry over
relatively directly to conditional reasoning.

3.3. Syllogistic Reasoning

Syllogisms may appear paradigms of deductive logic. Aristotle’s theory of
syllogisms constituted the only account of valid argumentation for more
than 2000 years. Indeed, until the 19th century, the theory of syllogisms
was widely viewed as exhausting the study of argument. For example,
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Kant (1961, 501) argued that since Aristotle “it is remarkable. . . that to the
present day [logic] has not been able to make one step in advance, so that,
to all appearance, it may be considered as completed and perfect”. Non-
etheless, we shall argue that people do not treat even syllogistic reasoning
as a deductive task.

Syllogistic reasoning involves two quantified statements of the form,
All X areY , No X areY , SomeX areY , or SomeX are notY . Some
combinations of premises yield logically valid conclusions, e.g., AllX are
Y , All Y areZ yields the logically valid conclusion, AllX areZ; others
do not, e.g., NoY areX, SomeY are notZ, has no valid conclusion.
If people were reasoning logically then they should be able to draw all
and only the valid conclusions indicating that nothing necessarily follows
from the invalid syllogisms. However, people have graded difficulty with
drawing the valid syllogisms. Moreover, they make systematic errors on
the invalid syllogisms, offering conclusions where none follow.

Chater and Oaksford (in press, b; see also Manktelow, in press, for an
exposition) adopt a probabilistic approach to syllogisms. Thus, the quan-
tified statement AllX are Y is interpreted as a conditional probability,
P (Y | X) = 1; the statement SomeX are notY is interpreted as the joint
probability, P (X, not-Y ) > 0, and so on. They then develop a notion of
informational strength (probabilistically defined) of premises to guide con-
clusion construction.All . . . statements are the most informative (roughly,
the most unlikely to the true of arbitrarily chosen predicates);Some. . .not
. . . statements are the least informative.

It turns out that the most informative conclusion that can follow from a
syllogism is given by the least informational premise. Moreover, for most
valid syllogisms the least informational premise also provides the form of
the conclusion. Thus selecting the form of the least information premise as
the form of the conclusion will usually procluce a valid conclusion if there
is one. If this strategy is overgeneralised it can also explain the systematic
errors made on the invalid syllogisms. Consequently Chater and Oaksford
(in press, b) show that a very simple strategy can be explain syllogistic
reasoning performance. Moreover, this probabilistic account has the ad-
vantage that not only can it explain the data from the 64 syllogisms that
use the standard logical quantifiers (see above), it also extends naturally to
the 144 syllogisms that result from combining these with thegeneralised
quantifiers, Most and Few which have no logical interpretation.

These analyses raise the apparently paradoxical possibility that explain-
ing all of the key experimental paradigms for studying human deductive
reasoning requires viewing people’s performance as approximating to
probabilistic rather than deductive inference. In short, people reason prob-
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abilistically even when faced with what the experimenter intends to be a
deductive reasoning task. Reasoning strategies are adapted to deal with
uncertainty in everyday life – and therefore these strategies are likely to
be carried over by people into laboratory settings. Thus, paying closer
attention to everyday reasoning may provide the key to giving a detailed
analysis of laboratory performance.

3.4. Probabilistic Reasoning

The approach we have outlined might be characterised as arguing that
although people are poor at logical reasoning they are nonetheless good
at probabilistic reasoning. However, this viewpoint seems to be at odds
with established results that appear to show that people are also very poor
probabilistic reasoners (e.g., Tversky and Kahneman 1974; Kahneman et
al. Tversky, 1982). For example, people seem to be insensitive to base
rates, i.e., in applying Bayes’s theorem people often provide estimates
of posterior probabilities that seem to reflect only the likelihoods and
not the priors. People also seem to be overconfident in their probabil-
ity judgements, i.e., they do not seem to be well calibrated to the actual
frequencies of events in the world. Moreover, people also seem prone to
the conjunction fallacy. That is, they violate the probabilistic law that the
joint probability of any two events can not he greater than either individual
event, i.e.,P (A) ≥ P (A, B).

There are two reasons why tension between a probabilistic rational ana-
lysis of people’s reasoning strategies does not conflict with understanding
reasoning in terms of proabilistic rational analysis, however.

First, recall that the probabilistic rational analysis is a way of assessing
what strategies will be adaptively successful. There is no assumption that
the cognitive system actually makes probabilistic calculations, simply that
the strategies that it adopts are adaptively successful.

Second, according to recent analyses, many of the apparent errors and
biases observed in probabilistic reasoning are a consequence of present-
ing the probabilistic information in an unnatural format (Gigerenzer and
Hoffrage 1995). Most often in experiments of this type people are given
the probabilistic information in terms of explicit probability statements or
percentages, e.g., 0.05 or 5%. However, Gigerenzer et al. (1995) argue
that this is unnatural given the normal sampling situation where we build
up frequency information as a result of multiple encounters with objects
and events. What you discover by such a process is, for example, that
something like 95 out of the 100 ravens you have examined are black.
Mathematically this information can be expressed as 95% of ravens are
black, or the probability of a bird being black given it is a raven is 0.95.
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However, this loses information about sample size and moreover, it seems
unnecessary to make this conversion of the information format. Gigerenzer
and Hoffrage suggest that if people naturally represent frequencies then
presenting probabilistic information in this form should facilitate reason-
ing. We illustrate research showing that Gigerenzer and Hoffrage appear
to be correct in the three areas where biases have been observed and which
we introduced above.

Experiments revealing base rate neglect usually present the information
as follows, using the mammogram problem:

A thirty year old woman discovers a lump in her breast and goes
to her doctor. The doctor knows that only 5% of women of the
patient’s age and health have breast cancer (C). A mammogram
(breast X ray) is taken. It indicates cancer 80% of the time
in women who have breast cancer but falsely indicates breast
cancer in healthy patients 20% of the time. The mammogram
(M) comes out positive. What is the probability that the patient
has cancer?

Most participants in an experiment such as this give estimates that the
woman has cancer given a positive mammogram of around 0.80, which
appears to ignore the prior that most women of her age, i.e., 95% do not
have breast cancer. However, a simple change in the instructions reverses
this finding:

A thirty year old woman discovers a lump in her breast and
goes to her doctor. The doctor knows that only 5 out of every
100 women of the patient’s age and health have breast cancer
(C). A mammogram (breast X ray) is taken. For 80 out of every
100 women who have breast cancer it gives a positive result but
falsely indicates breast cancer in 20 out of every 100 healthy
patients. The mammogram (M) comes out positive. What is the
probability that the patient has cancer?

Gigerenzer and Hoffrage argue that the frequency information also allows
a simpler version of Bayes theorem to be used hence reducing cognitive
load.

In discussing overconfidence Gigerenzer points out that like is not be-
ing compared with like. People are typically asked a series of general
knowledge questions and are asked to rate their confidence in each answer.
To determine overconfidence, their average confidence rating is compared
with the frequency of correct answers. That is, people are asked repeatedly
about their beliefs in single events, and then their average performance
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on this task is compared with their relative frequency of correct answers.
Gigerenzer observes that these can be independent judgements. To test
whether overconfidence arises when like is compared with like, at the
end of the task Gigerenzer also asked people to estimate their relative
frequency of correct answers. Comparing their estimates with their actual
frequency of correct answers revealed no evidence of overconfidence. That
is, when like is compared with like, people seem well calibrated in judging
their own likelihood of success.

The conjunction fallacy seems also to emerge because of the unnatural
presentation of probabilities. People are typically given information such
as:

Linda is 31 years old, single, outspoken and very bright. She
majored in philosophy. As a student, she was deeply con-
cerned with issues of discrimination and social justice, and also
participated in antinuclear demonstrations.

They are then asked to estimate the probability that (i) Linda is a bankteller,
and (ii) Linda is a feminist bankteller. People typically estimate (ii) as more
likely than (i), violating the conjunction rule. However, if people are asked
this question using a frequency format such as: There are 100 people who
fit the description above; How many of them are: (i) Bank tellers, (ii) Bank
tellers and active in the feminist movement, then they do not estimate (i)
as less likely than (ii), conforming to the conjunction rule.

In summary, it would appear that people are not as bad at probabilistic
reasoning as the evidence from the heuristics and biases programme had
led us to believe. Moreover, as we noted above, the theoretical accounts of
reasoning we have discussed do not require that people possess quantitat-
ively accurate probabilistic reasoning abilities. Thus, any apparent tension
between the probabilistic approach to the rational analysis of reasoning
that we advocate and experimental data on human probabilistic reasoning
is illusory.

4. CONCLUSION

This paper has aimed to establish two theses. The first is that the empir-
ical program of rational analysis provides an account of the relationship
between everyday rationality and formal rationality. The connection is
that formal rational principles are used to derive the optimal solution to
achieving the cognitive system’s goals given environmental and computa-
tional constraints. Rational analysis is an empirical, rather than an a priori,
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enterprise. This is because the choice of rational principles and the goals
and constraints to which they are applied constitute empirical hypotheses,
which are intended to account for psychological data.

The second thesis that we have aimed to establish is that human laborat-
ory reasoning does not demonstrate human irrationality. People carry over
probabilistic reasoning strategies which are appropriate to dealing with the
uncertainty of the everyday world into the laboratory. These strategies are
rationally justified, once an appropriate probabilistic standard of rationality
has been adopted. Thus, the apparent tension between psychological data
on human reasoning and the conspicuous success of everyday rationality
is illusory. Even in laboratory tasks, people may not be logical; but they
are rational.

NOTES

∗ Please address correspondence concerning this article to Nick Chater, Department of
Psychology, University of Warwick, Coventry, CV4 7AL, UK or to Mike Oaksford, School
of Psychology, Cardiff University, P.O. Box 901, Cardiff CF1 3YG, Wales, UK.
1 There are also a range of other justifications of the laws of probability theories as a
calculus of uncertain inference, based on preferences (Savage 1954), scoring rules (Lindley
1982) and derivation from minimal axioms (Cox 1961; Good 1950; Lucas 1970). Although
each argument can be challenged individually, the fact that so many different lines of argu-
ment converge on the very same laws of probability has been taken as powerful evidence
for the view that degrees of belief can be interpreted as probabilities (see, e.g., Howson and
Urbach, 1989; and Earman 1992, for discussion).
2 For example, mental models correspond to mental representations of states of affairs,
rather than states of affairs themselves; and these mental representations have a specific
syntax, and presumably a specific semantics. The precise semantic properties of mental
models representation has not been given, and indeed, and it is not clear how this could be
done. Instead, the semantics of mental models is left, rather uncomfortably, in the hands of
the theorists’ intuitions.
3 Note also that for all reasonably rich scientific theories, any empirical data can be
accommodated, by suitable changes in auxiliary assumptions (Quine 1953). Thus ra-
tional explanations are no different in this regard, from, e.g., explanations in terms of the
principles of Newtonian mechanics (Putnam 1974).
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