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It is proposed that the cognitive system imposes patterns on the world according to a

simplicity principle: Choose the pattern that provides the briefest representation of the

available information. T he simplicity principle is normatively justi® edÐ patterns that sup-

por t simple representations provide good explanations and predictions on the basis of which

the agent can make decisions and actions. M oreover, the simplicity principle appears to be

consistent with empirical data from many psychological domains, including perception,

similarity, learning, memory, and reasoning. T hus, the simplicity principle promises to serve

as the star ting point for the rational analysis of a wide range of cognitive processes, in

Anderson’s (1990, 1991a) sense. T he simplicity principle also provides a framework for

integrating a wide range of existing psychological proposals.

T he cognitive system must cope with a world that is immensely complex but that is,

nonetheless, highly patterned. T he patterns are crucial. In a completely random world,

prediction, explanation, and understand ing wou ld be impossibleÐ there wou ld be no

patterns on which prediction could be based, to wh ich explanations could refer, or the

comprehension of which could amount to understanding. Even more fundamentally,

without any patterns relating actions to consequences, there would be no basis to choose

one action r ather than another.

T he ability to ® nd patterns in the world is therefore of central impor tance throughout

cogn ition . Without the ability to ® nd such patterns an agent might as well be in a random

world: It would be able to predict, explain, and understand nothing; and it would have no

basis on which to choose its actions. By contrast, the cognitive systems of people and
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animals appear to be conspicuously successful in coping with the world . Somehow,

cogn itive processes are able to ® nd patterns successfully.

H ow is this success achieved? Any proposal must meet two adequacy criteria: (a) It

must be normatively justi® edÐ without such normative justi® cation, the success of the

method of ® nd ing patterns is mysterious; (b) It must be descriptiv ely correctÐ it must

accord with empirical dataÐ at least to some approximation. A theory that is both norma-

tively justi® ed and descr ip tively correct provides a rational analysis of a cognitive process

(for discussion of this concept see, for example, Anderson, 1990, 1991a, 1991b ; Anderson

& Schooler, 1991; Oaksford & Chater, 1994, 1995a, in press). So explaining how the

cogn itive system successfu lly ® nds patterns requires providing a rational analysis of the

cogn itive system’ s pattern- ® nding capabilities.

I propose that patterns are found by following a fundamental principle: Choose the

pattern that p rovides the simplest explanation of the available data. M oreover, I suggest

that the simplicity principle has very broad scope and hence can be used as a starting

point for the detailed rational analyses of a wide range of cognitive p rocesses.

T he idea that cognition involves a search for simplicity has a long lineage, in the

discussion of both normative and descr iptive issues. On the normative side, the injunction

to favour simple scienti® c theories can be tr aced to William of Ockham
1

(1285±1349)

and is endor sed by N ewton (see L i & VitaÂnyi, 1997, p. 317). Simplicity was also assigned

fundamental impor tance in early positivist epistemology (e.g. M ach, 1883/ 1960), and it

remains a standard principle in modern philosophy of science (e.g. Sober, 1975) . Sim-

plicity is also recognized as impor tant in statistics. If a straight line and a cubic ® t the

same data equally well, then the straight line is the p referred model because it is sim-

plerÐ it contains fewer adjustable parameters. Indeed, without some implicit adherence to

a simp licity principle, classical statistical approaches to modelling data would be incoher-

en t, because increasing the generality of a model (e.g. switching from a straight line to a

cubic) can only improve the ® t with the data. Aside from its impor tance in statistics, a

preference for simple explanations is also a standard methodological principle in informal

scienti® c discourseÐ for a prominent psychological example, see Pylyshyn’s (1984) dis-

cussion of the impor tance of having fewer model parameters than data points in cognitive

modelling. But although the preference for simple patterns has been widely recognized,

simplicity has typically remained a largely intuitive notion. Over the last thir ty years,

however, a r ich and impor tant theory of simplicityÐ Kolmogorov complexityÐ has been

developed and widely applied by mathematicians (Chaitin , 1966; Kolmogorov, 1965;

Solomonoff, 1964; for an overview, see the excellen t textbook by L i & VitaÂnyi, 1997) ,

statisticians (Rissanen, 1987, 1989; Wallace & Freeman, 1987), and computer scientists

(Qu inlan & Rivest, 1989; Wallace & Boulton , 1968) . T his theory allows rigorous norma-

tive justi® cations to be given for why choosing the simplest pattern leads to the best

explanations and predictions, and it also allows the more concrete formulation of the
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psychological proposal that cognition seeks to ® nd the simplest pattern. T his account of

simplicity and its poten tial application to cogn ition is outlined in this paper.

Simplicity has also been frequently viewed as impor tan t from the point of view of

describing, rather than justifying, cognitive p rocesses. M ach (1886/ 1959) , one of the

strongest advocates of simplicity of a normative principle in science, also proposed that

the percep tual system seeks to ® nd the simplest representations of sensory input. T his

viewpoint is echoed in the proposal in the G estalt tradition that perceptual organization is

chosen to maximize ``praÈ gnanz’ ’ (Koffka, 1935/ 1962), a notion closely related to simpli-

city, which aims to integrate the range of speci® c G estalt pr inciples of perceptual orga-

nization (good form, good continuation, and so on). M oreover, H ochberg and M cAlister

(1953) explicitly identi® ed the goal of perceptual organization as maximizing simplicity,

and this work, was followed by a variety of related proposals, where simplicity is measured

in different ways (Buffar t, L eeuwenberg, & Restle, 1981; G arner, 1962, 1974; L eeuwen-

berg, 1969, 1971). M oving from perception to the psychological p rocesses involved in

scienti® c inference, simp licity has also frequently been invoked as an impor tant guiding

principle. For example, scien tists frequently repor t strong aesthetic p references in theory

construction and evaluation , using terms such as ``simplicity’ ’ , ``elegance’ ’ , ``parsimony’ ’ ,

and so on, to describe desirable properties of theoretical proposals. Einstein has been

attributed with the remark that ``Everything should be made as simple as possible, but not

simpler ’ ’ (Eysenck & K eane, 1990). T his preference for simplicity (or more generally,

beauty) is sometimes expressed so strongly that it even overr ides the concern to ® t the

data (e.g. this view is attributed to the great theoretical physicist Paul D irac in Stewart &

G olubitsky, 1992) . T hus simplicity has been implicated as a guiding principle in ® nding

patterns, from perceptual processing to scienti® c reasoning. I propose that simplicity may

have an even more general role in cognition: ranging from reasoning and memory to

learning and similarity.

T his paper has three parts. T he ® rst introduces the problem of ® nding patterns in

data, and why it is normatively and descr iptively puzzling, essentially because there are an

in ® nite number of patterns consistent with any ® nite set of data. T he second par t con-

siders the normative question of how patterns should be found. I outline how simplicity

can be quanti® ed in terms of the mathematical theory of Kolmogorov complexity and how

this theory explains why searching for simple patterns is normatively justi® ed as a strat-

egy for predicting and explaining the world, and as a partial basis for decid ing how to act.

T he third part considers the descriptive problem of how various cognitive processes

actually do ® nd patterns. T he approach is programmaticÐ I aim to provide an integrated

framework for apparently diverse cognitive p roblems and to suggest directions for future

research, rather than attempting a de® nitive account in any one area. Overall, I hope to

show that simplicity is both a normatively justi® ed and descr iptively plausible account of

how the cognitive system ® nds patterns in a range of domains.

THE PROBLEMS OF FINDING PATTERNS

Consider the problem of ® nding patterns in a ® n ite por tion of an in ® nite sequence. In the

por tion of the sequence that we observe, just two states are found. L et us call the binary

values ``black’ ’ and ``white’ ’ to allow the visual representation shown in F igure 1a. In this

THE SEARCH FOR SIMPLICITY 275



® n ite sequence, an intuitively evident pattern is that there is an alternation of the two

states. If this pattern is correct, then the sequence should continue as shown in F igure 1b.

But another pattern, equally consisten t with the observed data, is that there is an in ® nite

sequence of ``white’ ’ , followed by an alternating sequence of white and black, and then an

in ® nite sequence of ``black’ ’ . T he observed data are assumed to correspond to the middle

part of this sequence (F igure 1c). M oreover, a fur ther pattern consistent with the data

consists of a jumble of states (many not occurr ing in the observed par t of the sequence at

allÐ represented by patterned squares in the ® gure) to the left and right of the alternating

white and black items that are observed. Again this kind of pattern is precisely consistent

with the observed data. M ore generally, it is clear that an in ® nite number of patterns are

consistent with any ® nite set of data.

A similar example, of traditional psychological interest (e.g. D innerstein & Werthei-

mer, 1957; K anizsa & G erbino, 1982) , concerns the completion of occluded ® gures

(F igure 2). T he intuitively natural completion of the occluded region in F igure 2a inter-

prets the ® gure as a square partially occluded by another square (F igure 2b). T his

completion is predicted by two G estalt pr inciples: good continuation, which states that

lines shou ld be assumed to con tinue as smoothly as possible, and good form, which states

that completions should prefer regular underlying ® gures. Bu t, again, an in ® nite number

of alternative completions are possible (F igure 2c).

T he hard-headed psychologist may feel tempted to dismiss the rather bizarre

patterns shown in F igures 1 and 2 as ``silly’ ’ . Of course, such a psychologist might

say that the cognitive system is only concerned with ``sensible’ ’ patterns and bases its

explanations, predictions, and decisions on these. T he psychologist might go on to

point out that the really interesting issue is how the cognitive system copes with cases

where two `̀ sensible’ ’ patterns can be imposed on a stimulus, and some choice must
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FIG. 1. An in ® nite number of incompatible patter ns are compatible with any ® n ite sequence of data.



be made between them. But this impatient response misses the point. T he psychologist

must explain our intuitions abou t which patterns are ``silly’ ’ and which are ``sensible’ ’ ,

and cannot take them for granted, because these intuitions are themselves the outcome

of psychological processes. Indeed, these intu itions must be explained in two ways.

F irst, some normative justi® cation must be given for assuming that the cognitive system

is justi® ed in favouring `̀ sensible’ ’ patterns and basing its predictions, explanations, and

decisions on these. T his issue is the focus of the next section. Second, the descriptive

question of how the cognitive system differentiates between `̀ silly’ ’ and ``sensible’ ’

patterns must also be addressedÐ I leave descriptive issues to the ® nal section of the

paper.

FINDING PATTERNS: THE NORMATIVE PROBLEM

D espite our strong intuitions that not all patterns consisten t with a ® nite set of data are

equal (i.e. that some are plausible and others are absurd), there has been a long sceptical

tradition in ph ilosophy arguing that no normative justi® cation can be given for such

preferences (e.g. G oodman, 1983; H ume, 1739±1740/ 1965; Popper,
2

1934/ 1959). But

this scepticism is unattractive, because it makes utterly mysterious the remarkable and

consistent success that cognitive systems enjoy on the basis of favouring some patterns

over others.

For tunately, the sceptical challenge can be addressed by applying the mathematical

theory of Kolmogorov complexity. T his theory quanti® es simp licity and shows that a

preference for simpler patterns is justi® ed , because describing the world in terms of

simple patterns consistently leads to better predictions, explanations, and decisions.

Before considering how this theory measures simplicity, however, we must ® r st ask:

What should be measured for simplicity?
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Popper allows that different hypotheses might be differentially favoured for investigation on the basis

regarding their falsi® abilityÐ but this does not bear on the examples given here, because they are all equally
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The Simplicity of What?

In choosing patterns on the basis of simplicity, the most obvious suggestion is that the

simplest available pattern should be prefer red. T his principle correctly favours an inde® -

nitely long sequence of alternating black and white squares in F igure 1 and the ``square’ ’

completion in F igure 2. But, taken at face value, it also has a paradoxical consequence: A

very simple pattern, such as when the pattern in F igure 1 is an in ® nitely long sequence of

black squares or when the pattern in F igu re 2 is a simple uniform ® eld, will always be

preferred. Such possibilities are, of course, ruled out by the constraint that the pattern

has to be consistent with the available dataÐ thus, these `̀ null’ ’ p atterns are just too

simple. But this point itself raises dif® cult questions: What does it mean for a pattern

to be consistent with the available data? Can consistency with the input be traded against

simplicity of interpretation? If so, how are simplicity and consistency with the data to be

jointly optimized? We shall see that the theoretical account of simplicity presented below

answers these questions.

T here is, however, a fur ther and more subtle dif® culty: What rules out the simp lest

possible ``null’ ’ pattern, if such a pattern could be in terpreted as saying that ``anyth ing

goes’ ’ ? T he null pattern will be consisten t with the available data; indeed it would be

consistent with any data because it ru les nothing ou t. M ere consistency or compat-

ibility with the data is plainly not enough; the pattern must also, in some sense,

captu re regular ities in the data (Harman, 1965). But this appears to imply that choos-

ing a pattern involves the join t optimization of two factors; and the relative in¯ uence

of these two factor s is unspeci® ed. M oreover, this conclusion is unattractive because

two notionsÐ simplicity and explanatory powerÐ must be exp licated rather than just

one.

For tunately, there is an alternative way to proceed. T his is to view a pattern as a way of

encoding the data; and to propose that the pattern chosen is that which allows the

simplest encoding of the data. T his view disallows null or nearly nu ll patterns, which

bear little or no relation to the data, because these organizations do not help encode the

data simply. It also provides an operational de® nition of the ``explanatory power ’ ’ of a

patternÐ as the degree to wh ich that pattern helps provide a simple encoding of the data.

If a pattern captures the regular ities in the pattern (i.e. if it ``exp lains’ ’ those regularities),

then it will provide the basis for a brief descr iption of the data; if an organ ization fails to

captu re regularities in the data, then it will be of no value in providing a brief descr iption.

Explanatory power is therefore not an add itional constraint that must be traded off against

simplicity; maximizing explanatory power is the same as maximizing the simplicity of the

encoding of the data.

Quantifying Simplicity

T o apply the injunction to choose the pattern that provides the simplest encoding of the

data, we need a measure of simplicity. T here is a long tradition in philosophy of equating

simplicity with brevity in some coding language (e.g. Kemeny, 1953) . In psychology, this

general approach has been applied in a variety of contexts, from the organization of simple

sequences, such as the example we have just considered (Leeuwenberg, 1969; Restle,
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1970; Simon, 1972; S imon & Kotovsky, 1963; Vitz & T odd , 1969) , to judgements of

` ®̀ gur al goodness’ ’ (H ochberg & M cAlister, 1953) , the analysis of Johansson’s (1950)

experiments on the perception of motion con ® gurations (Restle, 1979) , and ® gural com-

pletion (Buffar t et al., 1981) . It has also been advanced as a general fr amework for under-

standing perceptual organization (e.g. Attneave & Frost, 1969; L eeuwenberg, 1971;

L eeuwenberg & Boselie, 1988).

Approaches based on brevity of encoding in some description language appear to be

dogged by two problems: (a) that a fresh descr iption language must be constructed for

each fresh kind of pattern; and (b) that the predictions of the theory depend on the

descr iption language chosen, and that there is no (direct) empirical means of deciding

between putative languages.

Kolmogorov complexity theory addresses these problems. T he ® rst problem is avoided

by choosing a general coding language. Speci® cally, the language chosen is a univ ersal

programming language. A universal programming language is a general purpose language

for programming a computer. T he familiar p rogramming languages such as PROL OG,

L ISP, and PASCAL are all universal programming languages. H ow can an object, such as

a perceptual stimulus, be encoded in a universal programming language such as L ISP?

T he idea is that a p rogram in L ISP encodes an object if the object is generated as the

output or ® nal result of running the program. By the de® nition of a universal p rogram-

ming language, if an object has a descr iption from which it can be reconstructed in

any language, then it will have a descr iption from which it can be reconstructed in the

universal programming language. It is this that makes the programming language

univ ersal.

M oreover, in solving the ® rst problem, the second problemÐ that different patterns

of languages give different code lengthsÐ is, at least partially, addressed. A central

result of Kolmogorov complexity theory, the invariance theroem (L i & VitaÂnyi, 1997),

states that the length of the shor test description of an object, x, is invariant (up to a

constan t) between d ifferent universal languages. D ue to language invariance, we can

speak of the code length required to specify an object, x, independent of the particular

universal language in which the shor test code for x is written. T his quantity is de® ned

as the Kolmogorov complexity, K (x), of that object. S imilar ly, we can de® ne the con-

ditional Kolmogorov complexity, K (y| x), between two objects x and y. T his is the

length of the shor test program that transforms x into y.

So, by assuming that the coding language that the cognitive system uses is very general

(i.e. universal) we can avoid having to provide a detailed account of the codes that the

cogn itive system uses and still develop a simplicity-based account of cognition. But the

project of specifying how information is coded by the cognitive system remains, of course,

one of the central goals of psychology. M oreover, as I discuss below, the choice of

language may be crucially impor tant in developing simplicity-based theories of particular

cogn itive processesÐ essentially because although code lengths in any two universal lan-

guages are equivalent up to a constant, that constant may be very large. N onetheless, in

some cognitively relevant contexts, different languages seem to give surp risingly well-

correlated shor test code lengths (Simon, 1972) and hence surprisingly similar measures of

simplicity. In these cases, psychological theorizing may be possible without any prior

cer tainty concerning which coding language the cognitive system actually uses.
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We have noted that Kolmogorov complexity theory assumes that the cognitive system

uses a general purpose coding languageÐ speci® cally, a universal programming language.

T his talk of universal programming languages may appear r ather unpsychologicalÐ after

all, the cognitive system presumably does not represent information in PROL OG, L ISP,

or PASCAL ! But the notion of a universal programming language is actually very

broadÐ almost any reasonably rich system of representation, including most proposals

concerning mental representation, are universal, and hence the Kolmogorov complexity

measu re can be applied.

So we now have a de® nite interpretation of the claim that patterns are chosen on the

basis of simplicity: T he pattern is chosen to encode the data as br ie¯ y as possible. We now

consider why this p reference for simplicity is justi® ed.

The Justi® cation of Simplicity

T here are various criteria by which a particular choice of pattern in a set of data might be

justi® ed. T he best pattern migh t be the pattern that is the most likely explanation of how

the data were generated; the pattern that gives rise to the best predictions; or the pattern

that provides the best basis for decision making. I now consider the justi® cation of

simplicity in each of these ways.

Simplicity and the Most Likely Explanation.
3

Suppose that we have data, D, and a set

of hypotheses concerning patterns in the data. By de® nition, the most likely hypothesis is

the hypothesis, H, that has the greatest probability, given the data. In symbols, this is the

H that maximizes P(H | D). Bayes’ theorem, a standard theorem of probability theory,

states that:

P (HD) µ P(D| H) P(H) 1

T hat is, the probability of the hypothesis given the data is propor tional to the product of

the probability of the data given the hypothesis and the prior probability of the hypoth-

esis. By elementary mathematics, choosing the H that maximizes (1) is equivalent to

choosing the H that minimizes (2):

2 log2 P(D| H) 2 log2 P(H) 2

U nder very general conditions, 2 log2P(x) is app roximated by the Kolmogorov com-

plexity of x, K (x), and 2 log2P( y| x) is approximated by the conditional K olmogorov

complexity of y given x, K (y| x) (see L i & VitaÂnyi, 1997, for a rigorous analysis, and

Chater, 1996, for a more informal discussion). T his duality between probabilities and

code lengths is of great impor tance and has been widely used in statistics (e.g. Rissanen,
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1987, 1989), arti® cial intelligence (e.g. Cheeseman, 1995), and compu ter vision (e.g.

M umford, 1992) , as well as having direct psychological implications (Chater, 1996) .

G iven these equivalences, we can rewrite (2) in terms of Kolmogorov complexities:

K (D| H) + K (H) 3

T his means that choosing the H that maximizes (1) is equivalent to choosing the H that

minimizes (3). But (3) has the following interpretation: K (H) is the length of the shor test

code to specify the hypothesized pattern, H; and K (D| H) is the length of the shor test

code that speci® es the data, D, given H. T he sum of these quantities is therefore the code

length of the data, using the hypothesized patternÐ the code consists of two parts: ® r st,

the pattern is speci® ed, and second the speci® c data are speci® ed in terms of the pattern.

T herefore, (3) can be informally glossed as follows:

Shor test code for D, using H 4

Accord ing to Bayes’ theorem, H should be chosen to be as probable as possible, that is to

maximize (1). But we have seen that this is equivalent to choosing H to minimize (4): that

is, the pattern should be chosen in order to provide the simplest speci® cation of the data.

T herefore, choosing the simplest hypothesized pattern is justi® ed because it amounts to

choosing the pattern that is the most likely explanation of the data.
4

Simplicity and Prediction. L et us consider prediction in the simple sett ing where the

environment consists of a string of 0s and 1s. A continuous por tion x1, . . ., xn, of the

sequence is observedÐ the task is to predict the next item, xn+ 1, in the sequence. By

elementary probability theory:

P(x1, . . ., xn , xn+ 1)
P (xn+ 1 | x1, . . ., xn) = 5

P(x1, . . ., xn)
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for details). T hus, under these restrictions, the translation between probability and Kolmogorov complexity

is legitimate. T hus, under these conditions, the simplest explanation of a set of data is also the most likely to

be true.



T he best prediction of xn+ 1 is the one that has the highest probability of being trueÐ that

is, that maximizes (5). Because the denominator does not contain xn+ 1 the best p rediction

will also maximize

P(x1, . . ., xn, xn+ 1) 6

and will minimize:

2 log2P(x1, . . ., xn, xn+ 1) 7

U sing the equivalence between Kolmogorov complexity and probability, as above, the best

prediction xn+ 1 therefore minimizes (aside from rare ``pathological’ ’ cases, which can be

ignored in p ractice):

K (x1, . . ., xn, xn+ 1) 8

T hus, prediction is achieved by ® nding the pattern that is the basis for the shor test code

for x1, . . ., xn and then choosing the next item xn+ 1 that follows according to that pattern.

We can therefore conclude that the predictions of the pattern chosen by the simp licity

principle are the most likely to be true.

T his heuristic argument has been made rigorous in L i & VitaÂnyi (1997). In addition,

mathematical justi® cations for prediction based on patterns that are chosen to maximize

simplicity have been provided in other mathematical contexts (e.g. Rissanen , 1987, 1989;

Vapnik, 1995). Predictions based on simplicity have also been successful in a range of

practical applications (e.g. G oa, L i, & VitaÂnyi, 1989; Quinlan & Rivest, 1989), and indeed

simplicity (often under the label ``Occam’s r azor ’ ’ ) is a fundamental principle of con-

temporary machine learning theory (e.g. Kearns & Vazirani, 1994). T hus, choosing pat-

terns on the basis of simplicity appears justi® ed as a basis for prediction.

Simplicity and Decision Making. F inding patterns by simplicity allows an agent to

predict and explain the world. T hese are abstract goals, but nonetheless goals that are of

fundamental impor tance to guiding decisions about practical action. T he standard nor-

mative theory of how decisions should be madeÐ decision theoryÐ requires associating

each possible outcome of the decision maker ’s actions with a number representing its

utility; and assessing the p robability of each outcome if each particu lar action is taken

(Berger, 1985). T he rough goal is to choose actions that are likely to lead to ou tcomes with

positive utility and unlikely to lead to outcomes with negative u tility. At a technical level

there are various ways in which probabilities and u tilities can be combined to implement

this goalÐ the most popular is to choose the action that has the h ighest expected utility

(i.e. where expected utility is the utility of each possible outcome, weighted by its

probability).

T his account of how decisions should be made has a clear role for the simp licity

principleÐ simplicity determines the probability of possible events, which are then com-

bined with utilities to determine what action should be taken. T hus, the simplicity

principle can be related, albeit indirectly, not merely to the abstract normative goals of
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infer ring the most probable pattern, or predicting what will happen, but to the concrete

problems of deciding how to act.

FINDING PATTERNS: DESCRIBING COGNITIVE
FUNCTION

I have argued that ® nding patterns should proceed by choosing patterns that suppor t the

shor test encoding of the relevant data. T his suggests a possible (although of course

partial) account of the remarkable success of the cognitive system in prediction, under-

standing, and acting in an uncertain and complex environment: that cognitive processes

search for simplicity. I now consider whether this proposal provides a basis for plausible

descr iptive psychological theories. I begin by giving a broad outline of how the proposal

that cognition is guided by simplicity shou ld be understood. I then consider two case

studies, taken from the study of perception and similar ity, which show how this approach

can lead to speci® c theoretical proposals. F inally, I outline in more general terms the

poten tial implications of the simplicity principle for understanding some core aspects of

cogn ition : learning, memory, and reasoning.

Simplicity and Cognition: The broad picture

A Psychological Simplicity Principle. T he normative d iscussion suggests that the

cogn itive system should aim to ® nd the simplest possible interpretation of the information

available to it. But this will not be possible in general. F rom a computational point of view,

the problem of ® nding the shor test encoding of a set of data is generally computationally

intractable. M oreover, it is empirically obvious that peop le do not always ® nd the simp lest

interp retation of the information they are given. A well-known example arises in G lass

patterns (G lass, 1969; G lass & PereÂz, 1973) where there is a spatial translation between

two identical superimposed copies of a random dot pattern. T he simplest interpretation

of such patter ns will, of course, exploit the identity between the two copies of the pattern.

T he relevant code might, for example, ® r st descr ibe one of the random patterns, and then

a translation, which speci® es the relative location of the other copy of the pattern. T his

means that the dots in the second copy of the pattern do not have to be speci® ed

individually, but can be captured at a stroke by their relation to the ® rst copy. But in

order to ® nd such a code, the perceptual system must recognize that the stimulus consists

of two copies of the same pattern. If the spatial separation between the patterns is

suf® ciently small in relation to the spacing between neighbouring dots in each individual

pattern, then the perceptual system does recover the identity between the two copies of

the pattern (subjectively, this is perceived as a ``̄ ow’ ’ in the direction of the tr anslational

sh ift between the two copies). Bu t if the spatial separation is suf® ciently large, then the

G lass pattern is perceived as a completely random ® eld of dotsÐ each of these dots must

therefore be encoded separately, without being able to exploit the relationship between

the dots in each of the superimposed patterns. T hus, there is a shor t descr iption of the

stimulus, but the perceptual system is unable to ® nd it. Chater (1996) considers a more

extreme case: A binary expansion of p represented as a pattern of black or white squares
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would appear completely random; its simple descr iption (as an expansion of p ) cannot be

discovered by the cognitive system. Indeed, this simple descr iption wou ld also elude any

known statistical p rocedure for detecting structure, because the expansion appears to

``pass’ ’ all known statistical tests for randomness (L i & VitaÂnyi, 1997).

A psychological form of the simplicity princip le, therefore, cannot specify that the

cogn itive system succeeds in ® nding the shor test description of the information available

to it. Rather, simplicity shou ld be viewed as a goal of cognitive processing: T he cognitive

system chooses the simplest interpretation of th is information that it can ® nd.

A further important issue in the psychological interpretation of the simplicity principle

concerns mental representation. I noted previously that Kolmogorov complexity theory

abstracts over representation languages, so that the theory can be used as a general

framework for theorizing about cognition without a detailed understanding of the nature

of mental representation. N onetheless, the speci® c representations used by the cognitive

system will be of crucial impor tance in detailed psychological explanation. Indeed, note

that, according to the relationship between simplicity and probability above, the coding

language can be viewed as encoding a set of prior probabilities concern ing possible

patterns. Evidence concerning mental representation from any source may thereby be

useful in providing constraints on the predictions of simplicity-based accounts of cogni-

tion. For example, evidence from linguistics or psycholinguistics concerning the nature of

the mental representations involved in understanding natural language must be taken into

account in any simplicity/ likelihood account of how the cognitive system ® nds structure

in speech.
5

H aving considered how the simplicity principle can be interpreted as a psychological

proposal, I now consider how it can be applied to understanding cognition. I ® r st outline

applications to two speci® c areas: perception and similar ity. I then sketch, in broad terms,

how simplicity can be related to other major topics in cognitive psychology.

Case Study 1: Perception

Perception is, from an abstract point of view, a process of ® nd ing patterns in sensory

input. T hus, a simplicity criterion for choosing between patterns may potentially be

applied across a wide range of aspects of perceptual analysis. For example, in low-level

perception, it has been conjectu red that the compression of the information in the sensory

signal is a cen tral goal (Atick & Redlich, 1990; Barlow et al., 1989; Blakemore, 1990). For

example, lateral inhibition in the retina may be explained as removing local cor relations in

retinal input, thus providing a less redundant and hence more compressed represen tation

of that input. T he goal of compression is frequently viewed as stemming from limitations

in the information-car rying capacity of the sensory pathways. H owever, the viewpoint
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outlined here suggests a complementary interpretation. T his is that compressed (i.e.

simple) percep tual representations are prefer red because of their ``cognitive’ ’ advantages

as outlined above: they tend to involve the extraction of features likely to have generated

the sensory inpu t, to suppor t the best pred ictions, and to provide the best basis for

making decisions. T hus, the compression in the sensory signal may provide the best

representations, as well as minimize problems of information transmission in sensory

pathways.

M oreover, the same principles might equally well be at work in high-level perceptual

processingÐ the simplicity principle seems equally valuable in attempting to understand

the causal structure of a sequence of observed actions or events. T he key goal is to ® nd

patterns that are a reliable basis for explanation and prediction; we have seen that follow-

ing a simplicity principle is a way of achieving goals of th is kind. T he simplicity principle

therefore ® nds potential applications in understanding perception at many scales. Which

areas of app lications prove to be theoretically fruitfu l remains for future researchÐ I now

discuss some areas where the notion of simplicity has already been usefully applied.

Perceptual Organization. H ow does the perceptual system derive a complex and

structured description of the percep tual world from sensory input? Two apparently

competing theories of perceptual organization have been in¯ uential. T he ® rst, initiated

by H elmholtz (1910/ 1962), advocates the likelihood principle: that sensory input will be

organized into the most probable distal object or event consistent with that input. T he

second advocates what Pomerantz and Kubovy (1986) call the simplicity principle: T he

perceptual system is viewed as ® nding the simplest, rather than the most likely, perceptual

organization consistent with the sensory input. But we have already seen that there are

close connections between simplicity and probabilityÐ which suggests that these theories

can perhaps be viewed as identical rather than d iametr ically opposed.

Interestingly, there have long been suspicions that the two principles are not in fact

separate but are two sides of the same coin. Pomerantz and Kubovy (1986) cite M ach

(1886/ 1959): ``T he visual sense acts therefore in conformity with the p rinciple of econ-

omy [i.e. simplicity], and at the same time, in conformity with the principle of p robability

[i.e. likelihood]’ ’ (p. 215), and they suggest that some resolution between the two

approaches might be possibleÐ particular ly in view of the fact that both likelihood and

simplicity explanations typically appear to be available for most phenomena in perceptual

organization. Chater (1996) notes that the simplicity and likelihood principles are indeed

equivalen t under natural interpretations, because of the mathematical equivalence

between simplicity and likelihood that we discussed above.

T he uni® cation of the simplicity and likelihood views appears to be challenged, how-

ever, by empirical results that appear to distinguish between likelihood and simplicity. If

the two principles are identical, empirical evidence distinguishing between them should

not be possible. Chater (1996) argues, however, that such evidence can be interpreted in

both the simplicity and likelihood frameworks. I brie¯ y consider such evidence, and how

it can be seen as compatible with both the simp licity and likelihood viewpoints.

L ikelihood is widely assumed to be favoured by evidence that shows that the preferred

perceptual organization is in ¯ uenced by factors concerning the structure of the everyday

environment. For example, consider two-dimensional projections of a shaded pattern,
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which can be seen either as a bump or an indentation (see e.g. Rock, 1975). T he

preferred in terpretation is consisten t with a light source from above, as in natural light.

T hus, the perceptual system appears to choose the interpretation that is most likely; but

there is no intu itive difference between the simplicity of the two interpretations. But

such phenomena also have a simplicity-based explanation. Consider the simplest

descr iption not of a single stimulus, but of a typical sample of natural scenes. Any

regular ity that is consistent across those scenes need not be encoded afresh for each

sceneÐ rather, it can be treated as a ``default’ ’ . T hat is, unless there is a speci® c

additional part of the code for a stimulus that indicates that the scene violates the

regular ity (and in what way), it can be assumed that the regular ity applies. T herefore,

other things being equal, scenes that respect the regular ity can be encoded more brie¯ y

than those that do not. M oreover, perceptual organizations of ambiguous scenes that

respect the regularity will be encoded more brie¯ y than those that violate it. In parti-

cu lar, then , the perceptual organization of an ambiguous stimulus obeying the natural

regular ity of illumination from above will be br iefer than the alternative organization

with illumination from below. In general, preferences for likely interpretations also give

rise to preferences for simple interpretations: If the code for perceptual stimuli and

organizations is to be optimal when considered over all (or a typical sample of) natural

scenes, it will re¯ ect regu lar ities across those scenes.

Simplicity is assumed to be favoured by cases of perceptual organizations that violate,

rather than conform to, environmental constraints. L eeuwenberg and Boselie (1988) show

a schematic drawing of a symmetr ical two-headed horse. T he more likely in terpretation,

also consistent with the d rawing, is that there are two horses, one occluding the other. But

the perceptual system appears to reject likelihood . Instead, the drawing is interpreted as a

single, two-headed animal. But we can also provide a likelihood explanation of this

phenomenon, where likelihood applies locally r ather than globally. T hat is, the perceptual

system may determine the interpretation of particular parts of the stimulus according to

likelihood (e.g. the fact that there are no local depth or boundary cues may locally suggest

a con tinuou s object). T hese local processes may not always be guaranteed to arr ive at the

globally most likely interpretation (see H ochberg, 1982).

T hus, the evidence that distinguishes between the simplicity and likelihood princip les

is actually compatible with both and therefore does not challenge the uni® cation between

them.

Figural Goodness. Some perceptual patterns are intuitively judged to be more `̀ reg-

ular’ ’ or ``better ’ ’ than others. T hese in tuitive judgements of ` ®̀ gural goodness’ ’ appear to

correlate reliably with the resistance of such patterns to noise and the speed with which

such patterns are detected. Perhaps the most well developed accounts of goodness are

based on the assumption that the goodness of a ® gure relates to the number of symmetr ies

that it possesses with respect to tr ansformations (e.g. re¯ ection, translation, and so on)

(e.g. Palmer, 1983) . But H ochberg and M cAlister (1953) for a different viewpoint

proposed identifying ® gural goodness with simplicity.

One line of argument in favour of H ochberg and M cAlister ’s viewpoin t is that there is

an interesting connection between the simplicity principle in perceptual organizations and

noise resistance of patterns, one of the standard litmus tests for the goodness of a pattern.
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Speci® cally, if the simplicity p rinciple is right, then it follows that simple patterns will be

the most noise resistant.

Why is this true? T he intuitive idea is that the noise resistance of a pattern depends on

a comparison between a ``null’ ’ organization, in which the pattern is not imposed and the

stimulus is viewed purely as noise, and a ``pattern + noise’ ’ interpretation, in which the

stimulus is viewed arising from a pattern that has been cor rupted by noise. Choosing

between these two organizations is, of course, a special case of the general problem of

choosing between perceptual organizations, and accord ing to the simplicity principle, the

preferred organization will be the one that suppor ts the briefest code for the stimu lus.

T he ``null’ ’ organization merely treats the entire stimulus as noise. Suppose that encoding

the stimulus in this way uses S bits of information. T he `̀ pattern + noise’ ’ interpretation

is associated with a code that ® r st speci® es the pattern and then speci® es the way in which

the pattern is `̀ disturbed’ ’ by the noise. Suppose that endcoding the pattern requires P

bits and the noise applied to the pattern requires N bits. H ence encoding the stimulus

using the `̀ pattern + noise’ ’ organization requires N + P bits. According to the simp licity

principle, the ``pattern + noise’ ’ organization will be prefer red when it suppor ts the

shor test code for the dataÐ that is, when N + P < S. T hus, the pattern will be perceived

if the amount of noise N is less than S 2 P. T hus, as the complexity of the pattern, P,

increases, noise tolerance is reduced. T hus, simple patterns should be the most tolerant to

noise.

We can now see why the simplicity principle in perceptual organization implies that

simple patterns will be the most noise resistantÐ because pattern complexity is inversely

related to noise tolerance. G iven that noise resistance is a litmus test for ® gural goodness,

this suggests the possibility that simple patterns will be particularly good. T hus, the

simplicity principle in perceptual organization appears to suggest that simplicity also

governs goodness, as H ochberg and M cAlister propose.

Randomness. If simplicity determines judgements of ``goodness’ ’ or ``regular ity’ ’ , then

this suggests that complexity might determine judgements of ``randomness’ ’ or ``ir regu-

larity’ ’ . T hat is, perhaps judgements of randomness can be viewed as the inverse of

goodness judgements (see e.g. Alberoni, 1962) . If perceived goodness is determined by

the degree to which the cogn itive system succeeds in ® nding structure in the stimulus,

then this suggests that perceived randomness may be determined by the degree to which

the cognitive system fails to ® nd such structure. Interestingly, Falk and Konold (1997)

have recently provided suppor t for this view. T hey give a persuasive theoretical analysis as

well as empirical con ® rmation of the suggestion that subjective judgements of the

randomness of a stimulus are inversely related to the success of peop le’ s attempts to

® nd a br ief code for that stimulus. Indeed, Falk and Konold ’s (1997) analysis proposes

an algorithmic de® nition of randomness dr awn from Kolmogorov complexity theory (L i

& VitaÂnyi, 1997), thus using the same tools as the current analysis of simplicity at a

technical level. T his is a straigh tforward inversion of the simp licity account of goodness:

A stimulus is perceived as r andom to the extent that no simple organization can be found

for it. T hus, the simplicity approach promises to unify the literature on goodness with

that on judgements of randomness (e.g. Bar-H illel & Wagenaar, 1991; Budescu, 1987;

L opes & Oden, 1987) .
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Case Study 2: Similarity

Consider the problem of ® nding patterns in a stimulus consisting of two distinct

objects. Each object may contain internal patterns; but in addition, there may be patterns

that in ter relate the two objects. For example, a shor t description of the stimulus shown in

F igure 3a would exploit the common patterns between the left and right object; speci® -

cally by noting that one is the mirror image of the other in a vertical axis of symmetry.

T he pattern in ter relating the two par ts of the stimulus is very strong; once one half of the

stimulus is descr ibed, the other can be generated very simply, by specifying the axis of

symmetry. F igure 3b shows a pair of objects that share somewhat less structu reÐ specify-

ing one in terms of the other requires a re¯ ection and the interchange of black and white.

F igure 3c shows a case where there is less structure still; to specify one object in terms of

the other requires an additional translation of the inner ® gure.

Suppose that we ask: H ow similar are the pairs of objects in F igure 3? Intuitively,

similar ity appears to decrease from (a) to (c). T hus, the more shared patterns between two

stimuli, and therefore the more simply one can be speci® ed in terms of the other, the more

similar they are. G eneralizing this observation leads to the proposal that the judged

similar ity between two objects depends on the complexity of the transformation from

the representation of one object to the representation of the other. If the shor test tran-

formation is simple, then the representations are similar; if the shortest tranformation is

complex, the representations are dissimilar. In terms of Kolmogorov complexity, the

complexity of the transformation between two representations is measu red by the con-

ditional K olmogorov complexity, K (y| x), introduced previouslyÐ the length of the shor t-

est program that transforms x into y. Bennett, G aÂcs, L i, VitaÂnyi, & Zurek (in press) have

developed a deep mathematical theory showing why measures based on conditional

Kolmogorov complexity provide a natu ral de® nition of the `̀ distance’ ’ between two

representations (see also L i & VitaÂnyi, 1997). N ote, however, that just as the cognitive

system can judge simplicity only approximately (because there are simple codes that it

cannot ® nd), it can judge only approximately the complexity of a transformation between

two representations (because there will be simple transformations that it cannot ® nd).

T hus, the degree of similarity between two cognitive representations will depend on

the code length of the shor test tranformation that ``distor ts’ ’ one representation into the

other that the cognitive system can ® nd . U lrike H ahn and I (Chater & H ahn, 1996; H ahn

& Chater, 1997) have called this the representational distortion theory of similarityÐ the

simpler the transformation the cognitive system ® nds between the representations of a

pair of objects, the more similar those objects are assumed to be.

Representational distor tion provides an interesting generalization of current psycho-

logical theories of similarity. T he two leading accountsÐ the geometric and featural

viewsÐ also treat similarity as a relation between mental representations. But whereas

representational distor tion applies to any kind of representation and allows arbitrary

computable transformations between them, these theories are committed to speci® c types

of representations and particular relations between them.

T he geometr ic view (Shepard, 1987) assumes that objects are represented as points in

an internal space. T he similar ity between two objects is inversely related to the distance

between their representations in this space. By con trast, the set- theoretic view (T versky,
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1977) assumes that objects are represented as sets of features. T he similar ity between two

objects depends on the degree of overlap between their sets of features. T he representa-

tional limitations of both accounts are severe. It does not seem possible to represent

perceptual organizations, parsed sentences, schemas for world knowledge, or sequences

of motor commands either as points in an internal space or as sets of features. Rather, they

appear to require structured representations, which are able to cap ture relations between

parts and wholes and to capture systems of relations between parts (Chomsky, 1965;

Fodor, 1975; Fodor & Pylyshyn , 1988; M arr, 1982; M insky, 1977) . In shor t, structured
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representations appear to be required to represent almost all cognitively signi® cant sti-

muli; and judgements of similar ity between such stimuli thereby fall outside the scope of

both geometric and set-theoretic accounts of similarity.

I stress that representational distor tion, like the geometric and set- theoretic views, is

de® ned over mental represen tations of objectsÐ not over the objects themselves. T o see

why this is crucial, consider the psychological similar ity of two unrelated bursts of white

noise. At an acoustic level of descr iption, where the bursts are considered as amplitudes

varying over time, a very long set of instructions would be required in order to transform

one of these bu rsts into the other. But the two noises may, nonetheless, be judged to be

similar, even to the extent that the auditory system cannot distinguish the two. According

to this account, this is because the mental representations of the two bursts do not include

minute details of each aspect of the noise. Instead , they give a more general descr iption,

perhaps concerning the duration, loudness, or location of the bur st. T hese properties may

be largely or completely matched between stimu li, so that the mental representations of

the two sounds are identical, or they may differ only slightly, and hence the representa-

tional d istor tion between them is small.

I stress again that the representational d istor tion found by the cognitive system will

correspond only approximately to the conditional Kolmogorov complexityÐ that is, the

code length of the shor test transformation found by the cognitive system will only

approximate to the code length of the absolutely shor test transformation. D iscovering a

transformation with a shor t code between one representation and another may requ ire

arbitrary amounts of computation. For example, the sequences 1 5 3 7 2 3 9 0 6 and 3 0 7 4

4 7 8 1 2 are very simply relatedÐ if they are interpreted as base-10 numbers, the second

is double the ® rst. H ence the representational distor tion between the two sequences is

small; however, the cognitive system may not ® nd this shor t transformation; and the

similar ity between the two representations may be judged to be low. We assume therefore

only that the cognitive system can approximate representational distor tion to some

degree.

Geometric and Set-theoretic Theories are Special Cases
of Representational Distortion

I have noted that representational distor tion is a very general account of similar ity, in that

it applies to represen tations of any kind. But it is also possible to view representational

distor tion as a generalization of both the standard psychological accounts of similarity: the

geometric and set- theoretic models. I shall give an in tuitive sketch of why th is is so,

omitting mathematical details for brevity.

The Geometric Account. Representations are limited to vectors of numbers. T rans-

formations are limited to sequence of ``nudges’ ’ of unit length (this length can be thought

of as a limit of resolution in the space), and a ``program’ ’ consists of a sequence of such

nudges. If nudges can be in any spatial direction, then the simplest transformation

between two points is given by the distance of the straight line path between the points

(this is the length of the program of concatenated nudges, ignoring the cost of specifying

the direction of a nudge). T his gives the Euclidean version of the spatial model, wh ich is
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frequently used in psychological modelling. If the nudges can occur only along the axes,

then the representational distor tion between any two items will depend on the sum of the

distance between them for each axis. With this restr iction, the represen tational distor tion

account is identical to a spatial model with a ``city-block’ ’ metric, which is another

commonly used model in psychological models of similar ity. F inally, if the axes in space

can be non -or thogonal axes, the resulting representational distor tions models correspond

to the general Euclidean scaling model (Ashby & Townsend , 1986). So a range of

geometric models of similarity can be viewed as generalizations of the representational

distor tion account.

The Set-theoretic Account. Representations are limited to sets of features. T ransfor-

mations are limited to the deletion and addition of features one by one. T hus a program

consists of a sequence of deletions and additions. Assuming d ifferential length for deletion

and addition (speci® cally, deletion has the shorter code, because additions require speci-

fying what is to be added), program length is then determined from a weighted sum of the

number of features that object A has and object B does not (which must be deleted) and

that B has but A does not (which must be added). T he length of this program is a close

variant of T ver sky’s (1977) theory of similar ity.

Properties of the Representational Distortion Theory of
Similarity

I now consider brie¯ y some basic properties of representational distor tion that suggest

that it is a promising starting point for a psychological theory of similarity.

Flexibity. T he fact that similarity is de® ned over general representations takes

account of the great ¯ exibility of human similar ity judgements (e.g. M edin, G oldstone,

& G entner, 1993), because similar ity is de® n ed over representations of objects, and the

goals and knowledge of the subject may affect the representations that are formed. As

with the set- theoretic models (T versky, 1977) , this ¯ exibility has both advantages, in

terms of accounting for the ¯ exibility of people’s similarity judgements, and disadvan-

tages, from the point of view of deriving testable empirical predictions.

Similarity and Identity. According to representational distor tion, each object is more

similar to itself than to any other object. T his is because the shor test possible programme

is the ``empty’ ’ programme, wh ich, clearly, leaves any representation unchanged: in

symbols, K(x| x) = 0. T hu s, the representational distor tion viewpoint automatically

captu res the fundamental intuition that identity is the most extreme form of similar-

ityÐ an intuition that appears central to the very notion of similar ity (Hahn & Chater,

1998).

T his property of representational distor tion seems attractive, but it appears to run

coun ter to data obtained by T versky (1977), which appear to show that the similar ity

between distinct objects can sometimes exceed the similar ity between identical objects.

H owever, it may be too early to take the drastic conceptual step of rejecting the in tuition

that identity is the most extreme form of similarity.
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Asymmetry. Representational d istor tion allows for asymmetry in similar ity judge-

ments: K(x| y) is not in general equal to K( y| x). T his asymmetry is particularly apparent

when the representations being tr ansformed differ substantially in complexity. Suppose

that a subject knows a reasonable amount about China but rather little about Korea,

except that it is ``rather like’ ’ Ch ina in certain ways. T hen tr ansforming the represen tation

of China into the representation of Korea will require a reasonably shor t program (which

simply deletes large amounts of information concerning China that are not relevant to

Korea), whereas the program transforming in the rever se direction will be complex, as the

minimal information known about Korea will be almost no help in constructing the

complex representation of China. T hus, we would predict that K (China| Korea) should

be greater than K (Korea| China), and hence that Korea should be judged to be more

similar to Ch ina than China is to K orea. T his is observed experimentally (T versky, 1977) .

Background Knowledge. Similarity judgements are in¯ uenced by background knowl-

edge. For example, if the Arabic number system is part of your background knowledge,

then you may perceive similarities between otherwise dissimilar patterns. T o choose a

simple example, a typewritten `̀ 7’ ’ may, when considered as a mere pattern of dots, look

completely different from a scrawled hand-written ``7’ ’ . But for a person who knows the

Arabic number system, the two patterns are percieved as very similar, because they are

both encoded as ``sevens’ ’ . It is dif® cult for any theory of similar ity to explain the role of

background knowledge. In the spatial view, the natural role of knowledge is in specifying

the dimensions of the space in which the comparison takes place, as well as assigning

weights, wh ich determine the relative impor tance of each dimension (effectively by

stretch ing or squashing the space along the relevant dimension). In the set-theoretic

view, background knowledge can play a role in determining the featu res that are taken

into account in the comparison. In both cases, the role of knowledge is to affect the

representations that are the input to the comparison process. Similarly, background

knowledge may affect the representations that are compared, according to the view that

similar ity is representational distor tion. But, moreover, the representational distor tion

account allows an additional way in which background can affect similar ity comparisons:

by assuming that background knowledge forms an additional input to the program that

transforms one object into another. T hus, background knowledge affects what operations

are available in transforming one representation into anotherÐ for example, a knowledge

of the number system might suggest all manner of numerical transformations that might

relate two numbers (e.g. having the concept of a pr ime might increase the degree to which

peop le judge 43 and 47 to be similarÐ partly because one can be generated from the other

by the instruction ``next pr ime’ ’ or `̀ previous prime’ ’ ). Peop le with different mathematical

knowledge might thereby have different judgements about which numbers are similar.

M ore drastically, peop le who use different mathematical notations will thereby have

dramatically d ifferen t judgements concerning the similarities between patterns cor re-

sponding to formulae expressed in various notations.

T hus, representational distor tion provides a r ich framework for understanding how

background knowledge in¯ uences similarity judgementsÐ knowledge can readily in¯ u-

ence the nature of the similarity comparison itself, as well as changing the representations

that are inputs to the comparison (see H ahn & Chater, 1998, for d iscussion of related
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issues). It remains for future work to determine to what extent this account can capture in

detail the way in which people’s similar ity judgements are in¯ uenced by their background

knowledge.

Summary. T o sum up, the represen tational distor tion approach to similar ity arises as

follows. If the cognitive system searches for the simplest interpretation of the information

available, then it will aim to exploit regularities between differen t represen tations. T he

strength of the shared regularities between two objects can be measured by the conditional

Kolmogorov complexity between them: let us call the cognitive system’s approximation to

this quantity `̀ representational distor tion ’ ’ . Rep resentational distor tion can be viewed as a

generalization of the two standard psychological models of similarity: the spatial and set-

theoretical models. M oreover, it has a number of intuitively attractive properties. An

interesting p roject for future research is to attempt to develop this theoretical account in

more detail, and to provide experimental tests for this approach (see Chater & H ahn , 1996) .

Simplicity as a General Principle in Cognition

I now tu rn from speci® c case studies, to consider more generally how the simplicity

principle may apply to cogn ition , brie¯ y considering three areas: learning, memory,

and reasoning.

Learning from Experience. L earning from experience
6

is a problem of ® nding patterns

in what are typically large amounts of complex and often noisy data. It therefore falls

naturally within the domain of application of the normative theory of ® nding patterns by

searching for simplicity. M oreover, theorists have directly proposed that cer tain aspects of

language acquisition may proceed by ® nding the shor test possible encoding of the input

linguistic data. For example, Brent and Cartwright (1997) show how morphological

structure can be found within isolated words, Wolff (1977; see also Redlich, 1993)

considers how higher level structure can be found automatically in text. L ess directly,

connectionist networks, cur rently perhaps the most popular computational models of

human learning (Elman et al., 1996) can be interpreted as implementing Bayesian

probabilistic inference (M acK ay, 1992; N eal, 1993), and thus, by the connection between

probability and simplicity, as maximizing simplicity. Indeed, much recent interest in the

technical literature on connection ists networks has focused on directly viewing networks

as minimizing descrip tion length and, therefore, as maximizing simplicity. T hus, many

current psychological models of learning are compatible with the thesis that the cognitive

system maximizes simplicity.

Memory. T he claim that the cognitive system searches for patterns that provide the

br iefest encoding of available information has an impor tan t side-effect in terms of

memory: that the cognitive system thereby seeks to minimize memory load. Br ief
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explanations are, I have argued, useful for explanation, prediction, and actionÐ but

for tunately they also require the least space in memory.

As pointed out by pioneer s of the application of information in psychology (Attneave,

1959; G arner, 1962, 1974), this point of view leads to the prediction that the richer the

patterns that the cognitive system can ® nd in a stimulus, the shor ter its code will be, and

hence the better it will be remembered. T his is a ubiquitous ® nding in all areas of memory

research, from the memory advan tage for words over nonsense letter strings, to the

memory advantage for meaningful pictures over meaningless patterns, and for compre-

hensible stor ies over incomprehensible passages.

It is important to note that this account, although focusing on brevity of encoding as a

theoretical construct, does not depend on the assumption that the memor ies are stored as

br ie¯ y as possibleÐ that is, with no redundancy. Indeed, it has frequently been observed

that this kind of storage would be inappropriate for the cognitive system, because it would

not be robust to noise. But even if memories are stored redundantly, the cognitive system

shou ld still search for shor test descr iptions to achieve the best memory performance.

Information theory speci® es that constructing an optimal redundant code is achieved by

® rst ® nding the simp lest encoding, and then introducing redundancy so that each part of

this code is equally protected from corrup tion (Cover & T homas, 1992). T hus, for a given

stimulus, ® nding a br ief encoding will allow the construction of a better redundant

representation to use for storage, which will thereby be noise resistant and hence better

remembered.

Reasoning. T he simplicity principle provides a normative account of inductive infer-

ence, as we have seen. T hus, it may provide a star ting point for understanding aspects of

reasoning that are traditionally viewed as inductive: for example, how scientists choose

between theories or how people learn the causal structure of the world from experience.

But here we focus on a more general connection between the simplicity principle and a

general conception of human reasoning as fundamentally probabilistic rather than logical

in character.

In a ser ies of papers (Chater & Oaksford , 1990, 1993; Oaksford & Chater, 1991, 1992,

1993, 1995b), M ike Oaksford and I have argued that almost all everyday reasoning is

uncertain: people draw conclusions that are plausible, but not cer tain, given the available

premises. We have argued that probability theory, the calculus of uncertainty, is therefore

a more approp riate starting point for understanding human reasoning than logic, the

calculus of cer tain ty. M oreover, we have argued that people interp ret classic psychological

reasoning tasks, which are typically assumed to be deductive, in p robabilistic terms, and

solve them using strategies that can be understood in probabilistic terms. T hus, we argue

that people are not logical but that they are rational; L ogic is simply the wrong standard

against which to assess most human reasoning. T his viewpoint has proved useful in

providing detailed models of a range of standard reasoning tasks, including Wason’s

selection task (Wason, 1966, 1968; Oaksford & Chater, 1994, 1995a; Oaksford, Chater,

G rainger, & L arkin , 1997; see Almor & Sloman, 1996; Evans & Over, 1996b; L aming,

1996 for critical discussion and Oaksford & Chater, 1996, for a response), syllogistic

reasoning (Chater & Oaksford, in press) and conditional inference (Oaksford, Chater, &

L arkin, 1997). Because of the duality between simp licity and probability, discussed
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previously, the probabilistic interpretation of human inference is immediately compatible

with the simplicity principle: Any problem of maximizing probability is equivalent to a

problem of maximizing simplicity. So the probabilistic view of human reasoning can be

reinterpreted as embodying the simplicity principle.

N ote that although this viewpoint proposes that simplicity/ probability is a goal of

reasoning, it allows that th is goal will be only approximately achieved. T heorists d iffer

on how good such an approximation might be. Kahneman and T versky have argued that

their experimental results showed strong departures from the norms of probability theory

under cer tain conditions (e.g. K ahneman & T versky, 1973; Kahneman, Slovic, & T versky,

1982), although the reasoning heuristics (availability and representativeness) that they

proposed people use, are usually reasonably reliable in normal circumstances. But

G igerenzer and h is colleagues (e.g. G igerenzer, H ell, & Blank, 1988; G igerenzer &

M ur ray, 1987) have argued that K ahneman and T versky may have substan tially under-

estimated the normative correctness of human probabilistic reasoning, and they have

shown that experimental manipulations that clar ify the task for the experimental partici-

pant can dramatically improve the ® t between reasoning performance and probabilistic

nor ms.

M ore recently, however, G igerenzer and G oldstein (1996) and Evans and Over (1996a)

have proposed that human performance should not be compared with any normative

theories, such as logic or probability theory (or, in the present context, the simp licity

principle). T hey argue that such normative accounts are entirely unnecessary for under-

standing human reason ing. Speci® cally, G igerenzer and G oldstein (1996) argue that

reasoning should be understood as consisting of `̀ fast and frugal’ ’ h euristics, which are

adaptively successful but not normatively justi® ed; and Evans and Over (1996a) argue

that much human reason ing is `̀ rational1 ’ ’ , that is, successful with respect to achieving a

person’ s goals, but not `̀ rational2 ’ ’ , that is, conforming to a normative analysis. Both these

viewpoints suggest that reasoning may consistently succeed without conforming, even

approximately, to any normative standard. T his seems unsatisfactory, because it leaves the

success of human reasoning unexplained (see Chater, Oaksford, N akisa, & Red ington ,

1997). By contrast, the simplicity principle has a normative justi® cation and also is

intended to descr ibe cognitive performance.

SCOPE AND LIMITS

I have proposed that the search for simplicity is a fundamental cognitive princip le, with

poten tially broad application in constructing psychological theories. In this section , I list a

number of impor tant limitations for this approach.

Representation

If simplicity is de® ned in terms of brevity in a representation language, then simp licity

will depend crucially on that representation languageÐ thus, obtain ing detailed psycho-

logical predictions from the simplicity p rinciple requires making speci® c assumptions

about mental representation. I noted above that Kolmogorov complexity theory is able

to abstract away from the speci® c cod ing language being used, because code lengths in
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any two languages are equal up to a constantÐ but this constant may be large in relation to

the number of data available in speci® c psychological applications. T his means that

speci® c theories of representation concerning differen t cognitive domains will be required

to build detailed psychological accounts based on simplicity.

T he viability of simplicity-based accounts of cognition can be assessed by constraining the

coding language to determine simplicity by independent theoretical and empirical evidence

concerning the relevant aspect of mental representation. L eeuwenberg and colleagues

(Buffar t et al., 1981; L eeuwenberg, 1969, 1971) have pursued this approach in assessing

the viability of their coding language for certain classes perceptual stimuli, by developing

what they call structural information theory (e.g. van der H elm, van L ier, & Leeuwenberg,

1992; van L ier, van der H elm, & L eeuwenberg, 1994a, 1994b) . Similar programs of

research may be possible with respect to other applications of the simplicity princip le.

Search

I have argued that the simplicity is the criterion with which the cognitive system chooses

between alternative patterns that may be imposed on the environment. But I have also

noted that the cognitive system cannot, in general, maximize simplicityÐ in general,

® nding the shor test code for a set of data is uncomputable; and even restr icted versions

of the problem are generally combinator ially explosive. T his means that the subop timal

solutions found by the cognitive system will depend on the natu re of the search process.

Speed

T he discussion so far has also ignored cognitive limitations concerning speed of proces-

sing. In language processing, for example, immensely complex patterns in a speech wave

can be decoded within fractions of a second (e.g. M arslen-Wilson, 1973). In view of the

slowness of neural hardware, this suggests that the search process must take only a small

number of stepsÐ this places very strong constrain ts on the nature of the search process

(Chater & Oaksford, 1990; Feldman & Ballard, 1982; Rumelhart & M cClelland, 1986) .

Speed also plays an impor tant role in another way: T he representaions used by the

cogn itive system must not on ly be brief but be easy to use quickly. In some contexts, there

may be a trade-off between brevity and speed. Consider an example from computer

science: Ar ithmetical operations may be rapidly computed by consulting a large look-

up table in which the answers to particular arithmetic operations are prestored (particu-

larly if this table can be searched in parallel); by contrast, a more compact represen tation

of arithmetic, for example, in terms of axioms in some logical language, may be much

br iefer, but they require much more computation to use. T his tension between cognitive

goals of speed and brevity may also be impor tant in psychological contexts.

Innate Constraints

T he simplicity viewpoint outlined here may appear to be tied to a strong empiricist view

of cognitive development. T he emphasis has been on the criteria that the cognitive system

can use to ® nd patterns; this assumes that the patterns have to be found from experience,
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rather than being innately speci® ed. N onetheless, the simplicity viewpoint is equally

compatible with empiricist and nativist viewpoints. Even strong nativists require that

the cognitive system searches for patternsÐ but they claim that this search is subject to

strong innate constraints. For example, strong nativist viewpoints regarding language

acquisition typically involve the claim that the child can entertain only a restr icted set

of grammars (e.g. Chomsky, 1980; Pinker, 1984). But the problem of ® nding the cor rect

grammar most compatible with linguistic experience is still immensely d if® cult (e.g. see

Red ington & Chater, 1998, for discussion), and this pattern- ® nding problem may still be

guided by simplicity. T he restriction to a small set of grammars amounts to having

constrained internal representation in terms of which lingu istic hypotheses can be stated.

But the simplicity principle may nonetheless apply: T he grammar chosen may be that

which provides the briefest encoding of linguistic input (see, e.g. Brent & Cartwr ight,

1997; G ruÈ nwald, 1996; Wolff, 1988) . M ore generally, the simplicity principle applies to

problems of ® nding patterns in the world from experience, whether or not ® nding such

patterns is guided by innate constraints.

The Importance of Interests

I have so far considered the cogn itive system as engaged in a disinterested search for

patterns. T his leaves out the fact that some patterns are relevant and others irrelevant

to the interests of the agent. Clear ly, people are more concerned with each other’s faces

than with patterns of shadow; and they are more concerned with each other ’s voices than

with the sounds of footsteps or distan t traf® c. Faces and voices are interesting not merely

because they contain r ich patterns, but because they are of fundamental impor tance in

relating to other people, and thereby are relevant to achieving almost any goal a person

may have. Equally, it seems plausible that the percep tion of the physical world is to some

degree geared towards the detection of affordances (G ibson, 1979)Ð properties of objects

that are potentially relevant to the actions of the agen t (e.g. whether an object can be

eaten, lifted, thrown, and so on).

T he role of interests is beyond the scope of the simplicity princip le but compatible

with it. Interests affect how much cognitive effor t is directed towards ® nding different

kinds of patterns; but the pattern - ® nding process may, nonetheless, proceed without

reference to interests and may be guided only by simplicity. Scienti® c research provides

an appropriate analogyÐ various pr actical in terests may determine the level of resources

devoted to different areas of research, but the research itself shou ld use disinterested

scienti® c criteria, that is, that such research should proceed without reference to those

interests. Indeed, it is generally assumed that interests must not be allowed to in¯ uence

scienti® c research directly (e.g. the conclusions reached should be based purely on evi-

dence, rather than choosing conclusions on the basis of political or social convenience), if

scienti® c research is to be valuable to society. Similarly, I assume that a separation between

interests and the criteria for ® nding patterns is cognitively desirable. Of course, such a

separation may not always be achieved. It is anecdotally clear that people do tend to

believe what they want to believe. But in general we do not see, hear, and infer only what

we wan t to see, hear, and infer; and were this the case, the consequences would p resum-

ably be disastrous (see Fodor, 1983, for related discussion). Indeed , the remarkable
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success of the cognitive system suggests that, to a large degree at least, human reason is

successfully insulated from the interests that it serves.

CONCLUSIONS

M any cogn itive processes ® nd patterns in experienceÐ from percep tion to scienti® c

thinking. I suggest that the cognitive system searches for the patterns according to

simplicityÐ where simple patterns are those that allow a br ief speci® cation of the available

data. T his is normatively justi® ed as provid ing a sound basis for prediction and explana-

tion and provides an attractive framework for descr iptive psychological theories in a range

of cognitive domains. I propose that it is worth exploring further the hypothesis that the

search for simplicity is a fundamental cognitive principle.
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