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simplest model (e.g., the one with the least “free” parameters). In
fact, smaller networks are well known to provide superior general-
ization (e.g., Baum & Haussler 1989). In this respect, the argu-
ments of C&T would have been more convincing if six- or more bit
parity were used, so that the mapping could be carried out with
fewer free parameters (i.e., weights) than training patterns. Since
avoiding local minima in minimal six- (or more) bit parity networks
is extremely difficult and since it is unlikely that real brains use
minimal networks we shall pass over this point.

One natural way to achieve model simplification is by constrain-
ing the search space, and one natural constraint might be the
imposition of symmetry, that is, start learning assuming maximal
symmetry and only relax that assumption as each level of symme-
try is found to fail to exist. This will automatically reduce the
effective number of free parameters. For example, imposing a
symmetry on the weights is sufficient to give good generalization
for the four-bit parity problem. Here we constrain the weight
solutions to lie on the hyperplanes in weight space corresponding
to weights that are symmetric with respect to the input units. This
might be implemented in a learning network by constraining the
weight changes to be the same for each input unit. This reduces
the problem to 13 degrees of freedom and requires only 16.3
million random attempts to find 20 solutions. The symmetry
guarantees that all these solutions will generalize correctly. Such
“weight sharing” is known to improve generalization more gener-
ally (e.g., Nowlan & Hinton 1992).

Another natural constraint we may impose is to assume that
local information is more important than distant information until
such an assumption is proven incorrect. We may view this to be at
work in Elman’s grammar acquisition network as discussed by
C&T. Elman (1993) implemented these constraints with incre-
mental learning schemes. This is in fact another poor example,
since the network not only fails to generalize but also has insuffi-
cient processing power to learn even the raw training data (Elman
1993, p. 76). A more powerful recurrent network, or a network
with appropriate input buffers or time delay lines, should not have
this problem, but there is no reason to suppose that this would
improve generalization as well. In time-buffered networks we can
constrain solutions to make maximal use of local information by
having a smaller learning rates for weights corresponding to longer
range dependencies. This approach has also, for example, been
shown to improve generalization in past tense acquisition models
for which the inflection is usually, but not always, determined by
the final phoneme of the stem and in models of reading aloud for
which long range dependencies are relatively rare (Bullinaria
1994). Similar constraints may be implemented by weight decay
and are also known to improve generalization (e.g., Krogh & Hertz
1992).

Simple constraints on the weight space may not be sufficient to
improve generalization for all type-2 problems, but the examples
given above indicate that it does have a range of applicability. One
might argue that such constraints are just a convenient way to
implement the representational recodings of Clark & Thornton,
but if that is the case we would seem to have a continuous
spectrum of constraints and their type-1/type-2 distinction be-
comes rather fuzzy.

What is the type-1/type-2 distinction?
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Abstract: Clark & Thornton's type-1/-2 distinction is not well-defined.
The classes of type-1 and type-2 problems are too broad: many nocompu-
table functions are type-1 and type-2 learnable. They are also too narrow:
trivial functions, such as identity, are neither type-1 nor type-2 learnable.
Moreover, the scope of type-1 and type-2 problems appears to be equiva-
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lent. Overall, this distinction does not appear useful for machine learning
or cognitive science.

1. Why probabilities? Clark & Thornton (C&T) frame the
learning problem as deriving a conditional probability distribution
P(Y1X), where Xand Yare sets of possible inputs and outputs, from
a set of input-output pairs, (x, y). This is puzzling, because the
learning systems that C&T consider (e.g., feedforward neural
networks) produce a single output, given each input, rather than a
conditional probability distribution over all possible outputs.!
Moreover, C&T state that if a pattern (x, y) has been encountered,
then P(y]x) = 1 (sect. 2, para. 4), which indicates that they assume
that the conditional probability distribution is degenerate - that is,
for each input there is a single output. So they appear not be
concerned with learning arbitrary conditional probability distribu-
tions, but rather with learning functions from input to output.

2. All conditional probability distributions are Type 1 learn-
able. C&T say a distribution to be learned "P(ylx) = p might be
[type-1] justified if . . . P(y]x') = p, where X is some selection of
values from input-vector x. . ." (sect. 2, para. 4). Suppose X’ is the
selection of all values of x — that is, x' = x. Then it trivially follows
that P(y|x) = p if and only if P(y]x’) = p. That is, all conditional
probability distributions, including as a special case all functions
(including the uncomputable functions), are type-1 learnable.

Note that adding the stipulation that x' cannot include all of x
does not help. This can be circumvented by adding irrelevant
“dummy” values to each input vector (e.g., a string of 0s) - the
learning problem is now just as hard as before. Then the selection
x' does not take all elements of the input; it ignores the dummy
values. But as before P(¥{x) = p if and only if P(|x') = p.

3. The problem of novel outputs. From the above, it seems that
C&T's definition does not capture their intuitive notion suc-
cessfully. From the examples they give, it seems that they intend
that P(y|x') is not an arbitrary probability distribution, but rather
that it is estimated from frequencies in the input data by F(y, x')/
F(x'), where F(x') is the number of occurrences of patterns which
match x on the selection x' of values, and F(y, x') is the number of
such patterns associated with output y.

But this definition is also inadequate in general, because it
means that any novel output y, ., must be assigned probability 0,
because F(y,,,,.n ') = 0, precisely because y,,,...,has not occurred
in the training set. This means that the class of type-1 problems is
very restrictive. It does not include the identity function (in which
each input is mapped to a different and hence novel output).

C&T face a dilemma. If they follow their stated definition, then
all conditional probability distributions are type-1 learnable. If
they follow the frequency-based analysis they use in the text, then
no conditional probability distribution which assigns a nonzero
probability to any unseen output is Type 1 learnable, which seems
drastically restrictive.

Furthermore, the frequency-based approach also faces the
problem that probabilities can never be estimated exactly from a
finite amount of data, and therefore that the F(y, x')/F(x') will not
in general equal P(y{x’) = p. The best that such an estimate can be
is probably approximately correct, in some sense (e.g., Valiant
1984).

4. What does type-2 learning mean? C&T say a distribution to
be learned “P(y|x) = pmight be [Type 2] justified if . . . P[y{g(€ X)
= z] = p, where gis some arbitrary function, € Xisany seen input,
and z is the value of function g applied to x." (sect. 2, para. 4).

This formulation is difficult to interpret, because it uses nota-
tion in an unconventional way. But from the later discussion, the
appropriate interpretation appears to be this: the function g maps
some subset S of previously seen inputs onto a common output, z.
We estimate the conditional probability (presumably that which
C&T call “Plylg (E X) = 2] = p") by the number of members of S
which produce output y, divided by the total number of members
of 5.

As with type-1 problems, this means that the conditional proba-



bility of all novel outputs must be zero for a problem to be type-2
learnable, for the same reason: the frequency count for novel
outputs is necessarily 0. So the identity function is not type-2
learnable either.

But worse, all the nonnovel outputs can be justifiably predicted
with probability 1. Suppose that a previous input, x,,,.., was paired
with the output y,,... Then define g such that g(x) = z (where xis
the novel input), and g(x,,,.,) = 2 g(X) = z + 1, for all other
previously seen inputs x,,... g is a "recoding” of the inputs that
classifies the novel input x with a single past input x,,.,. The
subset, S, defined above, has one member, which produced output
Vorere 50 that the estimated conditional probability is 1/1 = 1.

ence, the arbitrary output y,,., is justifiably predicted with
probability 1. An analogous argument extends not just to a single
novel x, but to all possible novel x. In short, any function whatever
which generalizes from the seen instances to the unseen instances
is type-2 learnable, even the noncomputable ones (so long as there
are no novel outputs).

Note that type-2 problems appear to have the same (rather
bizarre) scope as type-1 problems. They are both too broad and
too narrow in the same way.

NOTE

1. The output of neural networks can be viewed as a probability
distribution over possible outputs if, for example, outputs are binary and
intermediate values are interpreted as probabilities (e.g., Richard &
Lippman 1991). A different approach assumes that outputs are distorted
(for example by Gaussian noise). This is useful in understanding learning
in Bayesian terms (Mackay 1992). Moreover, some networks implicitly
produce conditional probability distributions by generating a distribution
of outputs over time (e.g., the Boltzmann machine; Hinton & Sejnowski
1986). None of these approaches seems relevant to C&T's discussion.
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Abstract: Uninformed learning mechanisms will not discover “type-2"
regularities in their inputs, except fortuitously. Clark & Thornton argue
that error back-propagation only learns the classical parity problem -
which is "always pure type-2” — because of restrictive assumptions implicit
in the learning algorithm and network employed. Empirical analysis
showing that back-propagation fails to generalise on the parity problem is
cited to support their position. The reason for failure, however, is that
generalisation is simply not a relevant issue. Nothing can be gleaned about
back-propagation in particular, or learning in general, from this failure.

1. Introduction. Clark & Thornton (C&T) argue that many
learning problems involve “type-2" mappings, characterised by
“attenuated existence in . . . training data.” Thus, their discovery
by an uninformed learning device (such as back-propagation)
presents intractable problems of search. Once serendipitously
found, however, the type-2 mappings can be exploited in further,
modular learning. It is hard to argue against the principle of such
recoding playing an important part in learning: indeed, it is almost
a truism in cognitive science. Rather, | wish to show that C&T's
detailed supporting arguments based on the empirical inability of
back-propagation to generalise on the classical parity problem are
mistaken.

2. Parity, generalisation, and mind reading. As with many
others, my interest in neural computing blossomed when I ob-
tained McClelland and Rumelhart's Explorations in parallel dis-
tributed processing in 1988. As its advertised purpose was to
encourage experimentation, | tried to get the bp program to
generalise on the 2-variable parity (XOR) problem. Given a
network with 2 input nodes, 2 hidden nodes, and a single output,
together with the first three lines of the truth table:
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N X ¥
0 0 = 0
0 1 = 1
1 0 = 1

could bp generalise to find the missing line:

11 = 07

I soon realised that was a silly thing to expect. How could any
machine learning procedure generalise on this problem? The
y-output for the unseen mappings is entirely arbitrary and hence
unpredictable from the three seen mappings, although the uncon-
ditional probability P(y = 1) = 0.67 on C&T's argument favours a
1 output corresponding to a learned OR solution. Expecting the
back-propagation network to generalise consistently to the XOR
function — rather than the simpler OR function - solely on the
basis that this is what in the experimenter’s mind, amounts to
expecting the network to be a mind-reader. Parity is not a gener-
alisation problem! Yet this seems to be a cornerstone of C&T's
thesis. To quote: “parity cases ... do not really warrant any
optimism concerning the chances of backpropagation . . . hitting
on the right recodings.” Thus, the inability to generalise on the
parity problem is taken to have implications for cognition when,
clearly, it does not.

This inability is apparently well-known to Elman who writes
(1993, p. 85): “If the fourth pattern (for example) is withheld until
late in training, the network will typically fail to learn XOR.
Instead, it will learn logical OR since this is compatible with the
first three patterns.” Presumably, by “compatible” he means the
unconditional probabilities favour the OR solution. As pointed out
above, however, the polarity of the output for the unseen input
combination is arbitrary. To this extent, both XOR and OR are
equally “compatible” with the first three patterns.

[ ran several simulations on the first three patterns using bp. In
20 out of 20 repetitions, the linearly-separable OR solution was
always found. The hidden-layer representation was always that of
one unit having weights and biases corresponding to an OR
separating “hyperplane” like that labelled line I on Figure 1 while
the other “did nothing,” that is, its weights and biases corre-
sponded to a line which did not separate the input patterns at all.
While there is a finite chance that this "do nothing” line just
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Figure 1 (Damper). Possible separating “hyperplanes” for the
2-input parity problem, corresponding to the decision boundaries
formed by the two hidden units. In this simple case, the hyper-
planes are lines.
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