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Probabilistic models of cognition: where next?
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This Special Issue surveys the state of the art of
probabilistic models across a broad range of topics in
cognitive science. We suggest that the present shift
towards probabilistic methods has deeper origins: viz.,
conceptual and technical developments in probability
theory and statistics that provide the machinery to engage
with cognitively relevant information-processing
problems. These technical developments provide a rich
range of models, tools and metaphors with which to
reconceptualize cognition. Moreover, the application of
these probabilistic ideas to relevant engineering problems,
in speech and image processing, expert systems, robotics
and machine learning, has provided a rich source of
insights into some of the probabilistic reasoning problems
solved by the brain. Here, we highlight some of the key
developments that drive current work, and consider
future technical and empirical challenges. We divide our
discussion into three, interlinked, domains: represen-
tation, processing and learning, before drawing
conclusions concerning the prospects for the field.

Representation

Classical probability theory focussed on the narrow
domain of repeatable events and processes, where limiting
relative frequencies are well-defined — a world of coins,
dice and cards, of Markov chains and diffusion
processes [1].

Yet, as is clear throughout this Special Issue, the focal
domains of cognitive science require rich, compositional
representations: the hierarchical structure of the motor
system; multiple layers of complexity in visual images; the
layers of phonological, syntactic and semantic regularities
in language; and representation of rich causal theories of
everyday events. Representing these domains requires
rich, compositional data structures and processes: net-
works, grammars, feature-value matrices, schemas, and
so on. Sophisticated probabilistic models, as applied in this
issue, are now beginning to embrace such complex
representations, and to show how they integrate with
probabilistic methods. Hence, probabilistic models of
vision or language need not be viewed, as formerly, as
requiring radical representational simplification (e.g. to
sets of binary features that might serve as input to a
regression or a connectionist network) — rather, structure
and probability can be integrated directly. Note, too, that
this application of probability requires a conceptual shift,
from viewing probability as modelling repeatable events,
to viewing probability as a calculus for uncertain
inference. Probability can thus be seen as a model of the
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knowledge, and inferential potential, of the individual
agent, faced with a stimulus and background information
that will typically be unique, rather than repeatable. That
is, we require a subjective, rather than frequentist,
conception of probability [2].

Nevertheless, substantial representational challenges
remain. For example, Bayesian networks [3] provide a
powerful formalism for capturing dependency relations
between discrete variables, but such variables correspond
to ‘atomic’ states of the world (e.g. earthquake/no-earth-
quake; alarm on/off). Yet capturing inferential relations
more fully will require treating states themselves as
structured — the earthquake has a location, intensity,
time; the alarm is a specific one; and a specific sounding of
the alarm might be punctate, intermittent or continuous;
the alarm has a range of further properties concerning its
loudness, timbre, electrical properties. Both quake and
alarm might be related in many, complex ways. It must be
possible ultimately to represent such factors in an
adequate model of knowledge representation. Similar
issues arise whether considering the representation of
sensory input or motor output. More than a century of
logic and formal semantics has begun to deal with some
of this complexity, using a variety of logical formalisms.
Probabilistic methods need to enhance and integrate with,
rather than by-pass, these powerful tools (see, e.g. [4]).
More generally, integrating probability with rich data
structures is crucially important in developing a viable
framework for cognitive science.

Processing

People have difficulty with many kinds of explicit
probabilistic reasoning. Yet important computational
insights, especially in relation to Bayesian networks,
have revealed how probabilistic inference can naturally
map onto distributed, parallel networks of simple
processors. How far should the cognitive system be viewed
as a probabilistic engine? What architecture does it have?
What processing limitations might it possess? And under
what conditions might it be possible to harness the brain’s
putative probabilistic machinery in explicit probabilistic
reasoning tasks [5].

The view that world knowledge might be organized in
some kind of probabilistic network raises interesting
questions about how reasoning is controlled. One idea is
that the structure of the network should express causal
dependencies; then different modes of reasoning, such as
supposing premises to be true, counterfactual reasoning,
imagining, seeking explanations for particular facts, and
so on, map on to different ways of intervening in this
causal network [6]. It seems plausible that there are
fundamental processing limitations at work in controlling
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these interventions. Can such a viewpoint be mapped onto
existing data on human reasoning? (see, e.g. [7]).

Yuille and Kersten (this issue [8]) propose a proba-
bilistic viewpoint suggesting that perception is a process of
analysis-by-synthesis, and that probabilistic updating
could involve some version of Markov Chain Monte
Carlo (MCMC) processing. This viewpoint seems to
make strong predictions about the seriality of cognitive
processes — presumably, it is not possible to run multiple
distributed computations over the same hardware. How
might these ideas fit with research on attention, and
anatomical localization of processing?

More generally, theories of processing naturally lead
to speculations concerning how probabilistic inference
might map onto neural hardware. Is MCMC, and faster
variants, nonetheless too slow to be neurally plausible?
Do reciprocal cortical connections send a top-down
‘synthesis’ signal, as the analysis-by-synthesis viewpoint
suggests?

Learning

Learning has frequently been viewed in algorithmic terms
— whether concerning principles of association, or
principles of memory representation and storage. The
probabilistic perspective views learning as an inferential
task; for example, inferring the structure of the world
from data, or inferring relationships between behaviour,
environment and reward.

The fields of statistics and machine-learning have made
considerable headway in inferring best-fit parameters,
using hill-climbing (and related methods) over likelihood
(or similar quantities). More challenging is inferring
representational structures over which parameters are
optimized. One problem is that the space of possible
structures is often large and discontinuous; a second is
that a direct application of probabilistic methods would
involve assessing each structure by integrating a prior over
its parameters, which seems computationally prohibitive; a
third is that structures appear to be constrained in
potentially highly abstract ways (e.g. the structure of
theories in Tenenbaum, Griffiths and Kemp, this issue [9]).

The learnability of structure has three aspects. First,
given available data, is enough information available in
the input for particular structures to be learnable at all?
Minimum description length methods, touched on in
Chater and Manning (this issue [10]) might help address
this question — structures will be unlearnable if the ‘cost’
of encoding them is greater than the saving in encoding
the available data. Thus we can ask: in quantitative
terms, what innate constraints are required to make
learning possible in principle? Second, is the search
through the space of possible structures feasible? What
constraints on the search space might make it more
feasible? Third, do models of structure-learning fit with
neuroscientific and behavioural data concerning how
people learn language, visual structure or motor control?
Interesting recent work [11] has shown novel ways of
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mapping parameters from a learning model into neural
structure, which could provide an interesting future
research direction.

Probabilistic learning methods typically aim to find a
global quantitative fit between model and data;
however, the philosophy of science suggests that
scientific reasoning typically works by local, qualitative
arguments connecting specific data and hypotheses.
Should this piecemeal aspect of scientific reasoning be
viewed as an inelegant approximation, necessary only
in domains for which the cognitive system does not
have relevant innate hardware or data availability? Or
should qualitative scientific reasoning be viewed as
giving clues to how qualitative conclusions can be draw
about the appropriate representational structures, while
avoiding apparently intractable quantitative proba-
bilistic computations?

Conclusion

We suggest that cognitive science and artificial intelligence
have been undergoing a quiet probabilistic revolution, and
the articles in this Special Issue provide evidence of that
revolution. Probabilistic ideas provide a rich framework for
building models of cognition; and powerful technical tools
for building intelligent mechanisms that work. Future
research will need to refine and elaborate these technical
developments, fuse them with earlier theoretical insights,
especially concerning representation, and connect prob-
abilistic models more thoroughly with empirical data.

References
1 Grimmett, G.R. and Stirzaker, D.R. (2001) Probability and Random

Processes (3rd edn), Oxford University Press

2 Hajek, Alan, (2003) Interpretations of probability. In The Stanford

Encyclopedia of Philosophy (Zalta, E.N., ed.), http:/plato.stanford.

edu/archives/sum2003/entries/probability-interpret/

Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems,

Morgan Kaufmann

4 Milch, B. et al. (2005) BLOG: Probabilistic models with unknown

objects. In Proc. 19th Int. Joint Conf. Artif. Intell. (IJCAI), pp. 1352—

1359, Morgan Kaufmann

Griffiths, T.L. and Tenenbaum, J.B. Optimal predictions in everyday

cognition. Psychol. Sci. (in press)

Pearl, J. (2000) Causality: Models, Reasoning, and Inference,

Cambridge University Press

Oaksford, M. and Chater, N. Bayesian Rationality, Oxford University

Press (in press)

Yuille, A. and Kersten, D. (2006) Vision as Bayesian inference: analysis

by synthesis? Trends Cogn. Sci. DOI1:10.1016/j.tics.2006.05.002

Tenenbaum, J.B. et al. (2006) Theory-based Bayesian models of

inductive learning and reasoning. Trends Cogn. Sci. DOI1:10.1016/j.

tics.2006.05.009

10 Chater, N. and Manning, C. (2006) Probabilistic models of language
processing and acquisition. Trends Cogn. Sci. DOI:10.1016/j.tics.2006.
05.006

11 Daw, N. et al. (2005) Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control.
Nature Neurosci. 8, 1704-1711

w

ot

(o2}

K]

oo

©

1364-6613/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tics.2006.05.008


http://dx.doi.org/doi:10.1016/j.tics.2006.05.002
http://dx.doi.org/doi:10.1016/j.tics.2006.05.009
http://dx.doi.org/doi:10.1016/j.tics.2006.05.006
http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/
http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/
http://dx.doi.org/doi:10.1016/j.tics.2006.05.002
http://dx.doi.org/doi:10.1016/j.tics.2006.05.009
http://dx.doi.org/doi:10.1016/j.tics.2006.05.009
http://dx.doi.org/doi:10.1016/j.tics.2006.05.006
http://dx.doi.org/doi:10.1016/j.tics.2006.05.006
http://www.sciencedirect.com

	Probabilistic models of cognition: where next?
	Representation
	Processing
	Learning
	Conclusion
	References




