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1 An introduction to rational models of
cognition
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Mike Qaksford and Nick Chater

In 1990, John Anderson summarized a new methodology for understanding
cognition: rational analysis. This book brings together leading researchers from a
range of areas in cognitive science, whose work addresses issues concerned with
rational analysis. It provides a state-of-the-art overview of the variety and fecundity
of research using this approach, and addresses fundamental theoretical issues in four
key areas of cognitive science: memory, categorization, reasoning and search. We
believe that research using rational analysis is an important and exciting
development, the implications of which are beginning to bear fruit in a variety of
areas. Moreover, rational analysis forges important connections with other branches
of the biological and social sciences, and suggests new directions for the
methodology and philosophy of cognitive science.

As with all gooc’i ideas, rational analysis has a long history. The roots of rational
analysis derive from the earliest attempts to build theories of rational thought or
choice. For example, probability theory was originally developed as a theory of how
sensible people reason about uncertainty (Gigerenzer er al., 1989). Thus, the early
literature on probability theory treated the subject both as a description of human
psychology, and as a set of norms for how people ought to reason when dealing with
uncertainty. Similarly, the earliest formalizations of logic (Boole, 1951/1854) viewed
the principles as describing the laws governing thought, as well as providing a
calculus for good reasoning. This early work in probability theory and logic is a
precursor of rational analysis, because it aims both to describe how the mind works,
and to explain why the mind is rational.

The twentieth century has, however, seen a move away from this ‘psychologism’
(Frege, 1879; Hilbert, 1925), and now mathematicians, philosophers and psycholo-
gists sharply distinguish between normative theories, such as probability theory and
logic, which are about how people should reason, and descriptive theories of the
psychological mechanisms by which people actually reason. Moreover, a major
finding in psychology has been that the rules by which people should and do reason
are not merely conceptually distinct, but that they appear to be empirically very
different (Wason, 1966; Wason and Johnson-Laird, 1972; Kahneman and Tversky,
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1973; Kahneman etal., 1982). Whereas very early research on probability theory and
logic took their project as codifying how people think, the psychology of reasoning
has suggested that probability theory and logic are profoundly at variance with how
people think. If this viewpoint is correct, then the whole idea of rational models of
cognition is misguided: cognition simply is not rational.

Rational analysis suggests a return to the earlier view of the relationship between
descriptive and normative theory—i.e. that a single theory can, and should, do both
jobs. A rational model of cognition can therefore explain both how the mind works
and why it is successful. But why is rational analysis not just a return to the
conceptual confusion of the past? It represents a psychological proposal for
explaining cognition that recognizes the conceptual distinction between normative
and descriptive theories, but explicitly suggests that in explaining cognitive
performance a single account which has both functions is required. Moreover,
contemporary rational analyses are explicit scientific hypotheses framed in terms of
the computer metaphor, which can be tested against. experimental data. Conse-
quently, a rational model of cognition is an empirical hypothesis about the nature of
the human ¢ognitive system and not merely an a priori assumption.

The computational metaphor is important because it suggests that rational
analyses should be described in terms of a scheme for computational explanation.
The most well-known scheme for computational explanation was provided by David
Marr (1982). At Marr’s highest computational level the function that is being
computed in the performance of some task is outlined. This level corresponds to a
rational analysis of the cognitive task. The emphasis on computational explanation
makes two points explicit. First, that in providing a computational explanation of
the task that a particular device performs there is an issue about whether the
computational level theory is correct. Second, there is a range of possible
computational level theories that may apply to a given task performance; which
one is correct must be discovered and cannot be assumed a priori. Let us consider an
example. Suppose you find an unknown device and wonder what its function might
be. Perhaps, observing its behaviour, you hypothesize that it may be performing
arithmetical calculations. To make this conjecture is to propose a particular rational
model of its performance. That is, this is a theory about what the device should do. In
this case, the device should provide answers to arithmetical problems that conform
to the laws of arithmetic, i.e. arithmetic (or some portion of it) provides the
hypothesized rational model. On this assumption, you might give the device certain
inputs, which you interpret as framing arithmetical problems. It may turn out, of
course, that the outputs that you receive do not appear to be interpretable as
solutions to these, or perhaps any other, arithmetical problems. This may indicate
that your rational model is inappropriate, particularly if you cannot interpret most
of the outputs as correct answers. You may therefore search for an alternative
rational model—perhaps the device is not doing arithmetic, but is solving differential
equations. Similarly, in rational analysis, theorists cannot derive appropriate
computational level theories by reflecting on normative considerations alone, but
only by attempting to use those theories to describe human performance. For
example, it is not controversial that arithmetic is a good normative account of how
numbers should be manipulated—the question is: Does this device do arithmetic?
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This leads to the second difference between the modern programme of rational
analysis and early developments of logic and probability: that the goal is not merely
to capture people’s intuitions, but rather to model detailed experimental data on
cognitive function. The ratiopal models in this book aim to capture experimental
data: on the rate at which information is forgotten; on the way people generalize
from old to new instances; on performance on hypothesis testing tasks; and on
search problems. Rational analysis as a programme in cognitive science is primarily
aimed at capturing these kinds of empirical phenomena, while explaining how the
cognitive system is successful. None the less, rational analysis shares with early views
the assumption that accounts of the mind must be both normatively justified and
descriptively adequate.

So far, we have considered rationality in the abstract—as consisting of reasoning
according to sound principles. But the goals of an agent attempting to survive and
prosper in its ecological niche are more concrete—it must decide how to act in order
to achieves its goals. The chapters in this book explain how normative principles can
be combined with analysis of the structure of the environment in order to provide
rational explanations of successful cognitive performance. Indeed, what many of
these chapters show is that many aspects of cognition can be viewed as optimized (to
some approximation) to the structure of the environment. For example, the rate of
forgetting an item in memory seems to be optimized to the likelihood of
encountering that item in the world (Schooler, Chapter 7), categorization may be
viewed as optimizing the ability to predict the properties of a category member
(J. Anderson and Matessa, Chapter 10), searching computer menus (Young, Chapter
21), parsing (Chater et al, Chapter 20), and selecting evidence in reasoning
(Oaksford and Chater, Chapter 17; Over and Jessop, Chapter 18) may all be viewed
as optimizing the amount of information gained. This style of explanation is similar
to optimality based explanations which have been influential in other disciplines. In
the study of animal behaviour (Kacelnik, Chapter 3), foraging, diet selection, mate
selection and so on, have all been viewed as problems which animals solve more or
less optimally. In economics, people and firms are viewed as more or less optimally
making decisions in order to maximize utility or profit.

Models based on optimizing, whether in psychology, animal behaviour or
economics, need not, and typically do not, assume that agents are able to find the
perfectly optimized solutions to the problems that they face. Quite often, perfect
optimization is impossible even in principle, because the calculations involved in
finding a perfect optimum are frequently computationally intractable (Simon, 1955,
1956), and, moreover, much crucial information is typically not available. The agent
must still act, even in the absence of the ability to derive the optimal solution (Simon,
1956; Chater and Oaksford, 1996; Gigerenzer and Goldstein, 1996). Thus, there
may be a tension between the theoretical goal of the rational analysis and the
practical need for the agent to be able to decide how to act in real time, given the
partial information available (R. Anderson, Chapter 8; McGonigle and Chalmers,
Chapter 8; Shiffrin and Steyvers, Chapter 4). This leads directly into the area
of what Simon (1955, 1956) calls bounded rationality. We believe that rational
analysis can be reconciled with the boundedness of cognitive systems in a number
of ways.
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First, the cognitive system may, in general, approximate, perhaps very coarsely,
the optimal solution. Thus, the algorithms that the cognitive system uses may be fast
and frugal heuristics (Gigerenzer and Goldstein, 1996) which generally approximate
the optimal in the environments that an agent normally encounters. In this context,
the optimal solutions will provide a great deal of insight into why the agent behaves
as it does. However, an account of the algorithms that the agent uses will be required
to provide a full explanation of its behaviour. Issues concerning algorithmic
explanations in conjunction with rational analysis are discussed in many chapters
in this book (e.g. R. Anderson, Chapter 8; Dennis and Humphreys, Chapter 6;
Lopez, et al., Chapter 15; McGonigle and Chalmers, Chapter 15; Shiffrin and
Steyvers, Chapter 4) and have been extensively discussed by J. Anderson (1990,
1994).

Second, even where a general cognitive goal is intractable, a more specific
cognitive goal, relevant to achieving the general goal, may be tractable. For example,
the general goal of moving a piece in chess is to maximize the chance of winning, but
this optimization problem is known to be completely intractable because the search
space is so large. But optimizing local goals, such as controlling the middle of the
board, weakening the opponent’s king, and so on, may be tractable. Indeed, most
examples of optimality based explanation, whether in psychology, animal behaviour
or economics, are defined over a local goal, which is assumed to be relevant to some
more global aims of the agent. For example, evolutionary theory suggests that
animal behaviour should be adapted so as to increase an animal’s inclusive fitness,
but specific explanations of animals foraging behaviour assume more local goals.
Thus, an animal may be assumed to forage so as to maximize food intake, on the
assumption that this local goal is generally relevant to the global goal of maximizing
inclusive fitness. Similarly, the explanations concerning cognitive processes outlined
in this book concern local cognitive goals such as maximizing the amount of useful
information remembered, maximizing predictive accuracy, or acting so as to gain as
much information as possible. All of these local goals are assumed to be relevant to
more general goals, such as maximizing expected utility (from an economic
perspective) or maximizing inclusive fitness (from a biological perspective). At any
level, it is possible that optimization is intractable; but is also possible that by
focusing on more limited goals, evolution or learning may have provided the
cognitive system with mechanisms that can optimize or nearly optimize some more
local, but relevant, quantity.

The importance that the local goals be relevant to the larger aims of the cognitive
system, raises another important question about providing rational models of
cognition. The fact that a model involves optimizing something does not mean that
the model is a rational model. Optimality is not the same as rationality. It is crucial
that the local goal that is optimized must be relevant to some larger goal of the agent.
Thus, it seems reasonable that animals may attempt to optimize the amount of food
they obtain, or that the categories used by the cognitive system are optimized to lead
to the best predictions. This is because, for example, optimizing the amount of food
obtained is likely to enhance inclusive fitness, in a way that, for example, maximizing
the amount of energy consumed in the search process would not. Determining
whether some behaviour is rational or not therefore depends on more than just being
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able to provide an account in terms of optimization. Therefore rationality reql_li_res
not just optimizing something but optimizing something reasonable. As_ a definition
of rationality, this is clearly circular. But by viewing rationality in terms of
optimization, general conceptions of what are reasonable cognitive goals can be
turned into specific and detailed models of cognition. Thus, the programme _of
rational analysis, while not answering the ultimate question of what rationality is,
none the less provides the basis for a concrete and potentially fruitful line of
empirical research. N ‘

This flexibility of what may be viewed as rational, in building a rat19na1 mode_l,
may appear to raise a fundamental problem for the entire _rational analysis
programme. It seems that the notion of rationality may be so flexible tht whatever
people do, it is possible that it may seem rational under some _descnptlon‘ So for
example, it may be that our stomachs are well adapted to digesting the food in our
environmental niche, indeed they may even prove to be optimally efficient in this
respect. However, we would not therefore describe the human stomach as ratiorfal,
because stomachs presumably cannot usefully be viewed as information processing
devices. Stomachs may be well or poorly adapted to their function (digestiqn}, l:!ut
they have no beliefs, desires or knowledge, and hence the question of their rationality
does not arise.

Optimality approaches in biology, economics and psychology, assume that ‘the
agent is well-adapted to its normal environment. However, almost all psycholc_)glcfal
data are gained in a very unnatural setting, where a person performs a very artxﬁglal
task in the laboratory. Any laboratory task will recruit some set of cognitive
mechanisms that determine the participants’ behaviour. But it is not obvious what
problem these mechanisms are adapted to solving. Clearly, this adapt_i\_re problem is
not likely to be directly related to the problem given to the participant by the
experimenter, precisely because adaptation is to the natural world, not to laboratory
tasks. In particular, this means that participants may fail with respect to t_he task that
the experimenter thinks they have set. But this may be because this task is unpgtural
with respect to the participants’ normal environment. Consequently, partmp'a_nts
may assimilate the task that they are given to a more natural task, recruiting
adaptively appropriate mechanisms which solve this, more natural, task successfully.
This issue is most pressing in reasoning tasks where human performance has been
condemned as irrational. For example, hypothesis testing tasks, where people do not
adopt the supposedly ‘logical’ strategy of falsification have been taken to
demonstrate the irrationality of human reasoning (Stich, 1985, 1990; Sutherland,
1992). However, recently a number of theorists have suggested that these tasks are
more likely to engage cognitive mechanisms which are adapted to different real
world problems. In particular, several researchers have suggested that people are
maximizing the amount of information that they can gain in selecting evidence,
as opposed to following logical rules (Oaksford and Chater, Chapter 17; Over
and Jessop, Chapter 18). On these accounts, people’s behaviour is (to an
approximation at least) rational, even though it violates the standards set by the
experimenter. .

In summary, rational analysis as a general approach to understanding cognition
has come a long way since the nineteenth century. Through the computer metaphor
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and the detailed experimental investigations of cognitive phenomena that have
dominated much of psychology during the second half of the twentieth century we
are now in a position to apply this methodology in a much more rigorous way. The
chapters in this book, although not shying away from the problems, reveal the
fecundity and promise of this approach. We now outline the organization and
contents of the contributions to this book.

The book is organized into five parts: general issues; memory; categorization;
reasoning; and search. The first part on general issues contains two chapters that
discuss issues about rational analysis which cut across subject boundaries. In
Chapter 2, Connectionist models and Bayesian inference, McClelland traces the
fundamental connection between rational Bayesian analysis and connectionist
networks. Although this connection has been discussed in the technical connectionist
literature, it is not widely known in cognitive science (although see Chater, 1995).
This connection holds at two levels. First, connectionist networks can be viewed as
performing probabilistic calculations, in a parallel, distributed fashion. Thus,
connectionist psychological models, such as the models of word recognition
developed by McClelland and colleagues (see Chapter 2), can be interpreted as
integrating information according to Bayesian principles. Crucially, interpreting
networks in this way reveals their underlying assumptions (e.g. various kinds of
independence between different sources of information), leading to a deeper
understanding of how such models work and what predictions they make. The
second level at which a connection between networks and Bayesian analysis holds
concerns learning. The process of training connectionist networks from examples can
be understood in terms of Bayesian updating in the light of new data. In both cases,
the probabilistic ‘rational’ interpretation is not merely post hoc—it has driven new
developments in connectionist research. More fundamentally, the Bayesian
interpretation of both network behaviour and learning may provide a crucial
bridge between the kinds of probabilistic calculations postulated in rational analysis,
and the parallel, distributed neural substrate on which cognitive processes must run.

In Chapter 3, Normative and descriptive models of decision making: time discounting
and risk sensitivity, Kacelnik considers how the adaptiveness of cognition relates to
evolutionary considerations, from the perspective of animal behaviour. He argues
that the degree to which the cognitive system can be viewed as adapted to its
environment cannot be decided by a priori reflection, but requires developing
detailed case studies. Much research in animal behaviour attempts to provide such
case studies—attempting to understand specific phenomena in terms of assumptions
that the animal is optimizing food intake, minimizing the probability of being killed
by a predator, and so on. This well-established research programme in the study of
animal behaviour is strongly analogous to Anderson’s programme of providing
rational analyses for cognitive processes. Kacelnik considers two case studies:
temporal discounting and risk sensitivity. Temporal discounting concerns the degree
to which animals discount future utilities with respect to current utilities, The
empirical data, obtained with both humans and animals, indicate a hyperbolic
discounting function. Kacelnik suggests that, although there may be no direct
normative justification for this discounting function, it may be viewed as a by-
product of the fact that the discounting mechanism may be evolved to maximize
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food intake in the context of foraging. The topic of risk sensitivity concerns how
humans and animals choose between actions with uncertain outcomes. Specifically,
how do the expected pay-offs from the action and the variance in expected pay-off
interact to determine decision-making behaviour. For example, in foraging, it might
be appropriate for a bird to choose a foraging site with lower expected mean pay-off,
where that pay-off is relatively certain, so that the bird does not risk failing to obtain
enough food to survive through a cold winter night. Kacelnik describes animal and
human research which suggests that, at a qualitative level at least, a normative
account of risk sensitivity accounts for the pattern of human choice behaviour in an
experimental domain. Kacelnik concludes that a normative approach can have an
important role in guiding research in human psychology, and that this normative
approach may be usefully informed by evolutionary considerations. But he cautions
that evolutionary considerations must be applied with caution: it is unlikely that
humans or animals are fitness maximizers in all circumstances.

The second part of the book is on memory. This is the subject area where recent
interest in rational analysis really began with the paper by Anderson and Milson
which appeared in the Psychological Review in 1989. This section contains a variety of
papers by leading researchers in this area. In Chapter 4, The effectiveness of retrieval
from memory, Shiffrin and Steyvers focus on the question: given the constraints
imposed by what has been stored in memory, is retrieval from memory optimal or
close to optimal, and is retrieval in different tasks equally optimal or equally far from
optimal. They suggest that these questions can be addressed in the context of models
that are based on probabilities of matching probe cues to memory traces, and they
couch their discussion in the context of one such model, REM (retrieving effectively
from memory). Optimality is discussed first for explicit single item yes/no
recognition. They show that relative optimality is less when extensions are made
to tasks in which the probe consists of more than one item, such as paired
recognition, and associative recognition. They argue that retrieval is probably less
optimal in recall than in recognition. Extensions to generic and implicit memory are
briefly considered.

In Chapter 5, Predictions of a Bayesian recognition memory model (and a class of
models including it), Chappell reports predictions from a Bayesian model of episodic
recognition memory developed by McClelland and Chappell (1996). The key issue
under consideration is the effect of the number of times that an item is presented in a
learning phase for recognition judgements (e.g. was an item presented several times
or just once). Moreover, to what extent is the recognition of an item which was, say,
presented just once, affected by the number of presentations of other items in the list?
Four cases are considered: PW (pure weak), where all items are presented once; PS
(pure strong), where all items are presented several times; MW (mixed weak), where
items are present once in a list where some items were presented once and others
presented several times; and MS (mixed strong) which is defined analogously. He
derives expressions relating hit rates and false alarm rates for recognition judgements
in the four cases above. The hits rates and false alarm rates from 11 separate
experiments taken from Ratcliffe et al. (1990) and Murnane and Shiffrin (1991)
confirmed these relationships derived from a rational Bayesian analysis of memory
performance.
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In Chapter 6, Cueing for context: an alternative to global matching models of recognition
memory, Dennis and Humphreys present a model that like Chappell (Chapter 5) and
Shiffrin and Steyvers (Chapter 4) is framed as a rational Bayesian account of
memory. However, as several chapters in this book argue, there may be evidence for
which an adequate explanation requires making some assumptions about the
algorithmic level. In this chapter Dennis and Humphreys make some algorithmic
assumptions about cueing in single-item recognition that allows them to capture data
other rational models cannot. Specifically, they assume that an item is recalled by
cueing its bindings to other items in memory and then seeing if the current context
occurs in any of those bindings. This contrasts with other approaches which cue by
context and then check to see if the item occurs in any of the resulting bindings.
Perhaps the most interesting effect this model accounts for is the enhanced recall of
low frequency items. Because these occur in few contexts they would seem less
confusable, and therefore easier to recognize. Dennis and Humphreys ‘cueing for
context’ approach reveals how different approaches at the algorithmic level may lead
to different predictions within a generally rational approach (see also, Lopez etal.,
Chapter 15).

In Chapter 7, Sorting out core memory processes, Schooler develops his work on the
rational analysis of memory (J. Anderson, 1990), which proposes that memory’s
sensitivity to statistical structure in the environment enables it to estimate optimally
the odds that a memory trace will be needed. J. Anderson and Schooler have
analysed sources of informational demand on the environment: speech to children
and word usage in the front page headlines of the New York Times. They showed
that factors that govern memory performance, including recency, also predict the
odds that an item (e.g. a word) will be encountered. In this chapter, Schooler
develops the theory to make precise predictions about how the odds of encountering
an item varies as a joint function of: (i) the statistical associations between the item
and elements of the current context, and (i) how long it has been since the item was
last encountered. The prediction was confirmed environmentally for child-direct
speech and New York Times™ data. The corresponding behavioural prediction was
tested using a cued recall task in which the cues were either strongly associated or not
associated with the targets. In contrast to the environmental results, recall
performance was more sensitive to the length of the retention interval in the
presence of cues that are not associated, than in the presence of associated cues.
Further modelling showed that incorporating estimates of the influence of non-
retrievable processes (e.g. reading a word, deciding to respond, etc.) on overall
performance reduces the discrepancy between the theoretical predictions and the
observed data.

In Chapter 8, Rational and non-rational aspects of forgetting, R. Anderson reviews
evidence for and against rational memory. He observes that existing analyses like
those due to Anderson and Schooler, do not explicitly manipulate need-
probability—the probability that an item will need to be recalled. R. Anderson
cites evidence from his own recent work that captures need-probability operationally
by varying the probability that an item is tested for recall on a particular trial—on
some trials participants were told that there would be no recall test. This laboratory
manipulation successfully confirmed that people’s forgetting curves for an item
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matched the probability that that item would be tested. R. Anderson goes on to
suggest that certain aspects of the forgetting function are not captured by test
probability, e.g. recency effects, and the effects of serial position within a list of to-be-
remembered items. Finally, he makes some proposals about why apparent deviations
from need probabilities may occur, e.g. the capacity of short-term memory and the
ongoing process of learning the optimal solution.

In Chapter 9, Adaptive analysis of sequential behaviour: oscillators as rational mechan-
isms, Brown and Vousden argue that the brain implements various key memory
functions using endogenous oscillators—nerve bundles that display an oscillatory
dynamic. Using banks of units that oscillate at different frequencies allows the
authors to model memory for serial order, i.e. the periods of different oscillators are
associated with different positions in a sequence. Their OSCAR model can account
for various effects in short-term memory for serial order and in speech production,
e.g. temporal generalization—where items close to each other in a sequence are more
confusable, and hierarchical representation where sequences may be chunked in to
smaller sequential units. Oscillatory mechanisms are therefore clearly adequate to
explain a variety of empirical phenomenon. Brown and Vousden also argue that such
mechanisms are perfectly suited to adapting an organism successfully to its
environment—they provide just the mechanism needed to adapt optimally an
organism’s periodic foraging behaviour to the periodic availability of food at
different sites.

The third part of this book is on categorization and induction, which is another
core area originally investigated by J. Anderson (1990). In Chapter 10, The rational
analysis of categorization and the ACT-R architecture, J. Anderson and Matessa explore
how a particular cognitive architecture, the ACT-R architecture, can be used to
model categorization. The ACT-R architecture is a version of Anderson’s ACT
theory of cognition (Anderson, 1976, 1983), which was developed to incorporate the
rational analyses of memory and choice in Anderson (1990). However, the ACT-R
architecture does not embody Anderson’s rational analysis of categorization.
Anderson and Matessa show instead that the rationality of categorization behaviour
emerges in the ACT-R framework. They discuss two radically different ways in
which categorization can be implemented in ACT-R: an exemplar approach, where
exemplars are stored in ACT-R’s declarative memory, and a rule-based approach,
where rules are part of ACT-R’s procedural memory. Both approaches provide
excellent fits with data from an important data set (Gluck and Bower, 1986).
Anderson and Matessa argue that the rationality of categorization can be seen as
derivative on the rationality of memory and choice. Crucially, this important
generalization arises not purely at the level of rational analysis, but from the choice
of a specific cognitive architecture. Thus, there may be valuable synergies between
rational and architectural accounts of cognition.

In Chapter 11, Optimum performance and exemplar models of classification, Nosofsky
takes up the theme of exemplar models of categorization in more detail. The general
claim embodied in such models is that people represent categories by storing
individual exemplars of categories in memory, and classify objects according to their
similarity with exemplars of different categories. Nosofsky’s (1984, 1986) generalized
context model (GCM) constitutes the most theoretically and experimentally
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well-developed categorization model of this kind. This model assumes that
exemplars are points in a psychological space, and that people may distribute their
attention differentially over these psychological dimensions. The issue of
‘rationality’, in this context, concerns whether people distribute their attention in a
way which is adaptive: to optimize classification performance. Nosofsky shows that
the assumption that people do optimize their allocation of attention allows his model
to account for performance in a variety of experimental paradigms. Moreover,
Nosofsky shows that there is also a deep connection between exemplar-based models
in general and rational considerations, pointing out how it relates to probabilistic
views of classification. This provides an important link between rational analysis and
processing architectures, as also discussed by McClelland, and Anderson and
Matessa. He also reviews empirical data showing that people are often, although not
invariably, able to learn quite complex likelihood-based decision boundaries for
classification, noting that this ‘rational” performance is consistent with an exemplar-
based architecture for classification.

In Chapter 12, A Bayesian analysis of some forms of inductive reasoning, Heit
considers how categorization relates to inductive inferences which allow people to
make predictions. Specifically, he is concerned with the degree to which people
evaluate inductive arguments such as: goldfish thrive in the sunlight; therefore, tuna
thrive in the sunlight. He presents initial steps towards Bayesian rational analysis for
this class of inferences. He argues that his model, which relies in essence on a single
equation (Bayes’ theorem) can account for a wide range of standard empirical
results, concerning the effect of similarity between the two categories (e.g. goldfish
and tuna), and more subtle effects of typicality and category diversity. Moreover, the
Bayesian approach has the means to take account of the effects of prior knowledge,
concerning, for example, beliefs about what Goodman (1955) terms the project-
ability of properties. Heit suggests that a fundamental challenge to this kind of
account is to explain the origin of this kind of prior knowledge, and that this may be
an important topic of future research.

In Chapter 13, Dynamics of dimension weight distribution and flexibility in categoriza-
tion, Lamberts and Chong consider the exemplar framework for categorization
discussed in Nosofsky (Chapter 11), and pay further attention to the way in which
attentional weights are distributed in categorization performance. They consider
how these weights, which appear to be adjusted to optimize classification
performance, are adjusted in dealing with a new categorization task. One possibility
is that differential weights reflect selective attention during learning, which may affect
the precision with which different aspects of the stimulus are remembered. Another
(and compatible) possibility is differential weights could result from an active
decision process during the classification of new stimuli. To investigate this question,
Lamberts and Chong studied very short-term changes in dimension weights. In their
experiments, they attempted to get participants to employ an active decision process,
by asking some subjects to pay attention to particular stimulus features of novel
items, where other subjects are instructed to attend to all features. They found that
people can flexibly adjust the degree to which they weight stimulus dimensions, and
that this may influence their categorization decisions, favouring the view that weight
changes are mediated by an active decision process. Moreover, this work suggests
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that ‘optimal’ weights, as discussed by Nosofsky, may have the status of defaults,
which can overridden by experimental instructions. They suggest that the flexibility
of dimension weights may provide one important way in which general background
knowledge can influence categorization.

Part IV of this book is on reasoning. This is an area of cognition that had not
seemed amenable to rational analysis. However, the chapters in this section reveal
that rational analysis is proving vital to understanding the apparent errors and biases
that have putatively been detected in this area of research over the last 40 years. In
Chapter 14, Causal mechanism and probability: a normative approach, Glymour and
Cheng consider the rational basis for people’s judgements about causality. They
argue that much recent research assumes that there is a fundamental divide between
mechanistic and probabilistic analyses of causal inference. Mechanistic analyses
describe the causal sequence that relates causes and effects. Probabilistic accounts
analyse causal relationships in terms of the probabilities of effect given cause, effect
in the absence of the cause, and similar notions. Glymour and Cheng argue that this
is a false dichotomy, which causes researchers to overlook the nature of the evidence
that supports the induction of mechanisms and to miss some important probabilistic
implications of mechanisms. Moreover, they claim that this dichotomy has blocked
the development of an alternative conception of how people learn the causal
structure of their world: for discrete events, a central adaptive problem is to induce
causal mechanisms in the environment from probabilistic data and prior knowledge.
Viewed from this perspective, they show that the probabilistic norms assumed in the
human causal judgement literature often do not map on to the mechanisms
generating the probabilities. Their alternative conception of causal judgement is,
they argue, more congruent with both scientific uses of the notion of causation and
observed causal judgements of untutored reasoners. They illustrate some of the
relevant variables under this conception, using a framework for causal representa-
tion now widely adopted in computer science and, increasingly, in statistics. They
also review the formulation and evidence for a theory of human causal induction
(Cheng, 1997) that adopts this alternative conception.

In Chapter 15, The rational analysis of human contingency judgement, Lopez et al.
present evidence that in causality judgements people are sensitive to factors that
cannot be explained by a rational model. Learning such contingencies from
sequences of discrete trials has been modelled using the Rescorla~Wagner (R-W)
model which relies on gradual updating of associative strength between representa-
tions of the cause and the effect. Recently, Cheng (1997, see also Chapter 14) showed
that, at asymptote, the R-W model computes the probabilistic contrast which is the
normatively correct assessment of the contingency, i.e. human learning is rational
(Shanks, 1995). The question remains whether the cognitive system uses something
like R-W to compute the contrast, or whether it is computing this contrast directly.
In this chapter Lopez et al. address this question by observing people’s pre-
asymptotic behaviour under a variety of conditions. They observed that people’s
performance accorded well with the optimal model at asymptote. However, various
trial-by-trial effects were also observed before asymptote that were not consistent
with computing the probabilistic contrast. Lopez et al. argue that these effects can
only be explained if the cognitive system uses an algorithm like R-W to achieve
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asymptotic behaviour that accords with the probabilistic contrast. Lopez etal. also
present experiments that seem to show that various probabilistic reasoning biases,
the conjunction fallacy and cue competition effects, may be the result of the
associative mechanisms underlying human learning.

Most of the chapters in this book concern the rationality of particular cognitive
processes. In Chapter 16, Rationality assumption of game theory and the backward
induction paradox, Colman, by contrast, considers rationality in the context of the
interaction between individuals. ‘Rational choice’ theories of economic and social
phenomena have been widely influential and highly controversial throughout the
social sciences (see, e.g. Elster, 1986)—such theories are, in essence, rational analyses
at the level of interpersonal or group phenomena. Indeed, the project of rational
analysis in cognitive science may be viewed as an attempt to apply this style of
explanation to explaining processes within the individual. Colman considers the
fundamental issue of the viability of game theory as an appropriate normative and
descriptive model of multiperson interactions. He considers a celebrated paradox of
game theory—the backward induction paradox (induction here refers to the proof

- technique of mathematical induction, rather than inductive inference). Colman
illustrates the paradox using what is known as the two-person centipede game
(Rosenthal, 1981). On successive trials two players alternate in choosing whether to
stop the game or to'continue it. If a player stops the game, then there are no pay-offs
to either player. But whenever a player chooses to continue, that player is fined £1
and the other player is rewarded £10. The game must finish in any case after a fixed
number of moves. The principle of backward induction sanctions the following line
of reasoning: suppose player A is scheduled to make the last move if the game were
to run through to the end. On that final move, B is fined £1, so it is rational for B to
stop the game on the move before. But this means that A, knowing that B will do
this, should stop the game on the move before, and so on all the way back to the
recommendation that the game should be stopped on the very first move. This seems
paradoxical, because by following this ‘rational’ course of action both players receive
no pay-off, whereas they could both have received a substantial sum of money by
cooperatively continuing the game. Colman’s proposed solution to the paradox is to
argue that the cooperative strategy is rational, given the fact that the people making
the decisions have imperfect information about each other, and must reason under
uncertainty. He shows that, under these conditions, the backward induction
argument can be blocked, and the cooperative strategy may be rational after all.

Oaksford and Chater (1994) presented a rational analysis of human hypothesis
testing in Wason’s selection task. Illogical performance on this task has been taken
to argue for human irrationality. Oaksford and Chater’s analysis showed for the first
time that behaviour on this task can be viewed as rational. However, Oaksford and
Chater’s optimal data selection account has been criticized for failing to model
aspects of the data where people know that there are exceptions to a rule under test,
e.g. when they know that there are some non-black ravens when testing the
hypothesis that all ravens are black. More recently Oaksford et al. (1997) have
shown that in the context of sequential sampling participants make some data
selections that appear not to accord with the theory of optimal data selection. In
Chapter 17, A revised rational analysis of the selection task: exceptions and sequential

R e

i

e

Mike Oaksford and Nick Chater 13

sampling, Oaksford and Chater clarify both issues. First, they show that allowing for
the possibility of exceptions in their optimal data selection not only fails to alter the
predictions of their model but also allows it to capture data previously thought to
count against it. Second, they argue that the sequential sampling situation allows
participants to update their estimates of the probabilities of categories used in the
test rules on-line. Given the structure of the samples used in the experimental tasks
they show that such on-line updating would have the effects observed by Oaksford et
al. (1997).

In Chapter 18, Rationalanalysis of causal conditionals and the selection task, Over and
Jessop make the important connection between recent research using the selection
task (see Chapter 17) and causal reasoning (see Chapter 14), a connection first
suggested by Oaksford and Chater (1994). Over and Jessop argue that apparent
biases in causal judgements using 2 x 2 contingency tables such that information
from different cells is differentially weighted correspond to apparent biases in
selection task performance. Consequently, if selection task performance can be
viewed as rational (see Chapter 17) and if data selection is operating according to
similar principles in both tasks then causal inference too can be viewed as rational.
They show that current measures of the informativeness of evidence converge on the
intuitively correct data selections when a causal rule is used in the selection task. An
important development is the use of the principle of maximum entropy in the
construction of alternative hypotheses. This is a more satisfactory method than the
minimal change strategy adopted by Oaksford and Chater (1994) even if it is well
justified (see Oaksford and Chater, 1996).

Researchers have frequently bemoaned the artificiality of laboratory problem
solving tasks because they do not appear to capture the open-ended, probabilistic
character of real world problems. Anderson (1990) observed that much real world
problem solving is guided by its environmental context. In Chapter 19, Thepractice of
mathematics and science: from calculus to the clothesline problem, Kurz and Tweney
make the crucial observation that in problem solving there is a two-way interaction
between the environment and the problem solver because people can actively
construct their own environments. For example, wheeled vehicles are only an
adaptive solution to the problem of more rapid locomotion once we have built roads
or railway tracks. Kurz and Tweney are principally concerned with scientific
reasoning. They first review recent work on the cognitive psychology of science
which often involves analyses of scientists’ diaries detailing their experimental work.
They point out that scientists’ problem solving can be characterized as an interplay
between a conceptual space containing the hypotheses and expectations under
investigation and a perceptual space that may require active re-configuration in
order to allow relevant observations. They illustrate these points with reference to
Faraday’'s work on electromagnetic induction and on acoustics. Kurz and Tweney .
then investigate peoples’ constructions of representations in order to solve a problem
that requires setting up and solving a differential equation. Different problem solvers
adopted different representations of the environment and hence different interpreta-
tions of the calculus. Kurz and Tweney conclude that actively structuring the
environment either actually, as in experiment, or conceptually may alter the course
of problem solving.
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The fifth and last part of this book is on search. Chater et al.’s Chapter 20, The
rational analysis of inquiry: the case of parsing, has two parts. The first provides a
general framework for thinking about the rational analysis of inquiry—what is a
rational way of devoting resources to obtaining information. The second describes
an extended case study—a rational analysis for deciding on the order in which
different possible readings of locally syntactic ambiguous structures should be
considered by the parser.

The problem of deciding how to search for information arises, in different forms,
in several chapters of this book (Oaksford and Chater’s and Over and Jessop’s
chapters on the selection task, Young’s and McGonigle and Chalmers’ chapters on
search) and is central to many areas of cognition. The rational analysis of inquiry is
difficult because inquiry typically proceeds in the face of severe resource limitations.
Therefore choices regarding which inquiries to make must be highly selective—but it
is difficult to know which inquiries are likely to prove fruitful before they have be
conducted. Chater etal. distinguish between disinterested inquiry, where the goal is
finding out as much about the world as possible, and cases where the goal is provided
by some external set of utilities, and inquiry is required simply to determine how to
decide and how to act to maximize these utilities. They also distinguish between cases
where the gathering of new information must be selective and cases where the
computationally limited cognitive system must decide between different possible
computations that it can make with existing information. They show how a simple
set of tools from probability theory and information theory can be used to capture
each kind of problem, and reveal the relationships between different classes of
problem.

The rational analysis concerns how a serial parser can deal with the massive local
syntactic ambiguity in natural language. A serial parser can only explore one option
at a time—and presumably the more options that are explored erroneously the more
likely the system is to ‘crash’ irretrievably. The rational analysis aims to find the
optimal way of exploring parses to minimize the probability of a ‘crash’ and thus
maximize the probability of a successful parse of the whole sentence. The analysis
shows that, under certain assumptions, the parser should select hypotheses in order
of their ‘specificity’ (roughly, how specific their predictions are about future context)
multiplied by their prior probability. This recommendation differs from many
traditional accounts of parsing, which assume that parsing decisions are based on
linguistic principles such as ‘minimal attachment’ (Frazier, 1979), and also appears
to differ from constraint-based approaches to parsing (e.g. MacDonald etal., 1994),
which only take account of prior information. Testing this rational analysis
empirically is an interesting project for future research.

In Chapter 21, Rational analysis of exploratory choice, Young considers the problem
of sequential search from a different perspective—starting from Anderson’s (1990)
rational analysis of problem solving. He extends this style of analysis to a class of
exploratory search situations which involve selecting one of a number of possible
options, where little is known about the options before exploration begins. He
formulates the situation as one of single-move, multistage search, where the
probabilities of success of the different options are initially unknown, but where a
range of assessment methods is available to provide information about each option.
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The assessment methods differ in their costs and in the quality of the information
they deliver. The analysis defines an optimal strategy, which is applied to an
experimentally studied task where a subject has to use an unfamiliar computer
package. Simulation of the optimal strategy shows that it exhibits a number of
features characteristic of the empirical data, such as repeated scanning of the menus,
progressive focusing on a subset of the options, and iterative deepening of attention.

The core of McGonigle and Chalmers’ Chapter 22, Rationality as optimized cogni-
tiveself-regulation, is an account of their recent comparative and developmental work
on search behaviour. They argue that organisms can exploit the structure of their
environment in crucial ways in the attempt to minimize the cognitive and physical
costs of search. This is a particularly pressing problem for an organism when
foraging for food—it does not want to return to previous locations, i.e. it wants to
search non-reiteratively, in order to minimize costs. Planning non-reiterative search
can also be combinatorially explosive, as the number of possible search paths
increases exponentially with the number of locations to be searched. McGonigle and
Chalmers show that monkeys and human neonates adopt very similar strategies:
they use the features of search locations to minimize these costs. For example, if
search locations are ordered by size or brightness they are capable of exploiting these
properties to regulate their search behaviour, e.g. search the smallest, then the next
smallest and so on. McGonigle and Chalmers argue that such skills provide the
primitive operations of higher level cognitive skills, for example, this simple ordering
behaviour may provide the learned primitives for transitive reasoning: if A > B and
B> C,then A > C.

This book covers a broad spectrum of the core research areas of cognitive
psychology. In each area, the work reported here reveals the wealth and depth of
current research adopting the rational analysis approach. This approach has
illuminated research in all these areas revealing that to a close approximation human
cognition seems well, if not always optimally, adapted to the environment. Several
chapters have also shown that the algorithms that implement these rational models
also need to be invoked in explaining the detailed patterns of performance. We
believe that continued research on rational models of cognition represents the most
promising and fruitful approach currently available in cognitive psychology and
hope that this collection will prove an encouragement to others to develop their own
rational analyses of cognitive phenomena.
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