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Perception involves inferring the structure of the environment fromsensory data.
As in any process of inductive inference, there are infinitely many hypotheses
about environmental structure that are compatible with sensory data. Can the
perceptual system use the minimum description length (MDL) principle, which
prefers hypotheses that provide a short explanation of the data, to choose between
these competing explanations? This viewpoint has a long history in psychology,
which can be traced back to Ernst Mach and to Gestalt psychology. This chapter
considers how the MDL approach relates to apparently rival principles of perception,
what types of empirical data the approach can and cannot explain, and how an MDL
approach to perception might be augmented to provide an empirically adequate
framework for understanding perceptual inference.

15.1 What is the Simplicity Principle?

Since Helmholtz [1925], many perceptual theorists have viewed the problem of
understanding sensory input as a matter of inference (e.g., see [Gregory 1970; Marr

1982; Rock 1981]). That is, they have viewed the problem of perception as an
abstract inferential problem of finding the “best” explanation of the sensory input.
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The very viability of this highly abstract approach may seem in doubt: Can we really
abstract away from the wealth of experimental results concerning the functioning
of the perceptual system, and the detailed knowledge that is being acquired about
the neurophysiology of the perceptual processing systems? The assumption in this
chapter is that viewing perception as inference, and attempting to understand
what kind of inference principles the perceptual system may use, is that it may
provide a theoretical framework in which to organize and understand experimental
and neuroscientific findings. Unless we understand, on an abstract level, what the
perceptual system is doing, we have little hope of making sense of the psychophysical
and neural data concerning how the perceptual system functions.

So, taking this abstract point of view, the task of the perceptual system is to
find the “best” explanation of sensory input, in terms of the objects, surfaces, and
lighting that may have given rise to that input. But what does it mean to be the
best explanation? Clearly it is not just that the explanation fits the sensory input—
because in perceptual problems there are invariably vast numbers of interpretations
that fit the sensory data. Something other than mere “data fit” must differentiate
the one (or, for rare ambiguous inputs, more than one) plausible interpretation from
the plethora of implausible interpretations.

The minimum description length (MDL) principle discussed in this book pro-
vides an attractive framework for addressing the choice of interpretations. If the
perceptual system follows the MDL principle, it should prefer interpretations that
can be used to provide short descriptions of sensory data. From a purely abstract
standpoint, an MDL approach to perception has a number of attractions:

®» The MDL principle is widely and successfully used in statistics and machine
learning, to tackle practical tasks where structure must be found in data (see,
e.g., [Gao, Li, and Vitdnyi 2000; Quinlan and Rivest 1989; Kontkanen, Myllymiki,
Buntine, Rissanen, and Tirri 2005]).
= “Ideal MDL” [Vitdnyi and Li 2000] can be justified on theoretical grounds as
choosing explanations of data that give reliable predictions, given quite general
assumptions.

= MDL is very closely related to Bayesian inference methods [Chater 1996; Vitanyi
and Li 2000] which are widely used in computational theories of perception [Knill
and Richards 1996]

® MDL-based methods have been applied successfully in computational models of
perception [Mumford 1996; Bienenstock, Geman, and Potter 1998]

These considerations suggest that the perceptual system would do well to use the
MDL principle to analyze perceptual input. The question addressed here is: Does
it? Or, more precisely, to what extent, and in what ways, does the MDL principle
provide a productive framework for theorizing about perception?

This chapter has the following structure. The first section, The power of sim-
plicity: MDL-style theories of perception, briefly outlines the MDL-type viewpoint
on perception. We also describe the kinds of perceptual phenomena that this ap-
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proach has been viewed as explaining. The second section, Simplicity is not enough:
Empirical challenges for MDL theories of perception, we describe various classes
of empirical phenomena that appear to pose difficulties for an MDL approaches
to perception. The third section, Where next? Prospects for an MDL approach
to perception, considers how these challenges might be addressed within an MDL
framework.

15.2 The Power of Simplicity: MDL-Style Theories of Perception

The physicist and philosopher Ernst Mach [1959] proposed that the goal of per-
ception, and for that matter the goal of science, is to provide the most economical
explanation of sensory data. Thus, for example, the postulation of rigid, opaque
objects may provide an economical explanation of the flow of sensory input as an
observer moves through the environment. As the observer moves, the sensory input
does not change in a random way—rather it unfolds predictably, given the princi-
ples of geometry and optics. The postulation of a specific three-dimensional (3D)
environment provides a concise summary of these perceptual inputs. Indeed, this
3D structure also simultaneously explains other features of sensory inputs, most
notably the patterns of relative disparity between the two eyes of the locations
of the same objects. Common sense suggests that the world has a 3D structure,
and that this gives rise to these and many other “depth cues” in the sensory input.
Mach’s perspective inverts this logic : the reason that we perceive a 3D world of
depth at all is that this interpretation provides such an economical summary of
many aspects of sensory input.

A very different example is that ofcolor. The spectrum of light that is reflected
from a surface depends on the reflectance function of the surface and the spectrum
of the incident light. So the spectral properties of light bouncing off a particular
green apple will differ enormously depending on the illuminant: whether the apple
is in sunlight, shade, or artificial light. Yet its perceived color under these widely
varying circumstances is roughly constant [Shepard 1992]. Crudely, perceived color
captures aspects of the surface reflectance function of the individual surfaces and
objects in the scene and this is independent of the illuminant. According to the
principle of economy, the invariance of color is justified because it serves to provide
an economical description of the spectra across a whole scene. The spectrum of the
illuminant, combined with illuminant-invariant reflectance functions for different
kinds of object or surface in the scene, provides a brief explanation of the apparently
chaotic spectral variation across different parts of a scene, and over changes in
illumination.

A third class of examples are the“laws of form” studied by the Gestalt psychol-
ogists (e.g., Koffka [1935]). Consider, for example, the law of common fate—that
a collection of items that move coherently are seen as parts of a single object or

surface. This provides an economical explanation of the movements of all the items

involved—because rather than having to describe the movement of each item sepa-
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rately, the motion of the whole group is specified at once. In the same way, grouping
by proximity, and by similarity, provides an economical way of encoding the shape,
color, or other properties of many items simultaneously.

To state the same point more generally, one goal of perception is to find pat-
terns in sensory input, and the MDL principle provides an elegant way of deciding
between alternative patterns—by favoring patterns that support economical de-
scriptions of sensory input.

In informal terms, the MDL approach to perception was proposed, as we have
noted, by Mach. Mach’s viewpoint was an example of positivism—roughly, the idea
that the goal of science is to capture regularities in sensory experience, with the goal
of making predictions about future sensory experience. A common sense version of
this viewpoint is to claim that by finding the simplest explanation of past sensory
experience, the perceiver or scientist is also likely to gain insight into how the real
world works: what objects it contains, the nature of their causal powers, and so
on. Mach took the more radical view that such apparent insight is illusory. Indeed,
for Mach, that the idea that the goal of perception or science might be to find out
about the nature of the world is conceptually incoherent. Unusually, for a leading
physicist working well into the first part of the twentieth century, he did not believe
in the reality of theoretical postulates of physics, such as atoms-these were merely
convenient fictions for calculating relations between sensory experiences.

Mach’s type of antirealist viewpoint, emphasizing the epistemological primacy
of sensation, has not become philosophically unpopular, partly because it seems
impossible to reconstruct a world of everyday objects, or scientific theoretical
terms, from the language of sensation; and partly because the psychological notion
of sensation has come to seem epistemologically problematic as an indubitable
foundation for knowledge, given that psychological research has revealed how poorly
people can access their own phenomenal experience [Dennett 1991; Laming 1997;
O’Regan and Noe 2001]. This does not imply that Mach’s view of the goal of
perception and science, as providing economical descriptions of sensory experience,
is misguided. The last twenty years has seen a substantial revival of interest in
Bayesian models in the philosophy of science [Earman 1992; Horwich 1982; Howson
and Urbach 1993]; and we shall see in the next section that the simplicity principle
and Bayesian inference are closely related. Moreover, there may be advantages to
adopting a simplicity-based view of scientific inference, over and above the strengths
of the general Bayesian framework [Chater and Vitdnyi 2003]. Overall, I suggest that
to the extent that there is an analogy between scientific inference and perception,
as Mach assumed, this analogy may strengthen, rather than undermine, the case
for a simplicity principle in perception.

After Mach’s discussion, the case for a simplicity principlé: in perception was
developed further by the Gestalt psychologists, in particular in relation to their
formulation of laws of form, mentioned briefly above. More formal attempts to
understand perception in terms of economy of representation were put forward
with the development of information theory, and the developmental of formal
theories of visual representation. For example, some theorists attempted to test
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directly the assumption that the perceptual system prefers short codes, where these
are measured by optimal code lengths, given assumptions about the probability
distributions over sensory inputs [Attneave 1959; Attneave and Frost 1969; Garner
1962; Garner 1974; Hochberg and McAlister 1953]. The theoretical starting point
of this approach is communication theory [Shannon 1948]. This theory specifies,
among other things, the code lengths that produce the briefest expected code
length required to encode the output of a probability distribution. But measuring
complexity relative to a probability distribution is problematic—because it ignores
the instrinsic complexity of the objects being perceived. For example, suppose that
in an experimental context, a participant may be presented either with a black
square on a white background or a high-definition forest scene. If these have the
same probability (of one half), then from an information-theoretic standpoint they
have the same complexity. But this does not capture the very different perceived
complexity of the two stimuli (see [Miller 1967] for more general reflections on
difficulties with applying standard information theory to cognition). Moreover,
outside the laboratory, we face the problem that the probability distribution over
natural images is unknown—indeed, to define it would require knowledge of the
full range of regularities that govern the visual world. Hence it is unclear that
the information-theoretic approach is applicable, even in principle—because it
bases codes on probabilities, and probabilities seem either irrelevant (as in our
experimental example) or unknown.

An attractive alternative approach is to take coding, rather than probability, as
the basic notion. This is the idea behind an MDL approach to perception explored in
this chapter. This approach immediately deals with the case of equiprobable stimuli:
the black square can be coded briefly; the forest scene will require a code of enor-
mous complexity. The primacy of coding, rather than probability, also underpins a
psychological research tradition that developed in parallel to the mathematical for-
mulation of MDL: structural information theory [Buffart, Leeuwenberg, and Restle
1981; Restle 1970; Restle 1979; Van der Helm and Leeuwenberg 1996; Van der Helm
2000]. The aim of structural information theory is to develop a theory of represen-
tation for simple visual inputs, according to which the visual system systematically
prefers interpretations that correspond to short descriptions. This approach has .
been concerned with a particular, and deliberately quite limited, set of coding lan-
guages and visual stimuli, so that concrete predictions can be made. In this chapter,
I am concerned instead with the general claim that the perceptual system chooses
the simplest representation, without commitment to a particular coding language
for perceptual input. The key idea, then, is that we consider the possibility that
the perceptual system aims to find the shortest representation, given some coding
system for perceptual input. .

15.2.1 Simplicity and Bayesian Inference

In the literature on perceptual organization [Pomerantz and Kubovy 1986], the
simplicity principle is typically contrasted with the likelihood principle, that the
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perceptual system should choose the organization that corresponds to the envi-
ronmental structure that has the highest probability, given the data. This type of
viewpoint was proposed by Helmholtz [1925], and has been developed in paral-
lel with the simplicity-based approach, being advocated by vision scientists [Knill
and Richards 1996], as well as researchers on computational theories of human
and machine vision [Geman and Geman 1984; Hinton, Ghahramani and Teh 2000;
Mumford 1996].

Recent formulations of the likelihood approach use a Bayesian framework. They
take the goal of perception to be to choose the perceptual hypothesis or explanation,
H, which maximizes P(H|D) for perceptual data, D. Using an elementary rule of
probability theory, Bayes’ theorem, this is equivalent to choosing the H which
maximizes P(D|H)P(H). This means that hypotheses about the organization of
the stimulus are favored to the extent that they predict the data well (i.e., P(D|H)
is high), and that also have high prior probability (P(D) is high).

The hypothesis, H, that maximizes this term is, of course, the same H that
maximizes the logarithm of this term; and this is also the H that minimizes the
negative of the logarithm of this term, which can be written

—log, P(H) — log, P(D|H).

Now by Shannon’s coding theorem from information theory [Cover and Thomas
1991], we know that an optimal (binary) code length for a probability, p, is log, p.
Hence we can interpret the above terms as code lengths:

codelength(H) + codelength(D|H)

Putting all this together, we can conclude that the hypothesis, H, that maximizes
likelihood can also be viewed as minimizing the code length that the hypothesis
provides for the data, where that hypothesis is expressed as a two-part code. That
is, the hypothesis that satisfies the likelihood principle also satisfies the simplicity
principle, where simplicity is interpreted in terms of code length. This heuristic
argument suggests that the simplicity and likelihood principles can be viewed as
equivalent [Chater 1996; Mumford 1996]. Indeed, applying theoretical results on
the relationship between a version of “ideal” MDL and Bayesian inference [Vitanyi
and Li 2000], it is possible to prove a “mimicry” theorem [Chater, Vitdnyi, Olivers,
and Watson 2005]. It turns out that, for any “computable” coding language (where
this is quite a mild restriction) there is a “dual” probability distribution. This
dual probability distribution has the property that, for any data whatever, the
hypothesis which assigns that data the shortest length using that specific coding
language is also the hypothesis with the highest probability, in the dual probability
distribution. Again subject to mild restrictions, the converse result holds. This
mimicry theorem implies that any specific version of the :simplicit;;' principle can
always be reconceptualized as a specific version of the likelihood principle, and
vice versa. From this perspective, it is not surprising that the century-long debate

between the simplicity and likelihood principles has not been resolved successfully
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by empirical evidence—because any evidence that can be explained by an account
using one principle can be recast by an account using the other. L

The close relationship between Bayesian and MDL viewpoints in perception is
particularly interesting, given the large amount of theoretical [Knill and Richards
1996], computational [Geman and Geman 1984], neuroscientific [Blakemore 1990;
Rieke, Warland, de Ruyter van Steveninck, and Bialek 1997], and psychological
[Weiss 1997] work that takes seriously the possibility that perception operates
by Bayesian inference. Below, we shall see relations between issues that face the
MDL approach to perception with related issues that have been considered in the
probabilistic framework.

15.3 Simplicity is Not Enough: Empirical Challenges for MDL Theories of
Perception

We have considered the prima facie attractions of an MDL approach to perception.
But to understand both the principle and the challenges that it faces as a theoretical
framework for perceptual theory requires facing some of the areas in which the
approach does not presently seem to be adequate. In this section, we consider three
challenges in turn: the principle of least commitment, causality and independence,
and representation and process constraints.

15.3.1 The Principle of Least Commitment

In perceiving a stimulus, the visual system delivers a range of representations that
abstract away, to varying degrees, from the details of the specific stimulus that is
presented. For example, suppose that we see a somewhat noisy picture of a black
square on a white background (Figure 15.1a). The perceptual system presumably
represents this as a black square; and, indeed, more abstractly, as a square (Figure
15.1b). Accordingly, it will be classified as highly similar to other noisy, or less
noisy, stimuli depicting squares (e.g., Figure 15.1c). Moreover, the orientation and
size of the square may be separately abstracted (or perhaps thrown away)

although if the square were aligned such that its adjacent corners, rather than

1. There are still some possible controversies surrounding the traditional debate between
simplicity and likelihood, however [Van der Helm 2000; Chater et al. 2005]. At an
algorithmic level, one or other framework might appear more natural—for example, if
it turns out that the brain carries out empirical sampling from probability distributions,
for example, using Markov chain Monte Carlo, Gibbs sampling, or related methods, as
is embodied in many neural network models, then arguably a probabilistic formulation
might seem more natural. Moreover, in statistics, the relationship between MDL-type
techniques and Bayesian methods is much debated. Some theorists treat these methods as
identical [Wallace and Freeman 1987]; others treat MDL as fundamentally different from,
and logically prior tt’;, the Bayesian approach [Rissanen 1986, 1989].
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its sides, are aligned with the perceptually salient frame of reference, then it may
not be categorized as a square at all, but as a diamond (Figure 15.1d). On the
other hand, of course, one could imagine instead that the perceptual system might
use much less abstract codes

specifically, it might have a shape template for the
precise, although stupendously arbitrary, details of that particular square. And then
specifying a particular perceptual input, such as Figure 15.1a, might be merely a
matter of specifying a size, rotation, translational location, and luminance,? for
this extraordinarily precise template. Going to the opposite extreme, one could
imagine that the perceptual system might choose instead an overgeneral model of
its perceptual image. For example, it might use a “null” model that would assign
equal probability to all possible gray-level image configurations, whether they depict
black squares, faces, or pure random noise.

Figure 15.1 Levels of abstraction in processing a simple perceptual stimulus. (a) shows
a noisy black square, which the perceptual system may, among other things, represent
simple as a square (b), abstracting away from color, irregularities, and so on. (¢) shows
various other noisy or imperfect squares that may be classified with (a), at this level of
abstraction. On the other hand, a change of orientation in relation to the natural frame of
reference may lead an apparently very similar figure to be classified, instead, as a diamond

(d)

From the point of view of understanding perceptual representations from the
point of view of MDL, it is important that we have some way of explaining why
“sensible” perceptual representations are to be preferred over these inappropriate
types of overspecific or overgeneral representation.

Overgeneral models can straightforwardly be eliminated by MDL—because they
do not embody all the constraints that the stimulus actually conforms with, they
require excessive code length. To take a trivial example, if an image consists of
uniform black, then it will have a near-zero description length in terms of a sensible
model that expresses this uniformity. But in terms of the null model that we
mentioned above, each “pixel” must be encoded separately, so the resulting bit-
string will be enormously large (and no shorter than the code for a white noise,
which would be perceived, of course, very differently).

2. We ignore color here to avoid complications.
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Overspecific models, by contrast, are more problematic. Suppose that we have
some particular set of data (in this case, visual input). Consider the ultimately
overspecific model that predicts precisely that these, and no other, possible data
can occur. This model provides a maximally efficient representation of the data—no
information at all is required to encode the data, given the model. But this is only
achieved by putting all the complexity into the specification of the model itself. But
doing this does not increase the overall complexity of the encoding of the data
because, after all, encoding this hyperspecific model just is a matter of encoding
the data, and hence the minimal code for specifying the model will be a minimal
code for the data. More generally, there will typically be many overspecific models
that attain minimal code length, by including essentially arbitrary features of the
data as part of the model itself, and yet still function as minimal codes for the
data. Intuitively, this family of models is such that the data are typical, and hence
uncompressible, given these models. This constraint holds because if the data are
not typical, then the data contain patterns that the model does not describe, and
hence the models provide an inefficient representation of the data. That is, these
models must extract all the structure from the data—but the problem of overgeneral
models is that models can also encode additional, essentially arbitrary, information
about the data.3

In statistical theory, a statistic that captures all the structure in the data is
called a sufficient statistic. Following a suggestion of Kolmogorov, there has been
recent interest in a generalization of this idea, which views models as Kolmogorov
sufficient statistics (KSSs), a notion that can be formally captured [Cover and
Thomas 1991; Gécs, Tromp, and Vitdnyi 2001]. There is frequently a number of
KSSs for any given data.4 Intuition suggests that the KSS of most interest is that
which makes the most modest claims about the data (i.e., where the model has
the shortest code length, such that the data remain typical with respect to that
model). This is the Kolmogorov minimal sufficient statistic (KMSS). Perhaps, then,
an interesting idealization of perception is as searching not merely for short codes
for visual input, but for the KMSS for that input. Thus we have an interesting
principle of least commitment for perceptual theory5: to derive only that structure
from the stimulus that is necessary to explain the data, and no more.

Consider, for example, Figure 15.2. The figure in (a) is perceived as a wire-frame
cube with rigid joints. On the other hand, the joints of the figure in (b), which

3. In practical MDL, the focus is often on the code length associated with specifying the
parameters in a model to an appropriate level of precision from which to predict the data,
rather than on the code lengths of the type of model itself. If used without caution, this
approach will favor overspecific models. In practice, this is rarely a problem, as overspecific
models, unless chosen post hoc, will almost always be overspecific in the wrong ways, and
hence encode the data poorly.

4. A recent important result by Vereshchagin and Vitanyi [2002] shows, remarkably, that
the number of KSSs for any data has some, presumably very large, finite bound.

5. This term is used in a different, but perhaps related, context by Marr [1982].
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Figure 15.2 Illustration of the principle of least commitment. In (a) the highly regular
2D projection can be explained on the assumption that we are viewing a rigid cube. If the
structure is nonrigid (e.g., a frame of rigid rods, attached by loose, flexible joints), then
it is a causally inexplicable co-incidence that the rods happen to align to produce a 2D
projection consistent with the projection of a rigid cube. The perceptual system disfavors
interpretations that involve such causally inexplicable coincidences. In (b), by contrast, a
nonrigid interpretation is quite natural (although joints can also be interpreted as rigid).

Figure 15.3 Simplicity and rigidity constraints. In (a), the alignment between the two
straight lines is interpreted by the perceptual system as significant. That is, the lines are
viewed as part of a single rod, occluded by the ellipse. Thus, for example, it seems natural
to presume that if one rod were moved by force, the other would also move. That is,
the lines are not perceived as merely aligned, but causally connected. This connection
is weaker in (b), where the rods are still nonaccidentally related, by symmetry; and is
weakened still further in (¢) where there is no simple spatial relationship between the two
rods.

is perceived as irregular, are perceived as potentially flexible. In the former case,
the rigidity assumption is necessary, because if joints are flexible (and hence the
" then it is pure coincidence that the shape happens
to be aligned as a cube. The cube alignment is hence not typical with respect
to a nonrigid model, which can be rejected. By contrast, in the latter case, the
commitment to rigid joints is unnecessary, and hence, by the principle of least
commitment we have described, it is not made. Similarly, Figure 15.3 shows how

whole figure is “collapsible,’

the strength of the interpretation of attachment between two linear bars depends on

their alignment. However misaligned they are, they could be attached (any kind of
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shape linking them could be present, but occluded by the oval). But the perception

of attachment is only present to the degree that this provides a short encoding of

the data; if the bars were specified independently, their alignment would be mere

coincidence.5

We have considered how wildly overgeneral and overspecific models may be

. eliminated. But this still leaves a huge space of intermediate models. Ultimately, one

might hope that from studying the properties of natural images to which the visual

system is exposed might provide predictions concerning the nature of the hierarchy

of representational levels that are revealed by neuroscientific and psychological

research (although, of course, it is unlikely that MDL-type constraints are the only

constraints on the perceptual system—one would expect, for example, that the

| nature of the specific biological hardware will favor some kinds of representation
‘ over others [Chater and Oaksford 1990]).

: We have also considered only the case where the perceiver has access to a sin-

gle perceptual input (although this input might be of arbitrary size and temporal
duration). But frequently, we do not want to treat the perceptual input in this unan-
alyzed way—instead, it frequently seems appropriate to view the input as consisting
of several independent perceptual inputs, which must be encoded separately— for
example, several different views of the same object, from different vantage points;
or views of several different objects from the same category (e.g., views of various
different dogs). To the extent that we can analyze the perceptual input in this way,
we can further resolve the problem of overgeneral models. This is because an over-
general model fails to explain why multiple, discrete chunks of data all fall within
a smaller category. That is, the overgeneral category animal may be eliminated as
a hypothesis explaining what one is likely to see when visiting a dog show, because
it fails to explain why all the animals encountered have so much more in common
than would be expected of a typical selection of animals—and this leads to exces-
sively long codes for the representation of the specific animals seen. By contrast, the
category dog captures these regularities neatly. But we can also readily deal with
overspecific models—because multiple data points (multiple examples of dogs) will
have a low probability of fitting an overspecific category. If the first dog I encounter
| when visiting the dog show is a dachshund, I may impute an overspecific hypothe-
sis. But once I see other dogs, it is highly likely that I will see non-dachshunds and
hence that this overspecific hypothesis can be eliminated. More generally, similar
considerations may help explain how the interpretation of a particular item can
be modified by the presence of other items. For example, an apparently arbitrary
orientation of a square will suddenly seem significant in the presence of other items
with this same orientation; an apparently arbitrary pattern of markings may sud-
denly become salient if this is repeated (just as an artist’s scrawled signature may
become salient, upon seeing it in several paintings). That is, some of the ambiguity

6. Strictly, this point relates to our next topic—that MDL can only exploit causally
explicable regularities.
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in determining how to interpret a specific object may be resolved by comparing
it with other objects. If, as some theorists suggest, specific instances or exemplar
information about past perceptual inputs are stored in memory [Hintzman 1986;
Nosofsky 1991], there may be considerable scope for effects of this kind.

This point raises an interesting theoretical question concerning the granularity
at which we consider sensory input in analyzing perception. At one extreme, the
entire history of sensory stimulation might be treated as a single input, to be
compressed; at the other extreme, very spatially and temporally local chunks of
sensory information may be considered separately. This question of granularity
remains an interesting issue for future research (see also Hochberg [1982] for related
discussion). The possibility of breaking sensory input into discrete chunks, which
must be encoded separately, also raises the possibility of applying the simplicity
principle in perception to categorization—the considerations that we have just
described form the basis for a theory of how categories might be learned from
samples of their instances, using a simplicity principle. I do not develop these
ideas here, but note that simplicity-based ideas have been pursued in building
psychological models of both supervised [Feldman 2000] and unsupervised [Pothos
and Chater 2002] categorization.

In this subsection, I have argued that merely finding short descriptions of sensory
input is not enough. The perceptual system must also be able to separate genuine
structure from mere “noise.” At a technical level, the Kolmogorov sufficient statistic
appears to be a valuable tool for understanding how this separation might occur;
and indeed, the hierarchy of Kolmogorov sufficient statistics for sensory input might
even relate to the hierarchy of representational levels computed by the perceptual
system.

15.3.2 Causality and Independence

Consider the three projections of a cube, shown in Figure 15.4. The rightmost
projection (c¢) is readily interpreted as a cube. The leftmost projection (a) is most
naturally perceived as a ‘pinwheel’—although it is the projection of a cube viewed
precisely along an axis through diagonally opposite vertices. The middle figure, (b),
is viewed from a slightly skewed version of this viewing angle—but so that one pair
of axes is still aligned. This is slightly easier to interpret as a cube than (a), but is
most naturally interpreted in two dimensions as two connected diamonds.

A traditional puzzle in the interpretation of 2D line drawings is that each line
drawing could be generated by an infinite number of 3D structures. How does the
perceptual system decide on a particular interpretation out of this infinite array
of options? We assume that MDL can answer this puzzle: the preference for a
cube interpretation, in, say, Figure 15.4, arises because the cube is simpler than
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Figure 15.4 Viewpoint dependence and the perception of projections of a cube. This
figure shows three projections of a wire-framed cube. The first (a) is seen from a viewpoint
according to which two diagonally opposite vertices are in the same line of sight. This is
a highly coincidental viewpoint, and the perceptual system disfavors such coincidences.
Instead, (a) is perceived as a flat pinwheel. (b) is also projection of a cube from a
coincidental viewpoint: two adjacent sides of the cube lie on the same line of sight. (b)
is also not readily viewed as a cube, but as a flat structure composed of two diamonds,
joined by horizontal lines. A slight misalignment between adjacent sides (c¢) reduces the
coincidence; and also eliminates any simple alternative description in terms of a 2D
pattern. Thus, (c) is readily viewed as a projection of a cube.

alternative, less symmetric, polyhedra.” But Figure 15.4 illustrates a more difficult
problem—that some 2D projections of a cube are more readily interpreted, not as
projections of a cube, but as 2D patterns.

This is prima facie puzzling for the MDL approach, because a cube seems to
be a rather efficient way of specifying, say, the pinwheel pattern. We need merely
specify that the cube is viewed so that two adjacent corners are precisely aligned
with the axis of view to obtain the appropriate ﬁgure.8 Though this presumably

corresponds to a short code, it relies on a striking coincidence—in this case,
concerning the precise alignment of the cube in relation to the viewer. There is
a large class of cases of this kind, and theorists in computer vision and perception
have proposed that the perceptual system dislikes interpretations that depend
on coincidences of viewing angle. Constraints of this kind are known as generic
viewpoint constraints [Biederman 1985; Binford 1981; Hoffman 1998; Koenderink
and van Doorn 1979|. But from an MDL viewpoint, constraints that are viewer-
dependent can, nonetheless, lead to short descriptions, and therefore it does not
seem that the MDL approach alone can readily capture the perceptual system'’s
tendency to avoid interpretations that rely on precisely specifying a viewpoint.

7. Symmetric figures have shorter codes because they have fewer degrees of freedom.

8. Aside from the obvious further parameters concerning size, orientation, location, type
of lines used; but these must be specified, whatever underlying model is used for the
geometric structure of the stimulus.
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Figure 15.5 Co-incidences and the interpretation of shadows. This figure illustrates how
the interpretation of a light bar as the shadow of a darker tower (a) is over-ridden when
there is a patterned “path with paving slabs” that precisely coincides with this light bar
(b). Intuitively, the perceptual system is biased against co-incidences; if the light bar is
a shadow, then it is a striking co-incidence that it happens to line up precisely with the
black outlines of the path. Therefore, in (b), the shadow interpretation is disfavored.

Figure 15.6 Coincidence and transparency. In the left box, the simplest interpretation
is that a transparent “spectacle-shaped” object (consisting of patches C and D) lies
over a pair of squares, one light gray and one black (A and B). In the right box,
this transparency interpretation is impeded, because it involves a coincidental alignment
between the overlaid transparent pattern and the squares, so that the indented points in
the spectacle-shaped object are precisely aligned with the line between the two squares.
There seems to be no causal explanation for this coincidence. Hence, the perceptual system
prefers an interpretation in which A, B, C, and D are simply different colored regions, in
the same plane.

The perceptual system also appears to be averse to other kinds of co-incidences.
For example, Figure 15.5 illustrates how the interpretation of a light bar as the
shadow of a tower (Figure 15.5a) is overridden when a patterned “path” coincides
precisely with this light bar (Figure 15.5b). Intuitively, the perceptual system is, as
before, biased against co-incidences; if the light bar is a shadow, then it is a striking
co-incidence that it happens to line up precisely with the path. Thus, instead, the
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light bar in Figure 15.5b is perceived merely as a path of gray paving slabs, rather
than as a shadow. Figure 15.6 shows a further example, using transparency. When
the axis of symmetry of the “spectacles-shaped” object (taken from Hoffman [1998])
is precisely aligned with the division between the two background squares, then the
transparency interpretation, that is otherwise so strong, disappears. The reason is
that, on the transparency interpretation, there are two overlaid surfaces; and there
is no apparent causal constraint that would align the patterns on these surfaces.
From a causal point of view, this is mere coincidence. Notice that this kind of case
is not a matter of viewpoint, and hence not a case to which the generic viewpoint
constraint can directly apply. The point here is that the alignment of different parts
of the figure is not arbitrary, or “generic,” with respect to the causal constraints
that appear to be operative.

These cases can all be viewed as indicating that the perceptual system disfavors
interpretations according to which there are unexplained, or “coincidental” regu-
larities in the input. That is, perception disfavors interpretation in which there is
no causal explanation of why, for example, a figure has a particular alignment with
the viewer, why shadows happen to line up, or why a spectacle-shaped transparent
surface happens to line up precisely with the square-pattern of the surface upon
which it is overlaid.

This indicates that we need to add constraints on the kinds of regularities that
an MDL model can exploit— that these regularities must be causally natural. After
all, the perceptual input is typically the end result of an enormously complex set
of causes. The structure of the input is, of course, a product of the laws that
govern this causal story; and the goal of the perceptual system is, to some extent
at least, to uncover this causal story from the perceptual input. Thus, we have the
constraint that the codes derived by an MDL analysis should not be merely short
but must correspond to causally viable explanations of the data; codes that rely
on short descriptions that are pure ‘co-incidence’ from a causal point of view (e.g.,
unexplained alignments) should be rejected.

The addition of this constraint may seem disappointing from the perspective of
Mach’s positivist program, in perception and in science. For Mach, the apparently
somewhat opaque and metaphysical notion of causality should be avoided by science
(and hence, presumably, by the cognitive system). Instead, the goal of science
is to find the most economical descriptions of the available data. A positivist
viewpoint can, perhaps, reconceptualize the current suggestion, without the concept
of causality. If we focus not just on a single visual stimulus but over the entire history
of stimuli which the perceptual system receives, cases in which co-incidences with no
causal explanation will, of necessity, be rare, and hence, these regularities should be
assigned long codes, and be disfavored by the MDL principle. Regularities that arise
systematically and consistently must, presumably, arise from causal regularities in
the perceptual input. These will be frequent, and hence will have short codes, and be
preferred by MDL. Despite the possibility of this kind of hard-line MDL approach,

in which causal constraints in interpreting any given input are derived from an
MDL analysis over the history of perceptual input, it is also entirely possible,
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of course, that information about causal constraints might be derived from other
sources. Thus, causal constraints may be innate [Sperber, Premack, and Premack
1995] or derived from active perceptual-motor experimentation (e.g., moving the
head, adjusting a light source, or sliding a transparent sheet, which may disturb
co-incidental regularities). Wherever causal constraints are derived from, however,
it seems crucially important to incorporate them into a properly constrained MDL
account of perception.

We have argued, in this subsection, that there appear to be substantial causal
constraints on perceptual interpretations, and these constraints do not immediately
arise by favoring the simplest explanation of the perceptual input. It is worth
noting, too, that causal constraints are not merely important in predicting which
interpretations the perceptual system favors. Rather, extracting a causal model of
the external world is a critical goal of perception. This is because the ultimate utility
of perception resides, of course, in its ability to drive action; and the effectiveness of
action in bringing about the perceiver’s objectives will critically depend on correctly
perceiving which regularities in the external world are co-incidental and which are
causal. Unless the perceiver can distinguish causal structure from perceptual input,
it is as likely to attempt to lift a saucer by picking up the cup, as it is to attempt to
lift a cup by picking up the saucer. How far the simplicity principle could support the
learning of causal structure merely by finding the shortest description in observed
data is an open question.

15.3.3 Representation and Process Constraints

A strong interpretation of an MDL approach to perception would be that the cog-
nitive system chooses the shortest possible description of the perceptual stimulus.
But this strong interpretation cannot be right, at least in general, because the
search problem of finding shortest descriptions is typically intractable.® For some
restricted codes, such as structural information theory, the search problem can be
made tractable [Van der Helm and Leeuwenberg 1991]. But in most cases this is
not possible. Difficult search problems arise even in the optimization calculations
associated with very simple models of pixel-level correlational structure in images
[Weiss 1997]; and in training Bayesian or neural networks to find structure in im-
ages [Hinton et al. 2000]. So an MDL approach to perception must make a more
modest claim: that the perceptual system chooses the shortest code for perceptual
data that it can find. Thus, the claim is that simplicity is used to choose between
perceptual interpretations that are considered by the perceptual system.

Note that the space of interpretations that the perceptual system considers will
be highly constrained. There will be an enormous variety of regularities that, when

9. Where the class of code is universal, for example, has equivalence in power to a universal
programming language, then finding the shortest code is, in general, uncomputable[Li and
Vitdnyi 1997].
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encoded in an image and presented to the perceptual system, will be treated as
mere random noise. To choose any of a myriad of possible examples, an “outsize”
checkerboard whose black and white squares provide a binary encoding of, say,
the initial 10,000 digits of m will have a short code, but will be perceptually
indistinguishable from a random checkerboard.

Indeed, a critical question for an MDL model of perception is to draw on exist-
ing results from psychology and neuroscience to create realistic hypotheses about
which regularities the coding language for perceptual stimuli can capture. Defining
a representation or coding language makes, from this point of view, a rich set of
hypotheses about the relative strengths of different perceptual interpretations; of
the hypotheses considered, the shortest should be favored (subject to the caveats
concerning causality and least commitment that we have described in the last two
subsections). A second critical question is to define search processes over represen-
tations, to provide a mechanism for explaining how perception finds interpretations
with short description length.10

Figure 15.7 How representational format impacts the detection of simple patterns. This
figure, loosely patterned on stimuli by Bayliss and Driver [1994, 1995], illustrates how a
regularity that allows a stimulus to be encoded briefly may be more or less noticeable,
depending on the representational format applied by the perceptual system. In both (a)
and (b), there is an identity between the irregular boundaries. But in (a) the boundary
is difficult to perceive because the figure/ground relation is reversed (the black shape
is the figure, the white forms the background). Hoffman & Richards (1984) point out
that boundaries are encoded in terms of convex protrusions of the figure into the ground.
Therefore the codes that will be generated for the two irregular boundaries in (a) are very
different, because what is coded as a protrusion in one boundary will be viewed as an
indentation in the other (and hence will not be coded at all). By contrast, the identity of
the boundaries in (b) is readily perceived.

10. Structural information theory is one approach to this problem, though not one we
examine here.
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To illustrate, consider Figure 15.7, based on stimuli used by Bayliss and Driver
[1994, 1995]. Note how the identity between “boundaries” is easily perceived when
they have the same figure/ground pattern—but is hard to perceive when they do
not. Bayliss and Driver [1994, 1995] explain this difference by adverting to the claim
of Hoffman and Richards [1984] that the edges of a figure are parsed in terms of
protrusions of the figure into the ground; indentations of the figure are not encoded
directly at all. This means that a boundary will be interpreted very differently
depending which side of the boundary is viewed as the figure—because this will flip
protrusions to indentations and vice versa. Hence, if the same boundary is present
in a stimulus, but with a different figure/ground interpretation, then the codes for
each will be very different, and the match between them cannot be exploited.

Figure 15.8 Representation, figure/ground, and symmetry. Considering each half of
the figure separately, there is potential ambiguity concerning whether the black or white
stripes are figure or ground. Note that the interpretation according to which the foreground
stripes have a constant width is favored. Thus, we perceive white stripes in the left half
of the figure, and black stripes in the right half of the figure. This makes sense, from
the standpoint of the simplicity principle, only with the auxiliary assumption that the
identity between the two parallel contours can only be captured if these contours are
assigned to the same object (i.e., the same stripe). On this assumption, the identity
between contours assigned to different stripes (in other words, between contours that
are perceived as bounding a background region) cannot be captured. According to this
line of reasoning, failing to capture this regularity causes the code length, with this
representation, to be unnecessarily long, and hence this interpretation is disfavored by
the perceptual system. Note, finally, that the symmetry in the stimulus is rather difficult
to perceive. This is because perceiving this symmetry requires simultaneously representing
the different figure/ground representations (white stripes on black in the left half; black
stripes on white in the right half). Thus, representational and processing constraints play
a substantial role in explaining which regularities the perceptual system can use to provide
a short code for the stimulus.

A related example is shown in Figure 15.8. Note, first, that in the left-hand part
of the figure we see white stripes against a black background, and the reverse
pattern on the right-hand part of the image. A natural explanation for these
figure/ground preferences is that the perceptual system prefers to postulate simpler,

rather than more complex, objects. The fore-grounded stripes are simpler than the
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back-grounded stripes because they have parallel edges. Note, of course, that a
pure MDL account would not give this preference for stripes with parallel edges—
because, with the reverse segmentation, all that is required is shared contours
between adjacent stripes (the left contour of one object would be shared with the
right contour of an adjacent object, and so on). But the perceptual code presumably
cannot capture this regularity, with the implication that this coding is not favored.
Finally, note that the symmetry between the two halves of the pattern is rather
difficult to exploit. One explanation for this is that symmetry can only be detected
a fter segmentation of both halves of the stimulus has occurred; and simultaneously
segmenting both halves of the image presents a difficult processing challenge (e.g.,
because the segmentations are somewhat rivalrous).

The upshot of examples such as these is that a simplicity approach to perception
cannot be considered purely in the abstract, in the absence of constraints concern-
ing the representations used by the perceptual system and the cognitive processes
that can operate over them. The perceptual system may, if the simplicity principle
is correct, aim to find the shortest code for sensory input that it can. But the per-
ceptual system’s measure of code length will be influenced by the representational
units that it has available, and by the processes that allow (or do not allow) partic-
ular regularities to be exploited using those units. Moreover, the perceptual system
is limited in which short codes it is able to find—some codes might be highly pre-
ferred if they could be found, but they may not typically be found (or may only be
found after unusually prolonged viewing, as is frequently the experience of viewers
of autostereograms). Now, it seems reasonable to suggest that the specific repre-
sentations and processes that the perceptual system has evolved will be well suited
to the natural environment. And, more speculatively, one might propose that, in
the present framework, this might mean that the perceptual system may have rep-
resentations and processes that are particularly well suited to finding short codes
for regularities that occur in the natural environment. Accordingly, we should not,
perhaps, be surprised that binary expansions of w are not readily detected by the
perceptual system, because presumably there are no natural processes that gener-
ate this pattern; and the tendency to specify shapes in terms of convex protrusions
may be adapted to the geometry of real objects [Hoffman and Richards 1984]. In-
deed, it seems natural to view processes of adaptation as a process of learning over
phylogenetic time; this process of learning gradually reduces the code length with
which the perceptual system can represent the natural world—because perceptual
systems that provide excessively long codes are less well suited to representing real
perceptual input, and tend to be eliminated by natural selection. Equivalently, in
a Bayesian framework, it seems natural to view one role of natural selection being
to select perceptual systems with priors that are as aligned as closely as possible
with the actual probability distributions in the natural world.

Overall, the MDL approach to perception must integrate with existing experimen-
tal and neuroscientific knowledge of perception. The value of the MDL approach
will ultimately depend on whether this integration is smooth and productive, or

forced and unhelpful.
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15.4 Where Next? Prospects for an MDL Approach to Perception

We mentioned at the outset that one justification for an MDL approach to percep-
tion is that perception is a kind of inductive inference, and MDL is a normatively
attractive theory of how such inference should be conducted. But this argument
is only enough, in reality, to establish that MDL should be given some initial cre-
dence. We discussed, too, a number of areas (stereovision, color perception, and
laws of form) where some kind of MDL framework can be applied. But whether
this framework proves to be scientifically productive depends on how far it can
be integrated with the psychology and neurobiology of vision, to provide specific
theoretical insights, and empirical predictions.

It is also possible that technical developments in MDL-type approaches to induc-
tive inference might be usefully applicable to understanding aspects of perception.

One intriguing idea, suggested by Paul Vitanyi (personal communication, Decem-
ber 2001) is that not merely the Kolmogorov minimal sufficient statistic, but the
other nonminimal sufficient statistics might map onto perceptual representations.
Perhaps, to some approximation, we might understand the sequence of levels of
representation in the perceptual system as corresponding to different Kolmogorov
Sufficient Statistics. For example, suppose that we take seriously the idea that very
early visual processing filters the input to remove redundancy due to highly lo-
cal statistical properties of images (e.g., that, in most image locations, luminance
changes smoothly, although in a few locations it changes abruptly) [Barlow 1961].
This early filtering might correspond to a (rather long) Kolmogorov sufficient statis-
tic for the image; it throws away mere noise from the image. A slightly more abstract
level of representation (e.g., representing edges, blobs, bars) might correspond to
another KSS. It throws aways further “noise” of no intrinsic perceptual interest.
The Kolmogorov minimal sufficient statistic represents the limit of this process—the
most abstract representation that does not throw away anything other than noise.
This viewpoint is not intended, of course, to be any more than an idealization of
how perceptual representations might be arranged (e.g., the calculations involved
in finding minimal codes are provably intractable [Li and Vitdnyi 1997] and hence
cannot, presumably, be computed by the brain). And it is likely that perception
throws away a good deal of information— that is, it is much more selective than
this analysis allows. Nonetheless, it may be interesting to pursue ideas of this type,
in relation to understanding the general function of multiple levels of perceptual
representation.

Another interesting line of thought concerns the degree to which we can explain
why the output of perception presents the world to us as “modular,” that is, of
consisting of discrete objects and processes. Let us suppose that, at least at the
macroscopic level relevant to much of perception, the regularities in the world
are naturally “parsed” into discrete chunks (e.g., objects correspond to bundles
of regularities: parts of the same object tend to be made of the same thing, to
be attached to each other, to move coherently, to be at roughly the same depth,
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etc.); and the causal interactions between objects are usually also fairly local (e.g.,
between a cup, the water pouring from it, and its shadow on the table). To what
extent can these sorts of modular structure be uncovered from purely minimizing
description length? Current theory does not appear to give clear answers here.
Plausibly, if a highly modular process has given rise to perceptual input, one might
suppose that a code that replays that modular causal history to reconstruct the
data might provide a brief encoding (although if the data sample is insufficiently
rich, this may not be true). But there will also be codes of about the same length
in which that modular structure is not apparent (just as the careful modular
structure of a computer program may be lost from view when it is compiled into
a different language). And there might also be short codes with a different, and
perhaps contradictory, modular structure. Can MDL-related ideas help to explain
how modular causal structures can be inferred reliably from data alone? This seems
an important question for future theoretical research—not only, indeed, in helping
to understand perception, but in any domain in which MDL may be applied. We
want MDL not merely to give us short codes; we want those codes to be interpretable
as descriptions that correspond to a local, causal description of the structure of the
system that gives rise to the data.

Most crucial for the practical usefulness of the MDL approach to perception is,
of course, the degree to which it can be integrated with existing and future research
on the psychology and neuroscience of perception. To what extent can neural codes
be viewed as compressing sensory input (Barlow [1974], but see also Olshausen
and Field [1996])? How far can interpretations of perceptual stimuli be viewed as a
choice of the briefest code that can reasonably be entertained, given what is known
of the perceptual representations? And, at a theoretical level, to what extent does
an MDL framework for perception have advantages over alternative theoretical
approaches [Leeuwenberg and Boselie 1998]? The normative appeal and descriptive
elegance of an MDL framework, even over the relatively limited territory that we
have discussed here, seems sufficient Justification for continuing to pursue Mach’s
dream that perception is driven by a search for economy, that perception is a search
for minimal description length.
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