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The Rational Analysis of Human Cognition*

NICK CHATER AND MIKE OAKSFORD

Rationality appears basic to the understanding of mind and behaviour. In
practical decisions, such as whether a person is morally responsible for his
or her actions, to whether a person can be hospitalized without consent, it
seems crucial to be able to draw a boundary between sanity and madness,
between rationality and irrationality. In economics, and increasingly, other
areas of social science, human behaviour is explained as the outcome of
‘rational choice’, concerning which products to buy, whom to marry, or
how many children to have (Becker 1975, 1981; Elster 1986). But rational-
ity assumptions go deeper still—they are embodied in the folk psychological
style of explanation in which we describe each other’s minds and behaviour
(Fodor 1987; Stich 1983). Assumptions of rationality also appear equally
essential to interpret each other’s utterances and to understand texts
(Davidson 1984; Quine 1960). So rationality appears basic to the explana-
tion of human behaviour, whether from the perspective of social science or
of everyday life. Let us call this everyday rationality: rationality concerned
with people’s beliefs and actions in daily life.

In this informal, everyday sense, most of us, most of the time, are remark-
ably rational. To be sure, we focus on occasions when reasoning or
decision-making breaks down. But our failures of reasoning are only salient
because they occur against the background of rational thought and behav-
iour which is achieved with such little apparent effort that we are inclined
to take it for granted. Rather than thinking of our patterns of everyday
thought and action as exhibiting rationality, we think of them as plain com-
mon sense—implicitly assuming that common sense must be a simple thing
indeed. People may not think of themselves as exhibiting high levels of
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Psychology, Cardiff University, PO Box go1, Cardiff CF1 3YG, Wales, UK. We would like to
thank José Luis Bermiidez and Alan Millar for their valuable comments on an earlier version
of this paper.
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rationality—instead, we think of people as ‘intelligent’, performing ‘appro-
priate’ actions, being ‘reasonable’ or making ‘sensible’ decisions. But these
labels refer to human abilities to speak, think, or act appropriately in com-
plex, real-world situations—in short, they are labels for everyday rationality.

Indeed, so much do we tend to take the rationality of common-sense
thought for granted, that only recently has it been appreciated that common-
sense reasoning is immensely difficult. This realization emerged from the
project of attempting to formalize everyday knowledge and reasoning in arti-
ficial intelligence, where initially high hopes that common-sense knowledge
could readily be formalized were replaced by increasing desperation at the
impossible difficulty of the project. The nest of difficulties referred to under
the ‘frame problem’ (see e.g. Pylyshyn 1987), and the problem that each
aspect of knowledge appears inextricably entangled with the rest (e.g. Fodor
1983) so that common sense does not seem to break down into manageable
‘packets’ (whether schemas, scripts, or frames, Minsky 1977; Schank and
Abelson 1977), and the deep problems of defeasible, or non-monotonic
reasoning, brought the project of formalizing common sense to an effective
standstill (e.g. McDermott 1987). Thus the cognitive processes underlying
plain ‘common sense’ far outperform any artificial computational system we
can devise. Hence, the sentiment with which we began: Most of us, most of
the time, are remarkably rational. _

But in addition to this informal, everyday sense of rationality, concerning
people’s ability to think and act in the real world, the concept of rationality
also has another root, linked not to human behaviour, but to mathematical
theories of good reasoning. These theories represented one of the most
important achievements of modern mathematics: logical calculi formalize
aspects of deductive reasoning; axiomatic probability formalizes probabilis-
tic reasoning; the variety of statistical principles, from sampling theory
(Fisher 1922, 1925/1970), to Neyman-Pearson statistics (Neyman 1950),
to Bayesian statistics (Keynes 1921; Lindley 1971), aim to formalize the
process of interpreting data in terms of hypotheses; ‘rational choice’ theor-
ies aim to explain people’s preferences and decisions, under uncertainty and
in strategic interaction with other ‘players’ (Nash 1950; von Neumann and
Morgenstern 1944). According to these calculi, rationality is defined, in the
first instance, in terms of conformity with specific formal principles, rather
than in terms of successful behaviour in the everyday world.

How are the two sides of rationality related? How are the general prin-
ciples of formal rationality related to specific examples of rational thought
and action described by everyday rationality? This question, in various
guises, has been widely discussed—in this article, we develop a viewpoint
rooted in a style of explanation in the behavioural sciences, rational anal-
ysis (Anderson 1990). We suggest that rational analysis provides a good
characterization of how the concept of rationality is used in explanations in

Rational Analysis of Human Cognition 137

psychology, economics, and animal behaviour, and usefully explicates the
relationship between everyday and formal rationality.

The discussion falls into four main parts. First, we discuss formal and
everyday rationality, and various possible relationships between them.
Second, we describe the programme of rational analysis as a mode of explana-
tion of mind and behaviour, which views everyday rationality as under-
pmned by formal rationality. Third, we consider a case study of rational
analysis, concerning a celebrated laboratory reasoning task, Wason’s (1966,
1968) selection task. Fourth, we defend the use of formal rationality in
explaining mind and behaviour from some critical attacks (Evans and Over
19964, 1997; Gigerenzer and Goldstein 1996; McDermott 1987).

RELATIONS BETWEEN FORMAL AND EVERYDAY
RATIONALITY

Formal rationality concerns formal principles of good reasoning—the math-
ematical laws of logic, probability, decision, or game theory. These principles
appear, at first sight, to be far removed from everyday rationality—from
how _p_e(_)ple think and act in everyday life. Rarely in daily life do we praise
or criticize each other for obeying or violating the laws of logic or probabil-
ity. Moreover, when people are given reasoning problems that explicitly
require use of these formal principles, their performance appears to be
remarkably poor. People appear to persistently fall for logical blunders
(Evans, Newstead, and Byrne 1993), probabilistic fallacies (e. g. Tversky and
Kahneman 1974), and to make inconsistent decisions (Kahneman, Slovic
anc! Tversky 1982; Tversky and Kahneman 1986). Indeed, the concepts of
logic, probability, and the like do not appear to mesh naturally with our
everyday reasoning strategies: these notions took centuries of intense intel-
lectual effort to construct, and present a tough challenge for each genera-
tion of students.

. How can we relate the astonishing fluency and success of everyday reason-
ing and decision-making, exhibiting remarkable levels of everyday rationality,
to our faltering and confused grasp of the principles of formal rationality?
The problem is especially pressing in view of the fact that psychologists model
almost all human cognition as involving inference. Thus, in deciding to cross
the road, in parsing a sentence, or in catching a ball, the complex information-
processing involved is standardly modelled as involving complex inferential
processes concerning relevant knowledge about the movements of cars
and cyclists, the lexical and grammatical structure of the language, or the
trajectory of the ball and the forces generated by, and inertia tensors of,

- the motor system. Indeed, the view that cognition is, across the board, to be

viewed as a matter of inference over representations of knowledge, is close to
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a fundamental assumption of cognitive science. And more specifically, the
kinds of reasoning processes that are typically invoked involve precisely the
formal models of reasoning (probability, decision theory, and so on) that we
have discussed. Hence, almost every impressively fluent and successful
aspect of human cognition is typically viewed by psychologists as involving
reasoning processes—which suggests that the cognitive system must have
remarkable facility at such reasoning. But this contrasts bizarrely with
results in direct experiment tests of human formal reasoning—which appear
to reveal that people have only the most blundering ability in formal
reasoning. So we return to the question: how can some reconciliation be
found between the effectiveness of everyday reasoning exhibited across
cognitive processes and the ineffectiveness of performance on experimental
reasoning tasks? We sketch three important possibilities, which have been
influential in the literature in philosophy, psychology, and the behavioural
sciences.

Everyday Rationality is Primary

This viewpoint takes everyday rationality as fundamental, and views formal
theories as flawed in so far as they fail to match up with human everyday
reasoning intuitions.

This standpoint appears to gain credence from historical considera-
tions—formal rational theories such as probability and logic emerged as
attempts to systematize human rational intuitions, rooted in everyday con-
texts. But the resulting theories appear to go beyond, and even clash with,
human rational intuitions—at least if empirical data which appear to reveal
apparent blunders in human reasoning are taken at face value.

Where clashes occur, the advocates of the primacy of everyday rationality
argue that the formal theories should be rejected as inadequate systematiza-
tions of human rational intuitions, rather than condemning the intuitions
under study as incoherent. A certain measure of tension may be granted
between the goal of constructing a satisfyingly concise normalization of
intuitions, and the goal of capturing every last intuition successfully, just as
linguists allow complex centre-embedded constructions to be grammatical
(e.g. ‘the fish the man the dog bit ate swam’), even though most people
reject them as ill-formed gibberish. But the dissonance between formal
rationality and everyday reasoning appears more profound than this. As we
have argued, fluent and effective reasoning in everyday situations runs
alongside halting and flawed performance on the most elementary formal
reasoning problems.

The primacy of everyday rationality is implicit in an important challenge to
decision theory by the mathematician Allais (1953; see also Ellsberg 1961,

and May 1954, for a similar challenge to decision theory). One version of
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the paradox is as follows. Consider the following pair of lotteries, each
involving 100 tickets. Which would you prefer to play?

A. B.

1o tickets worth $1,000,000 1 ticket worth $5,000,000

go tickets worth $o 8 tickets worth $1,000,000
91 tickets worth $o

Now consider which you would prefer to play of lotteries C and D:

@ D.

100 tickets worth $1,000,000 1 ticket worth $5,000,000
98 tickets worth $1,000,000
1 tickets worth $o

Most people prefer lottery B to lottery A—the slight reduction in the prob-
ability of becoming a millionaire is offset by the possibility of the really
large prize. But most people also prefer lottery C to lottery D—we don’t
think it is worth losing what would otherwise be a certain $1,000,000, just
for the possibility of winning $5,000,000. This combination of responses,
for all its intuitive appeal, is inconsistent with decision theory, which
demands that people should choose whichever alternative has the max-
imum expected utility. Denote the utility associated with a sum of $X by
U($X). Then the preference for lottery B over A means that:

10/100.U($1,000,000) + 90/100.U($0) < 1/100.U($5,000,000) +
8/100.U($1,000,000) + 91/100.U($0) (1)

and, subtracting 90/100.U($0) from each side:

10/100.U($1,000,000) < 1/100.U($ 5,000,000) +
8/100.U($1,000,000) + 1/100.U($0) (2)

But the preference for lottery C over D means that:

100.U($1,000,000) > 1/100.U($5,000,000) +
98/100.U($1,000,000) + 1/100.U($0) (3)

and, subtracting 9o/100.U($1,000,000) from each side:

10.U($1,000,000) > 1/100.U($5,000,000) +
8/100.U($1,000,000) + 1/100.U($0) (4)

But (2) and (4) are in contradiction.

Allais’s paradox is very powerful—the appeal of the choices that decision
theory rules out is considerable. Indeed, rather than condemning people’s
intuitions as incorrect, Allais argues that the paradox undermines the norm- -
ative status of decision theory—decision theory should be revised to fit with
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our intuitions (see Chew 1983; Fishburn 1983; Kahneman and Tversky
1979; Loomes and Sugden 1982; Machina 1982).

Another example arises in Cohen’s (1981) discussion of the psychology of
reasoning literature. Following similar arguments of Goodman (1954),
Cohen argues that a normative or formal theory is ‘acceptable... only so far
as it accords, at crucial points with the evidence of untutored intuition’
(Cohen 1981, 317). That is, a formal theory of reasoning is acceptable only
to the extent that it fits with everyday reasoning. Cohen uses the following
example to demonstrate the primacy of everyday inference. According to
standard propositional logic the inference from (5) to (6) is valid:

If John’s automobile is a Mini, John is poor, and
if John’s automobile is a Rolls, John is rich. (5)

Either, if John’s automobile is a Mini, John is rich, or
if John’s automobile is a Rolls, John is poor. (6)

Clearly, however, this violates intuition. Most people would agree with
(5) as at least highly plausible; but would reject (6) as implausible. A fortiori,
they would not accept that (5) implies (6) (otherwise they would have to
judge (6) to be at least as plausible as (5)). Consequently, Cohen argues that
standard logic simply does not apply to the reasoning that is in evidence in
people’s intuitions about (5) and (6). Like Allais, Cohen argues that rather
than condemn people’s intuitions as irrational, this mismatch reveals the
inadequacy of propositional logic: everyday intuitions have primacy over
formal theories.

But this viewpoint is not without problems. A key danger is of losing
any normative force to the notion of rationality—if rationality is merely
conformity to each other’s predominant intuitions, then there seems no
standpoint from which to assess which of our intuitions is rational. On this
view, being rational is like a musician being in tune: all that matters is that
we reason harmoniously with our fellows. But there is a strong intuition
that rationality is not like this at all—that there is some absolute sense in
which some reasoning or decision-making is good, and other reasoning and
decision-making is bad. So, by rejecting a formal theory of rationality, there
is the danger that the normative aspect of rationality is left unexplained.

One way to reintroduce the normative element is to define a procedure
that derives normative principles from human intuitions. Cohen appealed to
the notion of reflective equilibrium (Goodman 1954; Rawls 1971) where
inferential principles and actual inferential judgements are iteratively bought
into a ‘best fit’ until further judgements do not lead to any further changes of
principle (narrow reflective equilibrium). Alternatively, background knowl-
edge may also figure in the process, such that not only actual judgements but
also the way they relate to other beliefs are taken into account (wide reflective
equilibrium). These approaches have, however, been subject to much
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criticism (e.g. Stich and Nisbett 1980; Thagard 1988). For example, there is
no guarantee that an individual (or indeed a set of experts) in equilibrium
will have accepted a set of rational principles, by any independent standard
of rationality. For example, the equilibrium point could conceivably leave
the individual content in the idea that logical fallacies are sound principles
of reasoning. _

Thagard (1988) proposes that instead of reflective equilibrium, developing
inferential principles involves progress towards an optimal system. This
involves proposing principles based on practical judgements and back-
ground theories, and measuring these against criteria for optimality. The
criteria Thagard specifies are (i) robustness: principles should be empirically
adequate; (i) accommodation: given relevant background knowledge, devia-
tions from these principles can be explained; and (iii) efficacy: given relevant
background knowledge, inferential goals are satisfied. Thagard’s (1988) con-
cerns were very general, in order to account for the development of scientific
inference. From our current focus on the relationship between everyday and
formal rationality, however, Thagard’s proposals seem to fall down because
the criteria he specifies still seem to leave open the possibility of inconsis-
tency, i.e. it seems possible that a system could fulfil (i) to (iii) but contain
mutually contradictory principles. The point about formalization is of
course that it provides a way of ruling out this possibility and hence is why a
tight relationship between formality and normativity has been assumed since
Aristotle. From the perspective of this paper, accounts like reflective equilib-
rium and Thagard’s account, which attempts to drive a wedge between for-
mality and normativity, may not be required. We argue that many of the
mismatches observed between human inferential performance and formal
theories are a product of using the wrong formal theory to guide expecta-
tions about how people should behave.

An alternative normative grounding for rationality seems intuitively
appealing: good everyday reasoning and decision-making should lead to
successful action; for example, from an evolutionary perspective, we might
define success as inclusive fitness (roughly, expected number of offspring),
and argue that behaviour is rational to the degree that it tends to increase
inclusive fitness. But now the notion of rationality appears to collapse into
a more general notion of adaptiveness. There seems to be no particular dif-
ference in status between cognitive strategies which lead to successful
behaviour, and digestive processes that lead to successful metabolic activity.
Both increase the inclusive fitness of an individual (roughly, the expected
number of children of that individual); but intuitively we want to say that
the first is concerned with rationality, while the second is not. More gener-
ally, defining rationality in terms of outcomes runs the risk of blurring what
appears to be a crucial distinction—between minds, which may be more or
less rational, and stomachs, that are not in the business of rationality at all.
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Formal Rationality is Primary

Arguments for the primacy of formal rationality take a different starting
point. This viewpoint is standard with the mathematics, statistics, opera-
tions research, and the ‘decision sciences’ (e.g. Kleindorfer, Kunreuther and
Schoemaker 1993). The idea is that everyday reasoning is fallible, and that it
must be corrected by following the dictates of formal theories of rationality.
In this light, for example, the Allais paradox may be viewed as revealing a
flaw in human reasoning rather than exposing a problem for decision theory.

The viability of this viewpoint depends, in part, on the scope of formal the-
ories of rationality—are they really able to handle the richness of inferences
that everyday reasoning actually involves? This issue arises particularly in the
context of formal logic, because the principles of logic do not give a general
model of how beliefs should be revised (particularly when there is some
inconsistency in the knowledge base—which is, of course, the normal situa-
tion in cognition) (e.g Harman 1986; McDermott 1987; Oaksford and
Chater 1991). But it also arises more generally—for example, although
inductive inference can, in many contexts, be usefully modelled in terms of
probabilistic inference, there are no clear principles concerning how to set
prior probabilities from which inference begins; and the choice of prior prob-
abilities will be crucially important given any finite set of data (though see
e.g. Jaynes 1989; Jeffreys 1939; Paris 1992; Rissanen 1987, 1989 for dis-
cussion). We shall touch on these issues below—but for now let us leave
aside the concern that formal principles of rationality are simply too limited
to engage with the principles that underlie the full complexity of everyday
reasoning.

Advocates of the primacy of formal rationality concerns the justification
of formal calculi of reasoning: why should the principles of some calculus
be viewed as principles of good reasoning, so that they may potentially
override our intuitions about what is rational? Such justifications typically
assume some general, and apparently incontrovertible, cognitive goal;
or seemingly undeniable axioms about how thought or behaviour should
proceed. They then use these apparently innocuous assumptions and aim to
argue that thought or decision-making must obey specific mathematical
principles. _

Consider, for example, the ‘Dutch book’ argument for the rationality of
the probability calculus as a theory of uncertain reasoning (de Finetti 1937;
Ramsey 1926; Skyrms 1977). Suppose that we assume that people will
accept a ‘fair’ bet: that is, a bet where the expected financial gain is o,
according to their assessment of the probabilities of the various outcomes.
Thus, for example, if a person believes that there is a probability of 1/3 that
it will rain tomorrow, then they will be happy to accept a bet according to
which they win two dollars if it does rain tomorrow, but they lose one dollar
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if it does not. Now, it can be shown that, if a person’s assignment of proba-
bilities to different possible outcomes violates the laws of probability theory
in any way whatever, then it is possible to offer them a combination of dif-
ferent bets, such that they will happily accept each individual bet as fair, in
the above sense, but where whatever the outcome they are certain to lose
money. Such a combination of bets—where one side is certain to lose—is
known as a Dutch book; and it is seems incontrovertible that accepting a
bet that you are certain to lose must violate rationality. Thus, if violating
the laws of probability theory leads to accepting Dutch books, which seems
clearly irrational, then obeying the laws of probability theory seems to be a
condition of rationality.

The Dutch book theorem might appear to have a fundamental weakness—
that it requires that a person willingly accepts arbitrary fair bets. But, in real-
ity of course, this might not be so—many people will, in such circumstances,
be risk-averse, and choose not to accept such bets. But the same argument
applies even if the person does not bet at all. Now the inconsistency concerns
a hypothetical—the person believes that if the bet were accepted, it would be
fair (so that a win, as well as a loss, is possible). But in reality, the bet is guar-
anteed to result in a loss—the person’s belief that the bet is fair is guaranteed
to be wrong. Thus, even if we never actually bet, but simply aim to avoid
endorsing statements that are guaranteed to be false, we should follow the
laws of probability.

We have considered the Dutch book justification of probability theory in
some detail to make it clear that justifications of formal theories of rational-
ity can have considerable force.” Rather than attempting to simultaneously
satisfy as well as possible a myriad of uncertain intuitions about good and
bad reasoning, formal theories of reasoning can be viewed, instead, as
founded on simple and intuitively clear-cut principles, such as that accepting
bets that you are certain to lose is irrational. Similar justifications can be
given for the rationality of the axioms of utility theory and decision theory
(Cox 196T1; Savage 1954; von Neumann and Morgenstern 1944). Moreover,
the same general approach can be used as a justification for logic, if avoiding
inconsistency is taken as axiomatic. Thus, there may have been good reasons
for accepting formal theories of rationality, even if, much of the time, human
intuitions and behaviour strongly violate their recommendations (see Dawes
1988, for an exposition of this viewpoint from within psychology).

* There are also a range of other justifications of the laws of probability theories as a calcu-
lus of uncertain inference, based on preferences (Savage 1954), scoring rules (Lindley 1982),
and derivation from minimal axioms (Cox 1961; Good 1950; Lucas 1970). Although each
argument can be challenged individually, the fact that so many different lines of argument con-
verge on the very same laws of probability has been taken as powerful evidence for the view
that degrees of belief can be interpreted as probabilities (see e.g. Howson and Urbach 1989;
and Earman 1992, for discussion).
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If formal rationality is primary, what are we to make of the fact that, in

explicit tests at least, people seem to be such poor probabilists and logicians?
One line would be to accept that human reasoning is badly flawed. Thus, the
heuristics and biases programme (e.g. Kahneman, Slovic and Tversky 1982;
Kahneman and Tversky 1979; Thaler 1987), which charted systematic errors
in human probabilistic reasoning and decision-making under uncertainty, can
be viewed as exemplifying this position (see Gigerenzer and Goldstein 1996),
as can Evans’s (1982, 1989) heuristic approach to reasoning.

Another line follows the spirit of Chomsky’s (1965) distinction between
linguistic competence and performance—the idea is that people’s reasoning
competence accords with formal principles, but in practice, performance
limitations (e.g. limitations of time or memory) lead to persistently imperfect
performance when people are given a reasoning task. Reliance on a compe-
tence—performance distinction, whether implicitly or explicitly, has been
very influential in the psychology of reasoning: for example, mental logic
(Braine 1978; Rips 1994) and mental models (Johnson-Laird 1983;
Johnson-Laird and Byrne 1991) theories of human reasoning assume that
classical logic provides the appropriate competence theory for deductive
reasoning; and flaws in actual reasoning behaviour are explained in terms
of ‘performance’ factors.

Mental logic assumes that human reasoning algorithms correspond to
proof-theoretic operations (specifically, in the framework of natural deduc-
tion, e.g. Rips 1994). This viewpoint is also embodied in the vast programme
of research in artificial intelligence, especially in the 1970s and 1980s, which
attempted to axiomatize aspects of human knowledge, and view reasoning
as a logical inference (e.g. McCarthy 1980; McDermott 1982; McDermott
and Doyle 1980; Reiter 1980, 1985). Moreover, in the philosophy of cognit-
ive science, it has been controversially suggested that this viewpoint is basic
to the computational approach to mind: the fundamental claim of cognitive
science, according to this viewpoint, is that ‘cognition is proof theory’
(Fodor and Pylyshyn 1988; see Chater and Oaksford 1990, for a critique).

The mental models theory of reasoning concurs that logical inference
provides the computational level theory for reasoning, but instead of stand-
ard proof-theoretic rules, this view uses a ‘semantic’ method of proof. Such
methods involve a search for models (in the logical sense)}—a semantic
proof that A does not imply B might involve finding a model in which A and
B both hold. Mental models theory uses a similar idea, although the notion
of model in play is rather different from the logical notion of a model.*

* E.g., mental models correspond to mental representations of states of affairs, rather than
states of affairs themselves; and these mental representations have a specific syntax, and pre-
sumably a specific semantics. The precise semantic properties of mental models reprcsentatipn
has not been given, and indeed, it is not clear how this could be done. Instead, the semantics
of mental models is left, rather uncomfortably, up to the theorist’s intuitions.

Rational Analysis of Human Cognition 145

How can this approach show that A does imply B? The mental models
account assumes that the cognitive system attempts to construct a model in
which A is true and B is false; if this attempt fails, then it is assumed that no
counter-example exists, and that the inference is valid (this is similar to
‘negation as failure’ in logical programming (Clark 1978)).

Mental logic and mental models assume that formal principles of rational-
ity—specifically classical logic—(at least partly) define the standards of good
reasoning. They explain the non-logical nature of people’s actual reasoning
behaviour in terms of performance factors, such as memory and processing
limitations.

Nonetheless, despite its popularity, the view that formal rationality has
priority in defining what good reasoning is, and that actual reasoning is sys-
tematically flawed with respect to this formal standard, suffers a fundamen-
tal difficulty. If formal rationality is the key to everyday rationality, and if
people are manifestly poor at following the principles of formal rationality
(whatever their ‘competence’ with respect to these rules), even in simplified
reasoning tasks, then the spectacular success of everyday reasoning in the
face of an immensely complex world seems entirely baffling.

Everyday Rationality is Based on Formal Rationality: An Empirical Approach

We seem to be at an impasse. The success of everyday rationality in guiding
our thoughts and actions must somehow be explained; and it seems that
there are no obvious alternative explanations, aside from arguing that every-
day rationality is somehow based on formal reasoning principles, for which
good justifications can be given. But the experimental evidence appears to
show. that people do not follow the principles of formal rationality.

There is, however, a way out of this impasse. Essentially, the idea is to
reject the idea that rationality is a monolithic notion that can be defined a
priori, and compared with human performance. Instead, we treat the prob-
lem of explaining everyday rationality as an empirical problem of explain-
ing why people’s cognitive processes are successful in achieving their goals,
given the constraints imposed by their environment. Formal rational theo-
ries are used in the development of these empirical explanations for the
success of cognitive processes—but which formal principles are appropri-
ate, and how they should be applied, is not decided a priori; but in the light
of the empirical usefulness of the explanation of the adaptive success of the
cognitive process under consideration. '

According to this viewpoint, the apparent mismatch between normative
theories and reasoning behaviour suggests that the wrong normative
theories may have been chosen; or the normative theories may have been
misapplied. Instead, the empirical approach to the grounding of rationality
aims to ‘do the best’ for human everyday reasoning strategies—by searching
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for a rational characterization of how people actually reason. There is an anal-

ogy here with rationality assumptions in language interpretation (Davidson
1984; Quine 1960). We aim to interpret people’s language so that it makes
sense; similarly, the empirical approach to rationality aims to interpret
people’s reasoning behaviour so that their reasoning makes sense.

Crucially, then, the formal standards of rationality appropriate for
explaining some particular cognitive processes or aspect of behaviour are
not prior to, but are rather developed as part of, the explanation of empiri-
cal data. Of course, this is not to say that, in some sense, formal rationality
may be prior to, and separate from, empirical data. The development of for-
mal principles of logic, probability theory, decision theory, and the like may
proceed independently of attempting to explain people’s reasoning behav-
iour. But which element of this portfolio of rational principles should be
used to define a normative standard for particular cognitive processes or
tasks, and how the relevant principles should be applied, is constrained by
the empirical human reasoning data to be explained.

It might seem that this approach is flawed from the outset. Surely, any
behaviour can be viewed as rational from some point of view. That is,
by cooking up a suitably bizarre set of assumptions about the problem that
a person thinks they are solving, surely their rationality can always be
respected; and this suggests the complete vacuity of the approach. But this
objection ignores the fact that the goal of empirical rational explanation is to
provide an empirical account of data on human reasoning. Hence, such
explanations must not be merely possible, but also simple, consistent with
other knowledge, independently plausible, and so on. In short, such explana-
tions are to be judged in the light of the normal canons of scientific reasoning
(Howson and Urbach 1989).3 Thus, rational explanations of cognition and
behaviour can be treated as on a par with other scientific explanations of
empirical phenomena.

This empirical view of the explanation of rationality is attractive, to the
extent that it builds in an explanation of the success of everyday rationality.
It does this by attempting to recruit formal rational principles to explain why
cognitive processes are successful. But how can this empirical approach to
rational explanation be conducted in practice? And can plausible rational
explanations of human behaviour be found? The next two sections of the
paper answer these questions. First, we outline a methodology for the
rational explanation of empirical data—rational analysis. We also illustrate
a range of ways in which this approach is used, in psychology, and the social

3 Note also that for all reasonably rich scientific theories, any empirical data can be accom-
modated, by suitable changes in auxiliary assumptions (Quine 1953). Thus rational explana-
tions are no different in this regard, from, e.g. explanations in terms of the principles of
Newtonian mechanics (Putnam 1974).
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and biologicavl sciences. We then use rational analysis to re-evaluate
the psychological data which have appeared to show human reasoning
performance to be hopelessly flawed, and argue that, when appropriate

rationgl theories are applied, reasoning performance may, on the contrary,
be rational.

THE PROGRAMME OF RATIONAL ANALYSIS

The project of providing a rational analysis for some aspect of thought or
behaviour has been described by the cognitive psychologist John Anderson
(e.g. Anderson 1990, 19914). This methodology provides a framework for
explaining the link between principles of formal rationality and the practi-
cal success of everyday rationality not just in psychology, but throughout
the study of behaviour. This approach involves six steps:

1. Specify precisely the goals of the cognitive system.
2. Develop a formal model of the environment to which the system is
adapted.

. Make minimal assumptions about computational limitations.

4. Derive the optimal behaviour function given (1)—(3) above.
(This requires formal analysis using rational norms, such as probabil-
ity theory and decision theory.)

5. Examine the empirical evidence to see whether the predictions of the
behaviour function are confirmed.

6. Repeat, iteratively refining the theory.

L]

According to this viewpoint, formal rational principles relate to explaining
everyday rationality, because they specify the optimal way in which the
goals of the cognitive system can be attained in a particular environment,
subject to ‘minimal’ computational limitations. The assumption is that the
cognitive system exhibits everyday rationality, i.e. successful thought and
action in the everyday world, to the extent that it approximates the optimal
solution specified by rational analysis.

The framework of rational analysis aptly fits the methodology in many
areas of economics and animal behaviour, where the behaviour of people
or animals is viewed as optimizing some goal, such as money, utility, inclu-
sive fitness, food intake, or the like. But Anderson (1990, 19914) was con-
cerned to extend this approach not just to the behaviour of whole agents,
but to structure and performance of particular cognitive processes of which
agents are composed. Anderson’s programme has led to a flurry of research
in cognitive psychology (see Chater and Oaksford 1999a; Oaksford and
Chater 19984, for overviews of recent research), from areas as diverse as
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categorization (Anderson 1991b; Anderson and Matessa 1998; Lamberts '

and Chong 1998), memory (Anderson and Milson 1989; Anderson and
Schooler 1991; Schooler 1998), reasoning (Oaksford and Chater 1994,
19954, 1996, 1998b), searching computer menus (Young 1998), and natu-
ral language parsing (Chater, Crocker, and Pickering 1998). This research
has shown that a great many empirical generalizations about cognition can
be viewed as arising from the rational adaptation of the cognitive system to
the problems and constraints that it faces. We shall argue below that the
cognitive processes involved in reasoning can also be explained in this way.

The three inputs to the calculations using formal rational principles, goals,
environment, and computational constraints, each raise important issues reg-
arding the connection between formal rational principles and everyday
rationality. We discuss these in turn, and in doing so illustrate rational analy-
sis in action in psychology, animal behaviour, and economics.

The Importance of Goals

Everyday thought and action is focused on achieving goals relevant to the
agent. Formal principles of rationality can help specify how these goals are
achieved, but not, of course, what those goals are. The simplest cases are
economic in spirit. For example, consider a consumer, wondering which
washing machine to buy. Goals are coded in terms of the subjective ‘utili-
ties” associated with objects or events for this particular consumer. Each
washing machine is associated with some utility (high utilities for the effect-
ive, attractive, or low-energy washing machines, for example); and money
is also associated with utility. Simple decision theory will specify which
choice of machine maximizes subjective utility. Thus goals enter very
directly; people with different goals (here, different utilities) will be assigned
different ‘rational’ choices. Suppose instead that the consumer is wonder-
ing whether to take out a service agreement on the washing machine. Now
the negative utility associated with the cost of the agreement must be bal-
anced with the positive utility of saving possible repair costs. But what are
the possible repairs; how likely, and how expensive, is each type? Decision
theory again recommends a choice, given utilities associated with each
outcome, and subjective probabilities concerning the likelihood of each
outcome. '

But not all goals may have the form of subjective utilities. In evolutionary
contexts, the goal of inclusive fitness might be more appropriate (Dawkins
1977); in the context of foraging behaviour in animals, amount of food
intake or nutrition gained might be the right goal (Stephens and Krebs
1986). Moreover, in some cognitive contexts, the goal of thought or action
may be disinterested curiosity, rather than the attempt to achieve some par-
ticular outcome. Thus, from exploratory behaviour in children and animals
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to the pursuit of basic science, a vast range of human activity appears to be
concerned with finding out information, rather than achieving particular
goals. Of course, having this information may ultimately prove important
for achieving goals; and this virtue may at some level explain the origin of
the disinterested search for knowledge (just as the prospect of unexpected
applications may partially explain the willingness of the state to fund fun-
damental research). Nonetheless, disinterested inquiry is conducted without
any particular goal in mind. In such contexts, gaining, storing, or retrieving
information, rather than maximizing utility, may be the appropriate specifica-
tion of cognitive goals. If this is the goal, then information theory and
probability theory may be the appropriate formal normative tools, rather
than decision theory.

Note that rational analysis is at variance with Evans and Over’s distinc-
tion between two forms of rationality, mentioned above. They argue that
‘people are largely rational in the sense of achieving their goals (rationality,)
but have only a limited ability to reason or act for good reasons sanctioned
by a normative theory (rationality,)’ (Evans and Over 1997, 1). But the
approach of rational analysis attempts to explain why people exhibit the
everyday rationality involved in achieving their goals by assuming that their
actions approximate what would be sanctioned by a formal normative the-
ory. Thus, formal rationality helps explain everyday rationality, rather than
being completely separate from it.

To sum up, everyday rationality is concerned with goals (even if the goal
is just to ‘find things out’); knowing which formal theory of rationality to
apply, and applying formal theories to explaining specific aspects of every-
day cognition, requires an account of the nature of these goals.

The Role of the Environment

Everyday rationality is concerned with achieving particular goals, in a par-
ticular environment. Everyday rationality requires thought and action to be
adapted (whether through genes or through learning) to the constraints of
this environment. The success of everyday rationality is, crucially, success
relative to a specific environment—to understand that success requires
modelling the structure of that environment. This requires using principles
of formal rationality to specify the optimal way in which the agent’s goals
can be achieved in that environment (Anderson’s Step 4) and showing that
the cognitive system approximates this optimal solution. :
In psychology, this strategy is familiar from perception, where a key part
of understanding the computational problem solved by the visual system
involves describing the structure of the visual environment (Marr 1 982).
Only then can optimal models for visual processing of that environment be
defined. Indeed, Marr (1982) explicitly allies this level of explanation with
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Gibson’s (1979) ‘ecological’ approach to perception, where the primary
focus is on environmental structure.

Similarly, in zoology, environmental idealizations of resource depletion and
replenishment of food stocks, patch distribution, and time of day are crucial
to determining optimal foraging strategies (Gallistel 1990; McFarland and
Houston 1981; Stephens and Krebs 1986).

Equally, in economics, idealizations of the ‘environment’ are crucial to
determining rational economic behaviour (McCloskey 1985). In microeco-
nomics, modelling the environment (e.g. game-theoretically) involves cap-
turing the relation between each actor and the environment of other actors.
In macroeconomics, explanations using rational expectations theory (Muth
1961) begin from a formal model of the environment, as a set of equations
governing macroeconomic variables.

This aspect of rational analysis contrasts with the view that the concerns
of formal rationality are inherently disconnected from environmental con-
straints. For example, Gigerenzer and Goldstein (1996) propose that ‘the
minds of living systems should be understood relative to the environment in
which they evolved rather than to the tenets of classical [i.e. formal] ration-
ality.” (p. 651) (emphasis added). Instead, rational analysis aims to explain
why agents succeed in their environment by understanding the structure of
that environment, and using formal principles of rationality to understand
what thought or action will succeed in that environment.

Computational Limitations

In rational analysis, deriving the optimal behaviour function (Anderson’s
Step 4) is frequently very complex. Models based on optimizing, whether in
psychology, animal behaviour, or economics, need not, and typically do not,
assume that agents are able to find the perfectly optimal solutions to the
problems that they face. Quite often, perfect optimization is impossible even
in principle, because the calculations involved in finding a perfect optimum
are frequently computationally intractable (Simon 1955, 1956), and, more-
over, much crucial information is typically not available. Indeed, formal
rational theories in which the optimization calculations are made, including
probability theory, decision theory, and logic are typically computationally
intractable for complex problems (Cherniak 1986; Garey and Johnson
1979; Good 1971; Paris 1992; Reiner 1995). Intractability results imply that
no computer algorithm could perform the relevant calculations given the
severe time and memory limitations of a ‘fast and frugal’ cognitive system.
The agent must still act even in the absence of the ability to derive the opti-
mal solution (Gigerenzer and Goldstein 1996; Simon 1956). Thus it might
appear that there is an immediate contradiction between the limitations of
the cognitive system and the intractability of rational explanations.
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There is no contradiction, however, because the optimal behaviour func-
tion is an explanatory tool, not part of an agent’s cognitive equipment. Using
an analogy from Marr (1982), the theory of aerodynamics is a crucial com-
ponent of explaining why birds can fly. But clearly birds know nothing about
aerodynamics, and the computational intractability of aerodynamic calcula-
tions does not in any way prevent birds from flying. Similarly, people do not
need to calculate their optimal behaviour functions in order to behave adap-
tively. They simply have to use successful algorithms; they do not have to
be able to make the calculations that would show that these algorithms are
successful. Indeed, it may be that many of the algorithms that the cognitive
system uses may be very crude ‘fast and frugal® heuristics (Gigerenzer and
Goldstein 1996) which generally approximate the optimal solution in the
environments that an agent normally encounters. In this context, the optimal
solutions will provide a great deal of insight into why the agent behaves as it
does. However, an account of the algorithms that the agent uses will be
required to provide a full explanation of their behaviour ( e.g. Anderson 1993;
Oaksford and Chater 1995b).

This viewpoint is standard in rational explanations across a broad range
of disciplines. Economists do not assume that people make complex game-
theoretic or macroeconomic calculations (Harsanyi and Selten 1988); zoologists
do not assume that animals calculate how to forage optimally (e.g. McFarland
and Houston 1981); and, in psychology, rational analyses of, for example,
memory, do not assume that the cognitive system calculates the optimal for-
getting function with respect to the costs of retrieval and storage (Anderson
and Schooler 1991). Such behaviour may be built in by evolution or be
acquired via a long process of learning—but it need not require on-line
computation of the optimal solution.

In some contexts, however, some on-line computations may be required.
Specifically, if behaviour is highly flexible with respect to environmental
variation, then calculation is required to determine the correct behaviour,
and this calculation may be intractable. Thus the two leading theories of
perceptual organization assume that the cognitive system seeks to optimize
on-line either the simplicity (e.g. Leeuwenberg and Boselie 1988) or likeli-
hood (Helmholtz 1910/1962; see Pomerantz and Kubovy 1987) of the
organization of the stimulus array. These calculations are recognized to be
computationally intractable (see Chater 1996). This fact does not invalidate
these theories, but it does entail that they can only be approximated in
terms of cognitive algorithms. Within the literature on perceptual organiza-
tion, there is considerable debate concerning the nature of such approxima-
tions, and which perceptual phenomena can be explained in terms of
optimization, and which result from the particular approximations that the
perceptual system adopts (Helm and Leeuwenberg 1996).
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It is important to note also that, even where a general cognitive goal is
intractable, a more specific cognitive goal relevant to achieving the general
goal may be tractable. For example, the general goal of moving a piece in
chess is to maximize the chance of winning. However, this optimization prob-
lem is known to be completely intractable because the search space is so large.
But optimizing local goals, such as controlling the middle of the board, weak-
ening the opponent’s king, and so on, may be tractable. Indeed, most
examples of optimality-based explanations, whether in psychology, animal
behaviour, or economics, are defined over a local goal, which is assumed to be
relevant to some more global aims of the agent. For example, evolutionary
theory suggests that animal behaviour should be adapted so as to increase
an animal’s inclusive fitness, but specific explanations of animals’ foraging
behaviour assume more local goals. Thus, an animal may be assumed to for-
age so as to maximize food intake, on the assumption that this local goal is
generally relevant to the global goal of maximising inclusive fitness. Similarly,
the explanations concerning cognitive processes discussed in rational analysis
in cognitive psychology concern local cognitive goals such as maximizing the
amount of useful information remembered, maximizing predictive accuracy,
or acting so as to gain as much information as possible. All of these local
goals are assumed to be relevant to more general goals, such as maximizing
expected utility (from an economic perspective) or maximizing inclusive fit-
ness (from a biological perspective). At any level, it is possible that optimiza-
tion is intractable; but it is also possible that by focusing on more limited
goals, evolution or learning may have provided the cognitive system with
mechanisms that can optimize or nearly optimize some more local, but
relevant, quantity.

The observation that the local goals may be optimized as surrogates for
the larger aims of the cognitive system raises another important question
about providing rational models of cognition. The fact that a model involves
optimizing something does not mean that the model is a rational model.
Optimality is not the same as rationality. It is crucial that the local goal that
is optimized must be relevant to some larger goal of the agent. Thus, it
seems reasonable that animals may attempt to optimize the amount of food
they obtain, or that the categories used by-the cognitive system are optim-
ized to lead to the best predictions. This is because, for example, optimizing
the amount of food obtained is likely to enhance inclusive fitness, in a way
that, for example, maximizing the amount of energy consumed in the
search process would not. Determining whether some behaviour is rational
or not therefore depends on more than just being able to provide an
account in terms of optimization. Therefore rationality requires not just
optimizing something but optimizing something reasonable. As a definition
of rationality, this is clearly circular. But by viewing rationality in terms of
optimization, general conceptions of what are reasonable cognitive goals
can be turned into specific and detailed models of cognition. Thus, the

.
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programme of rational analysis, while not answering the ultimate question
of what rationality is, nonetheless provides the basis for a concrete and
potentially fruitful line of empirical research.

This flexibility of what may be viewed as rational, in building a rational
model,. may appear to raise a fundamental problem for the entire rational
analysis programme. It seems that the notion of rationality may be so flex-
ible that whatever people do, it is possible that it may seem rational under
some description. So, for example, to pick up an example we have already
mentioned, it may be that our stomachs are well adapted to digesting the
food in our environmental niche. Indeed, they may even prove to be opti-
mally efficient in this respect. However, we would not therefore describe the
human stomach as rational, because stomachs presumably cannot usefully
be viewed as information-processing devices, which approximate, to any
degree, the dictates of normative theories of formal rationality. Stomachs
may be well or poorly adapted to their function (digestion), but they have no
beliefs, desires, or knowledge, and make no decisions or inferences. Thus
their behaviour cannot be given a rational analysis and hence they cannot bf:
related to the optimal performance provided by theories of formal rational-
ity. Hence the question of the stomach’s rationality does not arise.

In this section, we have seen that rational analysis provides a mode of
explaining behaviour which clarifies the relationship between the stuff of
everyday rationality—reasoning with particular goals, in a specific environ-
ment, with specific computational constraints—and apparently abstract prin-
ciples of formal rationality in probability theory, decision theory, or logic.
Formal rational principles spell out the optimal solution for the information-
processing problem that the agent faces. The assumption is that a well-
adapted agent will approximate this solution to some degree.

Having outlined the general rational analysis approach, and argued that
the approach is prevalent in the social and biological sciences, we now con-
sider ‘how the programme of rational analysis provides a very different per-
spective on human reasoning than has been traditionally obtained from
laboratory studies. Specifically, apparently non-deductive reasoning per-
formapge in laboratory reasoning tasks can be shown to make coherent
sense if it is recognized that people may not be treating the reasoning tasks
as deductive at all. A probabilistic rational analysis of these tasks provides a
simple and powerful framework for explaining a wide variety of empirical
data on human reasoning.

RE-EVALUATING EMPIRICAL DATA ON HUMAN REASONING

We began by discussing the controversy concerning the relationship between
formal theories of rationality and the everyday notion of the rationality
that underlies effective thought and action in the world. We have seen how
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everyday rationality can be underpinned by principles of formal rationality
in rational analysis. We now consider how rational analysis can be applied
to explaining data on human reasoning gained from laboratory tasks. The
rational analysis approach allows us to see laboratory performance, which
has typically been viewed as systematically non-rational, as having a rational
basis. This diffuses a crucial tension at the heart of the psychology and philo-
sophy of rationality—between the manifest success of cognition in dealing
with the complexities of the everyday world, and the apparently stumbling
and flawed performance on laboratory reasoning tasks.

Everyday rationality is a matter of being adapted to the structure and goals
in the real world. Thus, rational explanation, whether in animal behaviour,
economics, or psychology, assumes that the agent is well adapted to its
normal environment. However, almost all psychological data are gained in
a very unnatural setting, where a person performs an artificial task in the
laboratory. Any laboratory task will recruit some set of cognitive mechanisms
that determine the participant’s behaviour. But it is not obvious what problem
these mechanisms are adapted to solving. This adaptive problem is not likely
to be directly related to the problem given to the participant by the experi-
menter, precisely because adaptation is to the natural world, not to labor-
atory tasks. In particular, this means that participants may fail with respect
to the task that the experimenter thinks they have set. But this may be
because this task is unnatural with respect to the participant’s normal envi-
ronment. Consequently people may assimilate the task that they are given
to a more natural task, recruiting adaptively appropriate mechanisms which
solve this, more natural, task successfully.

In the area of research known as the ‘psychology of deductive reasoning’
(e.g. Evans, Newstead, and Byrne 1993; Johnson-Laird and Byrne 1991;
Rips 1994), people are given problems that the experimenters conceive of as
requiring logical inference. But they consistently respond in a non-logical
way. Thus, human rationality appears to be called into question (Stein
1996; Stich 1985, 1990).

But the perspective of rational analysis suggests an alternative view. We
propose first that everyday rationality is founded on uncertain rather than
certain reasoning. This suggests that probablity provides a better starting
point for a rational analysis of human reasoning than logic. Second, we
argue that a probabilistic rational analysis of classic ‘deductive’ reasoning
tasks provides an excellent empirical fit with observed performance. The
upshot is that much of the experimental research in the ‘psychology of
deductive reasoning’ does not engage people in deductive reasoning at all—
but rather engages strategies suitable for probabilitistic reasoning. Thus, the
field of research appears to be crucially misnamed! But more importantly,
probabilistic rational analysis helps resolve the tension between apparently
poor laboratory reasoning performance, and the conspicuous success of
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everyday rationality. Laboratory performance is rational after all, once the
appropriate rational standard is adopted.

Our discussion will focus on Wason’s selection task (Wason 1966, 1968),
the most intensively studied task in the psychology of reasoning, and perhaps
the ‘deductive’ reasoning task that has raised the greatest concerns about
human rationality (e.g. Cohen 1981; Stein 1996; Stich 1985, 1990; Sutherland
1992), although the approach we describe has been applied in other areas of
reasoning, including other areas in the psychology of ‘deductive’ reasoning;:
reasoning with conditionals and syllogisms (e.g. Anderson 1995; Chater and
Oaksford 1999¢; Oaksford and Chater 1998b).

In the selection task, people must assess whether some evidence is relev-
ant to the truth or falsity of a conditional rule of the form if p then g, where
by convention p stands for the antecedent clause of the conditional and q
for the consequent clause. In the standard abstract version of the task, the
rule concerns cards, which have a number on one side and a letter on the
other. The rule is if there is a vowel on one side (p), then there is an even
number on the other side (g). Four cards are placed before the subject, so
that just one side is visible; the visible faces show an ‘A’ (p card), a ‘K’ (not-p
card), a “2’ (g card) and a ‘7’ (not-q card). Subjects then select those cards
they must turn over to determine whether the rule is true or false. Typical
results were: p and g cards (46%); p card only (33%), p, q and not-q cards
(7%), p and not-q cards (4%) (Johnson-Laird and Wason 1970).

The task subjects confront is analogous to a central problem of experi-
mental science: the problem of which experiment to perform. The scientist
has a hypothesis (or a set of hypotheses) which they must assess (for the
subject, the hypothesis is the conditional rule); and must choose which
experiment (card) will be likely to provide data (i.e. what is on the reverse
of the card) which bear on the truth of the hypothesis.

In the light of the epistemological arguments we have already considered,
it may seem unlikely that this kind of scientific reasoning will be deductive
in character. Nonetheless, the psychology of reasoning has viewed the selec-
tion task as paradigmatically deductive (e.g. Evans 1982; Evans, Newstead,
and Byrne 1993), although a number of authors have argued for a non-
deductive conception of the task (Fischhoff and Beyth-Marom 1983; Kirby
1994; Klayman and Ha 1987; Rips 1990).

The assumption that the selection task is deductive in character arises
from the fact that psychologists of reasoning have tacitly accepted Popper’s
hypothetico-deductive philosophy of science. Popper (19 59/1935) assumes
that, evidence can falsify but not confirm scientific theories. Falsification
occurs when predictions that follow deductively from the theory do not
accord with observation. This leads to a recommendation for the choice of
experiments: to only conduct experiments that have the potential to falsify
the hypothesis under test.
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Applying the falsificationist account to the selection task, the recommenda-
tion is that subjects should only turn cards that are potentially logically
incompatible with the conditional rule. When viewed in these terms, the
selection task has a deductive component, in that the subject must deduce
which cards would be logically incompatible with the conditional rule.
According to the rendition of the conditional as material implication (which
is standard in the propositional and predicate calculi, see Haack 1978), the
only observation that is incompatible with the conditional rule if p then q is
a card with p on one side and n0t-q on the other. Hence the subject should
select only cards that could potentially be such an instance. That is, they
should turn the p card, since it might have a not-q on the back; and the not-q
card, since it might have a p on the back.

This pattern of selections is rarely observed in the experimental results
outlined above. Subjects typically select cards that could confirm the rule,
i.e. the p and g cards. However, according to falsification the choice of the
g card is irrational, and is an example of so-called ‘confirmation bias’
(Evans and Lynch 1973; Wason and Johnson-Laird 1972). The rejection of
confirmation as a rational strategy follows directly from the falsificationist
perspective.

We have argued that the usual standard of ‘correctness’ in the selection
task follows from Popper’s hypothetico-deductive view of science. Rejecting
the falsificationist' picture would eliminate the role of logic, and hence
deduction, in the selection task. The hypothetico-deductive view faces con-
siderable difficulties as a theory of scientific reasoning (Kuhn 1962; Lakatos
1970; Putnam 1974). This suggests that psychologists should explore
alternative views of scientific inference that may provide different norm-
ative accounts of experiment choice, and hence might lead to a different
‘correct’ answer in the selection task. Perhaps the dictates of an alternative
theory might more closely model human performance, and hence be
consistent with the possibility of human rationality. :

QOaksford and Chater (1994) adopted this approach, adapting th
Bayesian approach to philosophy of science (Earman 19925 Horwich 1982;
Howson and Urbach 1989), rather than the hypothetico-deductive view, to
provide a rational analysis of the selection task. They view the selection task
in probabilistic terms, as a problem of Bayesian optimal data selection

(Good 1966; Lindley 1956; MacKay 1992). Suppose that you are interested

in the hypothesis that eating tripe makes people feel sick. Should known
tripe-eaters or tripe-avoiders be asked whether they feel sick? Should people
known to be, or not to be, sick be asked whether they have eaten tripe? This
case is analogous to the selection task. Logically, you can write the hypo-
thesis as a conditional sentence, if you eat tripe (p) then you feel sick (g).
The groups of people that you may investigate then correspond to the vari-
ous visible card options, p, not-p, q, and not-q. In practice, who is available
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will influence decisions about which people you question. The selection task
abstracts away from this factor by presenting one example of each potential
source of data. In terms of our everyday example, it is like coming across
four people, one known tripe-eater, one known not to have eaten tripe, one
known to feel sick, and one known not to feel sick. The task is to decide
whom to question about how they feel or what they have eaten.

Oaksford and Chater (1994, 1996) suggest that hypothesis testers should
choose experiments (select cards) to provide the greatest ‘expected informa-
tion gain’ in deciding between two hypotheses: (i) that the task rule, if p
then g, is true, i.e. ps are invariably associated with gs, and (ii) that the
occurrence of ps and gs are independent. For each hypothesis, Oaksford
and Chater (1994) define a probability model that derives from the prior
probability of each hypothesis (which for most purposes they assume to be
equally likely, i.e. both are o.5), and the probabilities of p and of g in the
task rule. They define information gain as the difference between the uncer-
tainty before receiving some data and the uncertainty after receiving that
data where they measure uncertainty using Shannon-Wiener information.
Thus Oaksford and Chater define the information gain of data D as:

Information before receiving D: I(H) = —E P(H))log,P(H,)

Information after receiving D: I(HID)= —E P(H,|D)log,P(H;,ID)

Information gain: I, = I(H)—I(HID)

They calculate the P(H;ID) terms using Bayes’ theorem. Thus information
gain is the difference between the information contained in the prior probab-
ility of a hypothesis (H;) and the information contained in the posterior
probability of that hypothesis given some data D.

When choosing which experiment to conduct (that is, which card to
turn), the subject does not know what that data will be (that is, what will be
on the back of the card). So they cannot calculate actual information gain.
However, subjects can compute expected information gain. Expected informa-
tion gain is calculated with respect to all possible outcomes, e.g. for the
p card, the possible outcomes with regard to what will be found on the back
of the card are g and not-gq; and the calculation also averages over both
hypotheses (that the rule is true, or that p and g are independent).

Oaksford and Chater (1994) calculated the expected information gain of
each card assuming that the properties described in p and g are rare. This
‘rarity assumption’ is an appropriate default because in a typical everyday
rule such as if it’s a raven then it’s black, only a small minority of things sat-
isfy the antecedent (most things are not ravens) or the consequent (most
things are not black). (Klayman and Ha (1987) make a similar assumption
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in accounting for related data on Wason’s, 1960, 2-4—6 task.) With this
‘rarity’ assumption, the order in expected information gain is:

E(I(p)) > E(Iy(q)) > E(Ig(not-q)) > E(lg(not-p)),

where E represents the expectation operator. This corresponds to the
observed frequency of card selections in Wason’s task: p >q >not-q > not-p
and thus explains the predominance of p and g card selections as a rational
inductive strategy.

This result might seem paradoxical: it might seem that the Bayesian
analysis suggests that finding falsifying instances of the rule (which may
occur by turning the not-g card to reveal a p) is not important. And this
would seem to be bizarre, because from any reasonable point of view, falsify-
ing instances should be especially significant (because they decisively answer
the question of whether or not the rule is correct); and any method of test-
ing a rule should put an emphasis on finding such instances if they exist.
Fortunately, there is no puzzle here. The Bayesian analysis does rate fals_lfy-
ing instances as highly informative—indeed, as maximally informative,
because uncertainty concerning whether the rule is true drops to o as soon
as a falsifier is discovered. But the expected amount of information
obtained by turning the not-g card is, nonetheless, low, because, according
to the rarity assumption, mentioned above, the probability of finding a fal-
sifying instance on the back of a not-g card is low. .

To get an intuitive feel for how this works, consider the following

scenario. Suppose that the hypothesis under test is ‘if a saucepan falls from
the kitchen shelf (p) it makes a clanging noise (g).” This rule, like the vast
majority of everyday rules, conforms to the rarity assumption—saucepans
fall quite rarely (most of the time no saucepan is falling); and clangs are
heard quite rarely (most of the time no clang is audible). The four cards in
the selection task can be seen as analogous to the following four scenarios.
Suppose I am in the kitchen, and see the saucepan beginning to fall (p card);
should I bother to take off my headphones and listen for a clang (i.e. should
I turn the p card?)? Intuitively, it seems that I should, because, whether there
is a clang or not, I will learn something useful concerning the. rule
(if there is no clang, the rule is falsified; if there is a clang, then my estimate
of the probability that the rule is true increases). Suppose, on the other hand,
I am next door and I hear a clang (g card); should I bother to come into the
kitchen to see whether the saucepan has fallen (should I turn the g card?)?
Intuitively, this is also worth doing—if the saucepan has not fallen then I
have learned nothing (something else must have caused the clang); but if the
saucepan has fallen, then this strongly confirms the rule. This is the intgitive
explanation for why the g card is worth turning, even though there is no
possibility that turning this card can falsify the rule.
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Now consider the analogue of the turning of the 70t-g card: I am next
door and I hear 7o clang. This time should I bother to come into the kitchen
to see whether the saucepan has fallen (should I turn the not-g card?)?
Intuitively, to bother to do so seems crazy—TI’ll be in and out to the kitchen
all day if T adopt this strategy! And I will probably learn nothing whatever,
as the saucepan will remain unmoved on the shelf. Of course, in the very
unlikely event that I find that the saucepan has fallen (p), then I can falsify
the rule—because if the rule were true I should have heard a clang (g) and I
did not. But in everyday reasoning contexts, where the rarity assumption
holds, the expected information gain for the analogue of turning the not-gq
card is typically very low—because the probability of obtaining falsification
is so low. Crucially, intuitively (and in Oaksford and Chater’s 1994 formal
analysis) the expected informational value of turning the g card is greater
than turning the not-g card, even though turning the g card cannot lead to
falsification—I will be more inclined to bother to check whether the
saucepan has fallen if [ hear a clang than if I do not. To complete the example,
the not-p card corresponds to the case in which I see that the saucepan is
sitting safely on the shelf; should I bother to take off my headphones and
listen for a clang. Clearly not, because the rule only makes a claim about
what happens if the saucepan falls.

Oaksford and Chater (1994) also show how their model generalizes to all
the main patterns of results in the selection task (for discussions of this
account see Almor and Sloman 1996; Evans and Over 1996b; Laming 1996;
Klauer, ‘in press; and for responses and developments see Oaksford and
Chater 1996, 1998b, 1998¢; Chater and Oaksford, 1999¢). Specifically, it
accounts for the non-independence of card selections (Pollard 1985), the
negations paradigm (e.g. Evans and Lynch 1973), the therapy experiments
(e.g. Wason 1969), the reduced array selection task (Johnson-Laird and
Wason 1970), work on so-called fictional outcomes (Kirby 1994) and deontic
versions of the selection task (e.g. Cheng and Holyoak 1985) including per-
spective and rule-type manipulations (e.g. Cosmides 1989; Gigerenzer and
Hug 1992), the manipulation of probabilities and utilities in deontic tasks
(Kirby 1994), and effects of relevance (Oaksford and Chater 199 5a; Sperber,
Cara, and Girotto 1995).

We noted above that the philosophy of science that underlies the ‘deduct-
ive’ conception of the selection task can be questioned. The current consen-
sus is that scientific theories do not deductively imply predictions, and
hence that the general problem of choosing which experiment to perform
(or analogously, which card to turn in the selection task) cannot be recon-
structed deductively. Further, Oaksford and Chater’s (1994) probabilistic
account provides a better model of human performance on the selection
task. According to this model, people do not use deduction when solving
the selection task, rather they use a probabilistic inferential strategy.
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Having seen how rational analysis can be applied in a specific case, and
how the approach may have radical implications for standard interpreta-
tions of laboratory data on human reasoning, we now defend the rational
analysis approach against theorists who argue that formal rationality has
no useful role in explaining everyday rationality.

COULD FORMAL AND EVERYDAY RATIONALITY
BE UNRELATED?

The first part of this paper considered various possible relations between
formal and everyday rationality. The second part developed a particular
conception of this relationship, framed in terms of Anderson’s methodology
of rational analysis, and the third provided an illustration of the approach.
This section considers recent viewpoints which suggest that the whole
enterprise may have been misconceived from the beginning—because there
is no useful relationship between formal and everyday rationality. We shall
argue that formal rationality does indeed form an indispensable part of the
explanation of everyday rationality, and that the nature of this explanation
is best understood in terms of rational analysis.

The view that formal and everyday rationality can be disconnected has
been advanced by a number of theorists. In artificial intelligence, McDermott
(1987) argues that the attempt to build knowledge representation systems
based on logical principles persistently fails to capture human everyday reas-
oning, and (with some sense of despair!) recommends a ‘procedural’
approach—the researcher simply aims to specify algorithms that seem to
work, without attempting to ground these in formal logic or probability. In
robotics, there has been much interest in so-called behaviour-based robotics
(Brooks 1991; McFarland and Bosser 1993), where perceptual and motor
functions are linked directly together, using essentially heuristic methods,
rather than attempting to use general principles of perceptual analysis and
motor control (as exemplified in e.g. Marr 1982).

As we noted above, in psychology, Evans and Over (19964, 1997) distin-
guish between two notions of rationality:

Rationality,: Thinking, speaking, reasoning, making a decision, or acting in a way
that is generally reliable and efficient for achieving one’s goals.

Rationality,: Thinking, speaking, reasoning, making a decision, or acting when
one has a reason for what one does sanctioned by a normative theory. (Evans and
Over 1997, 2)

They argue that ‘people are largely rational in the sense of achieving their
goals (rationality;) but have only a limited ability to reason or act for good
reasons sanctioned by a normative theory (rationality,)’ (Evans and Over
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1997, 1). If this is right, then achieving one’s goals can be achieved without
following a formal normative theory—i.e. without there being a justifica-
tion for the actions, decisions or thoughts which lead to success: rationality,
does not require rationality,. That is, Evans and Over are committed to the
view that thoughts, actions, or decisions which cannot be normatively justi-
fied can, nonetheless, consistently lead to practical success.

A similar view is advocated by Gigerenzer and Goldstein (1996) who
claim to provide an ‘existence proof’ for algorithms which work in the real
world, but have no apparent justification in terms of formal theories of rea-
soning (such an algorithm is therefore intended to be a candidate for
explaining part of rationality,, in Evans and Over’s terms, even though they
are held to be unrelated to rationality, ).

The domain they consider is one of cognitive estimation: deciding which
is the larger of two cities, based on a list of features of each city. Their ‘non-
rational’ algorithm, Take-the-Best, works in two steps. First, it uses a
‘recognition principle’ and—if one of the cities is not known, it is assumed
to be the smaller. Second, the algorithm sequentially considers features of
the cities, one by one, in decreasing order of ‘diagnosticity’ for size (the
diagnosticity ordering is a prior calculation). So, for example, the feature ‘is
a national capital’ may be most diagnostic of size—if one city has this prop-
erty it is declared to be the larger. Hence this will be the first feature to be
considered. If the cities ‘tie’ on this property (e.g. neither is a national capital),
then another feature is examined (e.g. has the city been the site of an expo-
sition), and so on, until the tie is broken. This algorithm is designed to be
“fast and frugal’—i.e. to consume little time or memory resources; but it
has no obvious rational basis. Nonetheless, in a competition with other
algorithms, including multiple regression from statistics, Gigerenzer and
Goldstein show that Take-the-Best performs as well as these apparently
more rationally justified algorithms (and indeed, at levels that appear com-
parable with human performance).

As well as arguing that Take-the-Best is an existence proof that algo-
rithms can succeed in real environments, without any basis in formal
rational theories, Gigerenzer and Goldstein (1996) argue that, more gener-
ally, human reasoning works by fast and frugal algorithms which work in
the real world, but have no justification in terms of probability, statistics, or
other normative principles.

But this viewpoint does not tackle the fundamental problem we outlined
for advocates of the primacy of everyday rationality above. It does not
answer the question: why do the cognitive processes underlying everyday
rationality consistently work? If everyday rationality is somehow based on
formal rationality, then this question can be answered, at least in general
terms. The principles of formal rationality are provably principles of good
inference and decision-making; and the cognitive system is rational in
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everyday contexts to the degree that it approximates the dictates of these
principles. But if everyday and formal rationality are assumed to be unrel-
ated, then this explanation is not available. Unless some alternative explana-
tion of the basis of everyday rationality can be provided, the success of the
cognitive system is again left entirely unexplained.

There is, though, an interesting lesson to be learned from the success of
‘fast and frugal® algorithms such as Take-the-Best, which do a good job in
the real world without being directly based on formal rational principles.
This is that explanation in terms of cognitive algorithms can run ahead of
rational explanation—i.e. we can specify algorithms that do work, without
knowing why they work. We shall see shortly that the projects of develop-
ing rational and algorithm explanations of cognition quite frequently run at
different speeds—each approach may run ahead of the other. But this does
not undermine the importance of ultimately being able to provide both
styles of explanation. In particular, it does not undermine the utility of
accounts based on formal rationality, in explaining the real-world everyday
rationality of the cognitive system.

Consider, first, cases where rational explanations of behaviour have pro-
ceeded without considering how they might be approximated by cognitive
algorithms. The vast bulk of ‘rational choice’ explanation, whether in social
behaviour (Crawford, Smith, and Krebs 1987; Messick 1991), economics
(e.g. Muth 1961; von Neumann and Morgenstern 1944) or animal behav-
iour (Maynard-Smith and Price 1973) has this character. The programme of
rational analysis, outlined above, has the same character—indeed, one of
Anderson’s (r990) motivations for developing the rational analysis
approach was precisely that it abstracts away from specifying underlying
cognitive algorithms, which can often be underdetermined by empirical
data (e.g. Anderson 1978; Pylyshyn 1984). In all these explanations, formal
rational principles specify what should occur, given a specific goal and envir-
onment, but the particular cognitive algorithms which underlie behaviour
in these contexts may be entirely unknown.

Gigerenzer and Goldstein (along with others who advocate separating
formal rational explanation from the explanation of everyday, real-world
thought and behaviour) focus on the opposite case, where algorithmic
explanation has run ahead of rational explanation. This occurs in much of
cognitive psychology, which has focused on describing cognitive algorithms
and the representations over which they operate. Equally, the study of
animal cognition has resulted in accounts such as the Rescorla-~Wagner
associative learning algorithm for classical conditioning (Rescorla and
Wagner 1972). Indeed, explanation in terms of algorithms, whether speci-
fied in terms of sequential operations, ‘box and arrow’ diagrams, or neural
networks, is arguably the dominant mode of explanation in many areas of
psychology.
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Similarly, in the technical study of machine learning, neural networks, and
much practical (rather than theoretical) mathematical statistics, algorithms
have been constructed which address complex and poorly understood real-
world problems, with at least some success. But the rational theory of why
these algorithms are-successful lags behind these developments. To choose an
example of current psychological interest, it has recently been shown that
a neural network can learn to map from orthography to phonology, dealing
successfully both with exception words and non-words (Bullinaria 1994;
Plaut, McClelland, Seidenberg, and Patterson 1996; Seidenberg and
McClelland 1989).4 But there is no known rational theory of the nature
of the orthography-phonology mapping, or how it should be learned. A dif-
ferent kind of example of psychological interest concerns the vast range of
practical statistical tests which are widely used, although the assumptions
under which they apply are not known (Gigerenzer and Murray 1987).
Thus, Take-the-Best seems unnecessary as an ‘existence proof’ that we can
design successful algorithms without knowing why they work, because there
are already many examples of such algorithms in the psychological, compu-
tational, and statistical literatures.

However, even where algorithmic theories have predominated, it remains
an important goal to provide rational explanations of why they succeed.
For example, in psychology, the adaptiveness of the Rescorla~Wagner learn-
ing algorithm (Rescorla and Wagner 1972) has been explained by showing
that it asymptotically approximates the optimal solution in a normative
probabilistic account of causal reasoning (Cheng 1997; Shanks 1995a,
1995b). Rescorla~Wagner learning therefore approximates a rational stand-
ard, using limited computational resources. Equally, classification by simil-
arity to stored exemplars, for which there is considerable empirical evidence
(Medin and Schaffer 1978), can be shown to be adaptive because it approx-
imates Anderson’s (1991b) Bayesian classification model (Nosofsky 1991).
A further example provided by McKenzie (1994) who has shown that
so-called ‘linear combination heuristics’, which are good descriptions of
human causal reasoning performance, also provide good approximations to
a normative Bayesian solution (see also Anderson 1990; Cheng 1997). For
many years, the fact that people appear to use such heuristics has been cited
as evidence for the irrationality of human causal reasoning. Recent analyses
suggest that this was premature: these heuristics provide a ‘fast and frugal’
approximation to rational norms. :

Even relatively ill-defined heuristics for probabilistic reasoning like ‘avail-
ability’ (Kahneman, Slovic, and Tversky 1982) may have a rational basis. The
concept of availability has been developed to explain a range of systematic

+ We take no stand here on whether such models are compatible with detailed psychological
and neuropsychological data. See e.g. Coltheart, Curtis, Atkins, and Haller (1993) for discussion.
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biases in people’s probability and frequency judgements. In a famous study,
Tversky and Kahneman (1974) asked people how many seven letter words
have the form:

and how many have the form
oo LI

People typically estimate that there are more words of the second form than
the first. But this cannot be correct, because all the words that are examples
of the second form are necessarily examples of the first! Tversky and
Kahneman’s explanation is that the second form provides a better cue to
memory—words ending ‘ing’ are more ‘available’. The assumption is that
people estimate frequencies and probabilities by using availability—the
more available an item is, the more frequent or probable it is assumed to be.
But this heuristic seems to have a sound rational basis: to the extent that
memory retrieval reflects an unbiased sample of the environment, availabil-
ity will conform to a rational probabilistic analysis. Biased sampling
(e.g. because items are stored or retrieved differentially) may lead to errors,
but generally, this heuristic will be successful. Indeed, the power of the ‘cog-
nitive illusion’ in Tversky and Kahneman’s study arises precisely because
sampling is so biased in this case.

More generally, the programme of rational analysis has shown why a
wide range of empirically derived algorithmic processes are successful, by
showing that they approximate normative Bayesian standards, given certain
assumptions about environmental structure. This approach to explaining
why cognitive algorithms succeed has been adopted by a wide range of
researchers in the cognitive sciences (Oaksford and Chater 1998b). In each
case, success is explained because the algorithm approximates, however
crudely, some rational norm for optimal behaviour in that environment.
Moreover, in line with the mutual constraint between the levels mentioned
above, rational level explanations have been used to develop new algo-
rithmic accounts (e.g. Anderson 1993; Chater and Oaksford, 1999¢).

Similarly, in other domains where the algorithmic theory has run ahead,
there has been enormous effort to develop complementary rational theories.
The goal of the research programmes of computational learning theory
(Valiant 1984) and statistical learning theory (Vapnik 1995) is to provide a
rational foundation for practical learning algorithms. Moreover, there has
been great interest in interpreting neural networks as probabilistic inference
devices, to give insight into the rational basis for their success (e.g. Chater
1995; MacKay 1992; McClelland 1998; Neal 1993). Furthermore, statist-
ical theory has been developed as a rational basis for practical statistical
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algorithms (e.g. Bernado and Smith 1995). In each case, algorithms have
been assumed to approximate rational standards to some degree. Typically,
algorithms will be shown to be rational, given a certain goal (e.g. minimiz-
ing prediction error), on the assumption that the environment has a certain
structure (e.g. that samples are independent, that variance is constant, that
different causal factors interact linearly, and so on). Moreover, as in psy-
chology, rational theories in these areas have not merely shown why, and in
what environments, existing algorithms will succeed, but also served to
develop new algorithms. In sum, across domains where algorithmic theories
have run ahead of rational accounts, there has been vigorous and important
research on developing complementary rational explanations. This indic-
ates the desirability of both levels of explanation in providing complete
accounts of cognitive phenomena.

Thus it seems that the real-world success of algorithms such as
Take-the-Best, apparently disconnected from a formal rational theory, does
not imply that formal rational explanation is unnecessary. Algorithmic and
rational levels of explanation are complementary: without an algorithmic
account, we do not know how cognition works; without a rational account,
we do not know why cognition works.

Is There an Alternative Style of “Why’ Explanation?

A possible counter-attack by those advocating the view that formal rational-
ity has no role in explaining everyday thought and behaviour is to argue that
there is an alternative, ‘ecological’ or ‘adaptive’ explanation of why cognition
works, which makes no reference to formal rational principles. This is one
interpretation of Gigerenzer and Goldstein’s statement that ‘the minds of liv-
ing systems should be understood relative to the environment in which they
evolved rather than to the tenets of classical rationality’ (p. 651) (emphasis
added). This suggests a notion of ‘adaptive rationality’, i.e. success in relation
to an environment, as an alternative to classical rationality. But to see that
this notion does not provide an alternative explanation, consider the ques-
tion: Why does a cognitive algorithm succeed in a particular environment? To
reply that this is because it is adaptively rational is clearly circular; because
for an algorithm to be adaptively rational means by definition that it succeeds
in the environment. In contrast, the rational level explains behavioural suc-
cess by showing how that behaviour approximates optimal performance
given appropriate assumptions about the agent’s goals and environment.
It is, of course, conceivable that there may be some other alternative way
of explaining why cognitive algorithms succeed, which Gigerenzer and
Goldstein might advert to as an alternative to rational explanation. An obvi-
ous suggestion is to appeal to evolution or learning. Perhaps natural selection
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has ensured that our cognitive algorithms succeed; or perhaps our learning
mechanisms have simply favoured algorithms that work. But explanations in
terms of evolution or learning do not explain why specific cognitive algo-
rithms are adaptive. Instead, they explain why we possess adaptive rather
than non-adaptive algorithms—essentially because adaptive algorithms, by
definition, perform better in the natural environment, and processes of natu-
ral selection or learning will tend to favour algorithms which are successful.
But this still leaves open the question of why some algorithms are successful
in the environment whereas some are not. Answering this question requires
analysing the structure of the environment, the goals of the agent, and study-
ing how these goals can be achieved given that environment. In short, it
involves rational level explanation. To choose an example from a domain in
which evolutionary explanation is widely accepted, an account of optimal
foraging in behavioural ecology may explain why particular foraging strate-
gies are successful and others are not. Zoologists assume evolution explains
why animals possess good foraging strategies, but do not take evolutionary
explanation to provide an alternative to the rational level explanation given
by optimal foraging theory.

CONCLUSIONS

This paper has considered the relation between everyday and formal ration-
ality, and has developed a particular view of the relation between the two,
based on Anderson’s programme of rational analysis. We have illustrated
this approach with a rational analysis of performance on Wason’s selection
task, and defended the approach against the view that formal rational
explanation is unnecessary in explaining cognition. We have argued that
formal rational explanation is indispensable in explaining why human cog-
nitive mechanisms are able to succeed in the real world—i.e. why they are
able to exhibit everyday rationality.

The relation that we have identified between rationality and algorithmic
accounts, which is apparent in examples from rational analysis in psychology,
and from work in zoology and economics, has broad application. It promises
to reconcile rational and mechanistic constraints in a range of contexts where
the debate focuses on the different level of emphasis placed on these con-
straints. Both rational and mechanistic factors are important, because the sys-
tem under study is presumed only to approximate, perhaps quite accurately
or perhaps very coarsely, a rational solution. Within this framework, the
debate between rationality-based versus mechanistic explanation becomes a
matter of emphasis and degree, rather than a fundamental divide. We suggest
that in any debate of this kind, there should be a methodological imperative
to explore rationality-based explanations—only by doing so can the scope
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of this level of explanation be assessed; and we caution that rationality-
based explanation cannot be abandoned wholesale, without losing the abil-
ity to explain why the cognitive system is adaptive or successful.

The tension between the limited scope of current formal theories of reas-
oning and the astonishing richness and flexibility of human reasoning
should not, however, be underestimated. There are presently no adequate
formal theories of simple default inference in everyday reasoning, let alone
formal theories of induction, analogical reasoning, or reasoning by compar-
ison with past cases—and it is not clear that formal explanation will be pos-
sible at all in all of these cases (e.g. Goodman 1954). Explaining thought
and behaviour both in terms of formal rational principles, and at the level
of cognitive algorithms, will be one of the principal intellectual challenges
of the third millennium.
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