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Naturally occurring speech contains only a limited amount of complex
recursive structure, and this is reflected in the empirically documented
difficulties that people experience when processing such structures. We
present a connectionist model of human performance in processing recursive
language structures. The model is trained on simple artificial languages. We
find that the qualitative performance profile of the model matches human
behavior, both on the relative difficulty of center-embedding and cross-
dependency, and between the processing of these complex recursive struc-
tures and right-branching recursive constructions. We analyze how these
differences in performance are reflected in the internal representations of the
model by performing discriminant analyses on these representations both
before and after training. Furthermore, we show how a network trained to
process recursive structures can also generate such structures in a probabi-
listic fashion. This work suggests a novel explanation of people’s limited
recursive performance, without assuming the existence of a mentally repre-
sented competence grammar allowing unbounded recursion.

I. INTRODUCTION

Natural language is standardly viewed as involving a range of rarely occurring but
important recursive constructions. But it is empirically well-documented that people are
only able to deal easily with relatively simple recursive structures. Thus, for example, a
doubly center-embedded sentence like (1) below is extremely difficult to understand.

(1) The mouse that the cat that the dog chased bit ran away.
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In this paper, we present a connectionist network which models the limited human abilities
to process and generate recursive constructions. The “quasi-recursive” nature of the
performance of the connectionist network qualitatively models experimental evidence on
human language processing.

The notion of recursion in natural language originates not from the project of trying to
understand human linguisticperformancewhich is the focus of this paper, but from the
very different enterprise of specifying a “competence grammar”—a set of rules and/or
principles which specify the legal strings of a language. It is standardly assumed that, if
the competence grammar allows a recursive construction to apply at all, it can apply
arbitrarily many times. Thus, if (2) is sanctioned by a recursive analysis with one level of
recursion, then the grammar must thereby also sanction (1) with two levels of recursion
and (3) with three levels of recursion.

(2) The mouse that the cat bit ran away.
(3) The mouse that the cat that the dog that the man frightened chased bit ran away.

Thus, the very idea that natural language is recursive requires a broadening of the
notion of which sentences are in the language, to sentences like (3) which would
presumably never be uttered or understood. In order to resolve the difference between
language so construed and the language that humans are able to produce and comprehend,
a distinction is typically made between linguisticcompetenceand humanperformance.
Competence in this context refers to a speaker/hearer’s knowledge of the language, and is
the subject of linguistic inquiry. In contrast, psycholinguists study performance—i.e., how
linguistic knowledge is used in producing and understanding language, and also how
extrinsic, non-linguistic factors may interfere with the use of that knowledge. It is here that
“performance factors”, such as memory limitations, can be invoked to show that some
sentences, while consistent with linguistic competence, will never actually be said, or
understood. The competence/performance distinction is also embodied in many symbolic
models of language processing, such as CC-READER (Just & Carpenter, 1992). In this
model, grammatical competence consists of a set of recursive production rules which are
applied to produce state changes in a separate working memory. By imposing constraints
on the capacity of the working memory system, performance limitations can be simulated
without making changes to the competence part of the model.1 The connectionist model
we propose provides an alternative account of people’s limited ability to do recursion,
without assuming an internally represented grammar which allows unbounded recur-
sion—i.e., without invoking the competence/performance distinction.2

In light of this discussion, it is clear that, from the point of view of modeling
psychological processes, we need not take the purported unbounded recursive structure of
natural language as axiomatic. Nor need we take for granted the suggestion that a
speaker/hearer’s knowledge of language captures such infinite recursive structure. Rather,
the view that “unspeakable” sentences which accord with recursive rules form a part of the
knowledge of language is anassumptionof the standard view of language developed by
Chomsky and now dominant in linguistics and many areas of the psychology of language.
The challenge for a computational model such as the connectionist model we propose is
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to account for those aspects of human comprehension/production performance which are
suggestive of the standard recursive picture. If this can be done without making the
assumption that the language processor really implements recursion, or that arbitrarily
complex recursive structures are really sentences of the language, then it presents an
alternative to adopting this assumption. Therefore, in assessing the connectionist simula-
tions that we report below, the benchmark for performance of connectionist systems will
be set by human abilities to handle recursive structures; we need not require that
connectionist systems be able to handle recursion in full generality.

In this paper, we shall consider the phenomenon of natural language recursion in a
‘pure’ and highly simplified form. Specifically, we train connectionist networks on small
artificial languages, which exhibit the different types of recursive structure found in
natural language. We do this in order to address directly the classic arguments by
Chomsky (1957) that recursion in natural languagein principle rules out associative and
finite state models of language processing. Indeed, the languages that we consider are
based directly on the structures used in Chomsky’s (1957) discussion. Considering
recursion in a pure form permits us to address the in principle viability of connectionist
networks in handling recursion, in much the same way as simple artificial languages have
been used, for example, to assess the feasibility of symbolic parameter-setting approaches
to the learning of linguistic structure (Gibson & Wexler, 1994; Niyogi & Berwick, 1996).

The structure of this paper is as follows. We begin by distinguishing varieties of
recursion in natural language, considering the three kinds of recursion discussed in
Chomsky (1957). We then summarize past connectionist research dealing with natural
language recursion. Next, we introduce three artificial languages, based on the three kinds
of recursion described by Chomsky, and present and analyze a range of simulations using
connectionist networks trained on these languages. The results suggest that the networks
are able to handle recursion to a degree comparable with humans. We close by drawing
conclusions for the prospects of connectionist models of language processing.

II. VARIETIES OF RECURSION

Chomsky (1957) proposed that a recursive generative grammar consists of a set of phrase
structure rules, complemented by a set of transformational rules (we shall not consider
transformational rules further below). Phrase structure rules have the formA3 BC, with
the interpretation that the symbolA can be replaced by the concatenation ofB andC. A
phrase structure rule isrecursiveif a symbolX is replaced by a string of symbols which
includesX itself (e.g.,A3 BA). The new symbol can then itself be replaced by a further
application of the recursive rule, and so on. Recursion can also arise through the
application of a recursivesetof rules, none of which need individually be recursive. When
such rules are used successively to expand a particular symbol, the original symbol may
eventually be derived. A recursiveconstructionin a natural or artificial language is one
that is modeled using recursive rules; alanguagehas recursive structure if it contains such
constructions.
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Modern generative grammar employs a wide range of formalisms, some quite distantly
related to phrase structure rules. Nevertheless, corresponding notions of recursion within
those formalisms can be defined. We shall not consider such complexities here, but use the
apparatus of phrase structure grammar throughout.

There are several kinds of recursion relevant to natural language. First, there are kinds
of recursion which produce languages which could equally well be generated without
using recursion at all—specifically they could be generated by iteration, the application of
a single procedure arbitrarily many times. For example, consider the case ofright-
branchingrecursion shown in Figure 1. These rules can be used to generate the right-
branching sentences (4)–(6):

(4) John loves Mary.
(5) John loves Mary who likes Jim.
(6) John loves Mary who likes Jim who dislikes Martha.

But these structures can be produced or recognized by a simple iterative process, which
can be carried out by a finite state machine. The recursive structures of interest to
Chomsky, and of interest here, are those which cannot be replaced by iteration, and thus
which appear to go beyond the capacities of finite state machines. Chomsky (1957)
invented three simple artificial languages, generated by recursive rules, and which cannot
be generated or parsed, at least in full generality, by a finite state machine using iteration.

The first artificial language can be defined by the following two phrase structure rules
(where { } denotes the empty string; we shall not consider this “degenerate” case in the
simulations below):

i.

X3 aXb

X3 $ %

which generate the strings:

$ %, ab, aabb, aaabbb, aaaabbbb, . . .

We call thiscounting recursion, because in order to parse such strings from left to right
it is necessary to count the number of ‘a’s and note whether it equals the number of ‘b’s.

Figure 1. A recursive set of phrase structure rules which can be used to assign syntactic structure to
sentences involving right-branching relative clauses.
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This implies that full-scale counting recursion cannot be parsed by any finite device
processing from left to right, since the number that must be stored can be unboundedly
large (because there can be unboundedly large numbers of ‘a’s), and hence will exceed the
memory capacity of any finite machine.

Chomsky’s second artificial language can be characterized in terms of the phrase
structure rules:

ii.

X3 aXa

X3 bXb

X3 $ %

which generate the strings:

$ %, aa, bb, abba, baab, aaaa, bbbb, aabbaa, abbbba, . . .

We call thismirror recursion, because the strings exhibit mirror symmetry about their
midpoint.

The final recursive language, which we call identity recursion, unlike counting and
mirror recursion, cannot be captured by a context-free phrase structure grammar. Thus, in
order to capture the final non-iterative recursive language we need to annotate our notion
of rewrite rules. Here we adapt the meta-grammatical notation of Vogel, Hahn & Branigan
(1996) to define the third artificial language in terms of the following rule set:

iii.

S3WiWi

W3 X

X3 aX

X3 bX

X3 $ %

which generates the strings:

$ %, aa, bb, abab, aaaa, bbbb, aabaab, abbabb, . . .
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We call this identity recursion, because strings consist of the concatenation of two
identical copies of an arbitrary sequence of ‘a’s and ‘b’s. The index onW ensures that the
two W’s in the first rule are always the same.

Chomsky (1957) argued that each of these types of recursive language can be identified
with phenomena in natural language. He suggested thatcountingrecursion corresponds to
sentence constructions such as ‘if S1, then S2’ and ‘either S1, or S2’. These constructions
can, Chomsky assumed, be nested arbitrarily deep, as indicated by (7)–(9):

(7) if S1 then S2.
(8) if if S1 then S2 then S3.
(9) if if if S1 then S2 then S3 then S4.

Mirror recursion is assumed to correspond to center-embedded constructions which
occur in many natural languages (although typically with low frequency), as illustrated
already in sentences (1)–(3). In these sentences, the dependencies between the subject
nouns and their respective verbs are center-embedded, such that the first noun is matched
with the last verb, the second noun with the second to last verb, and so on. Chomsky
(1957) used the existence of center-embedded constructions to argue that natural language
must be at least context-free, and hence beyond the scope of any finite state automaton.

In much the same way,identity recursion can be mapped on to a less common pattern
in natural language,cross-dependency, which is found in Swiss-German and in Dutch,3 as
exemplified in (10)–(12) (from Bach, Brown & Marslen-Wilson, 1986):

(10) De lerares heeft de knikkers opgeruimd.
Literal: The teacher has the marbles collected up.
Gloss:The teacher collected up the marbles.

(11) Jantje heeft de lerares de knikkers helpen opruimen.
Literal: Jantje has the teacher the marbles help collect up.
Gloss:Jantje helped the teacher collect up the marbles.

(12) Aad heeft Jantje de lerares de knikkers laten helpen opruimen.
Literal: Aad has Jantje the teacher the marbles let help collect up.
Gloss:Aad let Jantje help the teacher collect up the marbles.

In (10)–(12), the dependencies between the subject nouns and their respective verbs are
crossed such that the first noun is matched with the first verb, the second noun with the
second verb, and so on. The fact that cross-dependencies cannot be handled using a
context-free phrase structure grammar has meant that this kind of construction, although
rarely produced even in the small number of languages in which they occur, has assumed
considerable importance in linguistics, because it appears to demonstrate that natural
language is not context-free.4

Turning from linguistics to language processing, it is clear that, whatever the linguistic
status of complex recursive constructions, they are very difficult to process, in contrast to
right-branching structures. The processing of structures analogous to counting recursion
has not been studied in psycholinguistics, but sentences such as (13) are plainly difficult
to make sense of, though containing just one level of recursion (see also Reich, 1969).
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(13) If if the cat is in, then the dog cannot come in then the cat and dog dislike each
other.

The processing of center-embedded constructions has been studied extensively in
psycholinguistics. These studies have shown, for example, that English sentences with
more than one center-embedding (e.g., sentences (1) and (3) presented above) are read
with the same intonation as a list of random words (Miller, 1962), cannot easily be
memorized (Foss & Cairns, 1970; Miller & Isard, 1964), and are judged to be ungram-
matical (Marks, 1968). Bach et al. (1986) found the same behavioral pattern in German,
reporting a marked deterioration of comprehension for sentences with more than one
embedding. It has been shown that using sentences with a semantic bias or giving people
training can improve performance on such structures, but only to a limited extent
(Blaubergs & Braine, 1974; Stolz, 1967).

There has been much debate concerning how to account for the difficulty of center-
embedded constructions in accounts of human natural language processing (e.g., Berwick
& Weinberg, 1984; Church, 1982; Frazier & Fodor, 1978; Gibson, 1998; Gibson &
Thomas, 1996; Kimball, 1973; Pulman, 1986; Reich, 1969; Stabler, 1994; Wanner, 1980),
typically involving postulating some kind of “performance” limitation on an underlying
infinite competence. Cross-dependencies have received less empirical attention, but ap-
pear to present similar processing difficulties to center-embeddings (Bach et al., 1986;
Dickey & Vonk, 1997), and we shall consider this data in more detail when assessing our
connectionist simulations against human performance, below.

III. CONNECTIONISM AND RECURSION

We aim to account for human performance on recursive structures as emerging from
intrinsic constraints on the performance of a particular connectionist architecture, namely
the Simple Recurrent Network (SRN) (Elman, 1990). But before presenting our simula-
tion results, we first review previous connectionist approaches to natural language recur-
sion.

One way of approaching the problem of dealing with recursion in connectionist models
is to “hardwire” symbolic structures directly into the architecture of the network (e.g.,
Fanty, 1985; McClelland & Kawamoto, 1986; Miyata, Smolensky & Legendre, 1993;
Small, Cottrell & Shastri, 1982). The network can therefore be viewed as a non-standard
implementation of a symbolic system, and can solve the problem of dealing with recursive
natural language structures by virtue of its symbol processing abilities, just as do standard
symbolic systems in computational linguistics. Connectionist re-implementations of sym-
bolic systems may potentially have novel computational properties and even be illumi-
nating regarding the appropriateness of a particular style of symbolic model for distributed
computation (Chater & Oaksford, 1990). Such models do not figure here because we are
interested in exploring the viability of connectionist models asalternativesto symbolic
approaches to recursion.5

There are 2 classes of models which may potentially provide such alternatives—both
of which learn to process language from experience, rather than implementing a prespeci-
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fied set of symbolic rules. The first, less ambitious, class (e.g., Chalmers, 1990; Hanson
& Kegl, 1987; Niklasson & van Gelder, 1994; Pollack, 1988, 1990; Stolcke, 1991)
attempts to learn grammar from “tagged” sentences. Thus, the network is trained on
sentences which are associated with some kind of grammatical structure and the task is to
learn to assign the appropriate grammatical structure to novel sentences. This means that
much of the structure of the language is not learned by observation, but is built into the
training items. These models are related to statistical approaches to language learning such
as stochastic context-free grammars (Brill, Magerman, Marcus & Santorini, 1990; Jelinek,
Lafferty, & Mercer, 1990) in which learning sets the probabilities of each grammar rule
in a prespecified context-free grammar, from a corpus of parsed sentences.

The second class of models, which includes the model presented in this paper, attempts
the much harder task of learning syntactic structure from strings of words. The most
influential approach, which we shall follow in the simulations reported below, has been
based on SRNs (Elman, 1990). An SRN involves a crucial modification to a feedforward
network (see Figure 2)—the current set of hidden unit values is “copied back” to a set of
additional input units, and paired with thenext input to the network. This means that the
current hidden unit values can directly affect the next state of the hidden units; more
generally, this means that there is a loop around which activation can flow for many
time-steps. This gives the network a memory for past inputs, and therefore the ability to
deal with integrated sequences of inputs presented successively. This contrasts with
standard feedforward networks, the behavior of which is determined solely by the current
input. SRNs are thus able to tackle tasks such as sentence processing in which the input
is revealed gradually over time, rather than being presented at once.

Recurrent neural networks provide a powerful tool with which to model the learning of
many aspects of linguistic structure, particularly below the level of syntax (e.g., Allen &
Christiansen, 1996; Christiansen, Allen & Seidenberg, 1998; Cottrell & Plunkett, 1991;
Elman, 1990, 1991; Norris, 1990; Shillcock, Levy & Chater, 1991). Moreover, SRNs

Figure 2. The basic architecture of a simple recurrent network (SRN). The rectangles correspond to
layers of units. Arrows with solid lines denote trainable weights, whereas the arrow with the dashed line
denotes the copy-back connections.
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seem well-suited to learning finite state grammars (e.g., Cleeremans, Servan-Schreiber &
McClelland, 1989; Giles, Miller, Chen, Chen, Sun & Lee, 1992; Giles & Omlin, 1993;
Servan-Schreiber, Cleeremans & McClelland, 1991). But relatively little headway has
been made towards grammars involving complex recursion that are beyond simple
finite-state devices. Previous efforts in modeling complex recursion have fallen within two
general categories: simulations using language-like grammar fragments and simulations
relating to formal language theory.

In the first category, networks are trained on relatively simple artificial languages,
patterned on English. For example, Elman (1991, 1993) trained SRNs on sentences
generated by a small context-free grammar incorporating center-embedding and a single
kind of right-branching recursive structures. The behavior of the trained networks are
reported to be qualitatively comparable with human performance in that a) the SRN
predictions for right-branching structures are more accurate than on sentences of the same
length involving center-embedding, and b) performance degrades appropriately when the
depth of center-embedding increases. Weckerly & Elman (1992) corroborate these results
and suggest that semantic bias (incorporated via co-occurrence restriction on the verbs)
can facilitate network performance as they have been found to be in human processing
(Blaubergs & Braine, 1974; Stolz, 1967). These results are encouraging, but preliminary.
They show that SRNs can deal with specific examples of recursion, but provide no
systematic analysis of their capabilities. Within the same framework, Christiansen (1994,
1999) trained SRNs on a recursive artificial language incorporating four kinds of right-
branching structures, a left branching structure, and center-embedding. Again, the desired
degradation of performance on center-embedded constructions as a function of embedding
depth was found, as were appropriate differences between center-embedding and right-
branching structures.6 However, a closer study of the recursive capabilities of the SRNs
showed that the prediction accuracy for the right-branching structures also degraded with
depth of recursion—albeit not as dramatically as in the center-embedding case. Additional
simulations involving a variant of this language, in which cross-dependency constructions
substituted for the center-embedded sentences (rendering a mock “Dutch” grammar)
provided similar results. Together these simulation results indicate that SRNs can embody
constraints which limit their abilities to process center-embeddings and cross-dependen-
cies to levels similar to human abilities. This suggests that SRNs can capture the
quasi-recursive structure of actual spoken language. One of the contributions of the
present paper is to show that the SRN’s general pattern of performance is relatively
invariant over variations in network parameters and training corpus—thus, we claim, the
human-like pattern of performance arises fromintrinsic constraints of the SRN architec-
ture.

While work pertaining to recursion within the first category has been suggestive but in
many cases relatively unsystematic, the second category of simulations related to formal
language theory has seen more detailed investigations of a small number of artificial tasks,
typically using very small networks. For example, Wiles & Elman (1995) made a detailed
study of what we have called counting recursion using the simplest possible language
anbn. They studied recurrent networks with 2 hidden units,7 and found a network that was
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able to generalize successfully to inputs far longer than those on which they had been
trained. They also presented a detailed analysis of the nature of the solution found by one of
the networks. Batali (1994) used the same language, but employed SRNs with 10 hidden units
and showed that networks could reach good levels of performance, when selected by a process
of “simulated evolution” and then trained using conventional methods. Based on a mathe-
matical analysis, Steijvers & Gru¨nwald (1996) “hardwired” a second order recurrent network
(Giles et al., 1992) with 2 hidden units such that it could process the context-sensitive counting
languageb(a)kb(a)k . . . for values ofkbetween 1 and 120. An interesting outstanding question,
which we address in the simulations below, is whether these levels of performance can be
obtained if there are more than 2 vocabulary items—e.g., if the network must learn to assign
items into different lexical categories (“noun” and “verb”) as well as paying attention to
dependencies between these categories. This question is important with respect to the potential
relevance of these results for natural language processing.

No comparable detailed study has been conducted with either center-embedding or
crossed-dependency type (mirror and identity recursion) constructions.8 In the studies
below, we therefore aimed to comprehensively study and compare all 3 types of recursion
discussed in Chomsky (1957)—that is, counting, mirror, and identity recursion—with the
less complex right-branching recursion as a baseline. We also used syntactic categories
which contained a number of different vocabulary items, rather than defining the grammar
over single lexical items, as in the detailed studies of counting recursion and the
context-sensitive counting language described above. Using these simple abstract lan-
guages allows recursion to be studied in a “pure” form, without interference from other
factors. Despite the idealized nature of these languages, the SRN’s performance qualita-
tively conforms to human performance on similar natural language structures.

Another novel aspect of the present studies is that we provide a statistical benchmark
against which the performance of the networks can be compared. This is a simple prediction
method borrowed from statistical linguistics based onn-grams, i.e., strings ofn consecutive
words. The benchmark program is “trained” on the same stimuli used by the networks, and
simply records the frequency of eachn-gram in a look-up table. It makes predictions for new
material by considering the relative frequencies of then-grams which are consistent with the
previousn 2 1 words. The prediction is a vector of relative frequencies for each possible
successor item, scaled to sum to 1, so that they can be interpreted as probabilities, and are
therefore directly comparable with the output vectors produced by the networks. Below,
we report the predictions of bigram and trigram models and compare them with network
performance.9 Although not typically used for comparison in connectionist research, these
simple models might provide insight into the sequential information to which the networks
may be responding, as well as a link to non-connectionist corpus-based approaches to
language learning in computational linguistics (e.g., Charniak, 1993).

IV. THREE BENCHMARK TESTS CONCERNING RECURSION

We constructed 3 benchmark test languages for connectionist learning of recursion, based
on Chomsky’s 3 artificial languages. Each language involved 2 kinds of recursive
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structure: one of the 3 complex recursive constructions and the right-branching construc-
tion as a baseline. Vocabulary items were divided into “nouns” and “verbs”, incorporating
both singular or plural forms. An end of sentence marker completed each sentence.

i. Counting recursion

aabb NNVV

For counting recursion, we treat Chomsky’s symbols ‘a’ and ‘b’ as corresponding to the
word categories of noun and verb, respectively, while ignoring singular/plural agreement.

ii. Center-embedding recursion

a b b a SNPNPVSV the boy girls like runs

In center-embedding recursion, we map Chomsky’s symbols ‘a’ and ‘b’ in mirror
recursive constructions onto the categories of singular and plural words (whether nouns or
verbs). Nouns and verbs agree for number as in center-embedded constructions in natural
language.

iii. Cross-dependency recursion

a b a b SNPNSVPV the boy girls runs like

In cross-dependency recursion we map Chomsky’s symbols ‘a’ and ‘b’ in identity
recursive constructions onto the categories of singular and plural words. Nouns and verbs
agree for number as in cross-dependency constructions in natural language.

iv. Right-branching recursion

a a b b PNPVSNSV girls like the boy that runs

For right-branching recursion, we map the symbols ‘a’ and ‘b’ onto the categories of
singular and plural words. Nouns and verbs agree for number as in right-branching
constructions in natural language.

Thus, the counting recursive language consisted of both counting recursive construc-
tions (i) interleaved with right-branching recursive constructions (iv), the center-embed-
ding recursive language of center-embedded recursive constructions (ii) interleaved with
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right-branching recursive constructions (iv), and the cross-dependency recursive language
of cross-dependency recursive constructions (iii) interleaved with right-branching recur-
sive constructions (iv).

How can we assess to what degree a connectionist net has mastered these simple
languages? By analogy with standard linguistic methodology, we could train the net to
make explicit “grammaticality judgments”, i.e., to distinguish legal and non-legal sen-
tences of the languages. But the concern of this paper is people’sperformanceon
recursive structures, rather than judgments concerning grammaticality (which is often
assumed to relate to linguistic competence).10 Therefore, we chose to use a task which
directly addressed the way in which the system processes sentences of the languages,
rather than requiring it to make meta-linguistic judgments about sentence legality.

Elman (1990) suggested such an approach, which has become standard in many of the
SRN studies of natural language described above. The approach is to train the network to
predict thenext item in a sequence given previous context. That is, the SRN gets a word
as input at timet and then has to predict the next word at timet 1 1. Although the
prediction task is not deterministic, the structure of the languages imposes a number of
regularities which make prediction a meaningful task. At the beginning of a sentence it is
impossible to know whether the sentence will involve a complex recursive construction
(i–iii depending on the language) or a right-branching recursive construction (iv). How-
ever, once the second word is encountered it becomes clear whether the sentence involves
a complex or right-branching construction: A verb indicates a right-branching construc-
tion whereas another noun indicates a complex recursive construction. A right-branching
construction may end after the first noun/verb pair, or continue with one or more
embeddings. For none of the 3 complex recursive constructions is it possible to determine
precisely how many more nouns will be encountered in a sentence or whether they will
be singular or plural. Once the nouns have been encountered, however, it is possible to
determine exactly how many verbs a sentence will have and which (singular/plural) form
each of them will have (except, of course, for counting recursion). Assuming that the
system can learn to distinguish nouns from verbs, it should be able to make correct
predictions about subsequent verbs as well as the end of sentence marker once it receives
the first verb as input. Specifically, the number of verbs will correspond to the number of
nouns, and the form of the verbs will agree with the form of the nouns as specified by each
particular language. The end of sentence marker should be predicted after the last verb.

Bearing this in mind, we briefly consider the demands of learning each of the 4
recursive constructions. Construction (i), counting recursion, should be the easiest of the
complex recursive structures to process. Because this construction does not have any
agreement constraints imposed on it, correct performance can be achieved simply by
counting the number of occurring nouns, and then predicting the same number of verbs.
The simplest way to process construction (ii), center-embedding recursion, is to develop
a last-in-first-out memory or “stack” to store agreement information. Thus, the agreement
information for each noun is retrieved in the opposite order in which it was stored—
leading to the mirror agreement pattern. The most obvious way to process construction
(iii), cross-dependency recursion, is to develop a first-in-first-out memory or “queue”.
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Thus, the agreement information of each noun is retrieved in the same order in which it
was stored—leading to the identity agreement pattern. Finally, in construction (iv),
right-branching recursion, in contrast to the processing of the three complex kinds of
recursion mentioned above, processing unbounded right-branching structures does not
involve unbounded memory load because each noun is immediately followed by a verb
which agrees with it.

In practice, a connectionist network is unlikely to learn to implement any standard
symbolic parsing method, which has unbounded competence, limited by memory restric-
tions (e.g., as in CC-READER, Just & Carpenter, 1992). Nonetheless, an appreciation of
how these methods work is useful in assessing the nature and difficulty of the task that the
network faces. Parsing each of these languages using symbolic means requires quite
elaborate computational machinery. However, as we show below, networks are able to
obtain good levels of performance on each of the 3 languages, each containing complex
recursive constructions of a given kind (i–iii) interleaved with the right-branching base-
line constructions (iv).

V. SIMULATION RESULTS

We trained SRNs on each of the 3 languages, using a 16 word vocabulary with 4 singular
nouns, 4 singular verbs, 4 plural nouns, and 4 plural verbs.11 All SRNs had 17 input and
output units, where each unit corresponded to a single word, or to the end of sentence
marker. We used SRNs in which the hidden layer contained between 2 and 100 units.
Except when explicitly noted otherwise, the training corpora consisted of 5000 sentences
of variable length, and the test corpora of 500 novel sentences, generated in the same way
as the training sentences and excluded from the original training corpora. Each corpus of
sentences was concatenated into a single, long string which was presented to the SRN one
word at a time. Both training and test corpora were comprised of 50% complex recursive
constructions of the appropriate kind for a given language interleaved with 50% right-
branching constructions. The distribution of depth of embedding is shown in Table 1. The
mean sentence length in both training and test corpora was approximately 4.7 words (SD:
1.3).

Since the input consists of a single concatenated string of words (including end of
sentence markers), the network has to discover that the input consists of sentences; that is,

TABLE 1
The Distribution of Embedding Depths in Training and Test Corpora

Recursion
Type

Embedding Depth

0 1 2 3

Complex 15% 27.5% 7% .5%
Right-Branching 15% 27.5% 7% .5%
Total 30% 55% 14% 1%

Note. The precise statistics of the individual corpora varied slightly from this ideal distribution.
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nouns followed by verbs (ordered according to the constraints of the language being
learned) and delineated by end of sentence markers. Consider, as an example, an SRN
being trained on the center-embedding language and presented with the two sentences:
‘n1v5#N3n8v2V4#’.12 First, the network gets ‘n1’ as input and is expected to produce ‘v5’
as output. The weights are then adjusted depending on the discrepancy between the actual
output that the net produced and the desired output using the back-propagation learning
algorithm (Rumelhart, Hinton & Williams, 1986). Next, the SRN receives ‘v5’ as input
and is required to output the end-of-sentence marker (‘#’). At the next time-step, ‘#’ is
provided as input and ‘N3’ is the target output, followed by the input/output pairs: ‘N3/n8’,
‘n8’/‘ v2’, ‘ v2’/‘ V4’, and ‘V4’/‘#’. Training continues in the same manner for the remainder
of the training corpus.

During the test phase, test corpora were presented to the SRNs and the output recorded
for each input word while the weights remain frozen. In any interesting language-like task,
the next item is not deterministically specified by the previous items. In the above example
at the start of the second sentence, the grammar for the center-embedding language
permits both noun categories, ‘n’ and ‘N’, to occur at the beginning of a sentence. If the
SRN has acquired the relevant aspects of the grammar which generated the training
sentences, then it should activate all word tokens in both ‘n’ and ‘N’ following an end of
sentence marker. Hence, it is appropriate for the prediction to take the form of a
probability distribution of possible next items. We can assess the degree to which the
network has succeeded in learning this probability distribution by comparing the output of
the network against some estimation of the conditional probabilities given the previous
input (note that this gives a less noisy indication of network performance than comparing
the predictions against the actual next items in the training corpus). Next, we use
empirically derived conditional probabilities for global performance comparisons, and
further below we introduce a measure of Grammatical Prediction Error to evaluate the
SRN’s performance in more detail.

Overall Performance

In order to asses the overall performance of the SRNs, we made comparisons between
network output probability distributions and the full conditional probabilities given prior
context. To see how this comparison is done, consider the prediction of the next word at
a particular point in the test corpus. For example, the full conditional probabilities given
the context, ‘N6n1v3’, can be represented as a vector containing the probabilities of being
the next item for each of the tokens in the categories ‘n’, ‘ N’, ‘ v’, ‘ V’, and ‘#’. Because
there are no statistical dependencies between sentences, the conditional probability dis-
tribution need only take account of the previous words in the sentence. More formally, the
probability of thepth item,wp, in a sentence is conditional on the previousp 2 1 items:13

P~wpuw1, w2, . . . ,wp21! (1)

Following Elman (1991), these values can be estimated empirically from the training
corpus, according to the relation:
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P~wpuw1, w2, . . . ,wp21! .
Freq~w1, w2, . . . ,wp21, wp!

Freq~w1, w2, . . . ,wp21!
(2)

However, empirical word-based conditional probabilities as determined by Equation 2
are not useful to assess performance on corpora consisting entirely of novel sentences.
Consider a novel string, ‘N2V5n1v3n2v6N4V4#’, in which only the substring, ‘N2V5n1v3’
has occurred in the training corpus. Empirical word-based probability estimation can be
carried out for the first 4 words, but not for the second half of the string because there are
no prior context which can be relied upon. One solution to this problem is to estimate the
conditional probabilities based on the prior occurrence of lexical categories—i.e.,
‘NVnvnvNV#’ in the above example—rather than individual words. Thus, withci denot-
ing the category of thei th word in the sentence we have the following relation:

P~cpuc1, c2, . . . ,cp21! .
Freq~c1, c2, . . . ,cp21, cp!

Freq~c1, c2, . . . ,cp21!
(3)

where the probability of getting some member of a given lexical category as thepth item,
cp, in a sentence is conditional on the previousp 2 1 lexical categories. Note that for the
purpose of performance assessment singular and plural nouns are assigned to separate
lexical categories throughout this paper as are singular and plural verbs.

Given that the choice of lexical items for each category is independent, and that each
word in the category is equally frequent,14 the probability of encountering a particular
word wn, which is a member of a categorycp, is simply inversely proportional to the
number of items,Cp, in that category. So, overall,

P~wnuc1, c2, . . . ,cp21! .
Freq~c1, c2, . . . ,cp21, cp!

Freq~c1, c2, . . . ,cp21!Cp
(4)

If the network is performing optimally, then the vector of output unit activations should
exactly match these probabilities. We evaluate the degree to which the network performs
successfully by measuring the summed squared difference between the network outputs
and the conditional probabilities. More formally, we define Squared Error as follows:

Squared Error5 O
j[W

~outj2P~wn5j!!2 (5)

whereW is the set of words in the language (including the end of sentence marker), and
there is an output unit of the network corresponding to each word. The indexj runs
through each possible next word, and compares the network output to the conditional
probability of that word. Finally, we obtain an overall measure of the network’s perfor-
mance by calculating the Mean Squared Error (MSE) across all the items in the 500 test
sentences. MSE calculated in this way will be used to give a global measure of the
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performance of both networks andn-gram prediction models in the simulations below.
Thus, if the network orn-gram model has learned the conditional probability distribution
perfectly, the resulting MSE would be 0.

Intrinsic Constraints on SRN Performance

Earlier simulations concerning the three languages (Christiansen, 1994) have shown
performance to degrade as the depth of embedding increases. As mentioned earlier, SRN
simulations in which center-embedded structures were included in small grammar frag-
ments have resulted in the same outcome (Christiansen, 1994, 1999; Elman, 1991, 1993;
Weckerly & Elman, 1992)—as did the inclusion of cross-dependency structures (Chris-
tiansen, 1994, 1999). This performance degradation on complex recursive structures
qualitatively fits human performance on similar constructions (as described in Section II).
Symbolic models, which embody a grammatical competence that allows unbounded
recursion, are also able to mimic the human constraints on complex recursive structures.
However, these models can only fit the human data by adding in otherwise arbitrary
performance limitations specifically aimed at capturing human limitations on doubly
center-embedded constructions. Examples include limits on stack depth (Church, 1982;
Marcus, 1980), limits on the number of allowed sentence nodes (Kimball, 1973) or
partially complete sentence nodes (Stabler, 1994) in a given sentence, the “self-embedding
interference constraint” (Gibson & Thomas, 1996), and an upper limit on sentential
memory cost (Gibson, 1998). On the other hand, what constrains the performance of the
SRN appears to be architectural limitations interacting with the statistics of the recursive
structures. In this connection, it is interesting to note that the difficulty of processing
center-embedded structures is not confined to a linguistic context. Larkins & Burns (1977)
demonstrated that when subjects were asked, for example, to name pairs of letters and
digits given their center-embedded relations (e.g., the pairsL-2, G-8 andW-5, from the
string ‘WGL285’), they experienced the same difficulty on this task as when processing
center-embedded sentences. This suggests that constraints on complex recursive struc-
tures, such as center-embedding, may derive from non-linguistic processing constraints.
The well-documented human limitations on center-embedded sentences may therefore be
more appropriately modeled by non-linguistic architectural constraints—such as those
exhibited by the SRN—than the linguistically motivated extrinsic constraints of the
symbolic approaches.

A possible objection to this suggestion is that perhaps the human-like performance
limitations of the SRN follow from using a hidden unit layer of a particular size, rather
than from intrinsic architectural properties. This seems reasonable by analogy with
standard feedforward networks where the size of the hidden unit layer is typically assumed
to correlate with the processing ability of a network. If this objection is correct, then the
SRN architecture could be compatible with almost any level of performance on recursive
constructions. This would mean that the size of an SRN’s hidden unit layer would provide
an arbitrary limitation on recursion in similar ways to the extrinsic constraints within the
symbolic approaches.
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To address this objection, we carried out a series of simulations in which SRNs with
2, 5, 10, 15, 25, 50, and 100 hidden units were trained on the three artificial languages.
Across all simulations, the learning rate was 0.1, no momentum was used, and the initial
weights were randomized to values in the interval [20.25, 0.25]. Although the simulation
results presented in this paper were replicated across different initial weight randomiza-
tions, we focus on a typical set of simulations for the ease of exposition. Networks of the
same size were given the same initial random weights to facilitate comparisons across the
three languages.

Figure 3 shows the performance of the different sized nets on test corpora consisting
entirely of novel complex recursive structures of varying length as a function of the
number of epochs trained on the three languages. The SRNs performed well on the task,
as reflected in the low error scores. In the case of the counting recursion language (top
panel), after some initial differences—mainly within the first 40 epochs of training—all
nets apart from those with 2 hidden units settled on a similar level of performance. A
similar pattern of uniformity of learning was also found for the center-embedding
recursion language (middle panel), with the exception that the SRN with 5 hidden units
also showed a higher MSE. The SRNs trained on the cross-dependency recursion language
(bottom panel) followed the same trend as the counting recursion networks. The results of
this series of simulations suggest that the above objection does not apply to the SRN.
Increasing the hidden unit layer size did not result in an increase in performance (i.e.,
lower MSE)—once the SRN had a necessary minimum of units (the number of which for
the present tasks appears to lie around 5–10 hidden units).

SRN performance as a function of hidden unit layer size on test corpora consisting
entirely of novel right-branching constructions of varying length can be seen in Figure 4.
These results showed a strong uniformity across both language type and size of hidden
unit layer—with the one minor exception that the SRN with 2 hidden units trained on the
center-embedding language (middle panel) performed slightly worse than the larger SRNs
trained on this language as well as worse than the 2 hidden unit SRNs trained on the
counting recursion (top panel) and cross-dependency (bottom panel) languages, respec-
tively.

That SRN performance is independent of the number of hidden units is further
illustrated in Figure 5 which shows MSE averaged across epochs for both complex
recursion (left panels) and right-branching recursion (right panels) for each size of net
(grey bars). These values were calculated as the average of the MSEs sampled at every
second epoch (from epoch 0 to epoch 100), and plotted for each construction in Figures
3 and 4. The MSE for bigram and trigram models are included (black bars) for compar-
ison. For the nets trained on the counting recursion language, once a network had 15 or
more hidden units they obtained a low level of MSE on complex recursive structures (top
left panel). Performance on right-branching structures (top right panel) was very similar
across all hidden unit layers sizes. For both types of recursion, the counting recursion nets
outperformed the bigram and trigram models. In the case of the nets trained on the
center-embedding recursion language, all nets with 10 or more hidden units achieved
essentially the same level of performance on complex recursive structures (middle left
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Figure 3. The performance for complex recursive structures of nets of different sizes as a function of
number of epochs trained on the counting recursion language (top panel), the center-embedding
recursion language (middle panel), and the cross-dependency recursion language (bottom panel).
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Figure 4. The performance for right-branching structures of nets of different sizes as a function of
number of epochs trained on the counting recursion language (top panel), the center-embedding
recursion language (middle panel), and the cross-dependency recursion language (bottom panel).
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panel), whereas the nets with 5 or more hidden units performed quite similar on the
right-branching structures (middle right panel). Again, the SRNs were doing better on
both recursion types than the bigram and trigram models—at least for hidden unit layer
sizes larger than 5. Nets with 15 or more hidden units trained on the cross-dependency

Figure 5. The performance averaged across epochs on complex recursive constructions (left panels)
and right-branching constructions (right panels) of nets of different sizes as well as the bigram and
trigram models trained on the counting recursion language (top panels), the center-embedding recursion
language (middle panels), and the cross-dependency recursion language (bottom panels). Error bars
indicate the standard error of the mean.
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language all reached the same level of performance on complex recursive structures
(bottom left panel). As with counting recursion, performance was quite uniform on
right-branching recursive constructions (bottom right panel) across all hidden unit layer
sizes. Again, the SRNs outperformed the bigram and trigram models.

Comparing across the 3 languages we see that the SRN found the counting recursion
language slightly easier to learn (as predicted in Section IV) than the 2 other languages.
Surprisingly, the nets appeared to find the cross-dependency language easier to learn than
the center-embedding language (at least in terms of their ability to reduce MSE). This is
an important result because people appear to be better at dealing with cross-dependency
constructions than equivalent center-embedding constructions. This is surprising from the
perspective of linguistic theory because, as we noted above, cross-dependency construc-
tions are typically viewed as more complex than center-embedding constructions because
they cannot be captured by phrase-structure rules.

Another interesting result is that in contrast to the SRNs the bigram and trigram models
showed the opposite effect, achieving a better level of performance on the center-
embedding language than on the cross-dependency language. Finally, the SRNs with 10 or
more hidden units had a lower MSE on complex recursive structures than on right-branching
structures. This could be due to the fact that the complex recursive constructions essentially
become deterministic (with respect to length) once the first verb has been encountered, but
this is not true for the right-branching constructions at any point (except at depth 3).

The above results show that the size of the hidden unit layer, when sufficiently large,
does not influence the processing capability on test corpora with constructions of varying
size. Yet it is conceivable that hidden unit layer size may be important when processing
the crucial doubly embedded complex recursive structures which are beyond the limits of
human performance. To investigate this possibility we therefore retested the SRNs
(trained on complex and right-branching constructions of varying length) on corpora
which consisted exclusively of novel doubly embedded structures. The results from these
tests are presented in Figure 6, showing approximately the same performance uniformity
as found in Figure 5. Thus, once an SRN has a sufficient number of hidden units, the size
of the hidden layer does not seem to matter for the performance on novel doubly
embedded complex constructions drawn from the three languages. Figure 6 also shows
that once an SRN has a sufficient size it performs considerably better on doubly embedded
constructions than bothn-gram models.

Given the lack of effect of hidden unit layer size on performance, we concentrate on
SRNs with 15 hidden units in the remaining simulations. Inspection of Figure 3 reveals
that the performance on complex recursive constructions for these networks reached an
asymptotic level after 35–40 epochs of training (with subsequent training resulting only
in minor differences in performance). From the sets of MSEs recorded for epochs 2
through 100, we chose the number of epochs at which the 15 hidden unit SRNs had the
lowest MSE. The best level of performance was found after 54 epochs training on the
counting recursive language, 66 epochs of training on the center-embedding language, and
92 epochs of training on the cross-dependency language. All results reported below are
from SRNs trained for these number of epochs (except when explicitly noted otherwise).
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Performance at Different Depths of Embedding

We have seen that the overall performance of the SRNs averaged across different depths
of recursion appears comparable with the quasi-recursive structure of actual human
utterances. We now consider performance at different levels of embedding, measuring the
differential effects of depth of recursion on the various types of complex recursion and
right-branching recursion. Human data would suggest that performance should rapidly
degrade as embedding depth increases for complex recursive structures, where perfor-
mance should degrade only slightly for right-branching recursive constructions.

In the previous section we used empirical conditional probabilities based on lexical
categories to assess SRN performance (Equations 4 and 5). However, this measure is not
useful for assessing performance on novel constructions which either go beyond the depth
of embedding found in the training corpus, or deviate, as ungrammatical forms do, from
the grammatical structures encountered during training. For comparisons with human
performance we therefore use the measure of Grammatical Prediction Error (GPE). This
measure of SRN performance has been shown elsewhere to provide for good approxima-

Figure 6. The performance averaged across epochs on doubly embedded complex recursive construc-
tions of nets of different sizes as well as the bigram and trigram models trained on the counting recursion
language (top left panel), the center-embedding recursion language (top right panel), and the cross-
dependency recursion language (bottom panel). Error bars indicate the standard error of the mean.
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tions of 2 behavioral measures: reading times (MacDonald & Christiansen, 1999) and
human grammaticality ratings (Christiansen, 1999; Christiansen & MacDonald, 1999).

When evaluating how well the SRN has learned the grammar, which it was exposed to
via the sentences in the training corpus, it is important from a linguistic perspective not
only to determine whether the words that were activated given prior context are gram-
matical, but also which items werenotactivated despite being sanctioned by the grammar.
The GPE provides an indication of how well a network is obeying the training grammar
in making its predictions, taking hits, false alarms, correct rejections and misses into
account.

Hits and false alarms are calculated as the accumulated activations of the set of units,
G, that are grammatical and the set of ungrammatical activated units,U, respectively:

hits 5 O
i[G

ui (6)

false alarms5 O
i[U

ui (7)

Traditional sensitivity measures, such asd9 (Signal Detection Theory, Green & Swets,
1966) ora (Choice Theory, Luce, 1959), are based on the assumption that misses can be
calculated as the difference between total number of relevant observations and hits. In
terms of network activation it is not clear what would correspond to “total number of
relevant observations”.15 Consequently, we need an alternative means of quantifying
misses; that is, a way to determine an activation-based penalty for not activating all
grammatical units and/or not allocating sufficient activation to these units. With respect to
GPE, the calculation of misses involves the notion of a target activation,ti, computed as
a proportion of the total activation (hits and false alarms) determined by the lexical
frequency,fi, of the word that uniti designates and weighted by the sum of the lexical
frequencies,fj, of all the grammatical units:

ti 5
~hits1misses!fiOj[G fj

(8)

The potential missing activation for each unit can then be determined as the positive
discrepancy,mi, between the target activation for a grammatical unit,ti, and the actual
activation of that unit,ui:

mi 5 H 0 if ti2ui # 0
ti 2 ui otherwise (9)

Finally, the total activation for misses is calculated as the sum over all single unit missing
activation values:
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misses5 O
i[G

mi (10)

The GPE for predicting a particular word given previous sentential context can then be
determined by:

GPE5 1 2
hits

hits 1 false alarms1 misses
(11)

Thus construed, the GPE provides a measure of how much of the activation for a given
item has been placed correctly according to the grammar (hits) in proportion to the total
amount of activation (hits and false alarms) and the penalty for not activating grammatical
items sufficiently (misses). Although not an explicit part of the above equation, correct
rejections are also taken into account under the assumption that they correspond to zero
activation for units that are ungrammatical given previous context.

The GPE score ranges between 0 and 1, and provides a very stringent measure of
performance. To obtain a perfect GPE score of 0 the SRN will not only have to predict
all and only the next items prescribed by the grammar, but also be able to scale those
predictions according to the lexical frequencies of the legal items. Notice that to obtain a low
GPE score the network must make the correct subject noun/verb agreement predictions.
Consider first a hypothetical situation in which an SRN trained on the center-embedding
language is violating subject noun/verb agreement. Given the previous context ‘N3n8v2’ the
network is incorrectly activating the group of singular verbs by 0.80 and the end of sentence
marker by 0.10, while only activating the grammatically appropriate group of plural verbs by
0.10. This yields a hit activation of 0.10, a false alarm activation of 0.90, and a miss activation
of 0.90, resulting in a very high GPE score of (12 0.10/(0.101 0.90 1 0.90) 5) 0.95.
Consider then the opposite hypothetical situation in which the SRN given the same previous
context instead highly activates the group of grammatically correct plural verbs by 0.8,
and the (incorrect) group of singular verbs by 0.1 and the (incorrect) end of sentence
marker by 0.1. This yields a hit activation of 0.80, a false alarm activation of 0.20, and a
miss activation of 0.20, resulting in a relatively low GPE score of (12 0.80/(0.801
0.201 0.20)5) 0.33. Thus, in order to obtain low GPE scores the SRN predictions must
comply with subject noun/verb agreement along with other grammatical constraints.

The GPE value for an individual word reflects the difficulty that the SRN experienced
for that word given the previous sentential context. Previous studies using the GPE
measure of SRN performance (Christiansen, 1999; MacDonald & Christiansen, 1999)
have found that individual word GPE can be mapped qualitatively onto word reading
times, with low GPE values reflecting a prediction for short reading times and high values
indicating long predicted reading times. The average GPE across a whole sentence
expresses the difficulty that the SRN experienced across the sentence as a whole, and this
measure has been found to map onto sentence grammaticality ratings, with low average
GPE scores indicating a high “goodness” rating and high scores reflecting low ratings
(Christiansen & MacDonald, 1999).
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Embedding Depth Performance

With the GPE measure in hand, we now turn to SRN performance on different depths of
embedding. Figure 7 shows the average GPE on complex and right-branching recursive
structures as a function of embedding depth for 15HU SRNs, bigram models, and trigram
models (trained on complex and right-branching constructions of varying length). Each
data point represents the mean GPE measured across 10 novel sentences. For the SRN
trained on the counting recursion language there was little difference between the
performance on complex and right-branching recursive constructions, and performance

Figure 7. The mean grammatical prediction error on complex (C) and right-branching (RB) recursive
constructions as a function of embedding depth (0–4). Results are shown for the SRN as well as the
bigram and trigram models trained on the counting recursion language (top left panel), the center-
embedding recursion language (top right panel), and the cross-dependency recursion language (bottom
panel).
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only deteriorated slightly across embedding depth. In contrast, then-gram models (and
especially the trigram model) exhibited better performance (i.e., lower GPE scores) on
right-branching structures than on complex recursive structures. Bothn-gram models
showed a sharper decrease in performance across depth of recursion than the SRN. The
SRN trained on the center-embedding language also performed better than then-gram
models, although it, too, had greater difficulty with complex recursive structures than with
right-branching structures. Interestingly, SRN performance on right-branching recursive
structures decreased slightly with depth of recursion. This contrasts with what would be
expected from symbolic models in which infinite depth of right-branching recursion pose
no processing problems (e.g., Church, 1982; Gibson, 1998; Marcus, 1980; Stabler, 1994).
However, the pattern of performance deterioration of the SRN appears to be in line with
human data (see below). A comparison between then-gram models’ performance on the
center-embedding recursion language shows that whereas both exhibited a similar pattern
of performance decrease on the complex recursive constructions across embedding depth,
the trigram models performed considerably better on the right-branching constructions
than the bigram model. As with the MSE results presented above, SRN performance on the
cross-dependency language was better than on the center-embedding language. Although
the SRN, as in the previous case, obtained lower GPE scores on right-branching con-
structions compared with complex recursive structures, the increase in GPE across
embedding depth on the latter was considerably less for the cross-dependency net than for
its center-embedding counterpart. The bigram model performed rather poorly on the
cross-dependency language both on right-branching and complex recursive structures. The
trigram model performed substantially better, although it was no match for the SRN on
complex recursive constructions—even though the SRN performed slightly worse on
right-branching structures compared with the trigram models.

The differential SRN performance on the complex recursive and right-branching
constructions from both the center-embedding and the cross-dependency languages pro-
vides a good fit with human data.16 We will discuss the lack of such difference in the SRN
performance on the counting recursion language below. Finally, it should be noted that
constructions of recursive depth 4 did not exist in any of the training corpora.Yet, there
was no abrupt breakdown in performance for any of the three languages at this point, and this
was true of both SRNs andn-gram models. This suggests that these models are able to
generalize to at least one extra level of recursion beyond what they have been exposed to
during training (and this despite only 1% of the training items being of depth 3).

Training Exclusively on Doubly Embedded Complex Constructions

An alternative objection to the idea of intrinsic constraints being the source of SRN
limitations on multiple embeddings of complex recursive structures is that perhaps the
constraints stem from the specific statistics of the training corpora. Thus, one can concede
that the size of the hidden unit layer is not the source of the constraint, but contend that
the fact that only 7% of the sentences involved doubly embedded complex recursive
structures is what explains the observed limitations of the nets with these structures. Thus,
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if the percentage of doubly embedded constructions was to be increased considerably the
networks would perhaps be able to process these constructions without noticeable difficulty.

To investigate this possibility, we trained SRNs with 15 hidden units on versions of the
3 languages consisting exclusively of doubly embedded complex recursive constructions
without interleaving right-branching constructions. Using the same number of words in
each epoch as in the previous simulations, best performance was found for the counting
recursion depth 2 trained SRN (D2-SRN) after 48 epochs, after 60 epochs for the
center-embedding D2-SRN, and after 98 epochs for the cross-dependency D2-SRN. When
tested on the test corpora containing only novel doubly embedded sentences (also used to
produce the results in Figure 6), the average MSE found for the counting recursion
network was 0.045 (vs. 0.080 for the previous 15HU SRN), 0.066 for the center-
embedding net (vs. 0.092 for the previous 15HU SRN), and 0.073 for the cross-
dependency net (vs. 0.079 for the previous 15HU SRN). Interestingly, although there were
significant differences between the MSE scores for the SRNs and D2-SRNs trained on the
counting recursion (t(98) 5 3.13,p , 0.003) andcenter-embedding recursion (t(98) 5
3.04,p , 0.004)languages, the difference between the two nets was not significant for
the cross-dependency language (t(98)5 .97,p . 0.3). The performance of the D2-SRNs thus
appear to be somewhat better than the performance of the SRNs trained on the corpora of
varying length—at least for the counting and center-embedding recursion languages.
However, a closer look at the predictions that the nets made show that D2-SRNs are only
slightly better than their counterparts trained on sentences of varying length.

Figure 8 shows GPE scores as a function of word position across doubly embedded
complex recursive constructions from the three languages, averaged over 10 novel
sentences. On the doubly embedded counting recursive sentences (top panel), both SRN
and D2-SRN performed well, with a slight advantage for the D2-SRN on the last verb.
Both networks obtained lower levels of GPE than then-gram models which were
relatively inaccurate, especially at the last 2 verbs. On doubly center-embedded sentences
(middle panel), the 2 SRNs showed a gradual pattern of performance degradation across
the sentence, but with the D2-SRN achieving somewhat better performance, especially on
the last verb. The bigram and trigram models performed quite similarly, and again had
great difficulty with the 2 final verbs. When processing doubly embedded cross-depen-
dency sentences (bottom panel) the SRNs exhibited a pattern of performance resembling
that found for counting recursion. The GPE scores for both SRNs increased gradually, and
close to each other, until the first verb was encountered. At this point, the SRN GPE for
the second verb dropped whereas the D2-SRN GPE continued to grow. At the third verb,
the GPE for the D2-SRN dropped whereas the SRN GPE increased. Although the pattern
of SRN GPE scores may seem puzzling at first, it appears to fit recent results concerning
the processing of similar cross-dependency constructions in Dutch. Using a phrase-by-
phrase self-paced reading task with stimuli adapted from Bach et al. (1986), Dickey &
Vonk (1997) found a significant jump in reading times between the second and third verb,
preceded by a (non-significant) decrease in reading times between the first and second
verb. When the GPE scores for individual words are mapped onto reading times, the GPE
pattern of the SRN, but not the D2-SRN, provides a reasonable approximation of the
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Figure 8. Grammatical prediction error for each word in doubly embedded sentences for the net
trained on constructions of varying length (SRN), the net trained exclusively on doubly embedded
constructions (D2-SRN), and the bigram and trigram models. Results are shown for counting recursion
(top panel), center-embedding recursion (middle panel), and cross-dependency recursion (bottom
panel). Subscripts indicate subject noun/verb agreement patterns.
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pattern of reading times found by Dickey & Vonk. Returning to Figure 8, the trigram
model—although not performing as well as the SRN—displayed a somewhat similar
pattern to the SRN, whereas the bigram model performed very poorly. Together, the
results presented in Figure 8 reveal that despite being trained exclusively on doubly
embedded complex recursive constructions and despite not having to acquire the regu-
larities underlying the right-branching structures, the D2-SRN only performed slightly
better on doubly embedded complex recursive constructions than the SRN trained on both
complex and right-branching recursive constructions of varying length. This suggests that
the performance of the SRN does not merely reflect the statistics of the training corpus,
but that intrinsic architectural constraints also play a crucial role in determining prediction
behavior.

An encouraging aspect of the simulations is that the SRNs performed a good deal better
than then-gram based models. This is particularly important because the material that we
have used in these studies is the most favorable possible forn-gram models, since there
is no intervening material at a given level of recursion. In natural language, of course,
there is generally a considerable amount of material between changes of depth of
recursion, which causes problems forn-gram models because they concentrate on short-
range dependencies. Whilen-gram models do not generalize well to more linguistically
natural examples of recursion, SRN models, by contrast, do show a good level of
performance on such material. We have found in other work (Christiansen, 1994, 1999;
Christiansen & Chater, 1994) that the addition of intervening non-recursive linguistic
structure does not appear to significantly alter the pattern of results found with the artificial
languages reported here. Thus, we may conclude that SRNs are not merely learning
bigram and trigram information, but appear to acquire grammatical regularities that, at
least on a qualitative level, allow them to exhibit behaviors similar to humans. We now
consider the match with human data in more detail.

Fitting Human Data

We have seen that the performance of the SRN in processing deeply embedded complex
recursive structures appears to be limited by intrinsic constraints, which are independent
of the number of hidden units. Moreover, we have shown that these limitations are not
overcome even when the network is trained only on deeply embedded sentences.17 As we
have mentioned already, the level of embedding which the SRNs can process is roughly
in line with human processing limitations. In this section, we consider in more detail the
relation between the SRN’s performance and the psychological data on processing
recursive structures, using the same 15 hidden unit SRNs as in the previous sections.

Center-Embedding vs. Cross-Dependency

In a classic study, Bach et al. (1986) found that cross-dependencies in Dutch were
comparatively easier to process than center-embeddings in German. We have noted that
this result is linguistically interesting and surprising, because cross-dependencies cannot
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be captured by phrase structure rules and are therefore typically viewed as more complex.
Moreover, it is interesting from the point of view of language processing, because it
suggests that the language processor cannot be primarily based on a stack-like memory
store. This is because cross-dependencies, which require a queue, are easier to process
than center embeddings, which require a stack.

Bach et al. had native Dutch speakers listen to sentences in Dutch involving varying
depths of recursion in the form of cross-dependency constructions and corresponding
right-branching paraphrases with the same meaning. Native German speakers were tested
using similar materials in German, but with the cross-dependency constructions replaced
by center-embedded constructions. Because of disagreement among German informants
concerning whether the final verb should be in an infinitive form or in a past participle
form, two versions of the German materials were used. After the presentation of each
sentence, subjects were asked to rate the comprehensibility of the sentence on a 9-point
scale (15 easy, 95 difficult). Subjects were also asked comprehension questions after
two-thirds of the sentences. In order to remove effects of processing difficulty due to
length, Bach et al. subtracted the ratings for the right-branching paraphrase sentences from
the matched complex recursive test sentences. The same procedure was applied to the
error scores from the comprehension questions. The resulting difference should thus
reflect the difficulty caused by the complex recursive constructions.

Figure 9 (left panel) shows the difference in mean test/paraphrase ratings for singly and
doubly embedded cross-dependency sentences in Dutch and singly and doubly center-
embedded sentences in German (with the final verb in a past participle form). We focus
on the past participle German results because these were consistent across both the rating
and the comprehension tasks, providing the same pattern of results in comparison with the

Figure 9. Human performance (from Bach et al., 1986) on singly and doubly center-embedded
German (past participle) sentences compared with singly and doubly embedded cross-dependency
sentences in Dutch (left panel), and SRN performance on the same kinds of constructions (right panel).
Error bars indicate the standard error of the mean.
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Dutch data. As the mean GPE across a sentence reflects the processing difficulty that the
SRN experiences across the sentence as a whole, we can map these scores onto the human
rating data because the latter are thought to reflect the processing difficulty that people
experience when processing a given sentence. We used the mean GPE scores from Figure
7 for the SRNs trained on the center-embedding and cross-dependency languages to model
the Bach et al. results. For recursive depth 1 and 2, the mean GPE scores for the
right-branching constructions were subtracted from the average GPE scores for the
complex recursive constructions, and the differences plotted in Figure 9 (right panel).18

The net trained on the cross-dependency language maps onto the Dutch data and the net
trained on the center-embedding language maps onto the German (past participle) data. At
a single level of embedding, Bach et al. found no difference between Dutch and German.
This is also true of the SRN data (t(18) 5 0.36, p . 0.7). However, at 2 levels of
embedding Bach et al. found a significant difference between Dutch and German with the
Dutch cross-dependency stimuli being rated better than their German counterparts. The
SRN data also shows a significant difference between center-embedded constructions at
depth 2 and their cross-dependency counterparts (t(18) 5 4.08,p , 0.01).Thus, SRN
performance on center-embedding and cross-dependency of depth 1 and 2 fits human
performance on similar constructions quite closely. Next, the performance on doubly
center-embedded sentences is studied in more detail.

Grammatical vs. Ungrammatical Double Center-Embeddings

The study of complex English sentences with multiple center-embeddings has long been
an important source of information about the limits of human sentence processing (e.g.,
Blaubergs & Braine, 1974; Foss & Cairns, 1970; Marks, 1968; Miller, 1962; Miller &
Isard, 1964; Stolz, 1967). A particularly interesting recent finding is due to Gibson &
Thomas (1997). Their results from an off-line rating task suggest that some ungrammatical
sentences involving doubly center-embedded object relative clauses may be perceived as
grammatical.

(14) The apartment that the maid who the service had sent over was cleaning every week
was well decorated.

(15) *The apartment that the maid who the service had sent over was well decorated.

In particular, they found that when the middle VP was removed (as in 15), the resulting
construction was rated no worse than the grammatical version (in 14). Gibson & Thomas
interpreted this as an indication that people find doubly center-embedded relative clause
structures just as acceptable when only 2 verb phrases are included instead of the
grammatically-required 3.

It is possible to investigate this result using the SRN trained on the center-embedding
language. Within this abstract language, (14) corresponds to a grammatical 3VP
(‘NNNVVV’) construction (with singular subject noun/verb agreements), whereas the
ungrammatical (15) corresponds to a 2VP (‘NNNVV’) construction (again with singular
subject noun/verb agreements). By looking at the output activation following ‘NNNVV’
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we can determine whether the SRN can fit the Gibson & Thomas data. Figure 10 shows
this activation averaged over 10 novel sentences and grouped into the 4 lexical categories
and the end of sentence marker (EOS). It is clear that, in contrast to the results of Gibson
& Thomas, the network demonstrated a significant preference for the ungrammatical 2VP
construction over the grammatical 3VP construction, predicting that (14) actually should
be rated worse than (15). This explains, in part, the high GPE score for the third verb in
Figure 8 (middle panel). The erroneous activation of the nouns and the plural verbs also
contribute to the high GPE.

The Gibson & Thomas study employed an off-line task which may explain why (14)
was rated no worse than (15). Christiansen & MacDonald (1999) pursued this observation
by conducting an on-line self-paced word-by-word (center presentation) grammaticality
judgment task using the stimuli from Gibson & Thomas (1997). At each point in a
sentence subjects were asked to use their intuition to judge whether what they had read so
far was a grammatical sentence or not. Following the presentation of each sentence
(whether accepted or rejected), subjects rated the sentences on a 7-point scale (15 good,
7 5 bad). Christiansen & MacDonald found that the grammatical 3VP construction was
rated significantly worse than the ungrammatical 2VP construction.

One potential problem with this experiment is that the 2VP and 3VP stimuli were not
of the same length, and hence that the result could be an artifact of mere length
differences. In addition, the Gibson & Thomas stimuli also incorporated noun/verb
semantic biases (e.g.,apartment/decorated, maid/cleaning, service/sent overin (14))

Figure 10. The mean output activation for the four lexical categories and the end of sentence marker
(EOS) given the context ‘NNNVV’. Error bars indicate the standard error of the mean.
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which may make the 2VP stimuli more plausible than they would have been otherwise.
Christiansen & MacDonald therefore replicated their first experiment using stimuli con-
trolled for length and without noun/verb biases, such as (16) and (17):

(16) The chef who the waiter who the busboy offended appreciated admired the musi-
cians.

(17) *The chef who the waiter who the busboy offended frequently admired the musi-
cians.

Figure 11 shows the rating results from the second experiment in comparison with SRN
predictions in terms of mean GPE. The GPE scores for the 2VP and 3VP constructions
were recorded for 10 novel sentences with singular subject noun/verb agreements similar
to the agreement patterns in the human stimuli (and the lack of semantic noun/verb bias).
To control for length the GPE scores for the 3VP constructions were only averaged over
the first 6 words (i.e., for ‘NNNVVV’ vs. ‘NNNVV#’ for the 2VP constructions). As in the
first study, Christiansen & MacDonald found in their second study that the grammatical
3VP constructions were rated significantly worse than the ungrammatical 2VP construc-
tions. The SRN data fitted this pattern of human grammaticality ratings, with significantly
higher GPE scores elicited by 3VP constructions compared with 2VP constructions
(t(18) 5 2.34,p , 0.04). In thenext section, we investigate a possible match between
human and SRN performance on right-branching structures.

Figure 11. Human ratings (from Christiansen & MacDonald, 1999) for 2VP and 3VP center-embedded
English sentences (left ordinate axis) compared with the mean grammatical prediction error produced by
the SRN for the same kinds of constructions (right ordinate axis). Error bars indicate the standard error
of the mean.
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Right-Branching Subject Relative Constructions

Traditional symbolic models suggest that right-branching (and left-branching) recursion
should not cause any processing problems. In contrast, as we mentioned in connection
with SRN performance across depth of recursion on the center-embedding language
shown in Figure 7, the SRN model suggests that some decrement in performance may
occur. Unfortunately, this issue has not received much attention in the experimental
literature—even though right-branching constructions are often used as control items in
studies of center-embedded sentences. However, it is possible to glean some relevant
information from some of these studies. Thus, Bach et al. (1986) report comprehensibility
ratings for their right-branching paraphrase items. Figure 12 shows as a function of
recursion depth the comprehensibility ratings for the German past participle paraphrase
sentences and the mean GPE scores produced for right-branching constructions (from
Figure 7) by the SRN trained on the center-embedding language. Both the human and the
SRN data show the same pattern of increasing processing difficulty with increase in the
depth of recursion.

A similar fit with human data can be found by comparing the human comprehension
errors as a function of recursion depth reported in Blaubergs & Braine (1974) with mean
GPE for the same depths of recursion (again for the SRN trained on the center-embedding
language). Christiansen & MacDonald (1999) present on-line rating data concerning
right-branching PP modifications of nouns in which the depth of recursion varied from 0
to 2 by modifying a noun by either one PP (18), two PPs (19), or three PPs (20):

Figure 12. Human comprehensibility ratings (left ordinate axis) from Bach et al. (1996: German past
participle paraphrases) compared with the average grammatical prediction error for right-branching
constructions produced by the SRN trained on the center-embedding language (right ordinate axis),
both plotted as a function of recursion depth.
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(18) The nurse with the vase says that the [flowers by the window] resemble roses.
(19) The nurse says that the [flowers in the vase by the window] resemble roses.
(20) The blooming [flowers in the vase on the table by the window] resemble roses.

The stimuli were controlled for length and generally constructed to be of similar propo-
sitional and syntactic complexity. The results showed that subjects rated sentences with
recursion of depth 2 (20) worse than sentences with recursion depth 1 (19), which, in turn,
were rated worse than sentences with no recursion (18). Although these results do not
concern subject relative constructions, they suggest together with data from the Bach et al.
and the Blaubergs & Braine studies that the processing of right-branching recursive
constructions is affected by recursion depth—albeit to a much lesser degree than for
complex recursive constructions. Importantly, this dovetails with the SRN model of
language processing that we have presented here and elsewhere (Christiansen, 1994, 1999;
Christiansen & MacDonald, 1999). In contrast, traditional symbolic models of language
(e.g., Church, 1982; Gibson, 1998; Marcus, 1980; Stabler, 1994) do not predict an increase
in processing difficulty for right-branching constructions as a function of depth of
recursion, except perhaps for a mere length effect.

Counting Recursion

In the final part of this section, we briefly discuss the relationship between counting
recursion and natural language. We could find no experimental data which relate to natural
language constructions corresponding to counting recursion. The good performance of the
SRNs trained on counting recursion might suggest the prediction that people should be
able to handle relatively deep embeddings of corresponding natural language construc-
tions (e.g., the SRN handles doubly embedded structures successfully). However, we
contend that, despite Chomsky (1957), such structures may not exist in natural language.
Indeed, the kind of structures that Chomsky had in mind (e.g., nested ‘if-then’ structures)
may actually be closer to center-embedded constructions than to counting recursive
structures. Consider the earlier mentioned depth 1 example (13), repeated here as (21):

(21) If1 if2 the cat is in, then2 the dog cannot come in then1 the cat and dog dislike each
other.

As the subscripts indicate, the ‘if-then’ pairs are nested in a center-embedding order. This
structural ordering becomes even more evident when we mix ‘if-then’ pairs with ‘either-
or’ pairs (as suggested by Chomsky, 1957: p. 22):

(22) If1 either2 the cat dislikes the dog, or2 the dog dislikes the cat then1 the dog cannot
come in.

(23) If1 either2 the cat dislikes the dog, then1 the dog dislikes the cat or2 the dog cannot
come in.

The center-embedding ordering seems necessary in (22) because if we reverse the order
of ‘or’ and ‘then’ then we get the obscure sentence in (23). Given these observations, we
can make the empirical prediction that human behavior on nested ‘if-then’ structures are
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likely to follow the same breakdown pattern as observed in relation to the nested
center-embedded constructions (perhaps with a slightly better overall performance).

Probing the Internal Representations

The intrinsic constraints of the SRN appear to provide a good qualitative match with the
limitations on human language processing. We now consider how these constraints arise
by conducting an analysis of the hidden unit representations with which the SRNs store
information about previous linguistic material. We focus on the case of doubly embedded
constructions, which represent the limits of performance for both people and the SRN.
Moreover, we focus on what information the hidden units of the SRN maintain about the
number agreement of the 3 nouns encountered in doubly embedded constructions (re-
cording the hidden units’ activations immediately after the three nouns have been
presented).

Before giving our formal measure, we provide an intuitive motivation for our approach.
Suppose that we aim to assess how much information the hidden units maintain about the
number agreement of the last noun in a sentence; that is, the noun that the net has just seen.
If the information is maintained very well, then the hidden unit representations of input
sequences that end with a singular noun (and thus belong to the lexical category
combinations:nn-n, nN-n, Nn-n andNN-n) will be well-separated in hidden unit space
from the representations of the input sequences that end with a plural noun (i.e.,NN-N,
Nn-N, nN-N and nn-N). This means that we should be able to split the hidden unit
representationsalong the plural/singular noun category boundary such that input se-
quences ending in plural nouns are separated from input sequences ending in singular
nouns. It is important to contrast this with a situation in which the hidden unit represen-
tations instead retain information about the agreement number of individual nouns. In this
case, we should be able to split the hidden unit representationsacrossthe plural/singular
noun category boundary such that input sequences ending with particular nouns, say,N1,
n1, N2 or n2 (i.e., nn-{ N1, n1, N2, n2}, 19 nN-{ N1, n1, N2, n2}, Nn-{ N1, n1, N2, n2}
and NN-{ N1, n1, N2, n2}) are separated from input sequences ending with remaining
nounsN3, n3, N4 or n4 (i.e., nn-{ N3, n3, N4, n4}, nN-{ N3, n3, N4, n4}, Nn-{ N3, n3,
N4, n4} and NN-{ N3, n3, N4, n4}). Note that the above separation along lexical
categories is actually a special case of across category separation in which input sequences
ending with the particular (singular) nounsn1, n2, n3 or n4 are separated from input
sequences ending with the remaining (plural) nounsN1, N2, N3 or N4. Only by comparing
the separation along and across the lexical categories of singular/plural nouns can we
assess whether the hidden unit representations merely maintain agreement information
about individual nouns, or whether more abstract knowledge has been encoded pertaining
to the categories of singular and plural nouns. In both cases, information is maintained
relevant to the prediction of correctly agreeing verbs, but only in the latter case are such
predictions based on a generalization from the occurrences of individual nouns to their
respective categories of singular and plural nouns.

We can measure the degree of separation by attempting to split the hidden unit
representations generated from the (83 8 3 8 5) 512 possible sequences of 3 nouns into
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2 equal groups. We attempt to make this split using a plane in hidden unit space; the
degree to which 2 groups can be separated either along or across lexical categories
therefore provides a measure of what information the network maintains about the number
agreement of the last seen noun. A standard statistical test for the separability of two
groups of items is discriminant analysis (Cliff, 1987; see Bullinaria, 1994; Wiles &
Bloesch, 1992; Wiles & Ollila, 1993 for earlier applications to the analysis of neural
networks).

Figure 13(a) gives a schematic illustration of a separation along lexical categories with
a perfect differentiation of the 2 groups, corresponding to a 100% correct classification of
the hidden unit vectors. The same procedure can be used to assess the amount of
information that the hidden units maintain concerning the number agreement of the nouns
in second and first positions. We split the same hidden unit activations generated from the
512 possible input sequences into groups both along and across lexical categories. The
separation of the hidden unit vectors along the lexical categories according to the number
of the second noun shown in Figure 13(b) is also perfect. However, as illustrated by Figure
13(c), the separation of the hidden unit activations along the lexical categories according
to the first encountered noun is less good, with 75% of the vectors correctly classified,
becauseN-Nn is incorrectly classified with the singulars andn-nN with the plurals.

We recorded hidden unit activations for the 512 possible noun combinations for both
complex and right-branching recursive constructions of depth 2 (ignoring the interleaving
verbs in the right-branching structures). Table 2 lists the percentage of correctly classified
hidden unit activations for the 512 possible combinations of nouns. Classification scores
were found for these noun combinations both before and after training, and both for
separation along and across singular/plural noun categories. Scores were averaged over
different initial weight configurations and collapsed across the SRNs trained on the 3
languages (there were no significant differences between individual scores). The results
from the separations across singular/plural noun categories show that prior to any training
the SRN was able to retain a considerable amount of information about the agreement
number of individual nouns in the last and middle positions. Only for the first encountered

Figure 13. Schematic illustration of hidden unit state space with each of the noun combinations
denoting a cluster of hidden unit vectors recorded for a particular set of agreement patterns (with ‘N’
corresponding to plural nouns and ‘n’ to singular nouns). The straight dashed lines represent three linear
separations of this hidden unit space according to the number of (a) the last seen noun, (b) the second
noun, and (c) the first encountered noun (with incorrectly classified clusters encircled).
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noun was performance essentially at chance (that is, close to the level of performance
achieved through a random assignment of the vectors into 2 groups). The SRN had, not
surprisingly, no knowledge of lexical categories of singular and plural nouns before
training, as indicated by the lack of difference between the classification scores along and
across noun categories. The good classification performance of the untrained nets on the
middle noun in the right-branching constructions is, however, somewhat surprising
because this noun position is 2 words (a verb and a noun) away from the last noun. In
terms of absolute position from the point where the hidden unit activations were recorded,
the middle noun in right-branching constructions (e.g., ‘N1V3–N3–V2n4’) corresponds to
the first noun in complex recursive constructions (e.g., ‘N1–N3n4’). Whereas untrained
classification performance for this position was near chance on complex recursion, it was
near perfect on right-branching recursion. This suggests that in the latter case information
about the verb, which occurs between the last and the middle nouns, does not interfere
much with the retention of agreement information about the middle noun. Thus, prior to
learning the SRN appears to have an architectural bias which facilitates the processing of
right-branching structures over complex recursive structures (at least for the present
implementation of the two kinds of recursion).

After training, the SRNs retained less information in its hidden unit representations
about individual nouns. Instead, lexical category information was maintained as evidenced
by the big differences in classification scores between groups separated along and across
singular/plural noun categories. Whereas classification scores along the 2 noun categories
had increased considerably as a result of training, the scores for classifications made
according to groups separated across the categories of singular and plural nouns had
actually decreased—especially for the middle noun position. The SRN appears to have
acquired knowledge about the importance of the lexical categories of singular and plural

TABLE 2
Percentage of Cases Correctly Classified given Discriminant Analyses of Network

Hidden Unit Representations

Noun
Position

Recursion Type

Separation Along
Singular/Plural Noun Categories

Separation Across
Singular/Plural Noun Categories

Complex Right-Branching Complex Right-Branching

Before Training
First 62.60 52.80 57.62 52.02
Middle 97.92 94.23 89.06 91.80
Last 100.00 100.00 100.00 100.00
Random 56.48 56.19 55.80 55.98

After Training
First 96.91 73.34 65.88 64.06
Middle 92.03 98.99 70.83 80.93
Last 99.94 100.00 97.99 97.66
Random 55.99 55.63 54.93 56.11

Notes. Noun position denotes the left-to-right placement of the noun being tested, with Random indicating
a random assignment of the vectors into two groups.
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nouns for the purpose of successful performance on the prediction task, but at the cost of
retaining information about individual nouns in the middle position.

We have suggested that SRNs embody intrinsic architectural constraints which make
them suitable for the modeling of recursive structure—in particular the human limitations
on complex recursion documented in many empirical studies. The results of the discrimi-
nant analyses suggest that the SRN is well-suited for learning sequential dependencies.
Importantly, the feedback loop between the context layer and the hidden layer allows the
net to retain information relevant to making appropriate distinctions between previously
encountered plural and singular items even prior to learning. Of course, a net has to learn
to take advantage of this initial separation of the hidden unit activations to produce the
correct output, and this is a nontrivial task. Prior to learning, the output of an SRN consist
of random activation patterns. Thus, it has to discover the lexical categories and learn to
apply agreement information in the right order to make correct predictions for center-
embedded and cross-dependency complex recursive structures. As a consequence of
training, the SRN is able to retain a significant amount of information about even the first
noun in complex recursive constructions, as well as exhibiting an output behavior very
much in line with human data.

On a methodological level, the results from the discriminant analyses of the untrained
networks suggests that when conducting analyses of hidden unit representations in
recurrent networks after training it is advisable to make comparisons with the represen-
tations as they were prior to training. This may provide insight into which aspects of
network performance are due to architectural biases and which arise due to learning. A
network always has some bias with respect to a particular task, and this bias is dependent
on a number of factors, such as overall network configuration, the nature of the activation
function(s), the properties of the input/output representations, the initial weight setting,
etc. As evidenced by our discriminant analyses, even prior to learning hidden unit
representations may display some structural differentiation, emerging as the combined
product of this bias (also cf. Kolen, 1994) and the statistics of the input/output relations
in the test material (also cf. Chater & Conkey, 1992). However, all too often hidden unit
analyses—such as cluster analyses, multi-dimensional scaling analyses, principal compo-
nent analyses—are conducted with no attention paid to the potential amount of structure
that can be found in the hidden unit representations before any learning takes place. But
by making comparisons with analyses of hidden unit patterns elicited prior to training, not
only may over-interpretation of training results be avoided, but it is also possible to gain
more insight into the kind of architectural constraints that a given network brings to a
particular task.

Sentence Generation

We have so far considered how recursive structures are processed, and studied the hidden
unit representations that the SRN has before and after training. We now briefly show how
SRNs can also be used to model thegenerationof recursive structures. This provides
additional insight into what the networks have learned, and also provides a possible
starting point for modeling how people produce recursive constructions.
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The basic idea is to interpret the output of the SRNs not as a set of predictions, but as
a set of possible sentence continuations. One of these possiblecontinuationscan then be
chosen stochastically, and fed back as the next input to the SRN. This is illustrated in
Figure 14. The process starts from a randomly chosen noun given as input to the network.
The network then produces a distribution of possible successors. The stochastic selection
process (SSP) first normalizes the outputs so that they sum to 1 (and hence can be
interpreted as probabilities), and then chooses one of the outputs randomly, according to
these probabilities. This item is given as the next input to the network, and the process is
repeated. Eventually, the end of sentence marker will be selected, and a sentence will be
completed. However, the generation process need not be halted at this point, as the end of
sentence marker can serve as an input from which the first word of the next sentence can
be produced. In this way, the generation process can be continued indefinitely to produce
an arbitrarily large corpus of sentences from the SRN. A similar approach was used by
Mozer & Soukup (1991) to generate musical sequences.20

Table 3 presents the distribution of the grammatical sentences obtained from a sample
of 100 sentences generated for each language by the SRNs with 15 hidden units. The
counting recursion net generated 67% grammatical sentences, the center-embedding net
69% grammatical sentences, and the cross-dependency net 73% grammatical sentences.
Thus, once again the cross-dependency net performed better than the center-embedding
net (and the counting recursion net). The table is further divided into 3 subgroups,
depending on whether the constructions are of depth 0, complex recursive or right-
branching. Across the 3 languages there was a larger proportion of grammatical sentences
of depth 0 (35–42%) than found in the training corpora (30%), suggesting a weak

Figure 14. The architecture of a simple recurrent network using a stochastic selection process (SSP)
to generate sentences. Arrows with solid lines between the rectangles (corresponding to layers of units)
denote trainable weights, whereas the arrow with the dashed line denotes the copy-back connections.
The solid arrows to and from the SSP do not denote weights.
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tendency to generate shorter strings. There was also some tendency towards producing
more grammatical right-branching sentences (50–67%) than complex recursive sentences
(especially for the counting recursion net) despite the fact that both kinds of recursion
occurred equally often in the training corpora. For complex recursion, both the counting
recursive net and the cross-dependency net generated several structures of depth 2,
whereas the center-embedding net generated none. Thus, the center-embedding net
appeared to have acquired a slightly stronger bias toward shorter strings than the 2 other
nets. In the case of right-branching recursion, all nets were able to generate at least 2
sentences of depth 2, again indicating that the SRN found these structures easier to deal
with than the complex recursive structures.

The ungrammatical strings from the 100 sentence samples are listed in Table 4.
Agreement errors accounted for less than a quarter of the ungrammatical strings: 24% for
counting recursion, 13% for center-embedding recursion, and 19% for cross-dependency
recursion. The ungrammatical strings were divided into 4 subgroups on the assumption
that the combination of a single noun and a single verb counted as depth 0, the initial
occurrence of 2 or more nouns as complex recursion, and the initial occurrence of a noun
and a verb followed by other material as right-branching recursion. The fourth subgroup,
“Other”, consisted of strings which either started with a verb or were null strings (i.e., just
an end of sentence marker). Few errors were made on depth 0 constructions. The counting

TABLE 3
The Distribution of Grammatical Sentences Generated by the Nets Trained on the

Three Languages

Construction

Language

Counting Recursion Center-Embedding Cross-Dependency

Depth 0 nv (16) nv (15) nv (15)
NV (8) NV (14) NV (12)

Complex
Recursion

NNVV (11) nNVv (7) nnvv (5)
NNNVVV (6) nnvv (6) NnVv (5)

NNVV (5) NNVV (5)
NnvV (2) nNvV (3)

nnnvvv (1)
nNnvVv (1)
NnnVvv (1)

Right-Branching
Recursion

NVnv (8) NVNV (7) nvNV (7)
NVNV (6) nvnv (5) nvnv (6)
nvNV (4) nvNV (4) NVnv (5)
nvnv (2) NVnv (1) NVNV (5)
nvNVnv (2) nvNVnv (1) nvnvnv (1)
nvnvnv (1) NVNVnv (1) NVNVNV (1)
nvnvNV (1) NVnvNV (1)
NVnvnv (1)
NVNVNV (1)

Notes. The number of instances of each construction is indicated in parentheses. Capitalization indicates
plural agreement—except in the case of complex recursive structures generated by the SRN trained on the
counting recursion language where the letters stand for both singular and plural. The end of sentence marker
(‘#’) is omitted for expositional purposes.
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recursion net made more errors on right-branching structures than on complex recursive
structures, whereas the opposite is true of the center-embedding net. The cross-depen-
dency net made about the same number of errors on both kinds of constructions. Whereas
many of the non-agreement errors are hard to interpret, the nets did make some interesting
errors involving a combination of both a complex recursive construction and a right-
branching construction, whose individual parts were otherwise grammatical (counting
recursion: ‘NnvVnv’; center-embedding recursion: ‘NVNNVV’ and ‘NVNNNVVV’;
cross-dependency recursion: ‘nvnNvV’ and ‘NVnnvv’).

On the whole, the networks performed reasonably well on the stochastic sentence
generation task; that is, their acquired knowledge of the structural regularities provided a
good basis for the probabilistic generation of sentences—though performance does not

TABLE 4
The Distribution of Ungrammatical Strings Generated by the Nets Trained on the

Three Languages

Construction

Language

Counting Recursion Center-Embedding Cross-Dependency

Depth 0 Nv (3)
Complex

Recursion
nnvVV (1) NNVv (3) nnvvV (1)
nnnVnv (1) nnvvv (2) nnvnvVv (1)
nnVvV (1) NNVNVv (2) nnvVvNV (1)
nNv (1) nnvvV (1) nnv (1)
nNVnv (1) nNVvv (1) nnNvVv (1)
nNNVv (1) nNVV (1) nNnVv (1)
NnvVV (1) Nnvnvvv (1) nNNVvv (1)
NnVVV (1) NnvVV (1) NnVvn (1)
NNnvV (1) Nnv (1) NnVVv (1)
NnvVnv (1) NnNV (1) NnVNvVVnN (1)

NNnvvnvv (1) NNVNV (1)
NNnv (1) NNV (1)
NNVnv (1) nNnNvNvVVNVNVNV (1)
NNVNV (1)
nNNVV (1)

Right-Branching
Recursion

nvV (3) nvV (2) NVV (4)
nvv (2) NVv (2) nvvV (1)
nvNv (2) nvv (1) nvnvnV (1)
NVv (2) nvnvVV (1) nVnv (1)
NVV (2) nVV (1) nVNvVV (1)
nvNVVV (1) Nvv (1) NvnVvv (1)
nVnVNV (1) NVNNVV (1) NvVV (1)
nVNVNVNV (1) NVNNNVVV (1) NVvV (1)
nVNV (1) NVv (1)
NVvv (1) nvnNvV (1)
NVvV (1) NVnnvv (1)

Other vnvNVNV (1) { } (1)
vnvNV (1) Vnv (1)
V (1)

Notes. The number of instances of each construction is indicated in parentheses. Capitalization indicates
plural agreement. The end of sentence marker (‘#’) is omitted for expositional purposes.
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reach human levels of production. Nonetheless, given these encouraging initial results, we
can speculate that the representations that the SRNs acquire through training may form a
good common representational substrate for both sentence recognition and production.
That is, knowledge acquired in the service of comprehension may form the basis for
production (see Dell, Chang & Griffin, in press, for a similar perspective on SRN sentence
production). It is worth noting that viewed in this way, the SRN embodies the asymmetry
typically found between human language comprehension and production. The nets pre-
dominantly generated sentences of depth 0 and 1, but are able to process sentences of
depth 2 (albeit to a very limited degree). Thus, the nets have a comprehension basis which
is wider than their productive capabilities. Of course, sentence generation in these nets is
not driven by semantics contrary to what one would assume to be the case for people.
Adding semantics to guide the generation process may help eliminate many of the existing
ungrammatical sentences because the selection of words would then be constrained not
only by probabilistic grammatical constraints but also by semantic/contextual constraints.

VI. GENERAL DISCUSSION

We have shown that an SRN can be trained to process recursive structures with similar
performance limitations regarding depth of recursion as found in human language pro-
cessing. The limitations of the network do not appear sensitive to the size of the network,
nor to the frequency of deeply recursive structures in the training input. The qualitative
pattern of results from the SRN for center-embedding, cross-dependency and right-
branching recursion match human performance on natural language constructions with
these structures. The SRNs trained on center-embedded and cross-dependency construc-
tions performed well on singly embedded sentences—although, as for people, perfor-
mance was by no means perfect (Bach et al., 1986; Blaubergs & Braine, 1974; King &
Just, 1991). Of particular interest is the pattern of performance degradation on sentences
involving center-embeddings and cross-dependencies of depth 2, and its close match with
the pattern of human performance on similar constructions.

Overall, the qualitative match between the SRN performance and human data is
encouraging. These results suggest a reevaluation of Chomsky’s (1957, 1959) arguments
that the existence of recursive structures in language rules out finite state and associative
models of language processing. These arguments have been taken to indicate that
connectionist networks, which learn according to associative principles, cannot in prin-
ciple account for human language processing. But we have shown that this in principle
argument is not correct: Connectionist networks can learn to handle recursion with a
comparable level of performance to the human language processor. The simulations that
we have provided are, of course, small scale, and we have not demonstrated that this
approach could be generalized to model the acquisition of the full complexity of natural
language. Note, however, that this limitation applies equally well to symbolic approaches
to language acquisition (e.g., Anderson, 1983), including parameter-setting models (e.g.,
Gibson & Wexler, 1994; Niyogi & Berwick, 1996), and other models which assume an
innate universal grammar (e.g., Berwick & Weinberg, 1984).
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Turning to linguistic issues, the better performance of the SRN on cross-dependency
recursion compared with center-embedding recursion may reflect the fact that the differ-
ence between learning limited degrees of context-free and context-sensitive structure may
be very different from the problem of learning the full, infinite versions of these
languages; a similar conclusion with respect to processing is reached by Vogel, Hahn &
Branigan (1996) from the viewpoint of formal language computation and complexity.
Within the framework of Gibson’s (1998) Syntactic Prediction Locality Theory, center-
embedded constructions (of depth 2 or less) are harder to process than their cross-
dependency counterparts because center-embedding requires holding information in mem-
ory over a longer stretch of intervening items than cross-dependency. Put simply, the
information about the first noun has to be kept in memory over minimally;2D items for
center-embedding, whereD corresponds to depth of recursion, but only over minimally
;D items for cross-dependency. Although a similar kind of analysis is helpful in
understanding the difference in SRN performance on the 2 types of complex recursive
constructions, this cannot be the full explanation. Firstly, this analysis incorrectly suggests
that singly embedded cross-dependency structures should be easier to process than
comparable center-embedded constructions. As illustrated by Figure 9, this is not true of
the SRN predictions, nor does it fit with the human data from Bach et al. (1986). Secondly,
the above analysis would predict a flat or slightly rising pattern of GPE across the verbs
in a sentence with two cross-dependencies. In contrast, the GPE pattern for the cross-
dependency sentences (Figure 8) is able to fit the reading time data from Dickey & Vonk
(1997) because of adrop in the GPE scores for the second verb. Even though there are
several details still to be accounted for, the current results suggest that we should be wary
of drawing strong conclusions for language processing behavior, in networks and perhaps
also in people, from arguments concerning idealized infinite cases.

A related point touches on the architectural requirements for learning languages
involving, respectively, context-free and context-sensitive structures. In the simulations
reported here, the same network (with initial random weights held constant across
simulations) was able to learn the three different artificial languages to a degree similar to
human performance. To our knowledge, no symbolic model has been shown to be able to
learn these 3 kinds of recursive structures givenidentical initial conditions. For example,
Berwick & Weinberg’s (1984) symbolic model of language acquisition has a built-in stack
(as well as other architectural requirements for implementing a Marcus-style parser,
Marcus, 1980) and would therefore not be able to learn languages involving cross-
dependencies because the latter are beyond the capacities of simple stack memory
structures. It is, of course, true that if one builds a context-sensitive parser then it can also
by definition parse context-free strings. However, the processing models that are able to
account for the Bach et al. (1986) data (Gibson, 1998; Joshi, 1990; Rambow & Joshi,
1994) do not incorporate learning theories specifying how knowledge relevant to the
processing of center-embedding and cross-dependency could be acquired. Connectionist
networks therefore present a learning-based alternative to the symbolic models because,
as we have shown, the same network is able to develop representations necessary for the
processing of both center-embedding and cross-dependency structures (as well as count-
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ing recursive constructions). Recent simulations involving more natural language-like
grammars, incorporating significant additional complexity in terms of left and right
recursive structures, suggest that this result is not confined to the learning of the artificial
languages presented in this paper (see Christiansen, 1994, 1999, for details).

In this paper, we have presented results showing a close qualitative similarity between
the breakdown patterns in human and SRN processing when faced with complex recursive
structures. This was achieved without assuming that the language processor has access to
a competence grammar which allows unbounded recursion, subject to performance
constraints. Instead, the SRN account suggests that the recursive constructions that people
actually say and hear may be explained by a system in which there is no representation of
unbounded grammatical competence, and performance limitations arise from intrinsic
constraints on the processing system. If this hypothesis is correct, then the standard
distinction between competence and performance, which is at the center of contemporary
linguistics, may need to be rethought.

Acknowledgments: We would like to thank James Greeno, Paul Smolensky and an
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and Joe Allen, Jim Hoeffner and Mark Seidenberg for discussions of the issues involved.

NOTES

1. See MacDonald & Christiansen (1999) for a critical discussion of CC-READER and similar language
processing models based on production systems (Newell & Simon, 1976).

2. The competence/performance distinction also leads to certain methodological problems—see Christiansen
(1992, 1994) for further discussion.

3. Cross-dependency has also been alleged, controversially, to be present in “respectively” constructions in
English, such as ‘Anita1 and the girls2 walks1 and skip2, respectively’. Church (1982) questions the
acceptability of these constructions with two cross-dependencies, and indeed, even one cross-dependency,
as in this example, seems bizarre.

4. Pullum & Gazdar (1982) have argued that natural language is, nonetheless, context-free, although their
arguments are controversial (see Shieber, 1985, for a critique and Gazdar & Pullum, 1985, for a defense).

5. The possibility remains, of course, that connectionist models might, on analysis, be found to achieve what
success they do in virtue of having learned to approximate, to some degree, symbolic systems. Smolensky
(in press) has argued that connectionist networks can only capture the generalizations in natural language
structure in this way.

6. The networks also demonstrated sophisticated generalization abilities, ignoring local word co-occurrence
constraints while appearing to comply with structural information at the constituent level. Some of these
results were reported in a reply by Christiansen & Chater (1994) to Hadley’s (1994) criticism of
connectionist language learning models such as that of Elman (1990, 1991).

7. The nets were trained using back-propagation through time (Rumelhart, Hinton & Williams, 1986) rather
than the standard method for training SRNs—for a discussion of differences and similarities between the
two types of networks, see Chater & Conkey (1992) and Christiansen (1994).

8. The only exception we know of is our own preliminary work regarding Chomsky’s (1957) three artificial
languages reported in Christiansen (1994).

9. Intuition would suggest that higher ordern-gram models should fare better than simple bigram and trigram
models. However, computational results using large text corpora have shown that higher ordern-grams
provide for poor predictions because of the frequent occurrence of “singletons”; i.e.,n-grams with only a
single or very few instances (Gale & Church, 1990; Redington, Chater & Finch, 1998).
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10. The relation between grammaticality judgments and processing mechanisms both within linguistics and
psycholinguistics is a matter of much controversy (for further discussion, see Christiansen, 1994; Schu¨tze,
1996).

11. Most of the simulations presented here were carried out using theTlearnneural network simulator available
from the Center for Research on Language at the University of California, San Diego. For the sentence
generation simulations we used theMlearn simulator developed from theTlearn simulator by Morten
Christiansen.

12. Here and in the following, we adopt the convention that ‘n’ and ‘N’ corresponds to categories of nouns, ‘v’
and ‘V’ to categories of verbs with capitalization indicating plural agreement where required by the
language in question. The end of sentence marker is denoted by ‘#’. Individual word tokens are denoted by
adding a subscript to a word category, e.g., ‘N3’.

13. We use bold for random variables.
14. These assumptions are true in these artificial languages, although they will not be in natural language, of

course.
15. Note that total activation cannot be construed as corresponding to “total number of relevant observations”

in these measures of sensitivity. This is because the difference between the total activation and hit activation
(as specified by Equation 6) corresponds to the false alarm activation (as specified by Equation 7).

16. It could be objected that the GPE measure may hide a failure to make correct agreement predictions for
singly center-embedded sentences, such as ‘The man1 the boys2 chase2 likes1 cheese’. If correct, one would
expect a high degree of agreement error for the 2 verb predictions in the singly center-embedded (complex
depth 1) constructions in Figure 7. Agreement error can be calculated as the percentage of verb activation
allocated to verbs which donot agree in number with their respective nouns. The agreement error for the
first and second verbs were 1.00% and 16.85%, respectively. This result also follows from the earlier
discussion of the GPE measure, establishing that a high degree of agreement error will result in high GPE
scores. Moreover, note that the level of SRN agreement error is comparable with human performance: For
example, Larkin & Burns (1977) found that when subjects were asked to paraphrase singly center-
embedded constructions presented auditorily they made errors nearly 15% of the time.

17. Earlier work by Christiansen (1994) has additionally shown that these results are not significantly altered
by training the SRNs exclusively on complex recursive structures of varying length (without interleaving
right-branching constructions) or by using the back-propagation through time learning algorithm (Rumel-
hart, Hinton & Williams, 1986).

18. The human data presented here and in the next 2 sections involve 3 different scales of measurement (i.e.,
differences in mean test/paraphrase comprehensibility ratings, mean grammaticality ratings on a scale 1–7,
and mean comprehensibility ratings on a scale 1–9). It was therefore necessary to adjust the scales for the
comparisons with the mean GPE scores accordingly.

19. We use curly brackets to indicate that any of the 4 nouns may occur in this position, thus creating the
following 4 combinations:nn-N1, nn-n1, nn-N2 andnn-n2.

20. We thank Paul Smolensky for bringing this work to our attention.
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