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INTRODUCTION

Many of the chapters of this book are concerned with topics in language
processing. This chapter is concerned, by contrast, with a particular
method, connectionist computational modelling, which has been applied
to a wide range of topics. It is, furthermore, a controversial method:
Some have argued that natural language processing from phonology to
semantics can be understood in connectionist terms; others have argued
that no aspects of natural language can be captured by connectionist
methods. And the controversy is particularly heated because of the revi-
sionist claims of some connectionists: For many, connectionism is not just
an additional method for studying language processing, but it offers an
alternative to traditional theories, which describe language and language
processing in symbolic terms. Indeed, Rumelhart and McClelland (1987,
p. 196) suggest “that implicit knowledge of language may be stored
among simple processing units organized into networks. While the be-
haviour of such networks may be describable (at least approximately) as
conforming to some system of rules, we suggest that an account of the
fine structure of the phenomena of language and language acquisition can
best be formulated in models that make reference to the characteristics of
the underlying networks.” We shall see that the degree to which connec-
tionism supplants, rather than complements, existing approaches to
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language is itself a matter of debate. Finally, the controversy over connec-
tionist approaches to language is an important test case for the validity of
connectionist methods in other areas of psychology.

In the next section, we describe the historical and intellectual roots of
connectionism, then introduce the elements of modern connectionism,
how it has been applied to natural language processing, and outline some
of the theoretical claims that have been made for and against it. We then
consider four central topics in connectionist research on language proces-
sing: word naming and visual word recognition, lexical processing during
speech, morphological processing, and syntax." These illustrate the range
of connectionist research on language, give an opportunity to assess its
strengths and weaknesses across this range, and allows the general debate
concerning the validity of connectionist methods to be illustrated in
specific contexts. We would argue that debates in each of these areas,
although interrelated, should each be considered on their own merits: It
may be that connectionist approaches are valuable in modelling some
aspects of language processing, but not in others. Finally, in the Conclu-
sions we sum up and consider the prospects for future connectionist
research, and its relation to other approaches to understanding language
processing and language structure.’

BACKGROUND

From the perspective of modern cognitive science, we tend to see theories
of human information processing as borrowing from theories of machine
information processing, i.e. from computer science. Within computer
science, symbolic processing on general purpose digital computers has
proved to be the most successful method of designing practical computa-
tional devices. It is therefore not surprising that cognitive science, includ-
ing the study of language processing, has aimed to model the mind as a
symbol processor.

Historically, however, theories of human thought inspired attempts to
build computational devices, rather than the other way around. Main-
stream computer science arises from the tradition that thought is a matter
of symbol processing. This tradition can be traced to Boole’s (1854)

' It should be noted that many connectionist models cut across this traditional division
into different aspects of language. Thus, such a division may perhaps do injustice to connec-
tionist models of language (Sharkey, 1991)—or even lead into an “incommensurability trap”
(Christiansen & Chater, 1992). It is, however, merely meant to reflect the topics addressed in
the rest of this book.

2 For a survey of current research on connectionist natural language processing, see the
Special Issue of the journal Cognitive Science, “Connectionist models of language processing:
progress and prospects” (Christiansen, Chater, & Seidenberg, in press).
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suggestion that logic and probability theory describe “Laws of Thought”,
and that reasoning in accordance with these laws can be conducted by
following symbolic rules. It runs through Turing’s (1936) argument that
all human thought can be modelled by symbolic operations on a tape (the
Turing machine), through von Neumann’s design for the modern digital
computer, to the development of symbolic computer programming
languages, and thence to modern computer science, artificial intelligence,
and symbolic cognitive science.

Connectionism (also known as “parallel distributed processing”,
“neural networks”, or ‘“neurocomputing”) can be traced to a different
tradition, which attempts to design computers inspired by the structure of
the brain. McCulloch and Pitts (1943) provided an early and influential
idealisation of neural function. In the 1950s and 1960s, Ashby (1952),
Minsky (1954), Rosenblatt (1962), and many others designed various
computational schemes based on idealisations of the brain. Aside from
their biological origin, these schemes were of interest because they were
able to learn from experience, rather than being designed. Such *‘self-
organising” or learning machines therefore seemed prima facie plausible
as models of the aspects of human cognition which are learned rather
than innate, including many aspects of language processing (although
Chomsky, e.g. 1965 was to challenge the extent to which languages are
learned). Throughout this period connectionist and symbolic computation
stood as alternative paradigms for modelling intelligence, and it was
unclear which would prove to be the most successful. But gradually the
symbolic paradigm gained ground, resulting in powerful models in the
domains such as language (Chomsky, 1957, 1965) and problem solving
(Newell & Simon, 1972). The connectionist approach was largely aban-
doned, particularly in view of the limited power of then current connec-
tionist methods (see, e.g. Minsky & Papert, 1969, for an influential
analysis). But some of these limitations have been overcome (Hinton &
Sejnowski, 1986; Rumelhart, Hinton, & Williams, 1986), re-opening the
possibility that connectionist computation constitutes an alternative to the
symbolic model of thought.

So connectionism is inspired by the structure and processing of the
brain. What does this mean in practice? At a coarse level of analysis, the
brain can be viewed as consisting of a very large number of simple
processors, neurons, which are densely interconnected into a complex
network; and these neurons do not appear to tackle information proces-
sing problems alone—rather, large numbers of neurons operate co-opera-
tively, and simultaneously, to process information. Furthermore, neurons
appear to communicate numerical values (encoded by firing rate), rather
than passing symbolic messages, and, to a first approximation at least,
neurons can be viewed as mapping a set of numerical inputs (delivered
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from other neurons) onto a numerical output (which is then transmitted
to other neurons). Connectionist models are designed to mimic these
properties: Hence, they consist of large numbers of simple processors,
known as wunits (or nodes), which are densely interconnected into a
complex network, and which operate simultaneously and co-operatively
to solve information processing problems. In line with the assumption
that real neurons are numerical processors, units are assumed to pass
only numerical values rather than symbolic messages, and the output of a
unit is usually assumed to be a numerical function of its inputs. Typical
connectionist networks do not amount to realistic models of the brain,
however (see, e.g. Sejnowski, 1986), either at the level of the individual
processing unit, which not only drastically oversimplifies, but knowingly
falsifies, many aspects of the function of real neurons, or in terms of the
structure of the neural networks, which bear little if any relation to brain
architecture. One avenue of research is to seek increasing biological
realism (e.g. Koch & Segev, 1989). In the study of aspects of cognition in
which little biological constraint is available, most notably language,
researchers have concentrated on developing connectionist models with
the goal of accurately modelling human behaviour. They therefore take
their data from cognitive psychology, linguistics, and cognitive neuropsy-
chology, rather than from neuroscience. Here, they must compete head-
on with symbolic models of language processing.

We noted earlier that the relative merits of connectionist and symbolic
models of language are hotly debated. But should they be viewed as
standing in competition at all? Advocates of symbolic models of language
processing assume that symbolic processes are somehow implemented in
the brain. Thus, they too are connectionists, at the level of implementa-
tion. They assume that language processing can be described at two levels:
at the psychological level, in terms of symbol processing; and at the
implementational level, in neuroscientific terms (to which connectionism
approximates). If this is right, then connectionist modelling should
proceed by taking symbol processing models of language processing, and
attempting to implement these in connectionist networks. Advocates of
this view (Fodor & Pylyshyn, 1988; Pinker & Prince, 1988) typically
assume that it implies that symbolic modelling should be entirely autono-
mous from connectionism; symbolic theories set the goalposts for connec-
tionism, but not the other way round. Chater and Oaksford (1990) have
argued that, even according to this view, there will be two-way influence
between symbolic and connectionist theories, since many symbolic
accounts can be ruled out precisely because they could not be neurally
implemented. But most connectionists in the field of language processing
have a more radical agenda: not to implement, but to challenge, to
varying degrees, the symbolic approach to language processing.

8. CONNECTIONIST NATURAL LANGUAGE PROCESSING 237

Before outlining and evaluating a range of specific connectionist models
of language processing, it is useful to set out some of the recurring themes
in discussion of the virtues and vices of the connectionist approach to
language:

Learning. As discussed previously, connectionist networks typically,
although not always, learn from experience,’ rather than being fully speci-
fied by a designer. Symbolic computational systems, including those con-
cerned with language processing, are typically, but not always, fully
specified by the designer.

Generalisation. Few aspects of language are simple enough to be
learnable by rote. The ability of networks to generalise to cases on which
they have not been trained is thus a critical test for many connectionist
models.

Representation. Because they are able to learn, the internal codes used
by connectionist networks need not be fully specified by a designer, but
are devised by the network so as to be appropriate for the task. Develop-
ing methods for understanding the codes that the network develops is an
important strand of connectionist research. Whereas internal codes may
be learned, the inputs and outputs to a network generally use a code spe-
cified by the designer. These codes can be crucial in determining network
performance, as we shall see. How these codes relate to standard
symbolic representations of language in linguistics is a major point of
contention.

Rules versus exceptions. Many aspects of language can be described in
terms of what have been termed “quasi-regularities”—regularities that are
usually true, but which admit some exceptions. According to the symbolic
descriptions used by modern linguistics, these quasi-regularities may be
captured in terms of a set of symbolic rules, and sets of exceptions to
those rules. Processing models often incorporate this distinction by having
separate mechanisms to deal with rule-governed and exceptional cases. It
has been argued that connectionist models provide a single mechanism,
which can pick up general rules, while learning the exceptions to those
rules. Although this issue has been, as we shall see, a major point of con-
troversy surrounding connectionist models, it is important to note that
attempting to provide single mechanisms for rules and exceptions is not

3 Although important in many connectionist models, we will not provide a detailed
account of connectionist approaches to language acquisition here. For an overview, see
Plunkett (1995) and for discussion of possible consequences for traditional approaches to
language acquisition, see Seidenberg (1994).
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essential to the connectionist approach; one or both separate mechanisms
for rules and exceptions could themselves be modelled in connectionist
terms (Coltheart, Curtis, Atkins, & Haller, 1993; Pinker, 1991; Pinker &
Prince, 1988). A further question is whether networks really learn rules at
all, or whether they simply approximate rule-like behaviour. Opinions
differ concerning whether the latter is an important positive proposal,
which may lead to a revision of the role of rules in linguistics (Rumelhart
& McClelland, 1986a; see also Smolensky, 1988), or whether it is a fatal
problem with connectionist models of language processing (Pinker &
Prince, 1988).

With these general issues in mind, let us consider some of the broad
spectrum of connectionist models of language processing.

VISUAL WORD RECOGNITION AND WORD NAMING

The psychological processes engaged in reading are extremely varied and
complex, ranging from early visual processing of the printed word, to
syntactic, semantic, and pragmatic analysis, to integration with general
knowledge. Connectionist models have concentrated on very simple
aspects of the reading process: (1) recognising words from printed text,
and (2) word “naming”, i.e. mapping visually presented letter strings onto
sequences of sounds (this may or may not involve word recognition). We
focus on connectionist models of these two processes here.

One of the earliest connectionist models was McClelland and Rumel-
hart’s “interactive activation” (1981) model of visual word recognition
(see also Rumelhart & McClelland, 1982). The network is completely
prespecified (i.e. it does not learn), and consists of a sequence of “layers”
of units, as illustrated in Fig. 8.1. Units in the first layer are specific to
particular visual features of letters (in particular positions within the
word). Units in the second layer stand for particular letters (also in parti-
cular positions within the word). Units in the third layer stand for words.
Within and between layers, there are inhibitory connections between units
which stand for incompatible states of affairs. For example, there are inhi-
bitory connections between units in the word layer, so that possible
“candidate” words compete against each other. There are also excitatory
connections between units which stand for mutually reinforcing states of
affairs at different layers. For example, there is an excitatory connection
between the unit standing for the word TAKE, the unit standing for the
letter “T” (in the first position) as well as the particular letter features
which make up “T”. All excitatory connections of a given kind—for
example, between the letter level and the word level units—have the same
strength, but this strength varies depending on which two levels are
involved. This is also the case with the inhibitory connections between
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FIG. 8.1 The letter “T" in the first position of a word consisting of four letters, some of its
neighbouring nodes, and their interconnections in the McClelland and Rumelhart (1981)
interactive activation model of visual word recognition. Excitatory connections are shown as
arrows, whereas inhibitory connections have circular ends. From “An interactive activation
model of context effects in letter perception: Part 1. An account of basic findings” by J.L.
McClelland and D.E. Rumelhart, 1981, Psychological Review, 88, p. 380. Copyright ©
(1981) by the American Psychological Association. Reprinted with permission

and within unit levels. This defines the “architecture” of the network
(shown in Fig. 8.1).

How do individual units behave? In interactive activation models such
as this, the level of activity of a unit is determined by its previous level
and its current input (as we shall see below, in more recent models, the
state of a unit is typically determined only by its current input). If the
input to a unit is 0, then all that happens is that the level of activity of
the unit decays exponentially. The input to the unit is, as is standard,
simply the weighted sum of the units which are inputs to that unit (where
the weights correspond to the strengths of the connections). If the input is
positive, then the level of activity is increased in proportion both to that
input, and to the distance between the current level of activation and the
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maximum activation (conventionally set at 1); if the input is negative, the
level of activity is decreased in proportion to the input, and to the
distance between the current level of activation and the minimum activa-
tion (conventionally set at —1, but in the McClelland & Rumelhart, 1981,
model it was set at —0.2 to allow rapid reactivation).

Although this behaviour sounds rather complex, the basic idea is
simple. Given a constant input, the unit will gradually adjust to a stable
level where the exponential decay balances with the boost from that
input: Positive constant inputs will be associated with positive stable acti-
vation, negative constant inputs with negative stable activation; and small
inputs lead to activations levels close to 0, whereas large inputs lead to
activation values which tend to be near 1 or —1. An activation level near
1 corresponds to a high level of confidence that an item is present; an
activation level near —1 corresponds to a high level of confidence that it is
not.

Word recognition occurs as follows. A visual stimulus is presented,
which activates in a probabilistic fashion the units in the first layer,
standing for visual features. Depending on the particular experimental
task being modelled (e.g. recognising a bright, high-contrast target
followed by mask, or a degraded target), the probability of a feature
being activated is set to 1.0 or below. As the features become activated,
they send activation via their excitatory and inhibitory connections to the
units at the letter level. Notice that so far only bottom-up flow of infor-
mation has taken place—there is no inhibition between the feature units
and no feedback from the letter level to the feature level. In addition, the
weights of the inhibitory connections between the letter units (shown in
Fig. 8.1) were set to 0, meaning that no inhibition takes place between
the letters.* As the letter units become activated they, in turn, send excita-
tory and inhibitory activation to the word-level units. The words compete
amongst each other via their inhibitory connections, and reinforce their
component letter units via excitatory feedback to the letter level (there is
no word-to-letter inhibition). At this point, an “interactive” process is
thus occurring between the letter level and the word level: Bottom-up
flow of information from the visual input is combined via the activation
of the letter units with the top-down information flow from the word
units. The entire process involves a cascade of overlapping and interacting
processes: letter and word recognition do not occur one after the other as
distinct processing stages, but rather are mutually constraining.

4 The theoretical model, which motivated the simulation model described here, is meant to
be fully “interactive”, with mutual inhibition between competing units at the same level as
well as bi-directional excitatory and inhibitory connections between the three levels, but this
was not implemented.
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The interactive character of McClelland and Rumelhart’s model
embodies a controversial theoretical claim about reading. Many research-
ers have assumed that reading involves the successive computation of
increasingly abstract levels of representation, but that there is no feedback
from more abstract to less abstract levels. This kind of account is some-
times known as “bottom-up” and can also be realised in connectionist
networks, as we shall see later. The question of whether reading is
bottom-up or interactive has been a major focus of debate. We shall see
later that the same debate rages in the speech perception literature; and
analogous issues arise throughout perception (e.g. Bruner, 1957; Fodor,
1983; Marr, 1982; Neisser, 1967).

This model proved able to account for a variety of phenomena, mainly
concerning contextual effects on perception of single letters. For example,
it captures the fact that letters presented in the context of a word are
recognised more rapidly than letters presented individually, or in random
letter strings (Johnston & McClelland, 1973). This is because the activa-
tion of the word containing a particular letter provides top-down confir-
mation of the identity of that letter, in addition to the activation provided
by the bottom-up feature-level input. Moreover, it has been shown that
letters presented in the context of pronounceable non-words (i.e. pseudo-
words, such as “mave”, which are consistent with English phonotactics)
are recognised more rapidly than letters presented singly (Aderman &
Smith, 1971) or in contexts of random letter strings (McClelland &
Johnston, 1977). In this case, the facilitation is caused by a “conspiracy”
of partially activated similar words, which are triggered in the non-word
context, but not in the random letter string context. These partially active
words provide a top-down confirmation of the letter identity, and thus
they “conspire” to enhance recognition. In a similar fashion, the model
explains how degraded letters can be disambiguated by their letter
context, and how occurring in a word context can facilitate the disambi-
guation of component letters even when they are all visually ambiguous.
Moreover, it provides an impressively detailed demonstration of how
interactive processing can account for a range of further experimental
effects. As we shall see later, however, not all theorists agree that interac-
tive processes are required to explain these and other phenomena in
language processing.

Recent work on connectionist modelling of reading has had a
somewhat different focus: on word naming rather than recognition. It has
been concerned with the problem of learning the relationship between
written word forms and their pronunciations, although, as we shall see,
issues of word recognition also arise. The first such model was Sejnowski
and Rosenberg’s (1987) NETtalk—shown in Fig. 8.2—which learns to
read aloud from written text.
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FIG. 8.2. [Illustration of the NETtalk architecture. The input layer consists of 203 units
divided into 7 groups, which each correspond to a particular letter position. Information
from the inputs is fed forward via 80 hidden units to an output layer containing 26 units.
During training the network’s guess (the activation of the output units) is compared with the
desired target provided by a teacher, and network weights are then subsequently altered so
as to minimise any discrepancy. From ‘“Neural representation and neural computation™ by
P.S. Churchland and T.J. Sejnowski in Neural Connections, Mental Computations, edited by
L. Nadel, L. Cooper, P. Culicover and R.M. Harnish, 1989, MIT Press. Copyright © (1989)
MIT Press. Reprinted with permission.

NETtalk uses a feedforward, rather than an interactive, network archi-
tecture. In a feedforward network, the units are, as before, divided into
layers, but activation flows only in one direction through the network,
starting at the layer of “input units”, and finishing at the layer of
“output units”. The internal layers of the network are known as “hidden
units”. There may be several hidden layers in a feedforward network, but
in NETtalk, as in many neural networks, there is just one. The input
units represent a “window” of consecutive letters of text. The output
units represent the network’s suggested pronunciation for the middle
letter. The network can be used to pronounce a written text by shifting
the moving window across the text, letter by letter, so that the central
letter to be pronounced moves onwards a letter at a time. In English
orthography, there is not, of course, a one-to-one mapping between
letters and phonemes. NETtalk uses a rather ad hoc strategy to deal
with this: in clusters of letters realised as a single speech sound (e.g.
“th”, “sh”, “ough™) only one of the letters is chosen to be mapped onto

8. CONNECTIONIST NATURAL LANGUAGE PROCESSING 243

the speech sound, and the others are not mapped onto any speech
sound.

The behaviour of individual units is rather simpler than in the inter-
active activation network. The activation of each unit is determined by its
current input (calculated as the weighted sum of its inputs, as before):
Specifically, this input is “squashed”, so that the activation of each unit
lies between 0 and 1. As the input to a unit tends to positive infinity, the
level of activation approaches 1; as the input tends to negative infinity,
the level of activation approaches 0. With occasional minor variations,
this description applies equally to almost all feedforward connectionist
networks.

Whereas the interactive activation model was prespecified, NETtalk
learns from exposure to text associated with the correct pronunciation.
Specifically, the network is presented with inputs representing seven letter
contexts through English texts; and with each input, it is given the
“target” output, i.e. the output which corresponds to the correct pronun-
ciation. The inputs use a “position-specific”’, letter level representation,
i.e. the input units are divided into discrete banks, each corresponding to
one of the seven letter positions, and within each bank, units correspond
to specific letters. At the beginning of training, NETtalk’s output bears
no relation to the correct pronunciation; but after extensive training, its
standard of pronunciation is good enough to be largely comprehensible
when fed through a speech synthesizer.

How is learning achieved? Like many of the connectionist models we
shall describe later, NETtalk is trained by “back-propagation” (Rumel-
hart et al., 1986, prefigured in Bryson & Ho, 1975; Werbos, 1974). When
each input is presented, it is fed through the network, and the output is
derived. The output is compared against the correct “‘target” value and
the difference between the two is calculated for each output unit. The
squared differences are summed over all the output units, to give an

‘overall measure of the “error” that the network has made. The goal of

learning is to reduce overall level of error, averaged across input/target
pairs (in this context, this means averaging across typical texts). Back-
propagation is a procedure which specifies how the weights of the
network (i.e. the strengths of the connections between the units) should
be adjusted in order to decrease the error. Training with back-propaga-
tion is guaranteed (within certain limits) to reduce the error made by the
network. If everything works well, then the final level of error may be
very small, meaning that the network produces the desired output. Notice
that the network will produce an output not only for inputs on which it
has been trained, but for any input. If the network has learned about
regularities in the mapping between inputs and targets, then it should be
able to generalise successfully to new items. NETtalk is able to pronounce



244  CHATER AND CHRISTIANSEN

letters in contexts that it has never before encountered reasonably success-
fully.

Back-propagation may sound too good to be true.” But note that back-
propagation merely guarantees to adjust the weights of the network to
reduce the error; it does not guarantee to reduce the error to 0, or a value
anywhere near 0. Indeed, in practice, back-propagation can configure the
network so that error is very high, but changes in weights in any direction
lead to the same or a higher error level. This is known as the problem of
local minima. Attempting to avoid this problem is a major day-to-day
concern of connectionist researchers, as well as being a focus of theoreti-
cal research. Local minima can be avoided by judicious choice among the
large number of variants of back-propagation, and by appropriate deci-
sions on the numerous parameters involved in model building (such as
the number of hidden units used, whether learning proceeds in small or
large steps, and many more). Despite these problems, back-propagation is
surprisingly successful in many contexts. Indeed, the feasibility of back-
propagation learning has been one of the reasons for the renewed interest
in connectionist research. Prior to the discovery of back-propagation,
there were no well-justified methods for training multilayered networks.
The restriction to single-layered networks was unattractive, since Minsky
and Papert (1969) showed that such networks, sometimes known as
“Perceptrons” have very limited computational power. It is partly for this
reason that hidden units are viewed as having such central importance in
many connectionist models; without hidden units, most interesting
connectionist computation would not be possible.

What internal code on the hidden units is NETtalk using? This code is
not prespecified by the designer, but is learned from experience by the
network. Furthermore, it turns out that the pattern of hidden units does
not have a transparent interpretation to the casual observer. Sejnowski
and Rosenberg gained some insight into what their network is doing by
first computing the average hidden unit activation given each of a total of
79 different letter-to-sound combinations. For example, the activation of
the hidden unit layer was averaged for all the words in which the letter
“c” is pronounced as /k/, another average calculated for words in which
“c” corresponds to /s/, and so on. Next, the relationships among the
resulting 79 vectors—each construed as the network’s internal representa-
tion of a particular letter-to-sound correspondence—were explored via
cluster analysis. Interestingly, all the vectors for vowel sounds clustered
together, suggesting that the net had learned to treat vowels as different

% In fact, it is most likely not a biologically plausible learning algorithm. Still, back-propa-
gation provides a convenient learning method which may result in networks with computa-
tional properties similar to those of real neural structures.

8. CONNECTIONIST NATURAL LANGUAGE PROCESSING 245

from consonants. Moreover, the net had learned a number of sub-
regularities amongst the letter-to-sound combinations, evidenced for
example by the close clustering of the labial stops /p/ and /b/ in hidden
unit space.

NETtalk was intended as a demonstration of the power of neural
networks, rather than as a psychological model. Seidenberg and Mec-
Clelland (1989) provided the first detailed psychological model of reading
aloud. They also used a feedforward network with a single hidden layer,
but they represented the entire written form of the word as input, and the
entire phonological form as output. This network implemented one side
of a theoretical “triangle” model of reading in which the two other sides
were a pathway from orthography to semantics and a pathway from
phonology to semantics (these sides are meant to be bi-directional and, in
fact, the implemented network also produced a copy of the input as a
second output to attempt to model performance on lexical decision tasks,
but we shall ignore this aspect of the model here). Seidenberg and
McClelland restricted their attention to 2897 monosyllabic words of
English, rather than attempting to deal with unrestricted text like
NETtalk.

The orthographic and phonological representations used by Seidenberg
and McClelland are rather complex, and we give just a sketch here. The
most straightforward style of representation would be to use position-
specific codes for each letter or phoneme. But this seems unattractive,
partly because it fails to capture the fact that the mapping between letters
and sounds is (roughly) the same wherever those letters or sounds occur
on the word. Using a position-specific code, the network must learn
afresh that the letter “t”’ often maps onto the phoneme [t/ for every
position. This is because letters and sounds are represented by distinct
units in each position. Indeed, the position-specific scheme does not seem
just unattractive—it makes the absurd prediction that an orthographic
system in which the correspondence between letters and sounds was differ-
ent for every serial position should present no special problems. The
network would learn this kind of ‘“‘scrambled” mapping just as easily as
normal English orthography; but the human learner would presumably be
dramatically impaired. Another difficulty with position-specific encodings
is that since, as discussed earlier, letters and phonemes do not stand n
one-to-one correspondence, the network would have to solve a difficult
“alignment” problem. As we noted, NETtalk finesses this problem by the
designer prespecifying a particular alignment; we shall see later that it is
also possible for the network itself to solve the alignment problems using
a NETtalk style of position-specific representation (Bullinaria, 1994). But
Seidenberg and McClelland sidestep the problem by using an ingenious
strategy.
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The idea is to decompose both the letter and phoneme strings into
consecutive triples. Thus, the letter string FISH is decomposed into _FI,
SH_, ISH, FIS. Notice that the triples are position-independent, but that
the overall string can be pieced together again from the triples (in general,
as Pinker & Prince, 1988 have noted, this piecing-together process cannot
always be carried out successfully, but in this context it is adequate). The
phonemic string is also decomposed into triples of phonemes. Rather
than represent the phonemes directly, units are devoted to triples of
features of phonemes. This style of representation, termed wickelfeatures
(after Wickelgren, 1969, who employed triples in modelling memory for
sequential material), was first used in Rumelhart and McClelland’s
(1986a) model of learning the English past tense, which we will discuss
later in the section on morphological processing. In the orthographic
layer, each unit is associated with a list of 1000 random letter triplets (10
possible first letters x 10 possible middle letters x 10 possible end letters)
and is activated if one of the letter triplets in the input occurs in this list.

Seidenberg and McClelland trained their network to produce an output
corresponding to wickel-representation of the pronunciation of a word,
from a wickel-representation of its orthography given as input. The
performance of the network captures a wide range of experimental data
(on the reasonable assumption that network error can be roughly equated
with response time in experimental paradigms). For example, frequent
words are read more rapidly (with lower error) than rare words (Forster
& Chambers, 1973); orthographically regular words are read more rapidly
than irregulars, and the difference between regulars and irregulars is much
greater on rare rather than frequent words (Seidenberg, Waters, Barnes,
& Tanenhaus, 1984; Taraban & McClelland, 1987).

Seidenberg and McClelland’s model uses a single mechanism to capture
both the rules governing the pronunciation of English text and the excep-
tions to those rules. This contrasts with the standard view of reading,
according to which the rules and the exceptions are treated separately.
Indeed, it is standard to assume that there are two distinct routes in
reading, a so-called “phonological route”, which applies rules of pronun-
ciation, and a so-called “lexical route”, which is simply a list of words
and their pronunciations. The idea is that regular words can be read
using either route; that irregulars must be read by using the lexical route,
to override the phonological route; and that non-words can be
pronounced by using the phonological route (these will not be mentioned
in the lexical route). Seidenberg and McClelland claim to have shown
that this dual-route view is not necessarily correct, since a single route can
pronounce both irregular words and non-words. Furthermore, they have
provided a fully explicit computational model, whereas dual-route theor-
ists have merely sketched the reading system at the level of “boxes and
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arrows” (though see Coltheart, Curtis, Atkins & Haller, 1993 for a recent
exception).

A number of criticisms have been levelled at Seidenberg and Mec-
Clelland’s account, however, and we briefly consider some of these. First,
can a single route really account for both non-word and exception word
pronunciation? Besner, Twilley, McCann, and Seergobin (1990) have
argued that the non-word reading performance of Seidenberg and
McClelland’s model is actually very poor compared with human readers
(though see Seidenberg & McClelland, 1990 for a reply). Moreover,
Coltheart et al. (1993) have argued that better performance at non-word
reading can be achieved by symbolic learning methods, using the same
word-set as Seidenberg and McClelland.

Another limitation of the Seidenberg and McClelland model is the use
of frequency compression during training. Rather than present rare and
frequent words equally often to the network, they presented words with a
probability proportional to their log frequency of occurrence in English
(using Kucera & Francis, 1967). Had they used raw frequency, rather
than log frequency, the network could have encountered low frequency
items too rarely to learn them at all; this must be counted as a difficulty
for this and many other network models, since the human learner must
deal with absolute frequencies. Recently, however, Plaut, McClelland,
Seidenberg, and Patterson (1996) have demonstrated that a feedforward
network can be trained successfully using the actual frequencies of words
instead of their log frequency®—even to a level of performance similar to
that of human subjects on both word and non-word pronunciation.

At a more technical level, Seidenberg and McClelland’s model is limited
in that it does not readily extend to deal with words with more than one
syllable. Furthermore, the use of wickelfeatures creates a number of
problems. One of the most important is that output from the network
cannot readily be interpreted: There is no straightforward decoding from a
muddle of partially activated output units representing wickelfeatures to a
pronunciation, specified in a standard phonological format (or any sequen-
tial format that would seem to be required to drive speech). This meant
that Seidenberg and McClelland had to assess the pronunciation intended
by their network by considering various plausible pronunciations, convert-
ing these into wickelfeatures, and seeing which is the closest to the perfor-
mance of the model. A better output code would code pronunciation
explicitly, rather than burying it in a deeply encrypted form.

® Note that Plaut et al. (1996) used these (actual) frequencies to scale the contribution of
error for each word during back-propagation training, rather than to determine the number
of word presentations. As mentioned later, they also employed a different representational
scheme (due to Plaut & McClelland, 1993) than Seidenberg and McClelland (1989).
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Recently connectionist work on reading has attempted to take account
of these difficulties. For example, Plaut and McClelland (1993) abandon
wickelfeatures, and use a localist code, which is loosely position-specific,
but which exploits some regularities in English orthography and phonol-
ogy to avoid using a completely position-specific representation. This
learns to read non-words very well—at levels comparable with human
non-word reading. But it does so by building in a lot of knowledge into
the representation, rather than having the network pick up this knowl-
edge. One could plausibly assume (cf. Plaut et al., 1996) that this knowl-
edge is acquired prior to reading acquisition; that is, children normally
know how to pronounce words (i.e. talk) before they start learning to
read. This hypothesis was tested by Harm, Altmann & Seidenberg (1994)
who demonstrated how pretraining a network on phonology can facilitate
the subsequent acquisition of a mapping from orthography to phonology.

One of the problems with this novel representational scheme is,
however, that it only works for monosyllabic words. Bullinaria (1994), on
the other hand, also obtains very high non-word reading performance,
which applies to words of any length. To do so, he gives up the attempt
to provide a single route model of reading, and aims only to model the
phonological route: He uses a variant of NETtalk, in which orthographic
and phonological forms are not prealigned by the designer. The rough
idea is that, instead of having a single output pattern, the network has
many output patterns corresponding to all possible alignments of the
phonology with the orthography. All of these possibilities are considered,
and the one that is nearest to the network’s actual output is taken to be
the correct output pattern, and used to adjust the weights. This approach,
like NETtalk, uses an input window which moves gradually over the text,
producing one phoneme at a time. Hence, a simple phoneme-specific code
can be used; the order of the phonemes is implicit in the order in which
the network produces them.

A further criticism of Seidenberg and McClelland’s single-route model
is that it does not appear to account for an apparent double dissociation
between phonological and lexical reading in neuropsychological patients.
On the one hand, surface dyslexics (e.g. Marshall & Newcombe, 1973)
can read exception words, but not non-words; on the other, phonological
dyslexics (e.g. Funnell, 1983) can pronounce non-words but not irregular
words. The standard inference from double dissociation to modularity of
function (e.g. Shallice, 1988) suggests that normal non-word and excep-
tion word reading are subserved by distinct systems—that is, to a dual-
route model (Coltheart, 1985; Morton & Patterson, 1980)—although it is
important to keep in mind that such double dissociations are never clear-
cut. Acquired dyslexia can be simulated by damaging Seidenberg and
McClelland’s network in various ways (e.g. removing connections or
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units); although the results of this damage do have neuropsychological
interest (Patterson, Seidenberg, & McClelland, 1989), they do not give
rise to the double dissociation: an analogue of surface dyslexia is found
(i.e. regulars are preserved), but no analogue of phonological dyslexia is
observed. Furthermore, Bullinaria and Chater (1995) have explored a
range of rule-exception tasks using feedforward networks trained by
back-propagation, and concluded that, although double dissociations do
occur with single-route models, this only occurs with very small-scale
networks. With large networks, the dissociation in which the rules are
damaged but the exceptions are preserved does not occur. It remains
possible that some realistic single-route model of reading, incorporating
factors that have been claimed to be important to connectionist accounts
of reading such as word frequency and phonological consistency effects
(cf. Plaut et al., 1996) might give rise to the relevant double dissociation.’
However, Bullinaria and Chater’s results indicate that modelling phonolo-
gical dyslexia is potentially a major difficulty for any single-route connec-
tionist model of reading. Perhaps for this reason, some of the most recent
connectionist models of reading now implement an additional “semantic™
route.®

Single- and dual-route theorists argue about whether non-word and
exception word reading is carried out by a single system, but both believe
in an additional semantic route for reading. In this route pronunciation is
retrieved through accessing a semantic code from the orthographic form.
The availability of this additional semantic pathway is evidenced by deep
dyslexics, who make semantic errors in reading aloud, such as reading the
word peach aloud as “apricot”. Plaut et al. (1996) argue that this route
also plays a role in normal reading. In particular, they suggest that a
division of labour emerges between the phonological and the semantic
pathway during reading acquisition: Roughly speaking, the phonological
pathway moves towards a specialisation in regular (consistent) orthogra-
phy-to-phonology mappings at the expense of exception words which
become the main focus of the semantic pathway.

7 Whereas “regularity” (the focus of the Bullinaria & Chater simulations) can be taken as
indicating that the pronunciation of a word appears to follow a rule, “consistency” refers to
how well a particular word’s pronunciation agrees with other similarly spelled words. The
magnitude of the latter depends on how many “friends” a word has (i.e. the summed fre-
quency of words with similar spelling patterns and similar pronunciation) compared with
how many “enemies” (i.e. the summed frequency of words with similar spelling patterns but
different pronunciations) (Jared, McRae, & Seidenberg, 1990).

§ Recall that the theoretical model, motivating the original Seidenberg and McClelland
(1989) simulation model, included additional pathways from orthography to semantics and
from phonology to semantics, but these were not implemented.
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The putative effect of the latter pathway was simulated by Plaut et al.
as extra input to the phoneme units in a feedforward network trained to
map orthography to phonology. The strength of this external input is
frequency dependent and gradually increases as learning progresses. As a
result the network comes to rely on this extra phonological input. If elimi-
nated (following a lesion to the semantic pathway), the network loses
much of its ability to read exception words, but retains good reading of
regular words as well as non-words. In this way, Plaut et al. provides a
more accurate account of surface dyslexia than Patterson et al. (1989). In
contrast, if the phonological pathway is selectively damaged the resulting
deficit pattern should resemble that of phonological dyslexia: reasonable
word reading but impaired non-word reading—but this hypothesis was
not tested directly by Plaut et al.

Furthermore, the theoretical triangle model of Seidenberg and McClel-
land (1989)—as implemented in a recent (toy) model (Seidenberg &
Harm, 1995)—offers an additional explanation of phonological dyslexia,
but in the context of development, rather than as an acquired disorder.
This first implementation of the full triangle model employs a so-called
recurrent network (which, broadly speaking, is akin to a feedforward
network, except that units in a particular layer are able to feedback onto
units at the same layer).” The network thus implements the two “connec-
tionist” routes to reading: either via the orthography-semantics pathway
or via the orthography—phonology—semantics pathway. In this model,
selective damage to the recurrent feedback connections in the phonologi-
cal layer may provide an alternative explanation of phonological dyslexia.
According to this view, in some kinds of development, and perhaps also
acquired phonological dyslexia, dyslexia may (in some cases) simply be a
misnomer—patients should encounter difficulty with repeating non-words,
just as much as reading them.'® Unfortunately, this hypothetical explana-
tion has not been explored in simulations. So, while “lesioned” connec-
tionist networks have been shown to model surface dyslexia quite
successfully, no explicit simulations have been presented testing the
connectionist explanations of phonological dyslexia.

We have considered connectionist models of reading in some detail,
since they introduce the principal connectionist methods, and some of the
key debates surrounding connectionist models. We have seen that a range

? That is, typically there is no feedback from higher to lower layers, as in an interactive
architecture, but simply connections allowed within a layer (although there are a few specia-
lised recurrent learning algorithms, e.g. Pearlmutter, 1989, allowing feedback connections
between layers). A simple variant of these recurrent networks is discussed further in the next
section.

10 The empirical data concerning repetition abilities of putative dyslexics is highly contro-
versial.
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of connectionist accounts have provided a good fit with much of the data
on normal and impaired reading, although points of controversy remain.
Moreover, connectionist models have contributed to re-evaluation of core
theoretical issues, such as whether reading is interactive or purely bottom-
up, and whether rules and exceptions are dealt with separately or by a
single cognitive mechanism. In subsequent sections we shall see these
issues, and others that arise in models of reading, are also important
sources of debate concerning connectionist models of other areas of
language processing.

LEXICAL PROCESSING DURING SPEECH

Just as connectionist models in reading use two principal architectures,
interactive activation, and feedforward networks trained by back-propaga-
tion, so with connectionist models of lexical processing during speech.

Speech perception

Interactive activation networks have been used to model both speech
recognition and production. The early and very influential TRACE model
of speech perception (McClelland & Elman, 1986) consists of a standard
interactive activation architecture with layers of units standing for
phonetic features, phonemes and words. There are several copies of each
layer of units, standing for different points in time in the utterance, and
the number of copies differs for each layer. At the featural level, there is a
copy for each discrete “time slice” into which the speech input is divided.
At the phoneme level, there is a copy of the detector for each phoneme
centred over every three time slices. The phoneme detector centred on a
given time slice is connected to feature detectors for that time slice, and
also to the feature detectors for the previous three and subsequent three
slices. Hence, successive detectors for the same phoneme overlap in the
feature units with which they interact. Finally, at the word level, there is
a copy of each word unit at every three time slices. The window of
phonemes with which the word interacts corresponds to the entire length
of the word. Here, again, adjacent detectors for the same word will
overlap in the lower level units to which they are connected. In short,
then, we have a standard interactive activation architecture, with an addi-
tional temporal dimension added, to account for the temporal character
of speech input.

The debate between interactive and bottom-up models of speech percep-
tion parallels the debate between interactive and bottom-up accounts of
reading. McClelland and Elman have two kinds of argument in favour of
their position. First, and perhaps most important, is the broad coverage of
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the model in accounting for a range of empirical data on speech percep-
tion. For example, TRACE’s interactive architecture nicely accounts for
the apparent influence of lexical context on phoneme identification. Speci-
fically, TRACE models Ganong’s (1980) demonstration that the identifica-
tion of a syllable-initial speech sound that was constructed to be between a
/g/ and a /k/ was influenced by whether the rest of the syllable ended “iss”
(making giss or kiss) or “ift” (making gift or kiff). Specifically, the identifi-
cation of the intermediate phoneme was biased towards the choice that
completed a word rather than a non-word. This effect is particularly inter-
esting since the identification of a phoneme appears to be affected by
subsequent material. (Notice that this phenomenon is directly analogous to
the facilitation of letter recognition in word or word-like contexts,
discussed earlier.) TRACE captures this effect because phoneme and
lexical identification occur in parallel and are mutually constraining.
TRACE also captures experimental findings concerning various factors
affecting the strength of the lexical influence (e.g. Fox, 1984), and aspects
of the categorical aspects of phoneme perception (Massaro, 1981; Pisoni
& Tash, 1974). TRACE also provides rich predictions concerning the
time-course of spoken word recognition (e.g. Cole & Jakimik, 1978;
Marslen-Wilson, 1973; Marslen-Wilson & Tyler, 1975), and lexical influ-
ences on the segmentation of speech into words (e.g. Cole & Jakimik,
1980). Although TRACE does account for an impressive range of
phenomena, as in the case of reading, bottom-up connectionist models
have been proposed which aim to account for a similar range of data (e.g.
Norris, 1993; Shillcock, Lindsey, Levy, & Chater, 1992).

Second, McClelland and Elman can derive specific empirical predictions
from their model which appear to be incompatible with any bottom-up
model. Elman and McClelland (1988) conduct what is intended to be a
crucial experiment between interactive and bottom-up approaches, and
find the interactive view to be confirmed. The central theoretical question

~at issue is whether or not lexical effects on phoneme restoration are
caused, as the interactive view supposes, by the feedback of information
from the lexical to the phonemic level. At first glance, it might appear
that these lexical effects simply directly demonstrate that this top-down
feedback does occur. But there is an alternative explanation, which is
entirely compatible with the modular view: that subjects’ decisions
concerning which phoneme was heard are influenced by both phonologi-
cal and lexical representations of the stimulus. According to this view, the
lexical level directly influences the subject’s decision, without any top-
down influence on the phoneme detection process itself.

Experimentally disentangling these two explanations is extremely diffi-
cult. But Elman and McClelland noticed a prediction of TRACE which
appeared to suggest an appropriate crucial experiment. In natural speech,

e
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the pronunciation of a phoneme will to some extent be altered by the
phonemes that surround it, in part for articulatory reasons: this phenom-
enon is known as coarticulation. This means that listeners should adjust
their category boundaries depending on the phonemic context. Experi-
ments confirm that people do indeed exhibit this ‘“compensation for
coarticulation” (Mann & Repp, 1980). For example, given a series of
synthetically produced tokens between /t/ and /k/, listeners move the
category boundary towards the /t/ following a /s/ and towards the /k/
following a /sh/. This phenomenon suggests a way of detecting whether
lexical information really does feed back to the phoneme level. Elman
and McClelland considered the case where compensation for coarticula-
tion occurs across word boundaries, for example, a word-final /s/ influen-
cing a word-initial /t/ as in Christmas tapes. If lexical-level representations
feed back on to phoneme-level representations, the compensation of the
/t/ should still occur when the /s/ relies on lexically driven phoneme
restoration for its identity (i.e. in an experimental condition in which the
identity of /s/ in Christmas is obscured, the /s/ should be restored and
thus compensation for coarticulation proceeds as normal). Elman and
McClelland noticed that the TRACE model does indeed produce this
prediction; and that it is difficult to see how a modular account of speech
perception could make the same prediction. They therefore decided to
conduct the crucial experiment.

Subjects heard pairs of words such as Christmas tapes or foolish capes,
where the last segment of Christmas or foolish was replaced by a synthetic
segment midway between /s/ and /sh/. The first segment of tapes/capes
was a synthetic segment drawn between [t/ and /k/. Subjects were
required to report the identity of the second word. Their responses
revealed that the restored identity of the ambiguous phoneme at the end
of the first word affected the identification of the ambiguous phoneme at
the beginning of the second word in a way which paralleled the compen-
sation effect when unambiguous phonemes were present. Elman and
McClelland’s interpretation of this effect was that the final phoneme of
the first word was being restored on the basis of lexical influences, and
that the restored phoneme then triggered compensation for coarticulation,
just as when the phoneme is unambiguous in the perceptual stimulus.

Advocates of bottom-up connectionist models have recently argued
that, despite appearances, Elman and McClelland’s (1988) results do not
demonstrate top-down influence. Bottom-up connectionist models have
been shown to be compatible with Elman and McClelland’s results. For
example, Norris (1993) presents results from a simulation involving a
simple recurrent network, or SRN (introduced by Elman, 1988, 1990). As
shown in Fig. 8.3, the SRN involves a crucial modification to a feedfor-
ward network: The current set of hidden unit values is “copied back” to
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FIG. 8.3 Architecture of a simple recurrent network. This network is a conventional multi-
layered feedforward network, except that there are additional input units into which the
hidden unit activations from the previous time-step are copied.

a set of additional input units, and paired with the next input to the
network. This means that the current hidden unit values can directly
affect the next state of the hidden units; more generally, this means that
there is a loop around which activation can reverberate over many time-
steps. This gives the network a memory for past inputs, and therefore the
ability to deal with integrated sequences of inputs presented successively.
This contrasts with standard back-propagation networks, the behaviour
of which is determined solely by the current input. This means that SRNs
are able to tackle tasks such as language processing in which the input is
revealed gradually over time, rather than being presented at once. For
this reason SRNs have been widely used in connectionist models of
language processing, as we shall see in subsequent sections, and there has
also been some exploration of their computational properties (e.g. Chater
& Conkey, 1992; Christiansen & Chater, in press; Cleeremans, Servan-
Schreiber, & McClelland, 1989; Servan-Schreiber, Cleeremans, & McClel-
land, 1991).

Norris trained an SRN on input and output consisting of words (from
a 12-word lexicon) presented one phoneme at a time. The input was
represented in terms of phonetic features, which might have intermediate
values, corresponding to ambiguous phonemes, and the output consisted
of units, each detecting a particular phoneme. When input was presented
to the trained network that had an ambiguous first word-final phoneme,
and an ambiguous initial segment of the second word, a parallel to the
compensation for coarticulation effect was observed, within the limits of
the lexicon used: The percentages of /t/ and /k/ responses to the first
phoneme of the second word depended on the identity of the first word,
as in Elman and McClelland’s original experiment. But the explanation
for this pattern of results cannot be top-down influence from units repre-
senting words, since there are no units representing words in the network.
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Norris’s small-scale artificial example is no more than suggestive,
however. The crucial question is: Would a network trained on natural
speech, rather than on very small-scale artificial data, model Elman and
McClelland’s results? Shillcock et al. (1992) constructed such a network
and found a close fit with Elman and McClelland’s data. A recurrent
network was trained on a corpus of phonologically transcribed conversa-
tional English, and inputs and outputs to the network were represented at
the level of phonetic features. As in Norris’s simulations, there is no
lexical level of representation from which top-down information can flow.
None the less, phoneme restoration follows the pattern that Elman and
McClelland explain in terms of lexical influence.

Why is it that in the simulation purely bottom-up processes appear to
mimic lexical effects? Shillcock et al. (1992) argue that restoration occurs in
their network on the basis of statistical regularities at the phonemic level,
rather than because of lexical influence. It just happens that the lexical items
that Elman and McClelland used experimentally are more statistically
regular at the phonemic level than the non-words with which they are
contrasted. This is confirmed by a statistical analysis of the corpus of speech
on which the network is trained. By carefully choosing stimulus items for
which statistical regularities at the phonemic level have the opposite bias
to that which would be provided by lexical status, it may be possible to
experimentally distinguish between the interactive and bottom-up connec-
tionist accounts. This experimental test is yet to be conducted, however.

The debate between interactive and bottom-up models of speech
perception that we have just described is a good illustration of the way in
which the introduction of connectionist models has led to unexpected
theoretical predictions being derived (e.g. that bottom-up models can
account for apparently lexically based phoneme restoration), as well as
acting as a stimulus for empirical research.

Speech production

Throughout the field of language research as a whole, relatively little
work has been done on the production of language. This general trend is
also true of connectionist natural language processing. Thus, most
connectionist language models address issues of processing and compre-
hension, rather than production. However, some steps have been taken
towards the modelling of language production within a connectionist
framework, most notably by Dell and colleagues (e.g. Dell, 1986; Dell,
Juliano, & Govindjee, 1993; Dell & O’Seaghdha, 1991; Martin, Dell,
Saffran, & Schwartz, 1994; Schwartz, Saffran, Bloch, & Dell, 1994).

Dell’s (1986) spreading activation model of retrieval in sentence produc-
tion constitutes one of the first connectionist attempts to account for
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speech production.'" Although the model was presented as a sentence
production model, only the phonological encoding of words was computa-
tionally implemented in terms of an interactive activation model. This
lexical network consisted of hierarchically ordered layers of nodes, corre-
sponding to the following linguistically motivated units: morphemes (or
lexical nodes), syllables, rimes and consonant clusters, phonemes, and
features. The individual nodes are connected bi-directionally to each other
in a straightforward manner without lateral connections within layers, and
with the exception of the addition of special null element nodes and syllabic
position coding of nodes that correspond to syllables. For example, the
lexical node for the word (morpheme) “spa” is connected to the /spa/ node
in the syllable layer. The latter is linked to the consonant cluster /sp/
(onset) and the rime /a/ (nucleus). On the phoneme level, /sp/ is connected
to /s/ (which in turn is linked to the features [ricative, alveolar, and voice-
less) and [p/ (which is connected to the features bilabial, voiceless, and
stop). The rime /a/ is linked to the vowel /a/ in the phoneme layer (and
subsequently is connected to the features tense, low, and back) and to a
node signifying a null coda.

Processing begins with the activation of a lexical node (meant to corre-
spond to the output from higher level morphological, syntactic, and
semantic processing), and activation then gradually spreads downwards in
the network. Activation also spreads upwards via the feedback connec-
tions. After a fixed period of time (determined by the speaking rate), the
nodes with the highest activations are selected for the onset, vowel, and
coda slots. Using this network model Dell was able to account for a
variety of speech errors, such as substitutions (e.g. dog — log), deletions
(dog — 0g), and additions (dog — drog). Speech errors occur in the model
when an incorrect node becomes more active than the correct node (given
the activated lexical node) and therefore gets selected instead. Such erro-
neous activation may be due to the feedback connections activating nodes
other than those directly corresponding to the initial word node. Alterna-
tively, other words in the sentence context as well as words activated as a
product of internal noise may interfere with the processing of the network.
This model also made a number of quantitative predictions concerning the
retrieval of phonological forms during production, some of which were
later confirmed experimentally in Dell (1988).

Dell’s account of speech errors and the phonological encoding of words
has had an impact on subsequent models of speech production, both the
connectionist (e.g. Harley, 1993) as well as the more symbolic kind (e.g.

'" A somewhat similar model of speech production was developed independently by Stem-
berger (1985). This model was inspired by the interactive activation framework of McClel-
land and Rumelhart (1981), whereas Dell’s work was not.
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Levelt, 1989). Nevertheless, Dell’s model does suffer from a number of
shortcomings, of which we mention a few here. As with the previously
mentioned interactive activation models, the connections between the
nodes on the various levels have to be hand-coded. This means that no
learning is possible. In itself this is not a problem in principle if innate
linguistic knowledge is assumed, but the information coded in Dell’s
model is language-specific and could not be innate. There is, however, a
more urgent, practical side of this problem. It becomes very difficult to
scale these models up, since every connection between each and every
node has to be hand-coded. This shortcoming is alleviated by a recent
recurrent network model presented by Dell et al. (1993). Their model
learns to form mappings from lexical items to the appropriate sequences
of phonological segments. The model consists of an SRN, as outlined
earlier, with a small additional modification: The current output, as well as
the current hidden unit state, was copied back as additional input to the
network. This allowed both past activation states of the hidden unit layer
as well as the output from the previous time-step to influence current
processing.'> When given an encoding of, for example, “can” as the lexical
input the network was trained to produce the features of the first phonolo-
gical segment /k/ on the output layer, then /&/ followed by /n/, and then
finally generate an end of word marker (null segment). Trained in this
manner, Dell et al. were able to account for speech error data without
having to build syllabic frames and phonological rules into the network
(as was the case in Dell, 1986). Importantly, this recent connectionist
model suggests that sequential biases and similarity may explain aspects of
human phonology which have previously been attributed to separate
phonological rules and frames. Furthermore, the model indicates that
future speech production models may have to incorporate learning and
distributed representations in order to accommodate the role that the
entire vocabulary appears to play in phonological speech errors.'> As with

12 The idea of copying back output as part of the next input was first proposed by Jordan
(1986).

3 It should however be noted that despite the relative success of this feedforward learning
model, Dell's (1986) interactive activation model is still a strong candidate as a model of
speech production as it has a much wider empirical coverage. Moreover, it has been
“lesioned” in 65 various ways to simulate language problems in aphasia. Schwartz et al.
(1994) demonstrated that a reduction in connection strengths between nodes may pro'vide a
possible account of error patterns in jargon aphasia. Martin et al. (1994) showed that intro-
ducing an abnormally rapid decay rate for activated nodes allowed the model to simulate
paraphasia in deep dysphasia, and that gradually changing this decay rate towards a normal
level may simulate the pattern of recovery found in the longitudinal study of an aphasic
patient. By changing connection strengths and/or the decay rate, Dell, Schwartz, Martin,
Saffran, and Gagnon (1997) were in a similar manner able to fit the error patterns of 21
fluent aphasics as well as make a number of predictions that were subsequently confirmed.
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reading, connectionist models of speech perception and production have
modelled a wide range of empirical data on both normal and impaired
performance. Moreover, they have contributed to a reassessment of funda-
mental theoretical issues and generated fresh experimental work on core
theoretical questions, particularly on the question of whether speech
perception and production are interactive or sequential. Connectionist
research has greatly contributed to current thinking about speech percep-
tion and production. The validity of specific connectionist models, as well
as the scope of connectionist approaches in general, will have an important
role in shaping future research in this area.

MORPHOLOGICAL PROCESSING

One of the connectionist models that has created the most debate is
Rumelhart and McClelland’s (1986a) model of the learning of English
past tense. This debate in many ways resembles the one following Seiden-
berg and McClelland’s (1989) model of word recognition and naming
discussed earlier. In particular, the debate has to a large extent focused
on whether a single mechanism may be sufficient to account for the
empirical data concerning the developmental patterns in English past-
tense learning, or whether a dual-route mechanism is necessary. The
discussion of the past-tense model also relates to the viability of the wick-
elfeature representation, which we have already described in the context
of Seidenberg and McClelland’s model of word naming. Here, we provide
an overview of the current debate, as well as pointers to its wider ramifi-
cations.

Can a system without any explicit representation of rules account for
rule-like behaviour? Rumelhart and McClelland’s (1986a) model of the
acquisition of the past tense in English was presented as an affirmative
answer to this question. English past tense is an interesting test case
because children very roughly appear to go through three stages during
learning. In particular, children seemingly exhibit a pattern of U-shaped
learning when acquiring English verbs and their past tenses. During the
first stage, children only use a few verbs in past tense and these tend to
be irregular words—such as came, went, and took—Ilikely to occur with a
very high frequency in the child’s input. These verbs are furthermore
mostly used in their correct past-tense form. At the second stage, children
start using a much larger number of verbs in the past tense, most of these
of the regular form, such as pulled and walked. Importantly, children now
show evidence of rule-like behaviour. They are able to conjugate non-
words, generating jicked as the past tense of jick, and they start to overge-
neralise irregular verbs—even the ones they got right in stage 1—for
example, producing comed or camed as the past tense of come. During the

8. CONNECTIONIST NATURAL LANGUAGE PROCESSING 259

Fixed
Encoding Pattern Associator Decoding/Binding
Network Modifiable Connections Network

Phonological * + Phonological

representation

of root form  Wickelteature Wickelteature gl
s past tense

representation representation

of root form of past tense

FIG. 8.4 The basic structure of the Rumelhart and McClelland (1986a) model for the learn-
ing of English past tense. Note that all learning takes place in the pattern associator. From
“On learning the past tenses of English verbs” by D.E. Rumelhart and J.L. McClelland In
J.L. McClelland and D.E. Rumelhart (Eds.), Parallel Distributed Processing, Vol. 2 1986b,
MIT Press, p. 222. Copyright © (1986) MIT Press. Reprinted with permission.

third stage, the children regain their ability to correctly form the past
tense of irregular verbs while maintaining their correct conjugations of
the regular verbs. Thus, it appears prima facie that children (as in the
case of reading, discussed earlier) learn to use a rule-based route for
dealing with regulars as well as non-words and a memorisation route for
handling irregulars. But how can such seemingly dual-route behaviour be
accommodated by a single mechanism employing just a single route?
Rumelhart and McClelland (1986a) showed that by varying the input
to a connectionist model during learning, important aspects of the three
stages of English past-tense acquisition could be simulated using a single
mechanism. As illustrated in Fig. 8.4, the model consists of three parts:
a fixed encoding network, a pattern associator network with modifiable
connections, and a competitive decoding/binding network. The encoding
network is an (unspecified) network, which takes phonological represen-
tations of root forms (presumably represented as wickelphones) and
transforms them into a set of wickelfeatures. In order to promote gener-
alisation, additional incorrect features are randomly activated, specifi-
cally, those features that have the same central feature as well as one of
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the two other context features in common with the input root form. The
focus of interest in this model is the pattern associator network. It has
460 input and output units, each representing a wickelfeature. This
network is trained to produce past-tense forms when presented with root
forms of verbs as input. During training, the weights between the input
and the output layers are modified using the perceptron learning rule
(Rosenblatt, 1962) (the back-propagation rule is not required for this
network, since it has just one modifiable layer). Since the output patterns
of wickelfeatures generated by the association network most often do not
correspond to a single past-tense form, the decoding/binding network
must transform these distributed patterns into unique wickelphone repre-
sentations. In this third network, each wickelphone in the 500 words
used in the study was assigned to an output unit. These wickelphones
compete individually for the input wickelfeatures in an iterative process.
The more wickelfeatures a given wickelphone accounts for, the greater
its strength. If two or more wickelphones account for the same wickel-
feature the assigned “‘credit” is split between them in proportion to the
number of other wickelfeatures they account for uniquely (i.e. a “rich
get richer”” competitive approach). The end result of this competition is a
set of more or less non-overlapping wickelphones which correspond to as
many as possible of the wickelfeatures in the input to the decoder
network.

The pattern associator was trained in the following manner, showing
evidence of going through the three relevant stages whilst learning English
past tense. First, the net was trained on a set of 10 high-frequency verbs
(8 irregular and 2 regular) for 10 epochs. At this point the net reached a
satisfactory performance, treating both regular and irregular verbs in the
same way (as also observed in the first stage of human acquisition of past
tense). Next, 420 medium-frequency verbs (about 80% of these being
regular) were added to the training set and the net was trained for an
additional 190 epochs. Early on during this period of training the net
behaved as children at acquisition stage 2: The net tended to regularise
irregulars while getting regulars correct. At the end of the 190 epochs,
network behaviour resembled that of children in stage 3 of the past-tense
acquisition process, exhibiting an almost perfect performance on the 420
verbs. The network was then subsequently tested on a set of 86 low-
frequency verbs (of which just over 80% were regular). The net appears
to capture the basic U-shaped pattern of the acquisition of English past
tense. In addition, it was able to exhibit differential performance on differ-
ent types of irregular and regular verbs, effectively simulating some
aspects of similar performance differences observed in children (Bybee &
Slobin, 1982; Kuczaj, 1977, 1978). Moreover, the model demonstrated a
reasonable degree of generalisation from the 420 verbs in the training set
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to the 86 low-frequency verbs in the test set; for example, demonstrating
that it was able to use the three different regular endings correctly (i.e.
using /t/ with root forms ending with an unvoiced consonant, /d/ as suffix
to forms ending with a voiced consonant or vowel, and /"d/ with verb
stems ending with a “t” or a ““d”).

The merits and inadequacies of the Rumelhart and McClelland (1986a)
past-tense model have been the focus of much debate, originating with
Pinker and Prince’s (1988) detailed criticism (and to a lesser extent by
Lachter & Bever’s 1988 critique). Since then the debate has flourished
across the symbolic/connectionist divide (e.g. on the symbolic side: Kim,
Pinker, Prince, & Prasada, 1991; Pinker, 1991; and on the connectionist
side: Cottrell & Plunkett, 1991; Daugherty, MacDonald, Petersen, &
Seidenberg, 1993; MacWhinney & Leinbach, 1991; Seidenberg, 1992;
Daugherty & Seidenberg, 1992). Here, we focus on the most influential
aspects of the debate.

As was the case with the Seidenberg and McClelland (1989) model
of reading, the use of wickelphones/wickelfeature representations has
been considered problematic (e.g. by Pinker & Prince, 1988). Perhaps
for this reason, most of the subsequent connectionist models of English
past tense (both of acquisition, e.g. Plunkett & Marchman, 1991, 1993,
and of diachronic change, Hare & Elman, 1992, 1995) therefore use
a position-specific phonological representation in which vowels/conso-
nants are defined in terms of phonological contrasts, such as voiced/
unvoiced, front/centre/back. Another, more damaging, criticism of the
single-route approach is that the U-shaped pattern of behaviour observed
in the model during learning appears essentially to be an artifact of
suddenly increasing the total number of verbs (from 10 to 420) in the
second phase of learning. Pinker and Prince (1988) point out that no such
sudden discontinuity appears to occur in the number of verbs to which
children are exposed. Thus, the occurrence of U-shaped learning in the
model is undermined by the psychological implausibility of the training
regime.

More recently, however, Plunkett and Marchman (1991) showed that
this training regime is not required to obtain U-shaped learning.
They trained a feedforward network with a hidden unit layer on a voca-
bulary of artificial verb stems and past-tense forms, patterned by regulari-
ties patterned on the English past tense. They held the size of the
vocabulary used in training constant at 500 verbs. They found that the

' In this connection, type frequency refers to the number of different words belonging to a
given class, each counted once (e.g. the number of different regular verbs). Token frequency,
on the other hand, denotes the number of instances of a particular word (e.g. number of
occurrences of the verb have).
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net not only was able to exhibit classical U-shaped learning, but also had
learned various selective micro U-shaped developmental patterns observed
in children’s behaviour. For example, given a training set with a type and
token frequency'® reflecting that of English verbs the net was able to
simulate a number of sub-regularities between the phonological form of a
verb stem and its past-tense form (e.g. sleep — slept, keep — kept)."* In a
subsequent paper, Plunkett and Marchman (1993) obtained similar results
using an incremental, and perhaps more psychologically plausible,
training regime. Following initial training on 20 verbs, the vocabulary
was gradually increased until reaching a size of 500 verb stems. This
training regime significantly improved the performance of the net
(compared with a similarly configured net trained on the same vocabulary
in Plunkett and Marchman, 1991). This approach also suggested that a
critical mass of verbs is needed before a change from rote-learning
(memorisation) to system-building (rule-like generalisation behaviour)
may occur—the latter perhaps related to the acceleration in the acquisi-
tion of vocabulary items (or “vocabulary spurt’) observed when a_ child’s
overall vocabulary exceeds around 50 words (e.g. Bates, Bretherton, &
Snyder, 1988).

Most recently, the connectionist models of past-tense acquisition have
been accused of being too dependent on the token and type frequencies
of irregular and regular vocabulary items in English. Prasada and Pinker
(1993) have argued that the purported ability of connectionist models to
simulate verb inflection may be an artifact of the idiosyncratic frequency
statistics of English. The focus of the argument is the default inflection of
words; for example, the -ed suffixation of English regular verbs. The
default inflection of a word is assumed to be independent of its particular
phonological shape and occurs unless the root form corresponds to a
specific irregular form. According to Prasada and Pinker, connectionist
models are dependent on frequency and surface similarity for their gener-
alisation ability. In English, most verbs are regular, that is, many regular
verbs have a high type frequency but a relatively low token frequency,
allowing a network to construct a broadly defined default category. Irre-
gular verbs in English, on the other hand, have a low type frequency but
a high token frequency, the latter permitting the memorisation of the irre-
gular past tenses in terms of a number of narrow phonological sub-cate-
gories (e.g. one for the i—a alternation in sing — sang, ring — rang,
another for the o—e alternation in grow — grew, blow — blew, etc.).
Prasada and Pinker (1993) show that the default generalisation in Rumel-
hart and McClelland’s (1986a) model is dependent on a similar frequency

!5 As pointed out by Pinker and Prince (1988), the Rumelhart and McClelland (1986a)
model was not able adequately to accommodate such sub-regularities.
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distribution in the training set. They furthermore contend that no connec-
tionist model can accommodate default generalisation for a class of words
that has both low type frequency and low token frequency. The default
inflection of plural nouns in German appear to fall in this category and
would therefore seem to be outside the capabilities of connectionist
networks (Clahsen, Rothweiler, Woest, & Marcus, 1993; Marcus, Brink-
mann, Clahsen, Wiese, Woest & Pinker, 1993). If true, such lack of cross-
linguistic validity would render neural network models of past tense
acquisition obsolete.

However, recent connectionist work has addressed this issue of minority
default mappings with some success. Daugherty and Hare (1993) trained a
feedforward network (with hidden units) to map the phonological repre-
sentation of a stem to a phonological representation of the past tense
given a set of verbs roughly representative of very early Old English
(before about 870 AD). The training set consisted of five classes of irregu-
lar verbs plus one class of regular verbs—each class containing 25 words
(each represented once in the training set). Thus, words taking the default
generalisation /-ed/ formed a minority (i.e. only 17%) of the words in the
training set. Pace Prasada and Pinker (1993) and others, the network was
able to learn the appropriate default behaviour even when faced with a
low-frequency default class. Indeed, it appears that generalisation in
neural networks may not be strictly dependent on similarity to known
items. Daugherty and Hare’s (1993) results show that if the non-default
(irregular) classes have a sufficient degree of internal structure, default
generalisation may be promoted by the lack of similarity to known items.
These results were corroborated by further simulations and analyses in
Hare, Elman, and Daugherty (1995). Moreover, Forrester and Plunkett
(1994) obtained similar results when training a feedforward model (with
hidden units) to learn artificial input patterned on the Arabic plural. In
Arabic, the majority of plural forms—called the Broken Plural—are char-
acterised by a system of sub-regularities dependent on the phonological
shape of the noun stem. In contrast, a minority of nouns takes the Sound
Plural inflection which forms the default in Arabic. Forrester and Plun-
kett’s net was trained to map phonological representations of the noun
stems to their appropriate plural forms represented phonologically. Their
results also indicate that connectionist models can learn default generali-
sation without relying on large word classes or direct similarity. '

These positive results constitute important steps forward. Nevertheless,
we presently have no detailed knowledge concerning the specific condition
from which connectionist default generalisation can arise, nor do we
know how it will scale when faced with the full complexity of language.
On the other hand, rule-like and frequency-independent default generali-
sation may not be as pressing a problem for connectionist models as
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Clahsen et al. (1993) and Marcus et al. (1993) claim. Via a reanalysis of
the data concerning German noun inflection (in combination with addi-
tional data from Arabic and Hausa), Bybee (1995) showed that default
generalisation is sensitive to type frequency and does not seem to be
entirely rule-like. This kind of generalisation may fit better with the kind
of default generalisation that connectionist models produce than with the
rigid application of default rules in the symbolic models.

The issue of whether humans employ a single, connectionist-style
mechanism for rule-like morphological processing is far from settled.
Connectionist models can provide an impressive fit to a wide range of
developmental and linguistic data. Even detractors of connectionist
models of morphology typically allow that some kind of associative
connectionist mechanism may explain the complex patterns found in the
“irregular” cases. The controversial question is whether a single connec-
tionist mechanism can simultaneously account both for regular and the
irregular cases, or whether the regular cases can only be generated by a
distinct route involving (perhaps necessarily symbolic) rules. The future is
likely to bring further connectionist modelling of cross-linguistic data
concerning morphology as well as a closer fitting of developmental micro
patterns and distributional data to such models. As we shall see next, the
question of whether language can be accounted for without the explicit
representation of rules also plays an important part in connectionist
modelling of syntactic processing.

SYNTAX

Syntactic processing is arguably the area of natural language which has
the strongest ties to explicit rules as a means of explanation. Since
Chomsky (1957), grammars have been understood predominately in terms
of a set of generative phrase structure rules (often coupled with rules or
principles for the further transformation of phrase structures). In early
natural language research the central status of rules was directly reflected
in the Derivational Theory of Complexity (Miller & Chomsky, 1963).
This theory suggested that the application of a given rule (or transforma-
tion) could be measured directly in terms of time it takes for a listener/
reader to process a sentence. This direct mapping between syntactic rules
and response times was soon found to be incorrect, leading to more
indirect ways of eliciting information about the use of rules in the proces-
sing of syntax. But can syntactic processing be accounted for without
explicit rules? Radical connectionism aims to show that it can.

One way of dealing with syntax in connectionist models is to ‘“‘hand-
wire” symbolic structures directly into the architecture of the network.
Much early work in connectionist processing of linguistic structure
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adopted this implementational approach; starting with Small, Cottrel,
and Shastri’s (1982) first attempt at connectionist parsing followed by
Reilly’s (1984) connectionist account of anaphor resolution and later by
Fanty’s (1985) connectionist context-free parser, Selman and Hirst’s
(1985) modelling of context-free parsing using simulated annealing,
Waltz and Pollack’s (1985) interactive model of parsing (and interpreta-
tion), McClelland and Kawamoto’s (1986) neural network model of case-
role assignment, and Miyata, Smolensky, and Legendre’s (1993) struc-
ture-sensitive processing of syntactic structure using tensor representa-
tions (Smolensky, 1990). Such connectionist re-implementations of
symbolic systems might have interesting computational properties and
even be illuminating regarding the appropriateness of a particular style
of symbolic model for distributed computation (Chater & Oaksford,
1990). On the other hand, there is the promise that connectionism may
be able to do more than simply implement symbolic representations and
processes; in particular, that networks may be able to /earn to form and
use structured representations. The most interesting models of this sort
typically focus on learning quite limited aspects of natural language
syntax. These models can be divided into two classes, depending on
whether preprocessed sentence structures or simply bare sentences are
presented as input.

The less radical class presupposes that the syntactic structure of each
sentence to be learned is more or less given; that is, each input item is
tagged with information pertaining the syntactic role of that item (e.g. the
word cat may be tagged as Singular Noun). In this class we find, for
example: connectionist parsers, such as PARSNIP (Hanson & Kegl, 1987)
and VITAL (Howells, 1988); the structure dependent processing of
Pollack’s (1988, 1990) recursive auto-associative memory network subse-
quently used in Chalmers’ (1990) model of active to passive transforma-
tion and in a model of syntactic processing in logic (Niklasson & van
Gelder, 1994); Sopena’s (1991) distributed connectionist parser incorpor-
ating attentional focus; and Stolcke’s (1991) hybrid model deriving syntac-
tic categories from phrase-bracketed examples given a vector space
grammar. Typically, the task of these network models is to find the
grammar (or part of thereof) which fits the example structures. This
means that the structural aspects of language are not themselves learned
by observation, but are built in. These models are related to statistical
approaches to language learning such as stochastic context-free grammars
(Brill, Magerman, Marcus, & Santorini, 1990; Jelinek, Lafferty, & Mercer,
1990) in which learning sets the probabilities of each grammar rule in a
prespecified context-free grammar, from a corpus of parsed sentences.

The more radical models have taken on a much harder task, that of
learning syntactic structure from strings of words, with no prior assump-
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tions about the particular structure of the grammar. The most influential
approach employs the earlier mentioned SRNs. It is fair to say that these
radical models have so far reached only a modest level of performance.
This may explain why the more radical connectionist attempts at syntax
learning have not caused nearly as much debate as the earlier mentioned
model of English past-tense acquisition (Rumelhart & McClelland, 1986a)
and the model of reading aloud (Seidenberg & McClelland, 1989). Never-
theless, we focus on the radical connectionist models here because they
potentially bear the promise of language learning without a priori built-in
linguistic knowledge (pace e.g. Chomsky, 1965, 1986; Crain, 1991; Pinker,
1994; and many others).

Elman (1991, 1993) trained an SRN to predict the next word it will
receive as input given sentences generated by a simple context-free
grammar. This grammar involved subject noun/verb agreement, verbs
with different argument structure (i.e. intransitive, transitive, and option-
ally transitive verbs), as well as subject and object relative clauses
(allowing for multiple embeddings with complex long-distance dependen-
cies). These simulations demonstrated that an SRN is able to acquire the
grammatical regularities underlying a simple grammar. In addition, the
SRN showed some behavioural similarities with human behaviour on
centre-embedded structures (Weckerly & Elman, 1992). Christiansen
(1994, in preparation) extended this work, training SRNs on more
complex grammars involving prenominal genitives, prepositional modifica-
tions of noun phrases, noun phrase conjunctions, and sentential comple-
ments in addition to the grammatical features found in Elman’s work.
One of the grammars moreover incorporated cross-dependencies, a
weakly context-sensitive structure found in languages such as Dutch and
Swiss-German. Christiansen found that the SRNs were able to learn these
more complex grammars, exhibiting the same kind of qualitative proces-
sing difficulties as humans do on similar sentence constructions (see also
Christiansen & Chater, in press).

As we have seen, current models of syntax typically use “toy” frag-
ments of grammar and small vocabularies. Aside from raising the
question of the viability of scaling-up, this makes it difficult to provide
detailed fits with empirical data. None the less, some attempts have
more recently been made toward fitting existing data and deriving new
empirical predictions from the models. For example, Tabor, Juliano,
and Tanenhaus (1997) present a SRN-based dynamic parsing model
that fits reading time data concerning the interaction between lexical
and structural constraints in the resolution of temporary syntactic ambi-
guities (i.e. garden-path effects) in sentence comprehension. MacDonald
and Christiansen (submitted) provide SRN simulations of reading time
data concerning the differential processing of singly centre-embedded
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subject and object relative clauses by good and poor comprehenders.
Finally, Christiansen (in preparation; Christiansen & Chater, in press)
describes an SRN trained on recursive sentence structures, which fits
grammaticality ratings data from several behavioural experiments. He
also derives novel predictions about the processing of sentences invol-
ving multiple prenominal genitives, multiple prepositional modifications
of nouns, and doubly centre-embedded object relative clauses, which
have subsequently been empirically confirmed (Christiansen & MacDo-
nald, in preparation).

These simulation results suggest that SRNs may be viable models of
syntactic processing. However, connectionist models of language learning
(i.e. Chalmers, 1990; Elman, 1990; McClelland & Kawamoto, 1986;
Miyata et al. 1993; Pollack, 1990; Smolensky, 1990; St. John & McClel-
land, 1990) have recently been attacked for not affording the kind of
generalisation abilities that would be expected from models of language.
Hadley (1994a) correctly pointed out that generalisation in much connec-
tionist research has not been viewed in a sophisticated fashion. The
testing of generalisation is typically done by recording network output
given a test set consisting of items not occurring in the original training
set, but potentially containing many similar structures and word
sequences. Hadley insisted that to demonstrate genuine, “strong” generali-
sation a network must be shown to learn a word in one syntactic position
and then generalise to using/processing that word in another, novel
syntactic position. He challenged connectionists to adopt a more rigorous
training and testing regime in assessing whether networks really generalise
successfully in learning syntactically structured material.

Christiansen and Chater (1994) addressed this challenge, providing a
formalisation of Hadley’s original ideas as well as presenting evidence
that connectionist models are able to attain strong generalisation. In their
training corpus (generated by the grammar from Christiansen, 1994), the
noun boy was prevented from ever occurring in a noun phrase conjunc-
tion (i.e. noun phrases such as John and boy and boy and John did not
occur). During training the SRN had therefore only seen singular verbs
following boy. None the less, the net was able to predict correctly that a
plural verb must follow John and boy as prescribed by the grammar. In
addition, the net was still able to predict correctly a plural verb when a
prepositional phrase was attached to boy as in John and boy from town,
providing even stronger evidence for strong generalisation. This suggests
that the SRN is able to make non-local generalisations based on the
structural regularities in the training corpus (see Christiansen & Chater,
1994, for further details). If the SRN relied solely on local information it
would not have been able to make correct predictions in either case.
Christiansen (in preparation) demonstrated that the same SRN also was
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able to generalise appropriately when presented with completely novel
words, such as zorg,'® in a noun phrase conjunction by predominately
activating the plural verbs. In contrast, when the SRN was presented with
ungrammatical lexical items in the second noun position, as in John and
near, it did not activate the plural nouns. Instead, it activated lexical
items that were not grammatical given the previous context. The SRN
was able to generalise to the use of known words in novel syntactic posi-
tions as well as to the use of completely novel words. At the same time, it
was also able to distinguish items that were grammatical given previous
context from those that were not. Thus, the network demonstrated
sophisticated generalisation abilities, ignoring local word co-occurrence
constraints, while appearing to comply with structural information at the
constituent level. Additional evidence of strong generalisation in connec-
tionist nets are found in Niklasson and van Gelder (1994; but see Hadley,
1994b for a rebuttal).

One possible objection to these models of syntax is that connectionist
(and other bottom-up statistical) models of language learning will not be
able to scale up to solve human language acquisition because of argu-
ments pertaining to the purported poverty of the stimulus (see Seidenberg,
1994 for a discussion). However, there is evidence that some models
employing simple statistical analysis may be able to scale up and even
attain strong generalisation. When Redington, Chater, and Finch (1993)
applied a method of distributional statistics (see also Finch & Chater,
1992, 1993) to a corpus of child-directed speech (the CHILDES corpus
collected by MacWhinney & Snow, 1985), they found that the syntactic
category of a new word could be derived from a single occurrence of that
word in the training corpus. This indicates that strong generalisation may
be learnable through the kinds of bottom-up statistical analysis that
connectionist models appear to employ—even on a scale comparable with
that of a child learning her first language. In this context, it is also impor-
tant to note that achieving strong generalisation is not only a problem for
learning-based connectionist models of syntactic processing. As pointed
out by Christiansen and Chater (1994), most symbolic models cannot be
ascribed strong generalisation since in most cases they are spoon-fed the
lexical categories of words via syntactic tagging. The question of strong
generalisation is therefore just as pressing for symbolic approaches as for
connectionist approaches to language acquisition. The results outlined
here suggest that connectionist models may be closer to solving this
problem than their symbolic counterparts.

1 In these simulations novel words corresponded to units that had not been activated
during training.
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Other aspects of language processing

There are a number of areas within connectionist natural language
processing that have not received attention in this chapter. Amongst these
are, for instance, models that deal with semantic aspects of language,
models that address various issues at the level of discourse, and hybrid
models seeking to combine the best of both the connectionist and the
symbolic world. Unfortunately, space does not allow us to discuss such
models here. Instead, we provide a few pointers for further reading.

Various aspects of semantic processing have been addressed in connec-
tionist models, such as: word sense disambiguation (Cottrell, 1985);
disambiguation of prepositional-phrase attachments using soft lexical
preference rules (Sharkey, 1992); and incremental interpretation via the
learning and application of contextual constraints in sentence comprehen-
sion (St. John & McClelland, 1990). Connectionist models of discourse
and text comprehension include, for example, Allen’s (1990) use of
modified SRNs (called ‘“connectionist language users”) in a simple
question answering task; Karen’s (1990) modified SRN model of topic
identification from written narrative discourse; and Sharkey’s (1990)
model of text comprehension involving four network modules (for respec-
tively goals/plans, sequencing, knowledge, and the lexicon). Recent
years have seen a surge in the number of hybrid connectionist/symbolic
models of which we mention but a few examples: Bourlard and Morgan
(1994) employ multi-layered feedforward networks to boost the perfor-
mance of a state-of-the-art automatic speech recognition system based
on hidden Markov models; Kwasny and Faisal (1990) implement a
deterministic Marcus (1980) style parser in which a feedforward network
is trained to suggest parsing actions given the state of a symbolic stack
and buffer (see also Kwasny, Johnson, & Kalman, 1994, in which the
feedforward net is replaced with an SRN); and Miikkulainen (1993)
assembles modular networks dedicated to aspects of lexical, sentence,
and story processing in a model of text comprehension inspired by
symbolic script-based systems.

Overall, connectionist models of syntax and higher level aspects of
language processing remain in early stages of development, and have not
attained the level of sophistication of connectionist accounts of speech
perception, production, reading, or morphology. Future research is
required to decide whether promising, but limited, initial results can even-
tually be scaled up to deal with the complexities of real language input,
or whether a purely connectionist approach is beset by fundamental
limitations, and can only succeed to the extent that it rediscovers and
reimplements the symbolic representations postulated by generative
linguistics.
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CONCLUSION

We have seen that controversy surrounds both the current significance
of, and future prospects for, connectionist models of language proces-
sing. Current connectionist models involve over-simplifications with
respect to the full complexity of human natural language processing,
and only future research will determine the extent to which current
models can be “scaled-up” successfully. Connectionism has, however,
already influenced theoretical debates within the psychology of language
processing in a number of ways, and we outline some of these influences
here.

First, connectionist models have provided the first fully explicit and
psychologically relevant computational models in a number of language
processing domains, such as reading and past tense learning. Previous
accounts in these areas consisted of ‘“box-and-arrow” flow diagrams
rather than detailed computational mechanisms. Whatever the lasting
value of connectionist models themselves, they have certainly raised the
level of theoretical debate in these areas, by challenging theorists of all
viewpoints to provide computationally explicit accounts.

Second, the centrality of learning in connectionist models has brought a
renewed interest in mechanisms of language learning (Bates & Elman,
1993), while Chomsky (e.g. 1986) has argued that although there are
“universal” aspects of language that are innate, the vast amount of infor-
mation specific to the language that the child acquires must be learned.
Connectionist models provide mechanisms for how (at least some of) this
learning might occur, whereas previous symbolic accounts of language
processing have not taken account of how learning might occur. Further-
more, the attempt to use connectionist models to learn syntactic structure
encroaches on the area of language for which Chomsky has argued innate
information must be central. The successes and failures of this programme
thus directly bear on the validity of this viewpoint.

Third, the dependence of connectionist models on statistical properties
of their input has been one contributory factor in the upsurge of interest
in the role of statistical factors in language learning (MacWhinney,
Leinbach, Taraban, & McDonald, 1989; Redington et al. 1993) and
language processing. This renewed interest in statistics is, of course,
entirely compatible with the view that language processing takes account
of structural properties of language, as described by classical linguistics.
More radical connectionists have, as we have noted, also attempted to
encroach on the territory of classical linguistics.

Finally, connectionist systems have given rise to renewed theoretical
debate concerning what it really means for a computational mechanism to
implement a rule, whether there is a distinction between “implicit” and
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“explicit” rules (see e.g. Davies, 1995 for discussions), and which kind
should be ascribed to the human language processing system.

Connectionism has, we suggest, already had an important influence on
the development of the psychology of language. But the final extent of
that influence depends on the degree to which practical connectionist
models can be developed and extended to deal with complex aspects of
language processing in a psychologically realistic way. If realistic connec-
tionist models of language processing can be provided, then the possibi-
lity of a radical rethinking not just of the nature of language processing,
but of the structure of language itself, may be required. It might be that
the ultimate description of language resides in the structure of complex
networks, and can only be approximately expressed in terms of struc-
tural rules, in the style of generative grammar. On the other hand, it
may be that connectionist models can only succeed to the extent that
they build in standard linguistic constructs, or that connectionist
learning methods do not scale up at all. The future development of
connectionist models of language is therefore likely to have important
implications for the theory of language processing and language struc-
ture, either in overturning, or reaffirming, traditional psychological and
linguistic assumptions.

FURTHER READING

The suggested readings are grouped according to the general structure of
the chapter.

Background. The PDP volumes (McClelland & Rumelhart, 1986;
Rumelhart & McClelland, 1986b) provide a solid introduction to
application of neural networks in cognitive models. Smolensky (1988)
offers a connectionist alternative to viewing cognition as symbol manipu-
lation, whereas Fodor and Pylyshyn (1988) is a classic criticism of connec-
tionism.

Visual word recognition and word naming. For an early interactive acti-
vation model of visual word recognition, see McClelland & Rumelhart
(1981). Seidenberg and McClelland (1989) is a classic paper on connec-
tionist models of reading. Coltheart et al. (1993) provide a criticism of
this model and a symbolic alternative. For the most recent advancement
of this discussion, see Plaut et al. (1996).

Lexical processing during speech. The TRACE model of speech per-
ception is described in McClelland and Elman (1986). The classic model
of speech production and speech errors is Dell (1986).
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Morphological processing. Rumelhart and McClelland (1986a) and
Pinker & Prince (1988) define the two sides of the past-tense debate. See
Plunkett and Marchman (1993) and Pinker (1991) for recent updates.

Syntax. Elman (1993) provides a recent update on an influential con-
nectionist approach to the learning of syntactic regularities, but see
Hadley (1994a) for a criticism of this and other connectionist models of
syntax. For a survey of the most recent research on connectionist
language processing—including discussions of its future prospects—see
Christiansen et al. (in press).
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