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Connectionist Psycholinguistics
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Connectionist approaches to language have been, and still are, highly con-
troversial. Some have argued that natural language processing from phonol-
ogy to semantics can be understood in connectionist terms; others have
argued that no aspects of natural language can be captured by connectionist
methods. And the controversy is particularly heated because of the revision-
ist claims of some connectionists: For many, connectionism is not just an
additional method for studying language processing; it also offers an alter-
native to traditional theories, which describe language and language pro-
cessing in symbolic terms. Indeed, Rumelhart and McClelland (1987, p. 196)
suggest “that implicit knowledge of language may be stored among simple
processing units organized into networks. While the behavior of such net-
works may be describable (at least approximately) as conforming to some
system of rules, we suggest that an account of the fine structure of* the
phenomena of language and language acquisition can best be formulated in
models that make reference to the characteristics of the underlying net-
works.” We shall see that the degree to which connectionism supplants,
rather than complements, existing approaches to language is itself a matter
of debate. Finally, the controversy over connectionist approaches to lan-
guage is an important test case for the validity of connectionist methods in
other areas of psychology.
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In this chapter we aim to set the scene for the present volume on
connectionist psycholinguistics, providing a brief historical and theoretical
background as well as an update on current research in the specific topic
areas outlined later. First we describe the historical and intellectual roots of
connectionism, then introduce the elements of modern connectionism and
how it has been applied to natural language processing, and outline some of
the theoretical claims that have been made for and against it. We then con-
sider five central topics within connectionist psycholinguistics: speech pro-
cessing, morphology, sentence processing, language production, and reading.
We evaluate the research in each of these areas in terms of the three criteria for
connectionist psycholinguistics discussed in Chapter 1: data contact, task
veridicality, and input representativeness. The five topics illustrate the range
of connectionist research on language discussed in more depth in the other
chapters in Part I of this volume. They also provide an opportunity to assess
the strengths and weaknesses of connectionist methods across this range,
setting the stage for the general debate concerning the validity of connectionist
methods in Part II of this volume. Finally, we sum up and consider the pros-
pects for future connectionist research, and its relation to other approaches to
the understanding of language processing and linguistic structure.

BACKGROUND

From the perspective of modern cognitive science, we tend to see theo-
ries of human information processing as borrowing from theories of infor-
mation processing in machines (i.e., from computer science). Within
computer science, symbolic processing on general-purpose digital comput-
ers has proved to be the most successful method of designing practical com-
putational devices. It is therefore not surprising that cognitive science,
including the study of language processing, has aimed to model the mind as
a symbol processor.

Historically, however, theories of human thought inspired attempts to
build computational devices, rather than the other way around. Mainstream
computer science arises from the intellectual tradition of viewing human
thought as a matter of symbol processing. This tradition can be traced to
Boole’s (1854) suggestion that logic and probability theory describe “Laws
of Thought,” and that reasoning in accordance with these laws can be con-
ducted by following symbolic rules. It runs through Turing’s (1936) argu-
ment that all human thought can be modeled by symbolic operations on a
tape (the Turing machine), through von Neumann’s motivation for the de-
sign for the modern digital computer, to the development of symbolic com-
puter programming languages, and thence to modern computer science,
artificial intelligence, and symbolic cognitive science.

Connectionism (also known as “parallel distributed processing,” “neural
networks,” or “neurocomputing”) can be traced to a different tradition,
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which attempts to design computers inspired by the structure of the brain.'
McCulloch and Pitts (1943) provided an early and influential idealization of
neural function. In the 1950s and 1960s Ashby (1952), Minsky (1954),
Rosenblatt (1962), and others designed computational schemes based on
related idealizations. Aside from their biological origin, these schemes were
of interest because they were able to learn from experience, rather than
being designed. Such “self-organizing” or learning machines therefore
seemed plausible as models of learned cognitive abilities, including many
aspects of language processing (although Chomsky, 1965, among others,
challenged the extent to which language is learned). Throughout this period
connectionist and symbolic computation stood as alternative paradigms for
modeling intelligence, and it was unclear which would prove to be the most
successful. But gradually the symbolic paradigm gained ground, providing
powerful models in core domains such as language (Chomsky, 1965) and
problem solving (Newell & Simon, 1972). Connectionism was largely aban-
doned, particularly in view of the limited power of then current connectionist
methods (Minsky & Papert, 1969). But more recently, some of these limita-
tions have been overcome (e.g., Hinton & Sejnowski, 1986; Rumelhart,
Hinton, & Williams, 1986), reopening the possibility that connectionism
constitutes an alternative to the symbolic model of thought.

So connectionism is inspired by the structure and processing of the brain.
What does this mean in practice? At a coarse level of analysis, the brain can
be viewed as consisting of a very large number of simple processors, neu-
rons, which are densely interconnected into a complex network. These neu-
rons do not appear to tackle information processing problems alone. Rather,
large numbers of neurons operate cooperatively and simultaneously to pro-
cess information. Furthermore, neurons appear to communicate numerical
values (encoded by firing rate), rather than passing symbolic messages,
and, to a first approximation at least, neurons can be viewed as mapping a
set of numerical inputs (delivered from other neurons) onto a numerical
output (which is then transmitted to other neurons). Connectionist models
are designed to mimic these properties: Hence, they consist of large numbers
of simple processors, known as units (or nodes), which are densely intercon-
nected into a complex network, and which operate simultaneously and coopera-
tively to solve information-processing problems. In line with the assumption
that real neurons are numerical processors, units are assumed to pass only
numerical values rather than symbolic messages, and the output of a unit is
usually assumed to be a numerical function of its inputs.

The most popular of the connectionist networks is the feed-forward net-
work, as illustrated in Figure 2.1. In this type of network the units are
divided into “layers” and activation flows in one direction through the net-
work, starting at the layer of input units and finishing at the layer of output
units. The internal layers of the network are known as hidden units (HU).
The activation of each unit is determined by its current input (calculated as
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Figure 2.1
Feed-Forward Network
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Information flows entirely bottom-up in these networks, from the input units through the
hidden units to the output units, as indicated by the arrows.

the weighted sum of its inputs, as before). Specifically, this input is
“squashed,” so that the activation of each unit lies between O and 1. As the
input to a unit tends to positive infinity, the level of activation approaches 1;
as the input tends to negative infinity, the level of activation approaches 0.
With occasional minor variations, this description applies equally to almost
all feed-forward connectionist networks.

Feed-forward networks learn from exposure to examples, and learning is
typically achieved using the back-propagation learning algorithm (Rumelhart
et al., 1986; prefigured in Bryson & Ho, 1975; Werbos, 1974). When each
input is presented, it is fed through the network and the output is derived.
The output is compared against the correct “target” value and the difference
between the two is calculated for each output unit. The squared differences
are summed over all the output units to give an overall measure of the
“error” that the network has made. The goal of learning is to reduce the
overall level of error, averaged across input-target pairs. Back-propagation
is a procedure that specifies how the weights of the network (i.e., the strengths
of the connections between the units) should be adjusted in order to de-
crease the error. Training with back-propagation is guaranteed (within cer-
tain limits) to reduce the error made by the network. If everything works
well, then the final level of error may be small, meaning that the network
produces the desired output. Notice that the network will produce an output
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not only for inputs on which it has been trained, but for any input. If the
network has learned about regularities in the mapping between inputs and
targets, then it should be able to generalize successfully (i.e., to produce
appropriate outputs in response to these new inputs).

Back-propagation may sound too good to be true. But note that back-
propagation merely guarantees to adjust the weights of the network to re-
duce the error; it does not guarantee to reduce the error to 0, or a value
anywhere near 0. Indeed, in practice, back-propagation can configure the
network so that error is very high, but changes in weights in any direction
lead to the same or a higher error level, even though a quite different con-
figuration of weights would give rise to much lower error, if only it could
be found by the learning process. The network is stuck in a local minimum
in weight space, and cannot find its way to better local minima, or better
still, to the optimal weights that are the global minimum for error. Attempt-
ing to mitigate the problem of local minima is a major day-to-day concern
of connectionist researchers, as well as being a focus of theoretical research.
The problem of local minima can be reduced by judicious choice among the
large number of variants of back-propagation, and by appropriate decisions
on the numerous parameters involved in model building (such as the num-
ber of hidden units used, whether learning proceeds in small or large steps,
and many more). But the adjustment of these parameters is often more a
matter of judgment, experience, and guesswork than it is a product of theoreti-
cal analysis. Despite these problems, back-propagation is surprisingly success-
ful in many contexts. Indeed, the feasibility of back-propagation learning
has been one of the reasons for the renewed interest in connectionist research.
Prior to the discovery of back-propagation, there were no well-justified meth-
ods for training multilayered networks. The restriction to single-layered net-
works was unattractive, since Minsky and Papert (1969) showed that such
networks, sometimes known as “perceptrons,” have very limited computa-
tional power. It is partly for this reason that hidden units are viewed as having
such central importance in many connectionist models; without hidden units,
most interesting connectionist computation would not be possible.

A popular variation of the feed-forward network is the simple recurrent
network (SRN; Elman, 1988, 1990) (see Figure 2.2). This network is es-
sentially a standard feed-forward network equipped with an extra layer of
so-called context units. At a particular time step an input pattern is propa-
gated through the hidden-unit layer to the output layer (solid arrows). At the
next time step the activation of the hidden-unit layer at the previous time
step is copied back to the context layer (dashed arrows) and paired with the
current input (solid arrows).? This means that the current state of the hidden
units can influence the processing of subsequent inputs, providing a limited
ability to deal with integrated sequences of input presented successively.

Whereas simple recurrent networks can be trained using the standard
back-propagation learning algorithm, fully recurrent networks are trained
using more complex learning algorithms, such as discrete back-propagation
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Figure 2.2
Simple Recurrent Network

At a particular time step an input pattern is propagated through the hidden-unit layer to the
output layer (solid arrows). At the next time step the activation of the hidden-unit layer at
the previous time step is copied back to the context layer (dashed arrows) and paired with
the current input (solid arrows).

through time (Williams & Peng, 1990) and continuous back-propagation
(Pearlmutter, 1989). This type of network architecture is shown in Figure 2.3.
Through the recurrent links (circular arrows), current activation can affect
future activations similarly to the simple recurrent network, but in a more
fine-grained manner and potentially reaching further back in time.

Another popular network architecture is the interactive activation net-
work, shown in Figure 2.4. This type of network is completely prespecified
(i.e., it does not learn). It consists of a sequence of unit layers. Units in the
first layer typically encode fine-grained features of the input (e.g., visual or
phonetic features). Units in the subsequent layers encode elements of in-
creasingly higher levels of analyses (e.g., letters — words or phonemes —
words). Units are connected using bidirectional links that can be either
excitatory (arrows) or inhibitory (filled circles). This style of connectivity
allows for activation to flow both bottom-up and top-down, reinforcing
mutually consistent states of affairs and inhibiting mutually inconsistent
states of affair. :

The behavior of individual units in interactive activation networks is some-
what more complex than in the network architectures we have described so
far, because it depends not only on the current input but also on the previous

Figure 2.3
Fully Recurrent Network
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Recurrent links (circular arrows) allow activation at the current time step to affect activations
for many future time steps.

Figure 2.4
Interactive Activation Network

Top-Down
nits

Intermediate
Units

Bottom-Up
Units

The links are bidirectional and can be either excitatory (arrows) or inhibitory (filled circles).
Activation in this network flows both bottom-up and top-down.
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level of activity of the unit. If the input to a unit is 0, then all that happens
is that the level of activity of the unit decays exponentially. The input to the
unit is, as is standard, simply the weighted sum of the outputs of the units
that feed into that unit (where the weights correspond to the strengths of the
connections). If the input is positive, then the level of activity is increased in
proportion both to that input and to the distance between the current level of
activation and the maximum activation (conventionally set at 1); if the input
is negative, the level of activity is decreased in proportion to the input and
to the distance between the current level of activation and the minimum
activation (conventionally set at -1).

While this behavior sounds rather complex, the basic idea is simple. Given
a constant input, the unit will gradually adjust to a stable level where the expo-
nential decay balances with the boost from that input: Positive constant inputs
will be associated with positive stable activation, negative constant inputs
with negative stable activation; small inputs lead to activations levels close
to 0, while large inputs lead to activation values which tend to be 1 or -1. If we
think of a unit as a feature detector, then an activation level near 1 corre-
sponds to a high level of confidence that the feature is present; an activation
level near -1 corresponds to a high level of confidence that it is not.

With respect to the relationship between connectionist models and the
brain, it is important to note that none of the connectionist architectures that
we have described amount to realistic models of brain function (see, e.g.,
Sejnowski, 1986). They are unrealistic at the level of individual processing
units, where the models not only drastically oversimplify, but knowingly
falsify, many aspects of the function of real neurons, and in terms of the
structure of the connectionist networks, which bear little if any relation to
brain architecture. One avenue of research is to seek increasing biological
realism (e.g., Koch & Segev, 1989). In the study of the areas of cognition
in which few biological constraints are available, most notably language,
researchers have concentrated on developing connectionist models with the
goal of accurately modeling human behavior. They therefore take their data
from cognitive psychology, linguistics, and cognitive neuropsychology, rather
than from neuroscience. Thus, connectionist research on language appears
to stand in direct competition with symbolic models of language processing.

As noted earlier, the relative merits of connectionist and symbolic models
of language are hotly debated. But should they be viewed as in opposition at
all? After all, advocates of symbolic models of language processing assume
that symbolic processes are somehow implemented in the brain. Thus, they
too are connectionists at the level of implementation. But symbolic theorists
assume that language processing can be described at two levels: at the psy-
chological level, in terms of symbol processing, and at the implementational
level, in neuroscientific terms (to which connectionism is a crude approxi-
mation). If this is right, then connectionist modeling should proceed by
taking symbol-processing models of language processing and attempting to
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implement these in connectionist networks. Advocates of this view (Fodor
& Pylyshyn, 1988; Marcus, 1998; Pinker & Prince, 1988) typically assume
that it implies that symbolic modeling should be entirely autonomous from
connectionism; symbolic theories set the goalposts for connectionism, but
not the other way round. Chater and Oaksford (1990) have argued that even
according to this view there will be two-way influences between symbolic
and connectionist theories, since many symbolic accounts can be ruled out
precisely because they could not be neurally implemented. But most
connectionists in the field of language processing have a more radical agenda:
not to implement, but to challenge, to varying degrees, the symbolic ap-
proach to language processing. Part IT of this book will illustrate a variety of
contemporary viewpoints on the relationship between connectionist and sym-
bolic theories of language.

With these general issues in mind, let us now consider the broad spec-
trum of connectionist models of language processing.

SPEECH PROCESSING

Speech processing in its broadest sense encompasses a broad range of
cognitive processes, from those involved in low-level acoustical analysis to
those involved in semantic and pragmatic interpretation of utterances. Here
we shall focus much more narrowly, on the processes involved in segment-
ing and recognizing spoken words from input that is represented in a lin-
guistic form (e.g., as sequences of phonetic features or phonemes). Thus,
we will not be concerned with connectionist research on the enormously
complex issues involved in dealing with the complexity, variability, and
noisiness of acoustic representations of speech (see, e.g., Salmela, Lehto-
kangas, & Saarinen, 1999, for a typical application of connectionist meth-
ods to speech technology). We also shall not deal with higher-level aspects
of linguistic processing. Nonetheless, as we shall see, even given these
restrictions, the problem of understanding human speech processing is still
formidable.

Naively, we might imagine that the speech processor has to do two jobs,
one after the other. First, it has to segment speech input into units corre-
sponding to words (i.e., it has to find word boundaries); second, it has to
recognize each word. But on reflection, this viewpoint seems potentially
problematic, because it is not clear how the speech processor can determine
where the word boundaries are until the words are recognized. And con-
versely, word recognition itself seems to presuppose knowing which chunk
of speech material corresponds to a potential word. Thus, segmentation and
recognition appear to stand in a chicken-and-egg relationship—each process
seems to depend on the other.

One approach to resolving the paradox is to assume that segmentation
and recognition are two aspects of a single process, that tentative hypoth-
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eses about each issue are developed and tested simultaneously, and mutu-
ally consistent hypotheses are reinforced. A second approach is to suppose
that there are segmentation cues in the input that are used to give at least
better-than-chance indications of what segments may correspond to identifi-
able words. So the question is this: Does speech processing involve dedi-
cated segmentation strategies prior to word recognition?

Developmental considerations suggest that there may be specialized seg-
mentation methods. The infant, initially knowing no words, seems con-
strained to segment speech input using some method not requiring word
recognition. Moreover, infant studies have shown that prelinguistic infants
may use such methods, and are sensitive to a variety of information that is
available in the speech stream and potentially useful for segmentation, such
as phonotactics and lexical stress (Jusczyk, 1997).

Connectionist models have begun to address questions of how effective
different kinds of segmentation cues might be. For example, Cairns,
Shillcock, Chater, and Levy (1997) explore a model of segmentation based
on predictability. They note that language is less predictable across, rather
than between, words. They trained a recurrent network on a large corpus of
phonologically transcribed conversational speech, represented as a sequence
of bundles of binary phonetic features. The network was trained to predict
the next bundle of features along with the previous and current feature
bundles, based on the current input material. Where prediction error was
large, it was assumed that a word boundary had been encountered. This
model captured some aspects of human segmentation performance. For ex-
ample, it spontaneously learned to pay attention to patterns of strong and
weak syllables as a segmentation cue. However it was able to reliably pre-
dict only a relatively small proportion of word boundaries, indicating that
other cues also need to be exploited. While the Cairns et al. model uses just
a single cue to segmentation, Christiansen, Allen, and Seidenberg (1998)
showed how multiple, partial constraints on segmentation could yield much
better segmentation performance. They trained an SRN to integrate sets of
phonetic features with information about lexical stress (strong or weak) and
utterance boundary information (encoded as a binary unit) derived from a
corpus of child-directed speech. The network was trained to predict the
appropriate values of these three cues for the next segment. After training,
the network was able to integrate the input such that it would activate the
boundary unit not only at utterance boundaries, but also at word boundaries
inside utterances. The network was thus able to generalize patterns of cue
information that occurred at the end of utterances to cases where the same
patterns occurred within an utterance. This model performed well on the
word-segmentation task while capturing additional aspects of infant seg-
mentation, such as the bias toward the dominant trochaic (strong-weak)
stress pattern in English, the ability to distinguish between phonotactically

e
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legal and illegal novel words, and having segmentation errors being con-
strained by English phonotactics.

This model shows how integrating multiple segmentation cues can lead to
good segmentation performance. To what extent does it provide a model of
how infants process speech? Christiansen, Conway, and Curtin (2000) used
the trained model, without any additional modifications, to fit recent infant
data. These data are of particular interest, because they have been claimed
to be incompatible with a purely connectionist approach to language pro-
cessing, and to require the language processor to use “algebraic” or sym-
bolic rules (Marcus, Vijayan, Rao, & Vishton, 1999). Marcus et al. habituated
infants on syllable sequences that followed either an AAB or ABB pattern
(e.g., le-le-je versus le-je-je). The infants were then presented with sequences
of novel syllables, either consistent or inconsistent with the habituation pat-
tern, and showed a preference for the inconsistent items. Christiansen et al.
suggested that statistical knowledge acquired in the context of learning to
segment fluent speech provided the basis for these results, in much the same
way as knowledge acquired in the process of learning to read can be used to
perform experimental tasks such as lexical decision. Their simulation closely
replicated the experimental conditions, using the same number of habitua-
tion and test trials as in the original experiment (no repeated training ep-
ochs) and one network for each infant. Analyses of the model’s segmentation
performance revealed that the model was significantly better at segmenting
out the syllables in the inconsistent items. This makes the inconsistent items
more salient and therefore explains why the infants preferred these to the
consistent items. Thus, Christiansen et al.’s results challenge the claim that
the Marcus et al. infant data necessarily require that the infant’s language-
processing system is using algebraic rules. Moreover, these infant data pro-
vide an unexpected source of evidence for the Christiansen et al. model,
viewed as a model of infant segmentation.

Segmentation cues are potentially important in guiding the process of
word recognition. But even if such cues are exploited very effectively, seg-
mentation cues alone can achieve only limited results. A definitive segmen-
tation of speech can only occur after word recognition has occurred. Speech
is frequently locally ambiguous: To use an oft quoted example, it is difficult
to distinguish “recognize speech” from “wreck a nice beach” when these
phrases are spoken fluently. These interpretations correspond to very dif-
ferent segmentations of the input. It is therefore clear that bottom-up seg-
mentation cues alone will not always segment the speech stream into words
reliably. In such cases of local ambiguity, a decisive segmentation of the
input can only be achieved when the speaker has recognized which words
have been said. This theoretical observation ties in with empirical evidence
that strongly indicates that during word recognition in adulthood multiple
candidate words are activated, even if these correspond to different segmen-
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tation of the input. For example, Gow and Gordon (1995) found that adult
listeners hearing sentences involving a sequence (e.g., two [lips) that could
also be a single word (tulips) showed speeded processing of an associate of
the second word (kiss) and to an associate of the longer word (flower),
indicating that the two conflicting segmentations were simultaneously enter-
tained. This would not occur if a complete segmentation of the input occurred
before word recognition was attempted. On the other hand, it is not clear how
these data generalize to word segmentation and recognition in infancy before
any comprehensive vocabulary has been established. How segmentation and
recognition develop into the kind of integrated system evidenced by the
Gow and Gordon data remains a matter for future research.

Gow and Gordon’s (1995) result also suggests that word recognition it-
self may be a matter of competition between multiple activated word repre-
sentations, where the activation of the word depends on the degree of match
between the word and the speech input. Indeed, many studies point toward
this conclusion, from a range of experimental paradigms. Such competition
is typically implemented in connectionist networks by a localist code for
words (the activation of a single unit represents the strength of evidence for
that word, with inhibitory connections between word units). Thus, when an
isolated word is identified, a “cohort™ of words consistent with that input is
activated; as more of the word is heard, this cohort is rapidly reduced,
perhaps to a single item.

While competition at the word level has been widely assumed, consider-
able theoretical dispute has occurred over the nature of the interaction be-
tween different levels of mental representation. Bottom-up (or “data-driven”)
models are those in which less abstract levels of linguistic representation
feed into, but are not modified by, more abstract levels (e.g., the phoneme
level feeds to the word level, but not the reverse). We note, however, that
this does not prevent these models from taking advantage of suprasegmental
information, such as in the inclusion of lexical stress in the Christiansen et
al. (2000) segmentation model, provided that this information is available in
a purely bottom-up fashion (i.e., no lexical-level feedback). Interactive (also
“conceptually-driven” or top-down) models allow a two-way flow of infor-
mation between levels of representation. Figures 2.1 and 2.4 provide ab-
stract illustrations of the differences in information flow between the two
types of models. Note that bottom-up models allow information to flow
through the network in one direction only, whereas interactive models al-
low information to flow in both directions.

The bottom-up versus interactive debate rages in all areas of language
processing, and also in perception and motor control (e.g., Bruner, 1957;
Fodor, 1983; Marr, 1982; Neisser, 1967). Here we focus on putative inter-
actions between information at the phonemic and the lexical levels in word
recognition (i.e., between phonemes and words), where experimental work
and connectionist modeling has been intense.
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The most obvious rationale for presuming that there is top-down informa-
tion flow from the lexical to the phoneme level stems from the effects of
lexical context on phoneme identification. For example, Ganong (1980)
showed that the identification of a syllable-initial speech sound, constructed
to be between a /g/ and a /k/, was influenced by lexical knowledge. This
intermediate sound was predominantly heard as a /k/ if the rest of the word
was -iss (kiss was favored over giss), but heard as /g/ if the rest of the word
was -ift (gift was favored over kiff).

The early and very influential TRACE model of speech perception
(McClelland & Elman, 1986) attempts to explain data of this kind from an
interactive viewpoint. The model employs the standard interactive activa-
tion network architecture already described, with layers of units standing
for phonetic features, phonemes, and words. There are several copies of
each layer of units, standing for different points in time in the utterance, and
the number of copies differs for each layer. At the featural level, there is a
copy for each discrete “time slice” into which the speech input is divided.
At the phoneme level, there is a copy of the detector for each phoneme
centered over every three time slices. The phoneme detector centered on a
given time slice is connected to feature detectors for that time slice, and also
to the feature detectors for the previous three and subsequent three slices.
Hence, successive detectors for the same phoneme overlap in the feature
units with which they interact. Finally, at the word level there is a copy of
each word unit at every three time slices. The window of phonemes with
which the word interacts corresponds to the entire length of the word. Here,
again, adjacent detectors for the same word will overlap in the lower-level
units to which they are connected. In short, then, we have a standard inter-
active activation architecture, with an additional temporal dimension added,
to account for the temporal character of speech input. TRACE captures the
Ganong effect because phoneme and lexical identification occur in parallel
and are mutually constraining. TRACE also captures experimental findings
concerning various factors affecting the strength of the lexical influence
(e.g., Fox, 1984), and the categorical aspects of phoneme perception
(Massaro, 1981; Pisoni & Tash, 1974). TRACE also provides rich predic-
tions concerning the time course of spoken word recognition (e.g., Cole &
Jakimik, 1978; Marslen-Wilson, 1973; Marslen-Wilson & Tyler, 1975),
and lexical influences on the segmentation of speech into words (e.g., Cole
& Jakimik, 1980).

TRACE provides an impressive demonstration that context effects can
indeed be modeled from an interactive viewpoint. But context effects on
phoneme recognition can also be explained in purely bottom-up terms. If a
person’s decisions about phoneme identity depend on both the phonemic
and lexical levels, then phoneme identification may be lexically influenced,
even though there need be no feedback from the lexical to the phoneme
level. For example, the Ganong effect might be explained by assuming that
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the phoneme identification of an initial consonant that is ambiguous be-
tween /g/ and /k/ is directly influenced by the lexical level. Thus, if gift is
recognized at the lexical level, this will influence the participant to respond
that the initial phoneme was a /g/, but if kiss is recognized, this will influ-
ence the participant to respond that the initial phoneme was a /k/.

A substantial experimental literature has attempted to distinguish TRACE
from bottom-up models, indicating the importance of connectionist model-
ing in inspiring experimental research. One line of attack was that the inter-
active character of TRACE causes word-level context to have too abrupt an
effect in modulating phoneme perception. Massaro (1989) had people listen
to phonemes on the continuum between /r/ and /1/ in syllables in which they
were immediately preceded by /t/ or /s/. In normal English these preceding
phonemes are highly informative about the ambiguous /r/-/I/. With an initial
/t/, the next item must be an /r/, because /t/ followed by /1/ is not permis-
sible according to the phonotactics of English (i.e., the constraints on legal
phoneme sequences). Conversely, with an initial /s/, the next item must be
an /1/, because /s/ followed by /r/ is not phonotactically permissible.

When TRACE is applied to these stimuli, there is a relatively abrupt
switch from the one interpretation of the ambiguous phoneme to the other.
For example, in the context of an /s/, TRACE adopts the context-appropriate
interpretation that the ambiguous phoneme is an /I/ until the ambiguous
phoneme is perceptually very strongly biased toward /r/, at which point the
model switches sharply to the opposite interpretation. The opposite pattern
was observed in the context of a /t/. But this sharp crossover was not consis-
tent with the human data that Massaro (1989) collected. Instead, people
required less perceptual bias to override word-level context, but the transi-
tion between judging the ambiguous phoneme to be an /r/ or an /1/ was also
much more gradual over the /1/-/1/ continuum. Massaro concluded that the
interactive activation approach was flawed, because it allowed more distor-
tion of the perceptual stimulus by contextual factors than is actually ob-
served. Massaro further showed that a bottom-up model, based on his Fuzzy
Logic Model of Perception (FLMP), could account for the empirical data
more accurately. FLMP involves a simple linear combination of cues from
the perceptual stimulus and surrounding context: It can be viewed as equiva-
lent to a single-layer connectionist network (with noise added, so that the
network is merely biased toward producing one response more than the
other, rather than producing the same output deterministically).

McClelland (1991) showed, however, that adding noise to the units in
TRACE could also produce a more graded pattern of responding. Intu-
itively, adding noise to any decision-making system will inevitable blur the
boundary between the inputs that typically give rise to one decision and the
inputs that typically give rise to another. Massaro and Cohen (1991) re-
sponded that there are other aspects of the data that McClelland’s revised
interactive model does not capture. On the other hand, McClelland’s model
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provides a much more detailed computational mechanism than is provided
by FLMP, so a fair comparison between the two is not straightforward.

Another potential difficulty for TRACE in relation to data on phoneme
perception is that the influence of lexical factors on phoneme perception
appears to be quite variable. In some experiments substantial lexical influ-
ences on phoneme judgments are observed; but in others, often differing
only slightly, the effects disappear. For example, Cutler, Mehler, Norris,
and Segui (1987) found lexical effects when participants were asked to monitor
for initial phonemes of monosyllabic targets only when the filler items var-
ied in syllabic length, and McQueen (1991) found lexical influences on the
categorization of ambiguous word-final fricatives (on the continuum be-
tween /s/ and /J/) only when the stimuli were perceptually degraded by
low-pass filtering them at 3kHz. These and other studies (see Pitt & Samuel,
1993, for a review) present a confusing picture for any theoretical account.

Opponents of the interactive character of TRACE argue that some of
these data can be understood by assuming a bottom-up model in which
phoneme judgments are jointly influenced by a phonemic level of represen-
tation and a lexical level of representation. According to this view, the
direct influence of the lexical level of representation on phoneme judgments
(although not on the level of phoneme representation) is the source of con-
text effects, and these effects can be turned on and off to the degree that the
task demands encourage participants to attend to the lexical level. Thus, if
the filler and target items are monosyllabic, they may become monotonous
and discourage attention at the lexical level; if targets are perceptually de-
graded, this may encourage attention to the lexical level, because perceptual
representations are not sufficiently reliable to be used alone. Thus, critics of
TRACE have argued that it is limited by having only one “route” by which
phonetic judgments can be made—this route depending directly on the rep-
resentations at the phoneme level. By contrast, in order to capture context
effects, bottom-up models necessarily allow two routes that can influence
phonemic judgments, via phonemic and lexical representations. Various
models, both nonconnectionist (Cutler & Norris, 1979) and connectionist
(Norris, McQueen, & Cutler, in press), have been proposed in opposition
to TRACE. These models exploit two routes, and hence allow for the pos-
sibility of “attentional” switching between them.

Despite the considerable empirical and theoretical interest that these is-
sues have attracted, it seems unlikely that the instability of lexical influ-
ences will be decisive in determining whether speech perception is viewed
as bottom-up or interactive. This is because the simple expedient of allow-
ing that phonemic judgments can depend on the activations of both the pho-
nemic and lexical level in TRACE immediately give the interactive account
precisely the same explanatory latitude as bottom-up models. There is no
reason why interactive models cannot also assume that a variety of levels of
representations may be drawn upon in performing a specific task. Nonethe-
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less, although this theoretical move is entirely viable for advocates of the
interactive position, it is unattractive on the grounds of parsimony. This is
because the resulting model would have two routes by which contexts ef-
fects could arise, one due to the direct influence of high-level representa-
tions on task performance (specifically, the influence of word-level
representations on phoneme judgment tasks), and the other due to the indi-
rect, top-down impact of higher levels on lower levels (specifically, the top-
down links from the word to the phoneme level). If a bottom-up account can
explain the same data using just one mechanism—the direct influence of
higher-level representations on phoneme judgments—then this viewpoint
has a considerable advantage in terms of parsimony.

One key experimental result (Elman & McClelland, 1988), derived as a
novel prediction from TRACE, appeared to be particularly persuasive evi-
dence against bottom-up connectionist models. In natural speech the pro-
nunciation of a phoneme will to some extent be altered by the phonemes that
surround it, in part for articulatory reasons. This phenomenon is known as
«coarticulation.” Listeners should therefore adjust their category bound-
aries depending on the phonemic context. Experiments confirm that people
do indeed exhibit this “compensation for coarticulation” (CFC; Mann and
Repp, 1980). For example, given a series of synthetically produced tokens
between /t/ and /k/, listeners move the category boundary toward the /t/
following a /s/ and toward the /k/ following a /[/. This phenomenon sug-
gests a way of detecting whether lexical information really does feed back
to the phoneme level. Elman and McClelland considered the case where
compensation for coarticulation occurs across word boundaries. For ex-
ample, a word-final /s/ influences a word-initial phoneme ambiguous be-
tween /t/ and /k/ to be heard as a /k/ (as in Christmas capes). If lexical-level
representations feed back onto phoneme-level representations, the compen-
sation of the /k/ should still occur when the /s/ relies on lexically driven
phoneme restoration for its identity (i.e., in an experimental condition in
which the identity of /s/ in Christmas is obscured, the /s/ should be restored
and thus compensation for coarticulation should proceed as normal). Elman
and McClelland confirmed TRACE’s prediction experimentally. Recogni-
tion of the phoneme at the start of the second word was apparently influ-
enced by CFC, as if the word-final phoneme in the first word had been
“restored” by lexical influence.

Surprisingly, bottom-up connectionist models can also capture these re-
sults. Norris (1993) provided a small-scale demonstration, training an SRN
to map phonetic input onto phoneme output, for a small (twelve-word vo-
cabulary) artificial language. When the network received phonetic input
with an ambiguous first word-final phoneme and ambiguous initial seg-
ments of the second word, an analog of CFC was observed. The percent-
ages of /t/ and /k/ responses to the first phoneme of the second word depended
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on the identity of the first word, as in Elman and McClelland (1988). But
the explanation for this pattern of results cannot be top-down influence from
word units, because there are no word units. Moreover, Cairns, Shillcock,
Chater, and Levy (1995) scaled up these results using a similar network
trained on phonologically transcribed conversational English. How can an
autonomous computational model, where there is no lexical influence on
phoneme processing, mimic the apparent influence of word recognition on
coarticulation? Cairns et al. argued that sequential dependencies between
the phoneme sequences in spoken English can often “mimic” lexical influ-
ence. The idea is that the identification of the word-final ambiguous pho-
neme favored by the word level is also typically favored by transitional
probability statistics across phonemes. Analyzing statistical regularities in
the phoneme sequences in a large corpus of conversational English, Cairns
et al. showed that this explanation applies to Elman and McClelland’s ex-
perimental stimuli. If these transitional probabilities have been learned by
the speech processor, then previous phonemic context might support the
“restoration” of the ambiguous word-final phoneme, with no reference to
the word in which it is contained. Pitt and McQueen (1998) tested between
these two explanations experimentally. They carefully controlled for transi-
tional probabilities across phonemes, and reran a version of Elman and
McClelland’s experiment: Compensation for coarticulation was eliminated.
Moreover, when transitional probabilities are manipulated in nonword con-
texts, compensation for coarticulation effects were observed. This pattern
of results suggests that compensation for coarticulation is not driven by top-
down lexical influence, but by phoneme-level statistical regularities.
Against this, Samuel (1996) argues that the precise pattern of phoneme
restoration does indicate the existence of small but discernible top-down
effects. He conducted a statistical analysis of people’s ability to discrimi-
nate whether a phoneme has been replaced by a noise in a word or nonword
context from the case where the phoneme and noise are both present. The
logic is that to the extent that top-down factors “restore” the missing pho-
neme, it should be difficult to tell whether or not the phoneme is actually
present, and hence people’s discrimination between the two cases should be
poorer. Hence, phoneme present-absent discrimination should be poorer in
word contexts than for nonword contexts, because top-down factors should
be stronger. This prediction was confirmed experimentally (Samuel, 1996).
However, this pattern of data also follows from bottom-up models, to the
extent that the judgment concerning whether the phoneme is present is de-
termined not only by phonological but also lexical representations. Accord-
ingly, in a word context, judgments will be potentially biased by the
word-level representation signaling that the missing phoneme is present (be-
cause a word in which that phoneme normally occurs has been recognized).
This line of evidence, therefore, does not seem to provide a strong way of
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distinguishing between bottom-up and top-down accounts, and there are
connectionist models compatible with Samuel’s data that operate in each
way (McClelland & Elman, 1986; Norris et al., in press).

Another recent study by Samuel may pose a more difficult challenge to
bottom-up accounts. Samuel (1997) uses the fact that hearers adapt their
classification of speech continua, such as the continuum between /b/ and /d/,
after hearing a word beginning with a speech sound at one end of the con-
tinuum. For example, after hearing bird, a hearer’s category boundary shifts
toward /b/ on the /b/-/d/ continuum. The logic of Samuel’s study was to
investigate whether adaptation can occur to a word in which the key initial
phoneme is perceptually restored, rather than actually presented. Thus,
Samuel presents words in which the initial phoneme (/b/ or /d/) is replaced
by noise, as in a typical phoneme-restoration study. As expected, he found
that participants restored the “missing” phoneme, even though it was not
present. But crucially, he also found that these words did indeed produce an
adaptation effect with respect to the categorization of ambiguous phonemes
on the continuum from /b/ to /d/. The effect did not occur where the deleted
phonemes were replaced by silence rather than a burst of noise, and hence
there was no perceived phoneme restoration. Samuel argues that this pattern
of results indicates that the phoneme representations are being affected by
the lexical level, and that this leads to the adaptation. Norris et al. (in press)
note that it remains to be shown that the adaptation effect is itself mediated
by the phoneme level: If, for example, adaptation effects for phonemes
could be caused directly by the lexical level, then this would provide a
possible account of Samuel’s data. Nonetheless, if Samuel’s result does
prove to be robust, it could be extremely difficult for bottom-up accounts to
deal with, except by using rather ad hoc explanations.

Finally, additional evidence for the ability of bottom-up models to ac-
commodate apparently lexical effects on speech processing was provided by
Gaskell, Hare, and Marslen-Wilson (1995). They trained an SRN model to
map a systematically altered featural representation of speech onto a ca-
nonical representation of the same speech, and found that the network showed
evidence of lexical abstraction (i.e., tolerating systematic phonetic varia-
tion, but not random change). More recently, Gaskell and Marslen-Wilson
(1997) have added a new dimension to the debate, presenting an SRN net-
work in which sequentially presented phonetic inputs for each word were
mapped onto corresponding distributed representations of phonological sur-
face form and semantics. Based on the ability of the network to model the
integration of partial cues to phonetic identity and the time course of lexical
access, they suggested that distributed models may provide a better expla-
nation of speech perception than their localist counterparts (e.g., TRACE).
An important challenge for such distributed models is to accommodate the
simultaneous activation of multiple lexical candidates necessitated by the
temporal ambiguity of the speech input (e.g., /kap/ could be the beginning
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of both captain and captive). The coactivation of several lexical candidates
in a distributed model results in a semantic “blend” vector. Through statis-
tical analyses of these vectors, Gaskell and Marslen-Wilson (Chapter 3, this
yolume) investigate the properties of such semantic blends, and apply the
results to explain some recent empirical speech-perception data.

The theoretical debate concerning segmentation and word recognition
has been profoundly influenced by connectionist psycholinguistics. We have
considered various streams of research arising out of the TRACE model of
speech perception to illustrate the interplay between connectionist modeling
and experimental studies, and there are many other important areas of re-
search we have not considered for lack of space (e.g., recent work on an
apparent interaction between phonetic mismatch and lexical status, which
has triggered a subtle and important strand of research; Marslen-Wilson &
Warren, 1994; McQueen, Norris, & Cutler, in press). Connectionist models
are now the dominant style of computational account, even for advocates of
very different positions (as we have seen in relation to the bottom-up-inter-
active debate). Attempts to test between the predictions of competing mod-
els have generated experimental advances that have in turn informed how
models develop. However, this progress has yet not resulted in a resolution
of the fundamental debate between proponents of bottom-up and interactive
approaches to speech processing, though Norris et al. (in press) may pro-
vide some advantage for the opponents of top-down lexical effects.

Overall, these studies indicate how connectionist models of speech pro-
cessing have been able to make good contact with detailed psycholinguistic
data and been important in motivating experimental work. Input representa-
tiveness is also generally good, with models being trained on large lexicons
and sometimes corpora of natural speech. Task veridicality may perhaps be
questioned, however, by the use of abstract representations of the input
(e.g., phonetic or phonological representations) that may not be computed
by the listener (Marslen-Wilson & Warren, 1994), and that also bypass the
deep problems involved in handling the physical variability of natyral speech.

MORPHOLOGY

One of the connectionist models that has created the most controversy is
Rumelhart and McClelland’s (1986a) model of the learning of the English
past tense. The debate has to a large extent focused on whether a single
mechanism may be sufficient to account for the empirical data concerning
the developmental patterns in English past-tense learning, or whether a dual-
route mechanism is necessary. Here we provide an overview of the current
debate, as well as pointers to its wider ramifications.

Can a system without any explicit representation of rules account for
rulelike behavior? Rumelhart and McClelland’s (1986a) model of the acqui-
sition of the past tense in English was presented as an affirmative answer to
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this question. The English past tense is an interesting test case because
children very roughly appear to exhibit U-shaped learning, traditionally
characterized as having three stages. During the first stage, children only
use a few verbs in past tense and these tend to be irregular words—such as
came, went, and took—likely to occur with a very high frequency in the
child’s input. These verbs are, furthermore, mostly used in their correct
past-tense form. At the second stage, children start using a much larger
number of verbs in the past tense, most of these of the regular form, such as
pulled and walked. It is important that children now show evidence of rulelike
behavior. They are able to conjugate nonwords, generating jicked as the
past tense of jick, and they start to overgeneralize irregular verbs, even the
ones they got right in stage one; for example, producing comed or camed as
the past tense of come. During the third stage the children regain their
ability to correctly form the past tense of irregular verbs while maintaining
their correct conjugations of the regular verbs. Thus, it appears that chil-
dren learn to use a rule-based route for dealing with regulars as well as
nonwords and a memorization route for handling irregulars. But how can
such seemingly dual-route behavior be accommodated by a single mecha-
nism employing just a single route?

Rumelhart and McClelland (1986a) showed that by varying the input to a
connectionist model during learning, important aspects of the three stages
of English past-tense acquisition could be simulated using a single mechanism.
The model consists of three parts: a fixed encoding network, a pattern-associator
network with modifiable connections, and a competitive decoding-binding
network. The encoding network is an (unspecified) network that takes pho-
nological representations of root forms and transforms them into sets of
phonetic feature triples, termed wickelfeatures (after Wickelgren, 1969,
who employed triples in modeling memory for sequential material).? In or-
der to promote generalization, additional incorrect features are randomly
activated, specifically those features that have the same central feature as
well as one of the two other context features in common with the input root
form.

The pattern-associator network, which is the core of the model, has 460
input and output units, each representing a wickelfeature. This network is
trained to produce past-tense forms when presented with root forms of verbs
as input. During training the weights between the input and the output lay-
ers are modified using the perceptron learning rule (Rosenblatt, 1962) (the
back-propagation rule is not required for this network, since it has just one
modifiable layer). Since the output patterns of wickelfeatures generated by
the association network most often do not correspond to a single past-tense
form, the decoding-binding network must transform these distributed pat-
terns into unique wickelphone representations. In this third network, each
wickelphone in the 500 words used in the study was assigned to an output
unit. These wickelphones compete individually for the input wickelfeatures
in an iterative process. The more wickelfeatures a given wickelphone ac-
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counts for, the greater its strength. If two or more wickelphones account for
the same wickelfeature, the assigned “credit” is split between them in pro-
portion to the number of other wickelfeatures they account for uniquely
(i.e., a “the rich get richer” competitive approach). The end result of this
competition is a set of more or less nonoverlapping wickelphones that cor-
respond to as many as possible of the wickelfeatures in the input to the
decoder network.

By employing a particular training regime, Rumelhart and McClelland
(1986a) were able to obtain the U-shaped learning profile characteristic of
children’s acquisition of the English past tense. First, the network was trained
on a set of 10 high-frequency verbs (8 irregular and 2 regular) for 10 ep-
ochs. At this point the network reached a satisfactory performance, treating
both regular and irregular verbs in the same way (as also observed in the
first stage of human acquisition of past tense). Next, 420 medium-frequency
verbs (about 80% of these being regular) were added to the training set and
the network was trained for an additional 190 epochs. Early on during this
period of training the net behaved as children at acquisition stage 2: The
network tended to regularize irregulars while getting regulars correct. At
the end of the 190 epochs, network behavior resembled that of children in
stage 3 of the past-tense acquisition process, exhibiting an almost perfect
performance on the 420 verbs. The network appears to capture the basic U-
shaped pattern of the acquisition of English past tense. In addition, it was
able to exhibit differential performance on different types of irregular and
regular verbs, effectively simulating some aspects of similar performance
differences observed in children (Bybee & Slobin, 1982; Kuczaj, 1977,
1978). Moreover, the model demonstrated a reasonable degree of generali-
zation from the 420 verbs in the training set to a separate test set consisting
of 86 low-frequency verbs (of which just over 80% were regular); for ex-
ample, demonstrating that it was able to use the three different regular end-
ings correctly (i.e., using /t/ with root forms ending with an unvoiced
consonant, /d/ as suffix to forms ending with a voiced consonant or vowel,
and /d/ preceded by an unstressed vowel (schwa) with verb stems ending
with a ¢ or a d).

The merits and inadequacies of the Rumelhart and McClelland (1986a)
past-tense model has been the focus of much debate, originating with Pinker
and Prince’s (1988) detailed criticism (and to a lesser extent Lachter & Bever’s
1988 critique). Since then the debate has flourished across the symbolic-
connectionist divide (e.g., on the symbolic side, Kim, Pinker, Prince, &
Prasada, 1991; Pinker, 1991; and on the connectionist side, Cottrell &
Plunkett, 1991; Daugherty & Seidenberg, 1992; Daugherty, MacDonald, _
Petersen, & Seidenberg, 1993; MacWhinney & Leinbach, 1991; Seidenberg,
1992). Here we focus on the most influential aspects of the debate.

The use of wickelphones-wickelfeature representations has been the sub-
ject of much criticism (e.g., Pinker & Prince, 1988). Perhaps for this rea-
son, most of the subsequent connectionist models of English past tense (both
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of acquisition, e.g., Plunkett & Marchman, 1991, 1993, and diachronic
change, Hare & Elman, 1995) therefore use a position-specific phonologi-
cal representation in which vowels and consonants are defined in terms of
sets of phonetic features. Another, more damaging criticism of the single-
route approach is that the U-shaped pattern of behavior observed in the
model during learning essentially appears to be an artifact of suddenly in-
creasing the total number of verbs (from 10 to 420) in the second phase of
learning. Pinker and Prince (1988) point out that no such sudden disconti-
nuity appears to occur in the number of verbs to which children are ex-
posed. Thus, the explanation of U-shaped learning suggested by the model
is undermined by the psychological implausibility of the training regime.
More recently, however, Plunkett and Marchman (1991) showed that this
training regime is not required to obtain U-shaped learning. They trained a
feed-forward network with a hidden-unit layer on a vocabulary of artificial
verb stems and past-tense forms, patterned by regularities of the English
past tense. They held the size of the vocabulary used in training constant at
500 verbs. They found that the network not only was able to exhibit classi-
cal U-shaped learning, but also had learned various selective micro U-shaped
developmental patterns observed in children’s behavior. For example, given
a training set with a type and token frequency reflecting that of English
verbs, the metwork was able to simulate a number of subregularities be-
tween the phonological form of a verb stem and its past tense form (e.g.,
sleep — slept, keep — kept).* In a subsequent paper, Plunkett and Marchman
(1993) obtained similar results using an incremental and perhaps more psy-
chologically plausible training regime. Following initial training on 20 verbs,
the vocabulary was gradually increased until reaching a size of 500 verb
stems. This training regime significantly improved the performance of the
network (compared with a similarly configured network trained on the same

vocabulary in Plunkett & Marchman, 1991). This approach also suggested

that a critical mass of verbs is needed before a change from rote learning
(memorization) to system building (rulelike generalization behavior) may
occur, the latter perhaps related to the acceleration in the acquisition of
vocabulary items (or “vocabulary spurt”) observed when a child’s overall
vocabulary exceeds around fifty words (e.g., Bates, Bretherton, & Snyder,
1988). Plunkett and Juola (Chapter 4, this volume) find a similar critical-
mass effect in their model of English noun and verb morphology. They
analyzed the developmental trajectory of a feed-forward network trained to
produce the plural form for 2,280 nouns and the past tense form for 946
verbs. The model exhibited patterns of U-shaped development for both nouns
and verbs (with noun inflections acquired earlier than verb inflections), and
also demonstrated a strong tendency to regularize deverbal nouns and
denominal verbs.

Another criticism of the connectionist models of past-tense acquisition is
that they may be too dependent on the token and type frequencies of irregu-
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lar and regular vocabulary items in English. Prasada and Pinker (1993)
have argued that the purported ability of connectionist models to simulate
verb inflection may be an artifact of the idiosyncratic frequency statistics of
English. The focus of the argument is the default inflection of words; for
example, the -ed suffixation of English regular verbs. The default inflection
of a word is assumed to be independent of its particular phonological shape
and occurs unless the root form corresponds to a specific irregular form.
According to Prasada and Pinker, connectionist models are dependent on
frequency and surface similarity for their generalization ability. In English,
most verbs are regular—that is, regular verbs have a high type frequency
but a relatively low token frequency—allowing a network to construct a
broadly defined default category. Irregular verbs in English, on the other
hand, have a low type frequency but a high token frequency, the latter
permitting the memorization of the irregular past tenses in terms of a num-
ber of narrow phonological subcategories (e.g., one for the i-a alternation
in sing — sang, ring — rang, another for the o-e alternation in grow — grew,
blow — blew, etc.). Prasada and Pinker showed that the default generaliza-
tion in Rumelhart and McClelland’s (1986a) model was dependent on a
similar frequency distribution in the training set. They furthermore con-
tended that no connectionist model can accommodate default generalization
for a class of words that have both low type frequency and low token fre-
quency. The default inflection of plural nouns in German appears to fall in
this category and would therefore seem to be outside the capabilities of
connectionist networks (Clahsen, Rothweiler, Woest, & Marcus, 1993;
Marcus, Brinkmann, Clahsen, Wiese, & Pinker, 1995). If true, such lack of
cross-linguistic validity would render connectionist models of past-tense
acquisition obsolete.

However, recent connectionist work has addressed the issue of minority
default mappings with some success. Daugherty and Hare (1993) trained a
feed-forward network (with hidden units) to map the phonological represen-
tation of a stem to a phonological representation of the past tense given a set
of verbs roughly representative of very early Old English (before about A.p.
870). The training set consisted of five classes of irregular verbs plus one
class of regular verbs, each class containing twenty-five words (each repre-
s_ented once in the training set). Thus, words taking the default generaliza-
tion -ed formed a minority (i.e., only 17%) of the words in the training set.
Pace Prasada and Pinker (1993) and others, the network was able to learn
the‘ appropriate default behavior even when faced with a low-frequency
default class. Indeed, it appears that generalization in connectionist net-
works may not be strictly dependent on similarity to known items. Daugherty
and Hare’s results show that if the nondefault (irregular) classes have a
sufficient degree of internal structure, default generalization may be pro-
moted by the lack of similarity to known items. These results were corrobo-
rated by further simulations and analyses in Hare, Elman, and Daugherty
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(1995). Moreover, Forrester and Plunkett (1994) obtained similar results
when training a feed-forward model (with hidden units) to learn artificial
input patterned on the Arabic plural. In Arabic, the majority of plural forms—
called the Broken Plural—are characterized by a system of subregularities
dependent on the phonological shape of the noun stem. In contrast, a minor-
ity of nouns take the Sound Plural inflection that forms the default in Arabic.
Forrester and Plunkett’s net was trained to map phonological representa-
tions of the noun stems to their appropriate plural forms represented
phonologically. Their results also indicate that connectionist models can
learn default generalization without relying on large word classes or direct
similarity.

Finally, rulelike and frequency-independent default generalization may
not be as pressing a problem for connectionist models as Clahsen et al.
(1993) and Marcus et al. (1995) claim. Reanalyzing data concerning Ger-
man noun inflection (in combination with additional data from Arabic and
Hausa), Bybee (1995) showed that default generalization is sensitive to type
frequency and does not seem to be entirely rulelike. This pattern may fit
better with the kind of default generalization in connectionist nets rather
than the rigid defaults of symbolic models. Moreover, Hahn and Nakisa (in
press) outline problems for the dual-route approach. They compared
connectionist and other implementations of rule and memorization routes
against a single memorization route on a comprehensive sample of German
nouns and found that performance was consistently superior when the rule
route was not used.

The issue of whether humans employ a single, connectionist-style mecha-
nism for rulelike morphological processing is far from settled. Connectionist
models can provide an impressive fit to a wide range of developmental and
linguistic data. Even detractors of connectionist models of morphology typi-
cally concede that some kind of associative connectionist mechanism may
explain the complex patterns found in the irregular cases (e.g., Pinker,
1991). The controversial question is whether a single connectionist mecha-
nism can simultaneously account for both regular and irregular cases, or
whether regular cases can only be generated by a distinct route involving
(perhaps necessarily symbolic) rules.

Most of the connectionist models of morphology only make contact with
secondary empirical data. Many of the models suffer from low task veridi-
cality because they are trained to map verb stems to past-tense forms (e.g.,
Plunkett & Marchman, 1991, 1993; Rumelhart & McClelland, 1986a; but
see, e.g., Hoeffner, 1997, for an exception), a task unlikely to be relevant
to children’s language acquisition. However, rule-based morphology mod-
els (e.g., Pinker, 1991) also involve stem to past-tense mappings as the
connectionist models, and thus suffer from the same low task veridicality.
Input representativeness, on the other hand, is reasonable; Plunkett and
Joula (Chapter 4, this volume) provide a good example in this respect. The
future is likely to bring further connectionist modeling of cross-linguistic
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data concerning morphology, as well as a closer fitting of developmental
micro patterns and distributional data to such models. As we shall see next,
the question of whether language processing can be accounted for without
the explicit representation of rules also plays an important part in connectionist
modeling of sentence processing.

SENTENCE PROCESSING

Syntactic processing is arguably the area of natural language that has the
strongest ties to explicit rules as a means of explanation. Since Chomsky
(1957), grammars have been understood predominately in terms of a set of
generative phrase-structure rules (often coupled with rules or principles for
the further transformation of phrase structures). In early natural language
research the central status of rules was directly reflected in the Derivational
Theory of Complexity (Miller & Chomsky, 1963). This theory suggested
that the application of a given rule (or transformation) could be measured
directly in terms of time it takes for a listener-reader to process a sentence.
This direct mapping between syntactic rules and response times was soon
found to be incorrect, leading to more indirect ways of eliciting information
about the use of rules in the processing of syntax. But can syntactic process-
ing be accounted for without explicit rules? Much of the recent connectionist
research on sentence processing aims to show that it can.

Sentence processing provides a considerable challenge for connectionist
research. In view of the difficulty of the problem, much early work “hand-
coded” symbolic structures directly into the network architecture; starting
with Small, Cottrell, and Shastri’s (1982) first attempt at connectionist pars-
ing, followed by Reilly’s (1984) connectionist account of anaphor resolu-
tion, and later, for example, by Fanty’s (1985) connectionist context-free
parser, Selman and Hirst’s (1985) modeling of context-free parsing using
simulated annealing, Waltz and Pollack’s (1985) interactive model of pars-
ing (and interpretation), McClelland and Kawamoto’s (1986) connectionist
model of case-role assignment, and, more recently, Miyata, Smolensky,
and Legendre’s (1993) structure-sensitive processing of syntactic structure
using tensor representations (Smolensky, 1990) as well as Kwasny and
Faisal’s (1990) deterministic connectionist parser. Such connectionist
reimplementations of symbolic systems might have interesting computa-
tional properties and even be illuminating regarding the appropriateness of
a particular style of symbolic model for distributed computation (Chater &
Oaksford, 1990). But most connectionist research has a larger goal: to pro-
vide alternative accounts of sentence processing in which networks learn to
form and use structured representations rather than simply implement sym-
bolic representations and processes.

Two classes of models potentially provide such alternatives. Both classes
of model learn to process language from experience, rather than implement-
ing a prespecified set of symbolic rules. The less ambitious class presup-
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poses that the syntactic structure of each sentence to be learned is more or
less given; that is, each input item is tagged with information pertaining to
the syntactic role of that item (e.g., the word car may be tagged as “singular
noun”). In this class we find, for example, connectionist parsers, such as
PARSNIP (Hanson & Kegl, 1987) and VITAL (Howells, 1988), the structure-
dependent processing of Pollack’s (1988, 1990) recursive auto-associative
memory network subsequently used in Chalmers’s (1990) model of active-
to-passive transformation and in a model of syntactic processing in logic
(Niklasson & van Gelder, 1994), Sopena’s (1991) distributed connectionist
parser incorporating attentional focus, and Stolcke’s (1991) hybrid model
deriving syntactic categories from phrase-bracketed examples given a vec-
tor-space grammar. Typically, the task of these network models is to find
the grammar (or part thereof) that fits the example structures. This means
that the structural aspects of language are not themselves learned by obser-
vation, but are built in. These models are related to statistical approaches to
language learning, such as stochastic context-free grammars (e.g., Brill,
Magerman, Marcus, & Santorini, 1990; Charniak, 1993; Jelinek, Lafferty,
& Mercer, 1990), in which probabilities of grammar rules in a prespecified
context-free grammar are learned from a corpus of parsed sentences. An-
other approach within this class of connectionist models—sometimes re-
ferred to as “structured connectionism”—involves the construction of a
modular system of networks, each of which is trained to acquire different
aspects of syntactic processing. For example, Miikkulainen’s (1996) system
consists of three different networks: one trained to map words onto case-
role assignments, another trained to function as a stack, and a third trained
to segment the input into constituent-like units. Although the model displays
complex syntactic abilities, the basis for these abilities and their generaliza-
tion to novel sentence structures derive from the configuration of the stack
network combined with the modular architecture of the system, rather than
being discovered by the model.

The second, more ambitious class of models, which includes Christiansen
and Chater (Chapter 5, this volume) as well as Tabor and Tanenhaus (Chap-
ter 6, this volume), attempts the much harder task of learning syntactic
structure from sequences of words, with no explicit prior assumptions about
the particular form of the grammar. These models have only recently begun
to provide accounts for empirical sentence-processing phenomena. This may
explain why the more ambitious connectionist attempts at syntax learning
have not caused nearly as much debate as the earlier-mentioned model of
English past-tense acquisition (Rumelhart & McClelland, 1986a), and the
model of reading aloud discussed later (Seidenberg & McClelland, 1989).
Nevertheless, these models may potentially have a great impact on the psy-
chology of language because they bear the promise of language learning
without a priori built-in linguistic knowledge (pace, e.g., Chomsky, 19635,
1986: Crain, 1991; Pinker, 1994; and many others).
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The most influential approach of this kind is due to Elman (1991 1993)
who trained an SRN to predict the next input word for sentences génerateci
by a small context-free grammar. This grammar involved subject noun-
verb Ia_greeme_nt, variations in verb argument structure (i.e., intransitive
transitive, optlonally transitive), and subject and object reIati\"e clauses (al:
lowing multiple embeddings with complex long-distance dependencies)
Elman’s simulations suggested that an SRN can acquire some of the gram;
matical regularities underlying a grammar. In addition, the SRN showed
some similarities with human behavior on center-embedded structures
(Weckerly & Elman, 1992). Christiansen (1994, 2000) extended this work
using more complex grammars involving prenominal genitives preposii
tional modlﬁcat‘ions of noun phrases, noun-phrase conjunctions, and’ sentential
complements, in addition to the grammatical features used by Elman. One
of the grammars, moreover, incorporated cross-dependencies, a weakly
context-sensitive structure found in Dutch and Swiss-German. Christiansen
found that SRNs could learn these more complex grammars, and, more-
over, that they exhibit the same qualitative processing difficulties as ilumans
do on similar constructions (see also Christiansen & Chater, Chapter 5, this
volume). The nets moreover showed sophisticated generalization abiI;ties
overriding local word cooccurrence statistics while complying with struc:
tural constraints at the constituent level (Christiansen & Chater, 1994)

Current models of syntax typically use “toy” fragments of grammar.and
sr.flall vocabularies. Aside from raising questions about how well the results
will scale up, this makes it difficult to provide detailed fits with empirical
daFa._ Nonetheless, some attempts have recently been made toward fitting
existing data and deriving new empirical predictions from the models. For
example, Tabor, Juliano, and Tanenhaus (1997) provide a two—cumpc;nem
model qf ambiguity resolution, combining an SRN with a “gravitational”
mechanism. The SRN was trained in the usual way on sentences derived
fr_om a grammar. After training, SRN hidden-unit representations for indi-
vidual words were placed in the gravitational mechanism, which was then
allowed to settle into a stable state. Settling times were tI,nen mapped onto
word-reading times. Using their two-component model, Tabor et al. were
able to fit data from several experiments concerning the interaction o‘f lexi-
cal' e_md s_tructural constraints on the resolution of temporary syntactic ambi-
guities (i.e., garden-path effects) in sentence comprehension. Tabor and
Tanenhaus (Chapter 6, this volume) extend the two-component model to
account for empirical findings reflecting the influence of semantic role ex-
pectations on syntactic-ambiguity resolution in sentence processing (McRae
prvey-Knowlton, & Tanenhaus, 1998). ,
netl\rioz;k(llfferent strz_md pf 'research conc_erned with relating connectionist

to psycholinguistic results, Christiansen and Chater (1999) devel-
oped a measure of grammatical prediction error (GPE) that allowed net-
Work output to be mapped onto human performance data. GPE scores are
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computed for each word in a sentence and reflect the processing difficulties
that a network is experiencing at a given point in a sentence. Averaging
GPE across a whole sentence, Christiansen (2000; Christiansen & Chater,
Chapter 5, this volume) fitted human data concerning the greater perceived
difficulty associated with center-embedding in German compared to cross-
serial dependencies in Dutch (Bach, Brown, & Marslen-Wilson, 1986).
Christiansen was able to derive novel predictions concerning other types of
recursive constructions, and these predictions were later confirmed experimen-
tally (Christiansen & MacDonald, 2000). MacDonald and Christiansen (in press)
mapped single-word GPE scores directly onto reading times, providing an
experience-based account for human data concerning the differential pro-
cessing of singly center-embedded subject and object relative clauses in
human participants with different levels of reading comprehension ability.

Some headway has also been made in accounting for data concerning the
effects of aphasia on grammaticality judgments. Allen and Seidenberg (1999)
trained a recurrent network to mutually associate two input sequences: a
sequence of word forms and a corresponding sequence of word meanings.
The network was able to learn a small artificial language successfully; it
was able to regenerate the word forms from the meanings and vice versa.
Allen and Seidenberg simulated grammaticality judgments by testing how
well the network could recreate a given input sequence, allowing activation
to flow from the provided input forms to meaning and then back again.
Ungrammatical sentences were recreated less accurately than grammatical
sentences, and the network was thus able to distinguish grammatical from
ungrammatical sentences. They lesioned the network by removing 10 per-
cent of the weights in the network. Grammaticality judgments were then
elicited from the impaired network for ten different sentence types that
Linebarger, Schwartz, and Saffran (1983) used in their study of aphasic
grammaticality judgments. The network exhibited impaired performance on
exactly the same three sentence types as the aphasic patients.

These simulation results suggest that recurrent networks may be viable
models of sentence processing. However, connectionist models of language
learning (i.e., Chalmers, 1990; Elman, 1990; McClelland & Kawamoto,
1986; Miyata et al., 1993; Pollack, 1990; Smolensky, 1990; St. John &
McClelland, 1990) have recently been attacked for not affording the kind of
generalization abilities that would be expected from models of language.
Hadley (1994a) correctly pointed out that generalization in much connectionist
research has not been viewed in a sophisticated fashion. The testing of
generalization is typically done by recording network output given a test set
consisting of items not occurring in the original training set, but potentially
containing many similar structures and word sequences. Hadley insisted
that to demonstrate genuine, “strong” generalization a network must be
shown to learn a word in one syntactic position and then generalize to using-
nrocessing that word in another, novel syntactic position. He challenged
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connectionists to adopt a more rigorous training and testing regime in as-
sessing whether networks really generalize successfully in learning syntac-
tically structured material.

Christiansen and Chater (1994) addressed this challenge, providing a for-
malization of Hadley’s original ideas as well as presenting evidence that
connectionist models are able to attain strong generalization. In their train-
ing corpus (generated by the grammar from Christiansen, 1994), the noun
boy was prevented from ever occurring in a noun-phrase conjunction (i.e.,
noun phrases such as John and boy and boy and John did not occur). During
training the SRN had therefore only been presented with singular verbs
following boy. Nonetheless, the network was able to correctly predict that a
plural verb must follow John and boy as prescribed by the grammar. In
addition, the network was still able to correctly predict a plural verb when a
prepositional phrase was attached to boy, as in John and boy from town,
providing even stronger evidence for strong generalization. This suggests
that the SRN is able to make nonlocal generalizations based on the struc-
tural regularities in the training corpus (see Christiansen & Chater, 1994,
for further details). If the SRN relied solely on local information it would
not have been able to make correct predictions in either case. More re-
cently, Christiansen (2000) demonstrated that the same SRN also was able
to generalize appropriately when presented with completely novel words,
such as zorg, in a noun-phrase conjunction by predominately activating the
plural verbs.’ In contrast, when the SRN was presented with ungrammatical
lexical items in the second noun position, as in John and near, it did not
activate the plural nouns. Instead, it activated lexical items that were not
grammatical given the previous context. The SRN was able to generalize to
the use of known words in novel syntactic positions as well as to the use of
completely novel words. At the same time, it was also able to distinguish
items that were grammatical given previous context from those that were
not. Thus, the network demonstrated sophisticated generalization abilities,
ignoring local word cooccurrence constraints while appearing to comply
with structural information at the constituent level. Additional evidence of
strong generalization in connectionist nets are found in Niklasson and van
Gelder (1994) (but see Hadley, 1994b, for a rebuttal).

One possible objection to these models of syntax is that connectionist
(and other bottom-up statistical) models of language learning will not be
able to scale up to solve human language acquisition because of arguments
pertaining to the purported poverty of the stimulus (see Seidenberg, 1994,
for a discussion). However, there is evidence that some models employing
simple statistical analysis may be able to scale up and even attain strong
generalization. When Redington, Chater, and Finch (1993) applied a method
of distributional statistics (see also Finch & Chater, 1993; Redington, Chater,
& Finch, 1998) to a corpus of child-directed speech (the CHILDES corpus
collected by MacWhinney & Snow, 1985), they found that the syntactic
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category of a nonsense word could be derived from a single occurrence of
that word in the training corpus. This indicates that strong generalization
may be learnable through the kind of bottom-up statistical analysis that
connectionist models appear to employ, even on a scale comparable with
that of a child learning his or her first language. In this context, it is also
important to note that achieving strong generalization is not only a problem
for learning-based connectionist models of syntactic processing. As pointed
out by Christiansen and Chater (1994), most symbolic models cannot be
ascribed strong generalization because in most cases they are provided with
the lexical categories of words via syntactic tagging, and hence do not actu-
ally learn this aspect of language. The question of strong generalization is
therefore just as pressing for symbolic approaches as for connectionist ap-
proaches to language acquisition. The results outlined here suggest that
connectionist models may be closer to solving this problem than their sym-
bolic counterparts.

Overall, connectionist models of syntactic processing are at an early stage
of development. Current connectionist models of syntax typically use toy
fragments of grammar and small vocabularies, and thus have low input
representativeness. Nevertheless, these models have good data contact and
a reasonable degree of task veridicality. However, more research is re-
quired to decide whether promising initial results can be scaled up to deal
with the complexities of real language, or whether a purely connectionist
approach is beset by fundamental limitations, so that connectionism can
only succeed by providing reimplementations of symbolic methods (see the
chapters in Part II of this volume for further discussion).

LANGUAGE PRODUCTION

In connectionist psycholinguistics, as in the psychology of language in
general, there is relatively little work on language production. However,
some important steps have been taken, most notably by Dell and colleagues.
Dell’s (1986) spreading activation model of retrieval in sentence production
constitutes one of the first connectionist attempts to account for speech pro-
duction.® Although the model was presented as a sentence-production model,
only the phonological encoding of words was computationally implemented
in terms of an interactive activation model. This lexical network consisted
of hierarchically ordered layers of nodes corresponding to the following
linguistically motivated units: morphemes (or lexical nodes), syllables, rimes
and consonant clusters, phonemes, and features. The individual nodes are
connected bidirectionally to each other in a straightforward manner without
lateral connections within layers, with the exception of the addition of spe-
cial null-element nodes and syllabic position coding of nodes that corre-
spond to syllables. For example, the lexical node for the word (morpheme)
spa is connected to the /spa/ node in the syllable layer. The latter is linked
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to the consonant cluster /sp/ (onset) and the rime /a/ (nucleus). On the
phoneme level, /sp/ is connected to /s/ (which in turn is linked to the fea-
tures fricative, alveolar, and voiceless) and /p/ (which is connected to the
features bilabial, voiceless, and stop). The rime /a/ is linked to the vowel
/a/ in the phoneme layer (and subsequently is connected to the features
tense, low, and back) and to a node signifying a null coda.

Processing begins with the activation of a lexical node (meant to corre-
spond to the output from higher-level morphological, syntactic, and seman-
tic processing), and activation then gradually spreads downward in the
network. Activation also spreads upward via the feedback connections. Af-
ter a fixed period of time (determined by the speaking rate), the nodes with
the highest activations are selected for the onset, vowel, and coda slots.
Using this network model, Dell (1986) was able to account for a variety of
speech errors, such as substitutions (e.g., dog — log), deletions (dog —~ 0g),
and additions (dog — drog). Speech errors occur in the model when an
incorrect node becomes more active than the correct node (given the acti-
vated lexical node) and therefore gets selected instead. Such erroneous acti-
vation may be due to the feedback connections activating nodes other than
those directly corresponding to the initial word node. Alternatively, other
words in the sentence context as well as words activated as a product of
internal noise may interfere with the processing of the network. This model
also made a number of empirical predictions concerning the retrieval of
phonological forms during production, some of which were later confirmed
experimentally in Dell (1988).

Dell’s (1986) account of speech errors and the phonological encoding of
words has had a considerable impact on subsequent models of speech pro-
duction, both the connectionist (e.g., Harley, 1993) as well as the more
symbolic kind (e.g., Levelt, 1989). More recently, Dell, Schwartz, Martin,
Saffran, and Gagnon (1997) used an updated version of this model to fit
error data from twenty-one aphasics and sixty normal controls. This net-
work has three layers, corresponding to semantic features, words, and pho-
nemes, with the word units connected bidirectionally to the other layers. It
maps from semantic features denoting a concept to a choice of word, and
then to the phonemes realizing that word. The model distinguishes itself from
the interactive activation models, such as TRACE, by incorporating a two-step
approach to production. First, activation at the semantic features spreads
throughout the network for a fixed time. The most active word unit (typi-
cally the best match to the semantic features) is “selected,” and its activa-
tion boosted. Second, activation again spreads throughout the network for a
fixed time, and the most highly activated phonemes are selected, with a
phonological frame that specifies the sequential ordering of the phonemes.

Even in normal production, processing sometimes breaks down, leading
to semantic errors (cat —~ dog), phonological errors (cat — hat), mixed se-
mantic and phonological errors (cat — rat), nonword errors (cat — zat), and
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unrelated errors (cat — fog). Dell, Schwartz, et al. (1997) propose that
normal and aphasic errors reflect the same processes, differing only in de-
gree. Therefore, they set their model parameters by fitting data from con-
trols relating to the five types of errors listed. To simulate aphasia, the
model was “damaged” by reducing two global parameters (connection weight
and decay rate), leading to more errors. Adjusting these parameters, Dell et al.
modeled the five types of errors found for twenty-one aphasics, as well as
derived and confirmed predictions about the effect of syntactic categories
on phonological errors (dog — log), phonological effects on semantic errors
(cat = rat), naming error patterns after recovery, and errors in word repetition.
Despite their impressive empirical coverage, these spreading activation
models nonetheless suffer from a number of shortcomings. As previously
mentioned, in interactive activation models the connections between the
nodes on the various levels have to be hand coded. This means that no
learning is possible. In itself this is not a problem if it assumed that the
relevant linguistic knowledge is innate, but the information encoded in Dell’s
(1986) model is language-specific and could not be innate. There is, how-
ever, a more urgent, practical side of this problem. It is very difficult to
scale these models up, because hand coding becomes prohibitorily complex
as the number of weights in the network increases. This shortcoming is
alleviated by a recent recurrent network model presented by Dell, Juliano,
and Govindjee (1993). The model learns to form mappings from lexical items
to the appropriate sequences of phonological segments. The model consists of
an SRN with an additional modification: the current output, as well as the
current hidden-unit state, are copied back as additional input to the net-
work. This allowed both past activation states of the hidden-unit layer as
well as the output from the previous time step to influence current process-
ing. When given an encoding of, for example, can as the lexical input, the
network was trained to produce the features of the first phonological segment
/k/ on the output layer, then /&/ followed by /n/, and then finally generate
an end-of-word marker (null segment). Trained in this manner, Dell, Juliano, et
al. (1993) were able to account for speech error data without having to build
syllabic frames and phonological rules into the network, as was the case in
Dell (1986; see Dell, Chang, & Griffin, Chapter 7, this volume, for further
discussion; but cf. Dell, Burger, & Svec, 1997). It is important that this
recent connectionist model suggests that sequential biases and similarity
may explain aspects of human phonology that have previously been attrib-
uted to separate phonological rules and frames. Furthermore, the model
indicates that future speech-production models may have to incorporate learn-
ing and distributed representations in order to accommodate the role that the
entire vocabulary appears to play in phonological speech errors.
Connectionist models have also been applied to experimental data on
sentence production, particularly concerning structural priming. Structural
priming arises when the syntactic structure of a previously heard or spoken
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sentence influences the processing or production of a subsequent sentence.
Chang, Griffin, Dell, and Bock (1997) (see also Dell et al., Chapter 7, this
volume) present an SRN model of grammatical encoding, suggesting that
structural priming may be an instance of implicit learning (i.e., acquiring
sequential structure with little or no conscious awareness of doing this; see
Cleeremans, Destrebecqz, & Boyer, 1998, for a review). This model can be
seen as an extension of the Dell, Juliano, et al. (1993) approach. The input to
the model was a “proposition,” coded by units for semantic features (e.g.,
child), thematic roles (e.g., agent) and action descriptions (e.g., walking),
and some additional input encoding the internal state of an unimplemented
comprehension network. The network outputs a sequence of words express-
ing the proposition. Structural priming was simulated by allowing learning
to occur during testing. This created transient biases in the weights of the
network, and these are sufficiently robust to cause the network to favor
(i.e., to be primed by) recently encountered syntactic structures.

Chang, Griffin, et al. (1997) fitted data from Bock and Griffin (in press)
concerning the priming, across up to ten unrelated sentences, of active and
passive constructions as well as prepositional (The boy gave the guitar to
the singer) and double-object (The boy gave the singer the guitar) dative
constructions. The model fitted the passive data well, and showed priming
from intransitive locatives (The 747 was landing by the control tower) to
passives (The 747 was landed by the control tower). However, it fitted the
dative data less well, and showed no priming from transitive locatives (7he
wealthy woman drove the Mercedes to the church) to prepositional datives
(The wealthy woman gave the Mercedes to the church). Chang, Dell, Bock,
and Griffin (2000) provide a better fit to these data with a model combining
the production network with an implemented comprehension network, and
employing a more “fuzzy” representation of thematic roles.

The connectionist production models make good contact with the data,
and have reasonable task veridicality, but suffer from low input representa-
tiveness, as they are based on small fragments of natural language. It seems
likely that connectionist models will continue to play a central role in future
research on language production; scaling up these models to deal with more
realistic input is a major challenge for future work.

READING

The psychological processes engaged in reading are extremely complex
and varied, ranging from early visual processing of the printed word, to
syntactic, semantic, and pragmatic analysis, to integration with general knowl-
;dge. Connectionist models have concentrated on simple aspects of read-
Ing: (1) recognizing letters and words from printed text, and (2) word
“naming” (i.e., mapping visually presented letter strings onto sequences of
sounds). We focus on models of these two processes here.
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One of the earliest connectionist models was McClelland and Rumelhart’s
(1981) interactive activation model of visual word recognition (see also
Rumelhart & McClelland, 1982). This network has three layers of units
standing for visual features of letters, whole letters (in particular positions
within the word), and words. The model uses the same principles as TRACE,
but without the need for a temporal dimension, as the entire word is pre-
sented at once.

Word recognition occurs as follows. A visual stimulus is presented, which
activates in a probabilistic fashion visual feature units in the first layer. As
the features become activated, they send activation via their excitatory and
inhibitory connections to the letter units, which, in turn, send activation to
the word units. The words compete via their inhibitory connections, and
reinforce their component letters via excitatory feedback to the letter level
(there is no word-to-letter inhibition). Thus, an “interactive” process oc-
curs: Bottom-up information from the visual input is combined with the top-
down information flow from the word units. This process involves a cascade
of overlapping and interacting processes: Letter and word recognition do
not occur sequentially, but overlap and are mutually constraining.

This model accounted for a variety of phenomena, mainly concerning
context effects on letter perception. For example, it captures the fact that
letters presented in the context of a word are recognized more rapidly than
letters presented individually, or in random letter strings (Johnston &
McClelland, 1973). This is because the activation of the word containing a
particular letter provides top-down confirmation of the identity of that letter
in addition to the activation provided by the bottom-up feature-level input.
Moreover, it has been shown that letters presented in the context of pro-
nounceable nonwords (i.e., pseudowords, such as mave, which are consis-
tent with English phonotactics) are recognized more rapidly than letters
presented singly (Aderman & Smith, 1971) or in contexts of random letter
strings (McClelland & Johnston, 1977). In this case the facilitation is caused
by a “conspiracy” of partially activated similar words, which are triggered
in the nonword context but not in the random letter string context. These par-
tially active words provide a top-down confirmation of the letter identity, and
thus they conspire to enhance recognition. In a similar fashion, the model
explains how degraded letters can be disambiguated by their letter context,
and how occurring in a word context can facilitate the disambiguation of
component letters, even when they are all visually ambiguous. Moreover,
the model provides an impressively detailed demonstration of how interac-
tive processing can account for a range of further experimental effects.

The interactive activation model of reading is closely related with the
TRACE model of speech perception, and explains effects of linguistic con-
text on letter or phoneme perception in a similar way. If the interactive
activation framework is appropriate in both domains, then we should expect
that the pattern of data in speech and reading should show striking similari-
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ties. In line with this expectation, striking parallels between contextual ef-
fects in speech perception and reading continue to be discovered. Recently,
for example, Jordan, Thomas, and Scott-Brown (1999) demonstrated a “gra-
phemic restoration effect” that parallels the phonemic restoration effect. If
a word is viewed from a long distance with some letters deleted and re-
placed by “noise” (e.g., a spurious character), the “missing” letters are
frequently subjectively “seen,” just as people report hearing phonemes that
have been replaced by noise in the phoneme restoration effect.

But even if strong parallels between speech perception and reading can be
established, this connection can, of course, cut both ways. Proponents of a
bottom-up view of speech perception can argue that a bottom-up approach
can also deal with contextual effects found in reading. Thus, Massaro (1979)
has argued that in the context of reading, just as in speech perception, the
bottom-up fuzzy logic model of perception provides a better account of the
data. Similarly, Norris (e.g., 1994), also a strong advocate of bottom-up
models in speech perception, has developed bottom-up accounts of reading.
The debate between bottom-up and interactive accounts remains unresolved,
although, as we shall see, bottom-up connectionist accounts have been more
popular than interactive accounts in the next aspect of reading that we con-
sider: word naming rather than word recognition.

Recent connectionist models of reading have focused not on word recog-
nition but on word naming, which involves relating written word forms to
their pronunciations. The first such model was Sejnowski and Rosenberg’s
(1987) NETtalk, which learns to read aloud from text. NETtalk is a two-
layer feed-forward net, with input units representing a “window” of con-
secutive letters of text and output units representing the network’s suggested
pronunciation for the middle letter. The network pronounces a written text
by shifting the input window across the text, letter by letter, so that the
central letter to be pronounced moves onward a letter at a time. In English
orthography there is not, of course, a one-to-one mapping between letters
and phonemes. NETtalk relies on a rather ad hoc strategy to deal with this:
In clusters of letters realized by a single phoneme (e.g., “th,” “sh,” “ough™),
only one letter is chosen to be mapped onto the speech sound, and the others
are not mapped onto any speech sound. NETtalk learns from exposure to
text associated with the correct pronunciation using back-propagation
(Rumelhart et al., 1986). Its pronunciation is good enough to be largely
comprehensible when fed through a speech synthesizer.

Sejnowski and Rosenberg gained some insight into what their network
was doing by computing the average hidden-unit activation given each of a
total of seventy-nine different letter-to-sound combinations. For example,
the activation of the hidden-unit layer was averaged for all the words in
}vhich the letter c is pronounced as /k/, another average calculated for words
in which ¢ corresponds to /s/, and so on. Next, the relationships among the
resulting seventy-nine vectors—each construed as the network’s internal
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representation of a particular letter-to-sound correspondence—were explored
via cluster analysis. Interestingly, all the vectors for vowel sounds clustered
together, suggesting that the network had learned to treat vowels different
from consonants. Moreover, the network had learned a number of
subregularities among the letter-to-sound combinations (e.g., evidenced by
the close clustering of the labial stops /p/ and /b/ in hidden-unit space).

NETtalk was intended as a demonstration of the power of neural net-
works, rather than as a psychological model. Seidenberg and McClelland
(1989) provided the first detailed psychological model of reading aloud.
They also used a feed-forward network with a single hidden layer, but they
represented the entire written form of the word as input and the entire pho-
nological form as output. This network implemented one side of a theoreti-
cal “triangle” model of reading in which the two other sides were a pathway
from orthography to semantics and a pathway from phonology to semantics
(these sides are meant to be bidirectional, and, in fact, the implemented
network also produced a copy of the input as a second output to attempt to
model performance on lexical decision tasks, but we shall ignore this aspect
of the model here). Seidenberg and McClelland restricted their attention to
2,897 monosyllabic words of English, rather than attempting to deal with
unrestricted text like NETtalk. Inputs and outputs used the highly distrib-
uted wickelfeature type of representation that proved so controversial in the
context of past-tense models, as discussed earlier.

The net’s performance captured a wide range of experimental data (on
the reasonable assumption that the net’s error can be mapped onto response
time in experimental paradigms). For example, frequent words are read
more rapidly (with lower error) than rare words (Forster & Chambers, 1973);
orthographically regular words are read more rapidly than irregulars and
the difference between regulars and irregulars is much greater on rare rather
than frequent words (Seidenberg, Waters, Barnes, & Tanenhaus, 1984;
Taraban & McClelland, 1987).

As with the past-tense debate, a controversial claim concerning this read-
ing model was that it uses a single route to handle a quasi-regular mapping.
This contrasts with the standard view of reading, which assumes that there
are two (nonsemantic) routes in reading, a “phonological route,” which
applies rules of pronunciation, and a “lexical route,” which is simply a list
of words and their pronunciations. Regular words can be read using either
route, but irregulars must be read by using the lexical route and nonwords
must use the phonological route (these will not be known by the lexical
route). Seidenberg and McClelland (1989) claim to have shown that this
dual-route view is not necessarily correct, because their single route can
pronounce both irregular words and nonwords. Moreover, they have pro-
vided a fully explicit computational model, while previous dual-route theo-
rists had merely sketched the reading system at the level of “boxes and
arrows” (though see Coltheart, Curtis, Atkins, & Haller, 1993, and Coltheart
& Rastle, 1994, for recent exceptions).
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A number of criticisms have been leveled at Seidenberg and McClelland’s
account. Besner, Twilley, McCann, and Seergobin (1990) argued that the
model’s nonword reading is actually very poor compared with people (though
see Seidenberg & McClelland, 1990). Moreover, Coltheart et al. (1993)
argued that better performance at nonword reading can be achieved by sym-
polic learning methods, using the same word-set as Seidenberg and
McClelland.

As in the past-tense debate, the wickelfeature representation has been
criticized, leading to alternative representational schemes. For example,
Plaut and McClelland (1993) and Plaut, McClelland, Seidenberg, and
Patterson (1996) use a localist code that exploits regularities in English
orthography and phonology to avoid a completely position-specific repre-
sentation. Specifically, Plaut et al. segment monosyllable words into onset,
vowel, and coda, and orthographic units can stand for groups of letters
(e.g., wh, ea, and so on) that can correspond to a single phoneme. Their
model learns to read nonwords very well, but it does so by building in a lot
of knowledge into the representation, rather than having the network learn
this knowledge. One could plausibly assume (cf. Plaut et al.) that some of
this knowledge is acquired prior to reading acquisition; that is, children
normally know how to pronounce words (i.e., talk) before they start learn-
ing to read. This idea was explored by Harm, Altmann, and Seidenberg
(1994), who showed that pretraining a network on phonology can help learn-
ing the mapping from orthography to phonology, and was further devel-
oped by Harm and Seidenberg (1999), to which we will return.

One problem with this representational scheme, however, is that it only
works for monosyllabic words. Bullinaria (1997), on the other hand, also
ob[ai_ns very high nonword reading performance for words of any length.
He gives up the attempt to provide a single-route model of reading and aims
to model the phonological route, using a variant of NETtalk in which ortho-
graphic and phonological forms are not prealigned by the designer. Instead
of having a single output pattern, the network has many output patterns
corresponding to all possible alignments between phonology and orthogra-
phy. All possibilities are considered, and the one that is nearest to the
net}vork’s actual output is taken as the correct output, and used to adjust the
weights. This approach, like NETtalk, uses an input window that moves
gradually over the text, producing one phoneme at a time. Hence, a simple
phoneme-specific code can be used; the order of the phonemes is implicit in
the order in which the network produces them.

Another limitation of the Seidenberg and McClelland (1989) model is the
use of frequency compression during training. Rather than present rare and
frequent words equally often to the network, they presented words with a
probability proportional to their log frequency of occurrence in English (using
Kucera & Francis, 1967). Had they used raw frequency rather than log fre-
quency, the network could have encountered low-frequency items too rarely
to learn them at all; this must be counted as a difficulty for this and many
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other network models, since the human learner must deal with absolute
frequencies. Recently, however, Plaut et al. (1996) demonstrated that a
feed-forward network can be trained successfully using the actual frequen-
cies of words instead of their log frequency, even to a level of performance
similar to that of human subjects on both word and nonword pronunciation.”

Connectionist models of reading have been criticized more generally for
not modeling effects of specific lexical items (Spieler & Balota, 1997). One
defense is that current models are too partial (e.g., containing no letter
recognition and phonological output components) to be expected to model
word-level effects (Seidenberg & Plaut, 1998). But Plaut (Chapter 8, this
volume) takes up the challenge in relation to word-length effects, and trains
an SRN to pronounce words phoneme by phoneme. The network can also
refixate on the input when unable to pronounce part of a word. The model
performs well on words and nonwords, and provides a reasonably good fit
with the empirical data on word-length effects (e.g., Rastle & Coltheart,
1998; Weekes, 1997). These encouraging results suggest that the model
may provide a first step toward a connectionist account of the temporal
aspects of reading. Complementary work by Harm and Seidenberg (1999)
using a recurrent network focuses on providing a richer model of phono-
logical knowledge and processing, which is widely viewed as importantly
related to reading and reading development (e.g., Bradley & Bryant, 1983;
Goswami & Bryant, 1990).

A further difficulty for Seidenberg and McClelland’s (1989) model is the
apparent double dissociation between phonological and lexical reading in
acquired dyslexia: Surface dyslexics (Bub, Cancelliere, & Kertesz, 1985;
McCarthy & Warrington, 1986) can read exception words but not nonwords,
but phonological dyslexics (Funnell, 1983) can pronounce nonwords but
not irregular words. The standard (although not certain) inference from
double dissociation to modularity of function suggests that normal nonword
and exception-word reading are subserved by distinct systems, leading to a
dual-route model (e.g., Morton & Patterson, 1980). Acquired dyslexia can
be simulated by damaging Seidenberg and McClelland’s network in various
ways (e.g., removing connections or units). Although the results of this
damage do have neuropsychological interest (Patterson, Seidenberg, &
McClelland, 1989), they do not produce this double dissociation. An ana-
logue of surface dyslexia is found (i.e., regulars are preserved), but no
analogue of phonological dyslexia is observed. Furthermore, Bullinaria and
Chater (1995) have explored a range of rule-exception tasks using feed-
forward networks trained by back-propagation, and concluded that while
double dissociations between rules and exceptions can occur in single-route
models, this appears to occur only in very small-scale networks. In large
networks the dissociation in which the rules are damaged but the exceptions
are preserved does not occur. It remains possible that a realistic single-route
model of reading incorporating factors that have been claimed to be impor-
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tant to connectionist accounts of reading, such as word frequency' and pho-
nological consistency effects (cf. Plaut et al., 1996), might give rise to the
relevant double dissociation.® However, Bullinaria and Chater’s results in-
dicate that modeling phonological dyslexia is potentially a major challenge
for any single-route connectionist model of reading.

Single- and dual-route theorists argue about whether nonword and exception-
word reading is carried out by a single system, but agree that there is an
additional “semantic” route, in which pronunciation is retrieved via a se-
mantic code. This pathway is evidenced by deep dyslexics, who make se-
mantic errors in reading aloud, such as reading the word peach aloud as
“apricot.” Interestingly, the behavior of the putative semantic route used by
deep dyslexics has itself been modeled using connectionist methods (Hinton
& Shallice, 1991; Plaut & Shallice, 1993). Roughly, a back-propagation
network is trained to form a highly distributed mapping between words and
their meanings (a mapping that is largely, although not completely, arbi-
trary). If such a network is damaged, then the resulting pattern of errors can
involve confusing visually similar or semantically similar words, as well as
a surprisingly large number of errors that apparently have both a visual and
a semantic component. The profile of errors produced by networks of this
kind seems to map, at least in a qualitative way, onto the patterns observed
in deep dyslexics. The semantic route used by deep dyslexics is, according
to Plaut et al. (1996), also involved in normal reading. In particular, they
suggest that a division of labor emerges between the phonological and the
semantic pathways during reading acquisition. Roughly, the phonological
pathway moves toward a specialization in regular (consistent) orthography-
to-phonology mappings at the expense of exception words, which are read
by the semantic pathway.

The putative effect of the latter pathway was simulated by Plaut et al.
(1996) as extra input to the phoneme units in a feed-forward network trained
to map orthography to phonology. The strength of this external input is
frequency dependent and gradually increases during learning. As a result,
Ll_le network comes to rely on this extra input. If eliminated (following a
simulated lesion to the semantic pathway), the net loses much of its ability
to read exception words, but retains good reading of regular words as well
as nonwords. Thus, Plaut et al. provide a more accurate account of surface
dyslexia than Patterson et al. (1989). Conversely, selective damage to the
phonological pathway (or to phonology itself) should produce a pattern of
deficit resembling phonological dyslexia: reasonably good word reading
but impaired nonword reading. However, this hypothesis was not tested
directly by Plaut et al.

The Plaut et al. (1996) account of surface dyslexia has been challenged
by the existence of patients with considerable semantic impairments but
Who demonstrate a near-normal reading of exception words. Plaut (1997)
Presents simulations results, suggesting that variations in surface dyslexia
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may stem from premorbid individual differences in the division of labor
between the phonological and semantic pathways. In particular, if the pho-
nological pathway is highly developed prior to lesioning, a pattern of se-
mantic impairment with good exception-word reading can be observed in
the model.

Whereas Seidenberg and McClelland (1989) and Plaut et al. (1996) de-
fend the viewpoint that there is just one nonsemantic route in reading, it is
also possible for computational models of reading to embody the opposite
view, that there are two nonsemantic routes in reading. Coltheart et al.
(1993) have implemented a nonlexical route in which the * grapheme-phoneme
correspondences” embodying regular English pronunciation is a nonconnec-
tionist, symbolic algorithm. A second lexical pathway is modeled as a
connectionist interactive activation network (Coltheart & Rastle, 1994),
building on McClelland and Rumelhart’s (1981) model of letter and word
recognition, described earlier. This implementation of the dual-route view
closely follows previous dual-route theoretical proposals (Baron & Strawson,
1976; Coltheart, 1978; Morton & Patterson, 1980). One route is specifi-
cally designed to learn grapheme-phoneme correspondences; the other is
specifically designed to read whole words.

In Coltheart’s models, the characteristics of each of the two routes are
built in, rather than emerging in some natural way from the constraints of
the learning task. Zorzi, Houghton, and Butterworth (1998a, 1998b; see
also Zorzi, 2000) suggest an elegant alternative. They show that the grapheme-
phoneme correspondences in English monosyllabic words can be learned by
a connectionist network with no hidden units. Input and output are repre-
sented in a simple localist code. There is a separate unit for each letter at
each location in the word, and the alignment of the letters and phonemes
represents letter positions in relation to the onset-rime structure of the word
(the onset is the consonant cluster before the vowel, if any, and the rime is
the rest of the word) (Zorzi et al., 1998a). This route learns to read regular
words and nonwords correctly, but it cannot deal with exception words
effectively. Zorzi et al. (1998b) consider a standard feed-forward network
that has a “direct” path from orthography to phonology (i.e., there are no
hidden units as before), but which also has an “indirect” path, mediated by
a single layer of hidden units. Training this network using standard back-
propagation (Rumelhart et al., 1986) leads to an automatic decomposition

of the reading task into two functionally separate procedures. Whereas the
direct pathway learns grapheme-phoneme correspondences, the indirect |
pathway uses its hidden units to deal with the word-specific information |
required to handle exception words. The overall reading performance of g

this very simple model is surprisingly good, and lesions to the direct or

indirect routes produce errors broadly in line with the patterns observed in

phonological and surface dyslexia.
Finally, a recent connectionist model has provided insights into develop-

mental rather than acquired dyslexia. Harm and Seidenberg (1999) traineda |
4
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network to read in two stages, embodying the observation that children
clearly learn_ a great deal about the phonology of their natural language
pefore learning to map written material onto that phonology. First, they
trained a subnetwork consisting of units representing phonetic features to
learn the structure of monosyllabic English words. This was done by train-
ing the network to auto-associate patterns representing words via a layer of
“clean-up” units: The idea is that, after training, the clean-up units are able
to correct any errors or omissions in the phonetic representation of a word
(the idea of clean-up units had previously been used by Hinton & Shallice,
1991, and Plaut & Shallice, 1993, in the context of cleaning up semantic
representations in models of deep dyslexia). To restore errors in the pho-
petic representation effectively, the subnetwork has to learn the regularities
of English phonology. Then they trained a back-propagation network to
map orthography to phonology, where the output units that embodied the
phonological representation were still associated with the clean-up units.
After both phases of training, the resulting network showed a good level of
reading performance and replicated the main findings of previous reading
models (Seidenberg & McClelland, 1989; Plaut et al., 1996). Moreover,
the model shows the potential significance that phonological knowledge may
play in assisting reading development: The model trained in two stages
learns more quickly than a model that is given no pretraining on phonology.
Harm and Seidenberg (1999) argue that different kinds of damage to the
model give rise to analogues of developmental phonological dyslexia and
developmental surface dyslexia. This is surprising, because the network
does not have separate phonological and lexical reading routes; instead, it is
a single homogeneous network. Specifically, Harm and Seidenberg argue
that phonological dyslexia can be modeled by impairing the phonological
knowledge learned in the first stage of training; for example, by imposing a
“decay” on weights in the trained phonological subnetwork or, more dras-
tica_lly, removing the clean-up units entirely. These kinds of damages ex-
plfnn developmental phonological dyslexia in terms of an underlying difficulty
w1t]_.1 phonological processing, and hence predict that developmental phono-
logical dyslexics will have difficulties with, for example, phonological aware-
ness tasks, as well as difficulties learning the grapheme-phoneme
corrgspondence rules of English. This prediction appears to be born out in
the ht(_erature (e.g., Share, 1995). By contrast, Harm and Seidenberg view
what is often termed developmental surface dyslexia as no more than a
delay in the development of normal reading. If this hypothesis is right, then
the pattern of reading performance for children with this disorder should be
similar to that of younger normal readers. Thus, for example, developmen-
tal surface dyslexics should be impaired in their reading not just of irregular
words, but also of regular words, when compared to age-matched controls.
Harm and Seidenberg argue that this slowing could arise from a number of
Eactor;, including lack of exposure to written materials or an inappropriate
learning rate.” A learning rate may be inappropriate if it is either too
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small, slowing the learning process unnecessarily, or too large, so that the
weights jump about excessively rather than converging on a “good” solution.
In their simulations, Harm and Seidenberg adopt yet a further approach,
slowing learning by using too few hidden units in the back-propagation
network mapping orthography to phonology (this approach was previously
explored in a preliminary way by Seidenberg & McClelland, 1989). Harm
and Seidenberg provide detailed comparisons of the performance of their
accounts of both phonological and surface forms of developmental dyslexia
with the empirical data. This model therefore stands as a powerful chal-
lenge to conventional two-route views of developmental dyslexia (e.g.,
Castles & Coltheart, 1993; Coltheart et al., 1993). Indeed, Harm and Seiden-
berg have also shown how a strong double dissociation between reading
nonwords and exception words can arise using a single homogeneous net-
work. Although suggestive in relation to similar arguments from
neuropsychology, as discussed earlier, it remains to be shown that a simi-

larly crisp pattern of dissociation can be obtained in modeling acquired

rather than developmental dyslexia.

Overall, it is clear that the debate between single- and dual-route ac- |
counts of nonsemantic reading have not been settled by the growing preva- |
lence of connectionist models. But the advent of connectionist modeling has |
shifted the debate from typically qualitative discussions of the rival accounts
to increasingly sophisticated computational models of the rival positions,
which are explicit and produce testable empirical predictions concerning

normal reading and the acquired dyslexias. More generally, connectionist

models of reading have become central to theory building in the study of |
reading, and have therefore had a substantial influence on the direction of
related experimental and neuropsychological research. With respect to the |
three criteria for connectionist psycholinguistics, connectionist research on

reading has good data contact and reasonable input representativeness. Task
veridicality is open to questioning: Children may typically not directly asso- *
ciate written and spoken forms for individual words when learning to read
(though Harm and Seidenberg, 1999, partially address this issue). A major |
challenge for future research is to synthesize the insights gained from de-
tailed models of different aspects of reading into a single model. i

PROSPECTS FOR CONNECTIONIST PSYCHOLINGUISTICS

We have seen that controversy surrounds both the past and current sig-
nificance of connectionist psycholinguistics. Current connectionist models
as exemplified in Part I of this volume involve drastic simplifications with

4
respect to real natural language. How can connectionist models be scaled up !

to provide realistic models of human language processing? Part II provides
three different perspectives on how connectionist models may develop.
Seidenberg and MacDonald (Chapter 9, this volume) argue that connec- |

|

tionist models will be able to replace the currently dominant symbolic mod- |
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eI:§ of language structure and language processing throughout the cognitive
science pfllanguage. They suggest that connectionist models exemplify a
p_robab;l:‘snc ;a(her than a rigid view of language that requires the founda-
tions of linguistics as well as the cognitive scienc
S eri gnitive science of language more gener-
Smolgns_ky (Chapter 10, this volume), by contrast, argues that current
connectionist models alone cannot handle the full complexity of linguistic
structure and la_nguage processing. He suggests that progress requires a
match between insights from the generative grammar approach in linguis-
tics _and tha computational properties of connectionist systems (e.g., con-
?[rami_sans_faction). He exemplifies this approach with two gré;rlmar
ormalisms inspired by connectionist i
e il y systems, Harmonic Grammar and
Steedman (Chapter 11, this volume) argues that claims that connectionist
systems can take_ over the territory of symbolic views of language, such as
synlrax Or semantics, are premature. He suggests that connectionist :;ncl Sym-
bolic approaches to language and language processing should be viewed as
complementary, but as currently dealing with different aspects of language
pror:jcssmg No‘:e[lheless, Steedman believes that connectionist systems mfy
provide the underlying architecture on which high- i
Sl ying hich high-level symbolic process-
. Whatever th_e outcome of these important debates, we note that connec-
tionist psyc;holmguistics has already had an important influence on the psy-
cho]oggf of language. First, connectionist models have raised the level gf
theoret:g:al debate in many areas by challenging theorists of all viewpoints
to provrdg computationally explicit accounts. This has provided the basis
for more informed discussions about processing architecture (e g., single-
versus dual-route mechanisms and interactive Versus botmm-ulp ‘iarocess—
u?g). Seco:_]d, the learning methods used by connectionist models have rein-
Vigorated interest in computational models of language learning (Bates &
EITan, 1993). While Chomsky (e.g., 1986) has argued for innate “univer-
sal aspects of language, the vast amount of language-specific information
that the child acquires must be learned. Connectionist models may account for
how some of this learning occurs. Furthermore, connectionist models provide a
test bed fpr the learnability of linguistic properties previously assumed to be
innate, ‘Fmal]y, the dependence of connectionist models on the statistical
Properties of their input has contributed to the upsurge of interest in statis-
tical factors in language learning and processing (MacWhinney Leinbach
Taraban, & McDonald, 1989; Redington & Chater, 1998). ’
eniogﬁe:glomst psycholinguistics has thus already had considerable influ-
denends One t}[})s;;lchology of lgnguage: But the final extent of this influence
‘S e degree to wh;ch practical connectionist models can be devel-
iy extended to c!eal with comp!ex aspects of language processing in a
3 ologically reahsnf: way. If realistic connectionist models of language
Processing can be provided, then the possibility of a radical rethinking, not
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just of the nature of language processing but of the structure of language
itself, may be required. It might be that the ultimate description of language
resides in the structure of complex networks, and can only be approximated
by rules of grammar. Or perhaps connectionist learning methods do not
scale up and connectionism can only succeed by reimplementing standard
symbolic models. The future of connectionist psycholinguistics is therefore
likely to have important implications for the theory of language processing
and language structure, either in overturning or reaffirming traditional psy-
chological and linguistic assumptions.

FURTHER READINGS

The suggested readings are grouped according to the general structure of
the chapter.

Background
The PDP volumes (McClelland & Rumelhart, 1986, and Rumelhart &

McClelland, 1986b) provide a solid introduction to the application of
connectionist networks in cognitive models. Smolensky (1988) offers a |

connectionist alternative to viewing cognition as symbol manipulation,

whereas Fodor and Pylyshyn (1988) is a classic critique of connectionism.

Elman et al. (1996) details a more recent, broad perspective on connectionism

and cognitive development, but see Marcus (1998) for an opposing view.

For further discussions, see Seidenberg and MacDonald (Chapter 9, this
volume) and Smolensky (Chapter 10, this volume). Finally, McLeod,
Plunkett, and Rolls (1998) is a good introduction to the art of conducting
connectionist simulations. The book includes simulators for PC and Maclntosh

computers as well as exercises with the major network architectures dis- 1

cussed in this chapter.

Speech Processing

The influential TRACE model of speech perception is described in &
McClelland and Elman (1986). The empirical study of the compensation for =

coarticulation is found in Elman and McClelland (1988). Gaskell and Marslen-
Wilson (Chapter 3, this volume) explore issues related to a connectionist,
bottom-up approach to spoken-word recognition. Turning to word segmen-

tation, Cairns et al. (1997) and Christiansen, Allen, et al. (1998) present

two models of this area of speech processing.

Morphology

The classic connectionist model of English past-tense acquisition is

Rumelhart and McClelland (1986a), with Pinker and Prince (1988) provid- 3
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ing the first comprehensive criticism of this model. See Plunkett and
Marchman (1993) and Pinker (1991) for recent updates. Over time the de-
bate has also spread to other areas of inflectional morphology, such as the
acquisition of English noun plurals (dual mechanism, Marcus, 1995; single
mechanism, Plunkett & Joula, Chapter 4, this volume), as well as cross-
linguistically to the acquisition of German noun plurals (dual mechanism,
Clahsen et al., 1993; single mechanism, Hahn & Nakisa, in press).

Sentence Processing

Elman (1990, 1991) presents an influential connectionist approach to the
learning of syntactic regularities, but see Hadley (1994a) for a criticism of
this and other connectionist models of syntax. Christiansen and Chater (Chap-
ter 5, this volume) extend this approach to cover complex recursive pro-
cessing, whereas Tabor and Tanenhaus (Chapter 6, this volume) investigate
the effects of semantic role expectations on sentence processing. For a struc-
tured connectionist approach to the processing of sentences, see Miikkulainen
(1996). Steedman (Chapter 11, this volume) provides a critical perspective
on connectionist models of syntax.

Language Production

The classic spreading activation model of speech production and speech
errors is Dell (1986). Dell et al. (Chapter 7, this volume) describe three
subsequent models: an extension to the original model applied to the model-
ing of aphasic patient data, a bottom-up alternative to the original model of
speech errors, and a model of syntactic priming in sentence production.
Other connectionist approaches are found in Harley (1993), among others.

Reading

The early interactive activation model of visual word recognition is found
in McClelland and Rumelhart (1981). Seidenberg and McClelland (1989) is
the classic single-mechanism, connectionist model of reading. Coltheart et
al. (1993) provide a criticism of this model and a symbolic alternative. For
the most recent advancement of this discussion, see Plaut et al. (1996),
Harm and Seidenberg (1999), and Zorzi et al. (1998b), as well as Plaut
(Chapter 8, this volume).

NOTES

This work was partially supported by the Leverhulme Trust and by European
Commission Grant RTN-HPRN-CT-99-00065 to Nick Chater.
1. The term “connectionism,” referring to the use of artificial neural networks
10 model cognition, was coined by Feldman and Ballard (1982).
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2. The idea of copying back output as part of the next input was first proposed
by Jordan (1986).

3. Wickelfeatures are generated in a similar way to wickelphones. The latter
involve decomposing a phoneme strings into consecutive triples. Thus, the phoneme
string /ket/ (caf) is decomposed into the /_ka&/, /ket/, and /®t /. Notice that the
triples are position independent, but that the overall string can be pieced together
again from the triples (in general, as Pinker & Prince, 1988, have noted, this piecing
together process cannot always be carried out successfully, but in this context it is
adequate). Wickelfeatures correspond to triples of phonetic features rather than triples
of entire phonemes.

4. In this connection, type frequency refers to the number of different words
belonging to a given class, each counted once (e.g., the number of different regular
verbs). Token frequency, on the other hand, denotes the number of instances of a
particular word (e.g., number of occurrences of the verb have). As pointed out by
Pinker and Prince (1988), the Rumelhart and McClelland (1986a) model was not
able to adequately accommodate the subregularities.

5. In these simulations, novel words corresponded to units that had not been
activated during training. .

6. A somewhat similar model of speech production was developed indepen-
dently by Stemberger (1985). This model was inspired by the interactive activation
framework of McClelland and Rumelhart (1981), whereas Dell’s (1986) work was not.

7. Note that Plaut et al. (1996) used these (actual) frequencies to scale the con-
tribution of error for each word during back-propagation training, rather than to
determine the number of word presentations. They also employed a different repre-
sentational scheme (due to Plaut & McClelland, 1993) than Seidenberg and McClelland
(1989).

8. Whereas “regularity” (the focus of the Bullinaria & Chater, 1995, simula-
tions) can be taken as indicating that the pronunciation of a word appears to follow
a rule, “consistency” refers to how well a particular word’s pronunciation agrees
with other similarly spelled words. The magnitude of the latter depends on how
many “friends” a word has (i.e., the summed frequency of words with similar spell-
ing patterns and similar pronunciation) compared with how many “enemies” (i.e.,
the summed frequency of words with similar spelling patterns but different pronun-
ciations) (Jared, McRae, & Seidenberg, 1990).
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