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Finite Models of Infinite Language:
A Connectionist
Approach to Recursion

Morten H. Christiansen and Nick Chater

In linguistics and psycholinguistics it is standard to assume tha!t natural lgn—
guage involves rare but important recursive constructions. This assumption
originates with Chomsky’s (1957, 1959, 1965)_ar_gumcnts tl_1at the gram-
mars for natural languages exhibit potentially unlimited recursion. Chomsky
assumed that if the grammar allows a recursive construction it can apply
arbitrarily many times. Thus, if (1) is sanctioned with one level of ref;ur-
sion, then the grammar must sanction arbitrarily many levels of recursion,
generating, for example, (2) and (3).

(1) The mouse that the cat bit ran away.
(2) The mouse that the cat that the dog chased bit ran away.
(3) The mouse that the cat that the dog that the man frightened chased bit ran away.

But people can only deal easily with relatively simple recur_sive structures
(e.g., Bach, Brown, & Marslen-Wilson, 1986). Sentences like (2) and 3)
are extremely difficult to process. _ ’
Note that the idea that natural language is recursive requires broadening
the notion of which sentences are in the language to include sentences like
(2) and (3). To resolve the difference between language so construed and
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the language that people produce and comprehend, Chomsky (e.g., 1965)
distinguished between linguistic competence and human performance. Com-
petence refers to a speaker-hearer’s knowledge of the language, as studied
by linguistics. In contrast, psycholinguists study performance—that is, how
linguistic knowledge is used in language processing, and how nonlinguistic
factors interfere with using that knowledge. Such “performance factors”
are invoked to explain why some sentences, while consistent with linguistic
competence, will not be said or understood.

The claim that language allows unbounded recursion has two key impli-
cations. First, processing unbounded recursive structures requires unlim-
ited memory; this rules out finite-state models of language processing.
Second, unbounded recursion was said to require innate knowledge, be-
cause the child’s language input contains so few recursive constructions.
These implications struck at the heart of the then-dominant approaches to
language. Both structural linguistics and behaviorist psychology (e.g., Skin-
ner, 1957) lacked the generative mechanisms to explain unbounded recur-
sive structures. And the problem of learning recursion undermined both the
learning mechanisms described by the behaviorists and the corpus-based
methodology of structural linguistics. More important, for current cogni-
tive science, both problems appear to apply to connectionist models of lan-
guage. Connectionist networks consist of finite sets of processing units, and
therefore appear to constitute a finite-state model of language, just as be-
haviorism assumed; connectionist models learn by a kind of associative
learning algorithm, more elaborate than but similar in spirit to that postu-
lated by behaviorism. Furthermore, connectionist models attempt to learn
the structure of the language from finite corpora, echoing the corpus-based
methodology of structural linguistics. Thus, it seems that Chomsky’s argu-
ments from the 1950s and 1960s may rule out, or at least limit the scope of,
current connectionist models of language processing.

One defense of finite-state models of language processing to which the
connectionist might turn is that connectionist models should be performance
models, capturing the limited recursion people can process, rather than the
unbounded recursion of linguistic competence (e.g., Christiansen, 1992),
as the examples illustrate. Perhaps, then, finite-state models can model ac-
tual human language processing successfully.

This defense elicits a more sophisticated form of the original argument:
What is important about generative grammar is not that it allows arbitrarily
complex strings, but that it gives simple rules capturing regularities in lan-
guage. An adequate model of language processing must somehow embody
grammatical knowledge that can capture these regularities. In symbolic com-
putational linguistics, this is done by representing grammatical information
and processing operations as symbolic rules. While these rules could, in
principle, apply to sentences of arbitrary length and complexity, in practice
they are bounded by the finiteness of the underlying hardware. Thus, a
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symbolic model of language processing, such as CC-READER (Just & Car-
penter, 1992), embodies the competence-performance distinction in this
way: Its grammatical competence consists of a set of recursive production
rules that are applied to produce state changes in a working memory. Limi-
tations on the working memory’s capacity explain performance limitations
without making changes to the competence part of the model. Thus, a finite
processor like CC-READER captures underlying recursive structures. Un-
less connectionist networks can perform the same trick, they cannot be com-
plete models of natural language processing.

From the perspective of cognitive modeling, therefore, the unbounded
recursive structure of natural language is not axiomatic. Nor need the sug-
gestion that a speaker-hearer’s knowledge of the language captures such
infinite recursive structure be taken for granted. Rather, the view that “un-
speakable” sentences that accord with recursive rules form a part of the
knowledge of language is an assumption of the standard view of language
pioneered by Chomsky and now dominant in linguistics and much of
psycholinguistics. The challenge for a connectionist model is to account for
those aspects of human comprehension-production performance that sug-
gest the standard recursive picture. If connectionist models can do this with-
out making the assumption that the language processor really implements
recursion, or that arbitrarily complex recursive structures really are sen-
tences of the language, then they may present a viable, and radical, alterna-
tive to the standard “generative” view of language and language processing.

Therefore, in assessing the connectionist simulations that we will report,
which focus on natural language recursion, we need not require that
connectionist systems be able to handle recursion in full generality. Instead,
the benchmark for performance of connectionist systems will be set by hu-
man abilities to handle recursive structures. Specifically, the challenge for
connectionist researchers is to capture the recursive regularities of natural
language, while allowing that arbitrarily complex sentences cannot be
handled. This requires handling recursion at a comparable level to human
performance, and learning from exposure and generalizing to novel recur-
sive constructions. Meeting this challenge involves providing a new ac-
count of people’s limited ability to handle natural language recursion, without
assuming an internally represented grammar that allows unbounded recur-
sion (i.e., without invoking the competence-performance distinction).!

Here, we consider natural language recursion in a highly simplified form.
We train connectionist networks on small artificial languages that exhibit
the different types of recursion in natural language. This directly addresses
Chomsky’s (1957) arguments that recursion in natural language in principle
rules out associative and finite-state models of language processing. Con-
sidering recursion in a pure form permits us to address the in-principle
viability of connectionist networks in handling recursion, just as simple
artificial languages have been used to assess the feasibility of symbolic pa-
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rameter-setting approaches to language acquisition (Gibson & Wexler. 1994:
Niyogi & Berwick, 1996). .

The_ structure of this chapter is as follows. We begin by distinguishing
varieties of recursion in natural language. We then summarize past connec-
tionist research on natural language recursion. Next, we introduce three
artificial lf'mguages, based on Chomsky’s (1957) three kinds of recursion
and describe the performance of connectionist networks trained on thesé
languages. These results suggest that the networks handle recursion to a
degree comparable with humans. We close with conclusions on the pros-
pects of connectionist models of language processing.

VARIETIES OF RECURSION

Chomsky (1957) introduced the notion of a recursive generative gram-
mar. Early generative grammars were assumed to consist of phrase struc-
ture rules and transformational rules (which we shall not consider). Phrase
structure rules have the form 4 - BC, meaning that the symbol 4 can be
replaced by the concatenation of B and C. A phrase structure rule is recur-
sive if a symbol X is replaced by a string of symbols that includes X itself
(e.g., A = BA). Recursion can also arise through applying recursive sets of
rules, none of which need individually be recursive. When such rules are
used successively to expand a particular symbol, the original symbol may
eventually be derived. A language-construction modeled using recursion
rules _is a recursive construction; a language has recursive structure if it
contains such constructions.

Modern generative grammar employs many formalisms, some distantly
related to phrase-structure rules. Nevertheless, corresponding notions of
recursion within those formalisms can be defined. We shall not consider such
complexities here, but use phrase-structure grammar throughout.

Several kinds of recursion are relevant to natural language. First, there are
ﬂ}ose generating languages that could equally well be generated nonrecur-
sively, by iteration. For example, the rules for right-branching recursion
shown in Table 5.1 can generate the right-branching sentences (4) through (6):

(4) John loves Mary.
(5) John loves Mary who likes Jim.
(6) John loves Mary who likes Jim who dislikes Martha.

Bu_t these structures can be produced or recognized by a finite-state machine
using iteration. The recursive structures of interest to Chomsky, and of
Interest here, are those where recursion is indispensable. ,

~ Chomsky (1957) invented three artificial languages generated by recur-
Sive rules from a vocabulary consisting only of @’s and b’s. These lan-
guages cannot be generated or parsed by a finite-state machine. The first
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Table 5.1
A Recursive Set of Rules for Right-Branching
Relative Clauses

S — NPVP

NP — N (comp S)

VP — V (NP)

Key: S = sentence; NP = noun phrase; VP = verb
phrase; N = noun; comp = complementizer; V
= verb; constituents in parentheses are optional.

language, which we call counting recursion, was inspired by sentence con-
structions like if S, then S; and either S, or S,. These can, Chomsky as-
sumed, be nested arbitrarily, as in (7) through (9):

(7) if S, then S,
(8) if if S, then S, then S..
(9) if if if S, then S, then S, then S,,.

The corresponding artificial language has the form @'b”, and includes the
following strings:

(10) ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb, . . .

Unbounded counting recursion cannot be parsed by any finite device pro-
cessing from left to right, because the number of as must be stored, and this
can be unboundedly large and hence can exceed the memory capacity of any
finite machine. '

The second artificial language was modeled on the center-embedded con-
structions in many natural languages. For example, in sentences (1) through
(3) the dependencies between the subject nouns and their respective verbs
are center-embedded, so that the first noun is matched with the last verb, the
second noun with the second to last verb, and so on. The artificial language
captures these dependency relations by containing sentences that consists of
a string X of as and bs followed by a “mirror image” of X (with the words
in the reverse order), as illustrated by (11):

(11) aa, bb, abba, baab, aaaa, bbbb, aabbaa, abbbba, . . .
Chomsky (1957) used the existence of center-embedding to argue that natu-

ral language must be at least context-free, and beyond the scope of any
finite machine.
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The final artificial language resembles a less common pattern in natural
language, cross-dependency, which is found in Swiss-German and in Dutch,
as in (12) through (14) (from Bach et al., 1986):2

(12) De lerares heeft de knikkers opgeruimd.
Literal: The teacher has the marbles collected up.
Gloss: The teacher collected up the marbles.

(13) Jantje heeft de lerares de knikkers helpen opruimen.
Literal: Jantje has the teacher the marbles help collect up.
Gloss: Jantje helped the teacher collect up the marbles.

(14) Aad heeft Jantje de lerares de knikkers laten helpen opruimen.
Literal: Aad has Jantje the teacher the marbles let help collect up.
Gloss: Aad let Jantje help the teacher collect up the marbles.

Here, the dependencies between nouns and verbs are crossed such that the
first noun matches the first verb, the second noun matches the second verb,
and so on. This is captured in the artificial language by having all sentences
consist of a string X followed by an identical copy of X, as in (15):

(15) aa, bb, abab, baba, aaaa, bbbb, aabaab, abbabb, . . .

The fact that cross-dependencies cannot be handled using a context-free
phrase-structure grammar has meant that this kind of construction, although
rare even in languages in which it occurs, has assumed considerable impor-
tance in linguistics.> Whatever the linguistic status of complex recursive
constructions, they are difficult to process compared to right-branching struc-
tures. Structures analogous to counting recursion have not been studied in
psycholinguistics, but sentences such as (16), with just one level of recur-
sion, are plainly difficult (see Reich, 1969):

(16) If if the cat is in, then the dog cannot come in then the cat and dog dislike each
other.

The processing of center-embeddings has been studied extensively, show-
ing that English sentences with more than one center-embedding (e.g., sen-
tences [2] and [3]) are read with the same intonation as a list of random
words [Miller, 1962]), that they are hard to memorize (Foss & Cairns, 1970;
Miller & Isard, 1964), and that they are judged to be ungrammatical (Marks,
}968). Using sentences with semantic bias or giving people training can
improve performance on such structures to a limited extent (Blaubergs &
Braine, 1974; Stolz, 1967). Cross-dependencies have received less empiri-
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cal attention, but present similar processing difficulties to center-embeddings
(Bach et al., 1986; Dickey & Vonk, 1997).

CONNECTIONISM AND RECURSION

Connectionist models of recursive processing fall into three broad classes.
Some early models of syntax dealt with recursion by “hard-wiring” sym-
bolic structures directly into the network (e.g., Fanty, 1986; Small, Cottrell, &
Shastri, 1982). Another class of models attempted to learn a grammar from
“tagged” input sentences (e.g., Chalmers, 1990; Hanson & Kegl, 1987;
Niklasson & van Gelder, 1994; Pollack, 1988, 1990; Stolcke, 1991). Here,
we concentrate on a third class of models that attempts the much harder task of
learning syntactic structure from strings of words (see Christiansen & Chater,
Chapter 2, this volume, for further discussion of connectionist sentence-
processing models). Much of this work has been carried out using the simple
recurrent network (SRN) (Elman, 1990) architecture. The SRN involves a
crucial modification to a standard -feed-forward network—a so-called con-
text layer—allowing past internal states to influence subsequent states (see
Figure 5.1). This provides the SRN with a memory for past input, and
therefore an ability to process input sequences, such as those generated by
finite-state grammars (e.g., Cleeremans, Servan-Schreiber, & McClelland,
1989; Giles et al., 1992; Giles & Omlin, 1993; Servan-Schreiber,
Cleeremans, & McClelland, 1991).

Previous efforts at modeling complex recursion fall into two categories:
simulations using language-like grammar fragments and simulations relating to
formal language theory. In the first category, networks are trained on rela-
tively simple artificial languages, patterned on English. For example, Elman
(1991, 1993) trained SRNs on sentences generated by a small context-free
grammar incorporating center-embedding and one kind of right-branching
recursion. Within the same framework, Christiansen (1994, 2000) trained
SRNSs on a recursive artificial language incorporating four kinds of right-
branching structures, a left-branching structure, and center-embedding or
cross-dependency. Both found that network performance degradation on
complex recursive structures mimicked human behavior (see Christiansen
& Chater, Chapter 2, this volume, for further discussion of SRNs as models
of language processing). These results suggest that SRNs can capture the
quasi-recursive structure of actual spoken language. One of the contribu-
tions of this chapter is to show that the SRN’s general pattern of perfor-
mance is relatively invariant over variations in network parameters and
training corpus. Thus, we claim, the humanlike pattern of performance arises
from intrinsic constraints of the SRN architecture.

While work in the first category has been suggestive but relatively unsys-
tematic, work in the second category has involved detailed investigations of
small artificial tasks, typically using very small networks. For example,
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Figure 5.1
The Basic Architecture of a Simple Recurrent Network

Output (17 units)

L ]

Hidden
(2-100units) L f---m--- .

‘: copy-back
L 1L <
Input (17 units)

Context (2-100 units)

The rectangles correspond to layers of units. Arrows wi id 1
. : s with solid lines denote trainable weigh
whereas the arrow with the dashed line denotes the copy-back connections N

Wiles and Elman (1995) made a detailed stud i i i
recurrent networks with 2 hidden units and fougdo;~ Egt'.:::r?(gﬂ:zf l;gsggglﬁlég
to inputs far longer than those used in training.* Batali (1994) used the same
language, but employed 10HU SRNs and showed that networks could reach
gooc{ levels of performance when selected by a process of “simulated evolu-
tion” and _then trained using conventional methods. Based on a mathemati-
cal analysis, Steijvers and Griinwald (1996) hard-wired a second-order 2HU
recurrent network (Giles et al., 1992) to process the context-sensitive countin
Iangu_age ba)'b(a)* . . . for values of k between 1 and 120. An interesting
question, which we will address, is whether performancé changes witﬁ
more _than' two vocabulary items; for example, if the network must learn
to assign 1tems_10 different lexical categories (“noun” and “verb”) as well
?Ss ﬁig;}ni atttenF;En to dependencies between these categories. This question
rant wi res
S pect to the relevance of these results for natural lan-
No detailed studies have previously been conducted with center-embeddin
or cross-dependency constructions. The studies presented here comprehen%
sn_fely compare all three types of recursion discussed in Chomsky (1957)
with simple r;ght—branc'hing recursion as a baseline. Using these abstrac;
languages allows recursion to be studied ina “pure” form, without interfer-
;}1{01:‘:I ,t;r(:: ;Jther factors.lDespite the idealized nature of these languages, the
rformance qualitati imi
o S Etmcit;::_ly conforms to h'uman performance on simi-
A novel aspect of these studies is comparison with performance bench-
Marks from_ statistical linguistics. The benchmark method is based on n-
grams; that is, strings of n consecutive words. It is trained on the same input
as the networks, and records the frequency of each n-gram. It predicts new
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words from the relative frequencies of the n-grams that are consistent with
the previous n - 1 words. The prediction is a vector of relative frequencies
for each possible successor item, scaled to sum to 1 8o that they can be
interpreted as probabilities, and are comparable with the output vectors of
the networks. We will compare network performance with the predictions
of bigram and trigram models.’ These simple models can provide insight
into the sequential information the networks pick up, and make a link with

statistical linguistics (e.8., Charniak, 1993).

THREE BENCHMARK TESTS CONCERNING RECURSION

We constructed three languages to provide input to the network. Each
language has two recursive structures: one of the three complex recursive
constructions and the right-branching construction as a baseline. Vocabu-
lary items were divided into “nouns” and “verbs,” incorporating both sin-
gular or plural forms. An end of sentence marker (EOS) completes each

sentence.
i. Counting Recursion

aabb NNVV

we treat Chomsky’s symbols @ and b as the catego-

For counting recursion,
and ignore singular-plural agreement.

ries of noun and verb, respectively,

ii. Center-Embedding Recursion

abba S, PyP,Sy the boy girls like runs

In center-embedding recursi
singular and plural words (whet

for number, as in center-embedded constructions in natural language.

iii. Cross-Dependency Recursion

abab S,PyS, By 1the boy girls runs like

+) =

In cross-dependency recursion,
singular and plural words. Nouns and

dependency constructions.

on, we map a and b onto the categories of
her nouns or verbs). Nouns and verbs agree

we map a and b onto the categories of &
verbs agree for number, as in cross-
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iv. Right-Branching Recursion

aabb P:Po8.. S girls like the boy that runs
B P beeski el e | ISR

. For right-branching recursion, we map a and b onto the categori

singular gnd plural words. Nouns and verbs agree, as in right- S e
dimdhe , as in right-branching

Thus, t.he cogmmg—recursive language consisted of both counting-recursi
cpnstructlons (i) interleaved with right-branching recursive COI’gIS'EI'U e
(%v), the centgr-embedding recursive language of center-embedded oo
sive cqnstrucuons (i) interleaved with right-branching recursive c TCCUT‘-
11011115 (!:), and the cross-dependency recursive language of cross-depgrrllcslfarrlll:};

ecursive i iii) i ith ri

;[ructionsc(?il)s.tructlons (iii) interleaved with right-branching recursive con-

How can we assess how well a network has learned these languages? B
analog‘:v with st-fmdard linguistic methodology, we could traingtheg t'Sé 4
make grammat1(?ality judgments,” that is, to distinguish legal and nonllt t(;
sentences. But this chapter focuses on performance on recursive str [tl e
rlathel" than metalinguistic judgments (which are often assumed to : ﬁ L;I'CS,
linguistic competence).® Therefore, we use a task that directl adfl e tg

how Fhe {legw?rk processes sentences, rather than requirin yit to Tessi
metalinguistic judgments. Elman (1990) suggested such an ap %oach \Lrllla E
E:fwfi)erckomct stfmd;rd in SRN studies of natural language prl;cessilig 'Izﬁe
is trained to predict the next item in a sequence, given re.v‘ 5
i?gg);tt. !T:a; 15.1,n the SRN gets an input word at time ¢ and thgen pre[slictsl?;z
s oo il it e peticr Bl 1 ol oA pé caras

o8, : e : while it is not possible to be certai
what item will come next, it is possible to predict successfull ik Bt
are possible continuations and which are not, accordi ez pities
in _the corpus. To the extent that the network can p?;cllizf sfcizs;ﬁﬁmart}lues
it is learning the regularities underlying the language s

SIMULATION RESULTS

W ;
i fy it[rlfufl::d Sl_le on the three languages, using a sixteen-word vocabu-
fou); b lour Sngliar nouns, four singular verbs, four plural nouns, and
ural verbs.” All nets had 17 input and ou i i :
' tput units (see Figure 5.1
:;Tt:_: u(rjn]las correspond to words or the EOS marker. The hidgden laye)n’"
ined between 2 and 100 units. Exce . ini
i : pt where noted, trainin
consisted of 5,000 variable-len , 00 movel
; -length sentences, and test corpora of 50
sentences, generated in the sam aini iy e
. e way. The training and test i
overlap. Each corpus was i i e
y concatenated into a single lon i
- g string and pre-
pr?::ccllstg the network word by ?vord. Both training and test cor%wra cpo)rn-
percent complex recursive constructions interleaved with 50 percent
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right-branching constructions. The distribution of depth of embedding is
shown in Table 5.2. The mean sentence length in training and test corpora
was 4.7 words (SD: 1.3).

Since the input consists of a single concatenated string of words, the
network has to discover that the input consists of sentences, that is, nouns
followed by verbs (ordered by the constraints of the language being learned)
and delineated by EOS markers. Consider an SRN trained on the center-
embedding language and presented with the two sentences, n,v #Nnv,V #.3
First, the network gets n, as input and is expected to produce v, as output.
The weights are then adjusted depending on the discrepancy between the
actual and desired output and the desired output using back-propagation
(Rumelhart, Hinton, & Williams, 1986). Next, the SRN receives v, as input
and should produce as output the end-of-sentence marker #. At the next
time step # is provided as input and N, is the target output, followed by the
input-output pairs: N-n,, n-v,, v,-V, and V_-#. Training continues in this
manner for the whole training corpus.

Test corpora were then presented to the SRNs and output recorded, with
learning turned off. As noted, in any interesting languagelike task the next
item is not deterministically specified by the previous items. In the example
given, at the start of the second sentence the grammar for the center-embed-
ding language permits both noun categories, n and N, to begin a sentence. If
the SRN has acquired the relevant aspects of the grammar that generated the
training sentences, then it should activate all word tokens in both n and N
following an EOS marker. Specifically, the network’s optimal output is the
conditional probability distribution over possible next items. We can there-
fore measure amount of learning by comparing the network’s output with an
estimate of the true conditional probabilities (this gives a less noisy measure
than comparing against actual next items). This overall performance mea-
sure is used next. Later, we introduce a measure of grammatical prediction
error to evaluate performance in more detail.

Table 5.2
The Distribution of Embedding Depths in Training and

Test Corpora

Embedding Depth

Recursion Type 0 1 2 3

Complex 15% 27.5% 7% 5%
Right-Branching 15% 27.5% 7% 5%
Total 30% 55% 14% 1%

Note: The precise statistics of the individual corpora varied
slightly from this ideal distribution.
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Overall Performance

As noted, our overall performance measure compared network outputs
with estimates of the true conditional probabilities given prior context, which,
following Elman (1991), can be estimated from the training corpus. How-
ever, such estimates cannot assess performance on novel test sentences,
because a naive empirical estimate of the probability of any novel sentence
is zero, as it has never previously occurred. One solution to this problem is
to estimate the conditional probabilities based on the prior occurrence of
lexical categories—for example, NVnvnvNV#—rather than individual words.
Thus, with ¢, denoting the category of the ith word in the sentence, we have
the following relation:®

Freg(cy,€3y...,65-1,Cp)
Freg(cy, cq, .. sy Cpat )

P(cpley, ey, ..., Cp-1) 22

(5.1)

where the probability of getting some member of a given lexical category as
the pth item, ¢,, in a sentence is conditional on the previous p -1 lexical
categories. Note that for the purpose of performance assessment, singular
and plural nouns are assigned to separate lexical categories throughout this
chapter, as are singular and plural verbs.

Given that the choices of lexical item for each category are independent,
and that each word in the category is equally frequent, the probability of
encountering a word w,, which is a member of a category ¢, is inversely
proportional to the number of items, C,, in that category. " SPo, overall,

Preg(y, 63,54 Cooni )
Freg(ci,c3,...,¢p-1) Cp

P(wn|cl:c2$' "?Cp—l) - (52)

If the network is performing optimally, the output vector should exactly
match these probabilities. We measure network performance by the summed
squared difference between the network outputs and the conditional prob-
abilities, defining squared error as follows:

Squared Error = ) (out; — P(w, = j))? (5.3)

JEW

where W is the set of words in the language (including the end of sentence
marker) and there is an output unit of the network corresponding to each
word. The index j runs through each possible next word, and compares the
network output to the conditional probability of that word. Finally, we ob-
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tain an overall measure of network performance by calculating the mean
squared error (MSE) across the whole test corpus. MSE will be used as a
global measure of the performance of both networks and n-gram models.

Figure 5.2
performance Averaged across Epochs for Different Size Nets

Counting Recursion

comparisons across the three languages.
Figure 5.2 shows performance averaged across epochs for different size

nets tested on corpora consisting entirely of either complex recursive struc-
tures (left panels) or right-branching recursive structures (right panels). All
test sentences were novel and varied in length (following the distribution in
Table 5.2). The MSE values were calculated as the average of the MSEs
sampled at every second epoch (from epoch 0 to epoch 100). The MSE for
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Earlier simulations concerning the three languages (Christiansen, 1994) LE 0 ':? .
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formed the bigram and trigram models. For the center-embedding language,
nets with at least 10 HUs achieved essentially the same level of performance

bigram and trigram models are included (black bars) for comparison. [ Complex Recursive Structures - :
- ! : £ 2 1 Right-Branching Structures
The SRNs performed well. On counting recursion, nets with 15 HUs or 8 g
more obtained low MSE on complex recursive structures (top left panel). & 029
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on complex recursive structures (middle left panel), whereas nets with 5 -

HUs or more performed similarly on the right-branching structures (middle

right panel). Again, the SRNs generally outperformed bigram and trigram Ry T g N e 0]

models. Nets with 15 HUs or more trained on the cross-dependency lan- Number of Hidden Units g,;ﬁ;;:r'n ¥ g e Bi- Tri-
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guage all reached the same level of performance on complex recursive struc-
tures (bottom left panel). As with counting recursion, performance was
quite uniform on right-branching recursive constructions (bottom right panel)
for all numbers of HUs, and the SRNs again outperformed bigram and
trigram models. These results suggest that the objection does not apply to

The pertorrpances are averaged across epochs on complex recursive constructions (left pan-
e!s) and rlght—l?ranching constructions (right panels) of nets of different sizes, as well a_g the
bigram and rr1gram models trained on the counting-recursion language (to,p panels), the
center-embedding recursion language (middle panels), and the cross-dependency recur,sion
language (bottom panels). Error bars indicate the standard error of the mean.
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the SRN. Above 10 to 15 HUs, the number of HUs seems not to affect
performance.

Comparing across the three languages, the SRN found the counting-
recursion language the easiest and found cross-dependencies easier than
center-embeddings. This is important, because people also appear to be
better at dealing with cross-dependency constructions than equivalent cen-
ter-embedding constructions. This is surprising for linguistic theory, in which
cross-dependencies are typically viewed as more complex than center-
embeddings, because, as noted, they cannot be captured by phrase-structure
rules. Interestingly, the bigram and trigram models showed the opposite
effect, with better performance on center-embeddings than cross-dependencies.
Finally, the SRNs with at least 10 HUs had a lower MSE on complex recur-
sive structures than on right-branching structures. This could be because
the complex recursive constructions essentially become deterministic (with
respect to length) once the first verb is encountered, but this is not generally
true for right-branching constructions.

These results show that the number of HUs, when sufficiently large, does
not substantially influence performance on these test corpora. Yet perhaps
the number of HUs may matter when processing the doubly embedded com-
plex recursive structures that are beyond the limits of human performance.
To assess this, Christiansen and Chater (1999) retested the SRNs (trained
on complex and right-branching constructions of varying length) on corpora
containing just novel doubly embedded structures. Their results showed a
similar performance uniformity to that in Figure 5.2. These simulations
also demonstrated that once an SRN has a sufficient size (5 to 10 HUs) it
outperforms both n-gram models on doubly embedded constructions. Thus,
above a sufficient number of hidden units, the size of the hidden layer
seems irrelevant to performance on novel doubly embedded complex con-

structions drawn from the three languages. Two further objections may be

raised, however.
First, perhaps the limitations on processing complex recursion is due to
the interleaving of right-branching structures during training. To investi-

gate this objection, SRNs with 2, 5, 10, 15, 25, 50 and 100 HUs were

trained (with the same learning parameters as before) on versions of the
three languages only containing complex recursive constructions of varying
length. The results were almost identical to those in the left panels of Figure
5.2, with a very similar performance uniformity across the different HU
sizes (above 5 to 10 units) for all three languages. Also as before, this
performance uniformity was evident for corpora consisting entirely of dou-
bly embedded complex constructions. Moreover, similar results were found
for SRNs of different HU sizes trained on a smaller, five-word vocabulary.
These additional simulations show that the interleaving of the right-branching
constructions does not significantly alter performance on complex recursive

constructions.
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Segond, perhaps processing limitations result from an inefficient learning
algorlthrp. An alternative training regime for recurrent networks, back-
propagation t_hrough time (BPTT), appears preferable on theoretical gr,ounds
and is superior to SRN training in various artificial tasks (see Chater &:,
Conkey, 1992). But choice of learning algorithm does not appear to be
crucigl here. Christiansen (1994) compared the SRN and BPTT learning
aigoyltﬁhms on versions of the three languages only containing complex re-
cursive const_ructions of varying length (and the same embedding depth dis-
tri[?utmn as in Table 5.2). In one series of simulations, SRNs and BPTT
training (qnfolded seven steps back in time) with 5, 10, and 25 HUs were
trained using a five-word vocabulary. There was no difference across the
three languages between SRN and BPTT training. Further simulations rep-
licated these results for nets with 20 HUs and a seventeen-word vocabularg
Thus, there is currently no evidence that the human-level processing limita;
tions that are exhibited in these simulations are artifacts of using an ineffi-
cient learning algorithm. -

Performance at Different Depths of Embedding

We have seen that the overall SRN performance roughly matches human
performance on recursive structures. We now consider performance at differ-
ent ‘levels of embedding. Human data suggest that performance should degrade
rapidly as embedding depth increases for complex recursive structures, but
that 1t §h0uld degrade only slightly for right-branching constructions. ,

Earlier we used empirical conditional probabilities based on lexical cat-
egories tg assess SRN performance (Equations 5.2 and 5.3). However, this
measure is not useful for assessing performance on novel constructions: that
eith_er go beyond the depth of embedding found in the training corpus or
deviate, as ungrammatical forms do, from the grammatical structures en-
countered during training. For comparisons with human performance we
therefore use a different measure: grammatical prediction error (GPE)

W‘hen evaluating how the SRN has learned the grammar underlying‘ the
training corpus, it is not only important to determine whether the words the
net predicts are grammatical, but also that the net predicts all the possible
grz!rn.matical continuations. GPE indicates how a network is obeying the
lrammg grammar in making its predictions, taking hits, false alarms, cor-
rect rejections, and misses into account. Hits and false alarms are caicﬁlatecl
as the accumulated activations of the set of units, G, that are grammatical
and the set of ungrammatical activated units, U, respectively:

hits = " u; (5.4)
ice
false alarms = ) _ u; {55

i€l
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Traditional sensitivity measures, such as @’ (Signal-Detection Theory;
Green & Swets, 1966) or o (Choice Theory; Luce, 1959), assume that misses
can be calculated as the difference between total number of relevant obser-
vations and hits. But in terms of network activation, “total number of rel-
evant observations” has no clear interpretation.' Consequently, we need an
alternative means of quantifying misses; that is, to determine an activation-
based penalty for not activating all grammatical units and/or not alloc_:ating
sufficient activation to these units. With respect to GPE, the calculation of
misses involves the notion of a target activation, ¢, computed as a propor-
tion of the total activation (hits and false alarms) determined by the lexical
frequency, f, of the word that unit { designates and \rveighted by the sum of
the lexical frequencies, f; of all the grammatical units:

_— (hits + misses) f; 5.6)

' EjeG fJ’

The missing activation for each unit can be determined as the positive dis-
crepancy, m,, between the target activation, #,, and actual activation, u,, for
a grammatical unit:

0 if t; —u <0
;i = 5.7
s { t; — u; otherwise G2

Finally, the total activation for misses is the sum over missing activation
values:

misses = ng (5.8)
i€G

The GPE for predicting a particular word given previous sentential con-
text is thus measured by

hits + false alarms + misses

GPE =1

GPE measures how much of the activation for a given item accords with the
grammar (hits) in proportion to the total amount of activation (hits and false
alarms) and the penalty for not activating grammatical items sufficiently
(misses). Although not a term in Equation 5.9, correct rejections are takf:n
into account by assuming that they correspond to zero activation for units
that are ungrammatical given previous context.

GPEs range from 0 to 1, providing a stringent measure of performance.
To obtain a perfect GPE of 0 the SRN must predict all and only the next
items prescribed by the grammar, scaled by the lexical frequencies of the

Finite Models of Infinite Language / 155

legal items. Notice that to obtain a low GPE the network must make the
correct subject noun-verb agreement predictions (Christiansen & Chater,
1999). The GPE value for an individual word reflects the difficulty that the
SRN experienced for that word, given the previous sentential context. Pre-
vious studies (Christiansen, 2000; MacDonald & Christiansen, in press)
have found that individual-word GPE for an SRN can be mapped qualita-
tively onto experimental data on word reading times, with low GPE reflect-
ing short reading times. Average GPE across a sentence measures the
difficulty that the SRN experienced across the sentence as a whole. This
measure maps onto sentence grammaticality ratings, with low average GPEs
indicating high-rated “goodness” (Christiansen & MacDonald, 2000).

Embedding Depth Performance

We now use GPE to measure SRN performance on different depths of
embedding. Given that number of HUs seems relatively unimportant, we
focus just on 15HU nets in the following. Inspection of MSE values across
epochs revealed that performance on complex recursive constructions as-
ymptotes after 35 to 40 training epochs. From the MSEs recorded for ep-
ochs 2 through 100, we chose the number of epochs at which the 15HU nets
had the lowest MSE. The best level of performance was found after 54
epochs for counting recursion, 66 epochs for center-embedding, and 92
epochs for cross-dependency. The results reported use SRNs trained for
these numbers of epochs.

Figure 5.3 plots average GPE on complex and right-branching recursive
structures against embedding depth for 1SHU nets, bigram models, and
trigram models (trained on complex and right-branching constructions of
varying length). Each data point represents the mean GPE on ten novel
sentences. For the SRN trained on counting recursion, there was little dif-
ference between performance on complex and right-branching recursive
constructions, and performance only deteriorated slightly with increasing
embedding depth. In contrast, the n-gram models (and especially the trigram
model) performed better on right-branching structures than complex recur-
sive structures. Both n-gram models showed a sharper decrease in perfor-
mance across depth of recursion than the SRN. The SRN trained on
center-embeddings also outperformed the n-gram models, although it also
had greater difficulty with complex recursion than with right-branching struc-
tures. Interestingly, SRN performance on right-branching recursive struc-
tures decreased slightly with depth of recursion. This contrasts with many
symbolic models in which unlimited right-branching recursion poses no pro-
cessing problems (e.g., Church, 1982; Gibson, 1998; Marcus, 1980; Sta-
bler, 1994). However, the performance deterioration of the SRN appears in
line with human data (see later). A comparison between the n-gram models’
performance on center-embedding shows that whereas both exhibited a similar
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pattern of deteriorating with increasing depth on the complex recursive con-
structions, the trigram models performed considerably_better on the right-
branching constructions than the bigram model. As w1t}} the MSE results
already presented, SRN performance on cross-dependencies was better than
on center-embeddings. Although the SRN, as before, obtained lower GPEs
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on right-branching constructions compared with complex recursive struc-
tures, the increase in GPE across embedding depth on the latter was consid-
erably less for the cross-dependency net than for its center-embedding
counterpart. Bigrams performed poorly on the cross-dependency language,
both on right-branching and complex recursion. Trigrams performed substan-
tially better, slightly outperforming the SRN on right-branching structures, though
still lagging behind the SRN on complex recursion. Finally, note that recursive
depth 4 was not seen in training. Yet there was no abrupt breakdown in perfor-
mance for any of the three languages at this point, for both SRNs and n-gram
models. This suggests that these models are able to generalize to at least one
extra level of recursion beyond what they have been exposed to during
training (and this despite only 1% of the training items being of depth 3).

Overall, the differential SRN performance on complex recursion and right-
branching constructions for center-embeddings and cross-dependencies fit
well with human data.'

Training Exclusively on Doubly Embedded Complex Constructions

An alternative objection to the idea of intrinsic constraints being the source
of SRN limitations is that these limitations might stem from the statistics of
the training corpora. For example, perhaps the fact that just 7 percent of
sentences involved doubly embedded complex recursive structures explains
the poor SRN performance with these structures. Perhaps adding more dou-
bly embedded constructions would allow the SRN to process these con-
structions without difficulty.

We therefore trained 15HU SRNs on versions of the three languages
consisting exclusively of doubly embedded complex recursion without in-
terleaving right-branching constructions. Using the same number of words
as before, best performance was found for the counting recursion depth 2
trained SRN (D2-SRN) after forty-eight epochs, after sixty epochs for the
center-embedding D2-SRN, and after ninety-eight epochs for the cross-de-
pendency D2-SRN. When tested on the test corpora containing only novel
doubly embedded sentences, the average MSE found for the counting recur-
sion network was 0.045 (versus 0.080 for the previous 15SHU SRN), 0.066
for the center-embedding net (versus 0.092 for the previous 15HU SRN),
and 0.073 for the cross-dependency net (versus 0.079 for the previous 15HU
SRN). Interestingly, although there were significant differences between
the MSE scores for the SRNs and D2-SRNs trained on the counting recursion
(¢[98] = 3.13, p < .003) and center-embeddings (2[98] = 3.04, p < .004),
the difference between the two nets was not significant for cross-dependencies
(t[98] = .97, p > .3). The performance of the D2-SRNs thus appear to be
somewhat better than the performance of the SRNs trained on the corpora of
varying length—at least for the counting and center-embedding recursion
languages. However, D2-SRNs are only slightly better than their counter-
parts trained on sentences of varying length.
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Figure 5.4 plots GPE against word position across doubly embedded com-

plex recursive constructions from the three languages, averaged over tep Performance on Doubly Embedded Counting Recursive Sentences
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novel sentences. On counting-recursion sentences (top panel), both SRN 0o ® — sAN
and D2-SRN performed well, with a slight advantage for the D2-SRN op 0'8 5 — g;—g:anw
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the last verb. Both networks obtained lower levels of GPE than the bigramg
and trigrams, which were relatively inaccurate, especially for the last two
verbs. On center-embeddings (middle panel), the two SRNs showed a gradual
pattern of performance degradation across the sentence, with the D2-SRN
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achieving somewhat better performance, especially on the last verb. Bigrams

and trigrams performed similarly, and again performed poorly on the two i3 2

final verbs. When processing doubly embedded cross-dependency sentences e

(bottom panel), SRN performance resembled that found for counting recur- 013

sion. The GPE for both SRNs increased gradually, and close to each other, 0.0 . i , , -

until the first verb. Then the SRN GPE for the second verb dropped, whereas Noun Noun Noun Verb Verb Verb EoS

the D2-SRN GPE continued to grow. At the third verb the GPE for the D2- Performance on Doubl 5

SRN dropped, whereas the SRN GPE increased. i |- - A Pon T Srtoedded demianons
Although this pattern of SRN GPEs may seem puzzling, it appears to fit 087 ¢ — p2.sAN

recent results concerning the processing of similar cross-dependency con- L B .E,‘.‘,?;f'a";

structions in Dutch. Using a phrase-by-phrase self-paced reading task with
stimuli adapted from Bach et al. (1986), Dickey and Vonk (1997) found a
significant jump in reading times between the second and third verb, preceded
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by a (nonsignificant) decrease in reading times between the first and second
verb. When the GPEs for individual words are mapped onto reading times, 0.3
the GPE pattern of the SRN, but not the D2-SRN, provides a reasonable 0.2 ]
approximation of the pattern of reading times found by Dickey and Vonk. 0.1

Returning to Figure 5.4, the trigram model—although not performing as 0018 1 .
well as the SRN—displayed a similar general pattern, whereas the bigram Noun;  Noun,  Nouny Verb, Verb, Verb, EOS
model performed very poorly. Overall, Figure 5.4 reveals that despite be- e
ing trained exclusively on doubly embedded complex recursive construc- 1.0 on Doubly Embedded Cross-Dependency Sentences
tions and despite not having to acquire the regularities underlying the _ 087 : = g;‘_*;ﬂN SR !
right-branching structures, the D2-SRN only performed slightly better on L% 084 O --- Bigram R '&i ,” v
doubly embedded complex recursive constructions than the SRN trained on S 071 2 —~ Iigam /A i LY
both complex and right-branching recursive constructions of varying length. 3 061 \ 5 g
This suggests that SRN performance does not merely reflect the statistics of 2 05
the training corpus, but also reflects intrinsic architectural constraints. B 04

It is also interesting to note that the SRNs are not merely learning subse- P 5 \
quences of the training corpus by rote. They substantially outperformed the S ip) - a
n-gram models. This is particularly important because the material that we 2 5
have used in these studies is the most favorable possible for n-gram models, o .
since there is no intervening material at a given level of recursion. In natu- Noun,  Noun,  Nouns Ve, Ve Y -

ral language, of course, there is generally a considerable amount of material
between changes of depth of recursion, which causes problems for n-gram
models because they concentrate on short-range dependencies. While n-
gram models do not generalize well to more linguistically natural examples
of recursion, SRN models, by contrast, do show good performance on such

Grammatical pr:'ediction error for each word in doubly embedded sentences for the net trained
on constructions of varying length (SRN), the net trained exclusively on doubly embedded
constn_icuons (D2-SRN), and the bigram and trigram models. Results are shown for countin,
reCumlon (top panel), center-embedding recursion (middle panel), and cross-depende :
recursion (bottom panel). Subscripts indicate subject noun-verb agreement patte?gs =
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material. We have found (Christiansen, 1994, 2000; Christiansen & Chater,
1994) that the addition of intervening nonrecursive linguistic structure does
not significantly alter the pattern of results found with the artificial lan-
guages reported here. Thus, SRNs are not merely learning bigrams and
trigrams, but acquiring richer grammatical regularities that allow them to
exhibit behaviors qualitatively similar to humans. We now consider the
match with human data in more detail.

Fitting Human Data

Center-Embedding versus Cross-Dependency

As we have noted, Bach et al. (1986) found that cross-dependencies in
Dutch were comparatively easier to process than center-embeddings in Ger-
man. They had native Dutch speakers listen to sentences in Dutch involving
varying depths of recursion in the form of cross-dependency constructions
and corresponding right-branching paraphrases with the same meaning.
Native German speakers were tested using similar materials in German, but
with the cross-dependency constructions replaced by center-embedded con-
structions. Because of differing intuitions among German informants con-
cerning whether the final verb should be an infinitive or a past participle,
two versions of the German materials were used. After each sentence, sub-
jects rated its comprehensibility on a 9-point scale (1 = easy, 9 = difficult).
Subjects were also asked comprehension questions after two-thirds of the sen-
tences. In order to remove effects of processing difficulty due to length, Bach et
al. subtracted the ratings for the right-branching paraphrase sentences from
the matched complex recursive test sentences. The same procedure was
applied to the error scores from the comprehension questions. The resulting
difference should thus reflect the difficulty caused by complex recursion.

Figure 5.5 (left panel) shows the difference in mean test-paraphrase rat-
ings for singly and doubly embedded cross-dependency sentences in Dutch
and German. We focus on the past-participle German results because these
were consistent across both the rating and comprehension tasks and were
comparable with the Dutch data. Mean GPE across a sentence reflects how
difficult the sentence was to process for the SRN. Hence, we can map GPE
onto the human sentence-rating data, which are thought to reflect the diffi-
culty that subjects experience when processing a given sentence. We used
the mean GPEs from Figure 5.3 for the SRNs trained on center-embeddings
and cross-dependencies to model the Bach et al. (1986) results. For recur-
sive depths 1 and 2, mean GPEs for the right-branching constructions were
subtracted from the average GPEs for the complex recursive constructions,
and the differences were plotted in Figure 5.5 (right panel)."* The net trained
on cross-dependencies maps onto the Dutch data and the net trained on
center-embedding maps onto the German (past-participle) data. At a single

Difference in Mean TestParaphrase Ratings
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Figure 5.5
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Human perff:r_mance (from Bach et al., 1986) on singly and doubly center-embedded German
(pas[-pal‘t]jClpl(E) sentences compared with singly and doubly embedded cross-dependenc
sentences in Dutch (left panel), and SRN performance on the same kinds of constructioni
(right panel). Error bars indicate the standard error of the mean.

level of embedding, Bach et al. found no difference between Dutch and
German, and this holds in the SRN data (7[18] = .36, p > .7). However, at
two ]e_vc]s of embedding Bach et al. found that Dutch cross-depcnder'lcy
stimuli were rated significantly better than their German counterparts. The
SRN dgta also show a significant difference between depth 2 center-
embeddings and cross-dependencies (f[18] = 4.08, p < .01). Thus, SRN
performance mirrors the human data quite closely. ’

Grammatical versus Ungrammatical Double Center-Embeddings

. The study of English sentences with multiple center-embeddings is an
important source of information about the limits of human sentence process-
ing (e.g., Blaubergs & Braine, 1974; Foss & Cairns, 1970; Marks, 1968:
Miller, I9§2; Miller & Isard, 1964; Stolz, 1967). A particularly intérestiné
recent finding (Gibson and Thomas, 1999) using an off-line rating task suggests
that Some ungrammatical sentences involving doubly center-embedded object-
relative clauses may be perceived as grammatical.

(17) The apartment that the maid who the servi
ice had sent over was cleani
week was well decorated. R

(18) *The apartment that the maid who the service had sent over was well decorated.
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In particular, they found that when the middle verb phrase (VP) was removed
(18), the result was rated no worse than the grammatical version (17).
Turning to the SRN, in the artificial center-embedding language, (17)
corresponds to NNNVVYV, whereas (18) corresponds to NNNVYV, Does the
output activation following NNNVYV fit the Gibson and Thomas (1999) data?
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the 2VP stimuli seem spuriously plausible. Christiansen and MacDonald
(2000) therefore replicated their first experiment using stimuli controlled
for length and without noun-verb biases, such as (19) and (20):

(19) The chef who the waiter who the busboy offended appreciated admired the

Figure 5.6 shows mean activation across ten novel sentences and grouped musicians.
into the four lexical categories and EOS marker. In contrast to the results of (20) *The chef who the waiter who the busboy offended frequently admired the mu-
Gibson and Thomas, the network demonstrated a significant preference for sicians.

the ungrammatical 2VP construction over the grammatical 3VP construc-
tion, predicting that (17) should be rated worse than (18).

Gibson and Thomas (1999) employed an off-line task, which might ex-
plain why (17) was rated worse than (18). Christiansen and MacDonald
(2000) conducted an on-line self-paced word-by-word (center presentation)
grammaticality judgment task using Gibson and Thomas’s stimuli. At each
point in a sentence subjects judged whether what they had read was a grammati-
cal sentence or not. Following each sentence (whether accepted or rejected),
subjects rated the sentences on a 7-point scale (1 = good, 7 = bad). Christ-
iansen and MacDonald found that the grammatical 3VP construction was
again rated significantly worse than the ungrammatical 2VP construction.

One potential problem with this experiment is that the 2VP and 3VP
stimuli were different lengths, introducing a possible confound. The Gibson
and Thomas (1999) stimuli also incorporated semantic biases (e.g., apart-
ment-decorated, maid-cleaning, service-sent over in [17]), which may make

Figure 5.7 shows the rating from the second experiment in comparison
with SRN mean GPEs. As before, Christiansen and MacDonald (2000) found
that grammatical 3VP constructions were rated as significantly worse than
the ungrammatical 2VP constructions. The SRN data fitted this pattern,
with significantly higher GPEs in 3VP constructions compared with 2VP
constructions (7[18] = 2.34, p < .04).

Right-Branching Subject Relative Constructions

Traditional symbolic models suggest that right-branching recursion should
not cause processing problems. In contrast, we have seen that the SRN
shows some decrement with increasing recursion depth. This issue has re-
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ceived little empirical attention. However, right-branching constructiogs are
often control items in studies of center-embedding, and some relevant infor-
mation can be gleaned from some of these studies. For examgle, Bach et al.
(1986) report comprehensibility ratings for their right-branching paraphrase
items. Figure 5.8 shows the comprehensibility ratings for the German past-
participle paraphrase sentences as a function of recursion depth, and mean
SRN GPEs for right-branching constructions (from Figure 5.3) for the center-
embedding language. Both the human and SRN data sho“{ the same pattern
of increasing processing difficulty with increasing recursion depth.

A similar fit with human data is found by comparing the human compre-
hension errors as a function of recursion depth reported in Blaubergs and
Braine (1974) with mean GPE for the same depths of recursion (again for
the SRN trained on the center-embedding language). Christiansen gncl
MacDonald (2000) present on-line rating data concerning right-branching
prepositional-phrase (PP) modifications of nouns in which the depth of re-
cursion varied from 0 to 2 by modifying a noun by either one PP (21), two
PPs (22), or three PPs (23):

(21) The nurse with the vase says that the [flowers by the window] resemble roses.
(22) The nurse says that the [flowers in the vase by the window] resemble roses.
(23) The blooming [flowers in the vase on the table by the window] resemble roses.

Figure 5.8 )
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Human comprehensibility ratings (left ordinate axis) from Bach et al. .(1.996; German Past-
participle paraphrases) compared with the average grammatical prediction error for right-
branching constructions produced by the SRN trained on the center-embedding language
(right ordinate axis), both plotted as a function of recursion depth.
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The stimuli were controlled for length and propositional and syntactic
complexity. The results showed that subjects rated sentences with recursion
of depth 2 (23) worse than sentences with recursion depth 1 (22), which, in
turn, were rated worse than sentences with no recursion (21). Although
these results do not concern subject-relative constructions, they suggest that
processing right-branching recursive constructions is affected by recursion
depth, although the effect of increasing depth is less severe than in complex
recursive constructions. It is important that this dovetails with the SRN
predictions (Christiansen, 1994, 2000; Christiansen & MacDonald, 2000),
though not with symbolic models of language processing (e.g., Church,
1982; Gibson, 1998; Marcus, 1980; Stabler, 1994).

Counting Recursion

Finally, we briefly discuss the relationship between counting recursion
and natural language. We contend that, despite Chomsky (1957), such struc-
tures may not exist in natural language. Indeed, the kind of structures that
Chomsky had in mind (e.g., nested if~then structures) seem closer to center-
embedded constructions than to counting-recursive structures. Consider the
earlier-mentioned depth 1 example (16), repeated here as (24):

(24) If, if, the cat is in, then, the dog cannot come in then, the cat and dog dislike
each other.

As the subscripts indicate, the if~then pairs are nested in a center-embedding
order. This structural ordering becomes even more evident when we mix if-
then pairs with either-or pairs (as suggested by Chomsky, 1957, p. 22):

(25) If, either, the cat dislikes the dog, or, the dog dislikes the cat then, the dog
cannot come in.

(26) If, either, the cat dislikes the dog, then, the dog dislikes the cat or, the dog
cannot come in.

The center-embedding ordering seems necessary in (25) because if we re-
verse the order of or and then, then we get the obscure sentence in (26).
Thus, we predict that human behavior on nested if~then structures should
follow the same breakdown pattern as for nested center-embedded construc-
tions (perhaps with a slightly better overall performance).

Probing the Internal Representations

We now consider the basis of SRN performance by analyzing the HU
represemations with which the SRNs store information about previous lin-
guistic material. We focus on the doubly embedded constructions, which
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represent the limits of performance for both people and the SRN. More-
over, we focus on what information the SRN’s HUs maintain about the
number agreement of the three nouns encountered in doubly embedded con-
structions (recording the HUs’ activations immediately after the three nouns
have been presented).

We first provide an intuitive motivation for our approach. Suppose that
we aim to assess how much information the HUs maintain about the number
agreement of the last noun in a sentence; that is, the noun that the net has
just seen. If the information is maintained well, then the HU representations
of input sequences that end with a singular noun (and thus belong to the
lexical category combinations nn—n, nN-n, Nn-n, and NN-n) will be well-
separated in HU space from the representations of the input sequences end-
ing in a plural noun (i.e., NN=-N, Nn-N, nN-N, and nn—N). Thus, it should
be possible to split the HU representations along the plural-singular noun-
category boundary such that inputs ending in plural nouns are separated
from inputs ending in singular nouns. It is important to contrast this with a
situation in which the HU representations instead retain information about
the agreement number of individual nouns. In this case we should be able to
split the HU representations across the plural-singular noun-category bound-
ary such that input sequences ending with particular nouns, say, N;n:N
or n, (ie., nn—{N,, n,, N,, n}, nN-{N,, n, N,, n}, Nn-{N,, n,, N,, n,},
and NN-{N,, n,, N, n,}) are separated from inputs ending with remaining
nouns N,, n,, N, or n, (i.e., nn-{N,, n,, N,, n}, nN-{N;, n,, N,, n}, Nn-
{N,, n,, N,, n,}, and NN-{N,, n;, N, n.})." Note that the separation along
lexical categories is a special case of across-category separation in which
inputs ending with the particular (singular) nouns »,, n,, n,, or n, are sepa-
rated from input sequences ending with the remaining (plural) nouns N, N,
N,, or N,. Only by comparing the separation along and across the lexical
categories of singular-plural nouns can we assess whether the HU represen-
tations merely maintain agreement information about individual nouns or
whether more abstract knowledge has been encoded pertaining to the cat-
egories of singular and plural nouns. In both cases, information is main-
tained relevant to the prediction of correctly agreeing verbs, but only in the
latter case are such predictions based on a generalization from the occur-
rences of individual nouns to their respective categories of singular and
plural nouns.

We can measure the degree of separation by attempting to split the HU
representations generated from the 512 (i.e., 8 X 8 X 8) possible sequences
of three nouns into two equal groups. We attempt to make this split using a
plane in HU space; the degree to which two groups can be separated either
along or across lexical categories therefore provides a measure of what infor-
mation the network maintains about the number agreement of the last noun. A
standard statistical test for the separability of two groups of items is discrimi-
nant analysis (Cliff, 1987; see Bullinaria, 1994; Wiles & Bloesch, 1992;
Wiles & Ollila, 1993, for earlier applications to connectionist networks).
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The left panel of Figure 5.9 illustrates a separation along lexical catego-
ries with a perfect differentiation of the two groups, corresponding to a 100-
percent correct vector classification. The same procedure can be used to
assess the amount of information that the HUs maintain concerning the
number agreement of the nouns in second and first positions. We split the
same HU activations generated from the 512 possible input sequences into
groups both along and across lexical categories. The separation of the HU
vectors along the lexical categories according to the number of the second
noun in the center panel of Figure 5.9 is also perfect. However, as illus-
trated by the right panel of Figure 5.9, the separation of the HU activations
along the lexical categories according to the first encountered noun is less
good, with 75 percent of the vectors correctly classified, because N-Nn is
incorrectly classified with the singulars and n—nN with the plurals.

We recorded HU activations for the 512 possible noun combinations for
complex and right-branching recursive constructions of depth 2 (ignoring
the interleaving verbs in the right-branching structures). Table 5.3 lists the
percentage of correctly classified HU activations for each combination. Clas-
sification scores were found for these combinations both before and after
training, and both for separation along and across singular-plural noun cat-
egories. Scores were averaged over different initial weight configurations
and collapsed across the SRNs trained on the three languages (there were no
significant differences between individual scores). The results from the sepa-
rations across singular-plural noun categories show that prior to any train-
ing the SRN retained a considerable amount of information about the
agreement number of individual nouns in the last and middle positions.
Only for the first encountered noun was performance essentially at chance
(i.e., close to the performance achieved through a random assignment of
the vectors into two groups). The SRN had, not surprisingly, no knowledge

Figure 5.9
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Each of the noun combinations denotes a cluster of hidden-unit vectors recorded for a particu-
lar set of agreement patterns (with N corresponding to plural nouns and n to singular
nouns). The straight dashed lines represent three linear separations of this hidden unit space
according to the number of the last seen noun (left panel), the second noun (center panel)
and the first encountered noun (with incorrectly classified clusters encircled) (right panci)j
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Table 5.3
Percentage of Cases Correctly Classified Given Discriminant Analyses of Net-

work Hidden-Unit Representations

Recursion Type
Separation Along Separation Across

Singular /Plural Noun Categories Singular/Plural Noun Categories

Noun Position Complex Right-Branching Complex Right-Branching
Before Training

First 62.60 52.80 57.62 52.02

Middle 97.92 94.23 89.06 91.80

Last 100.00 100.00 100.00 100.00

Random 56.48 56.19 55.80 55.98
After Training

First 96.91 73.34 65.88 64.06

Middle 92.03 98.99 70.83 80.93

Last 99.94 100.00 97.99 97.66

Random 55.99 55.63 54.93 56.11

Note: Noun position denotes the left-to-right placement of the noun being tested, with Ran-
dom indicating a random assignment of the vectors into two groups.

of lexical categories of singular and plural nouns before training, as indi-
cated by the lack of difference between the classification scores along and
across noun categories. The good classification performance of the untrained
nets on the middle noun in the right-branching constructions is, however,
somewhat surprising, because this noun position is two words (a verb and a
noun) away from the last noun. In terms of absolute position from the point
where the HU activations were recorded, the middle noun in right-branching
constructions (e.g., N,V, - N; - V,n.) corresponds to the first noun in com-
plex recursive constructions (e.g., N, - N;n,). Whereas untrained classifica-
tion performance for this position was near chance on complex recursion, it
was near perfect on right-branching recursion. This suggests that in the
latter case information about the verb, which occurs between the last and
the middle nouns, does not interfere much with the retention of agreement
information about the middle noun. Thus, prior to learning the SRN appears
to have an architectural bias that facilitates processing right-branching struc-
tures over complex recursive structures.

After training the SRN HUs retained less information about individual

nouns. Instead, lexical category information was maintained, as evidenced

by the big differences in classification scores between groups separated
along and across singular-plural noun categories. Whereas classification
scores along the two noun categories increased considerably as a result of
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training, the scores for classifications made according to groups separated
across the categories of singular and plural nouns actually decreased, espe-
cially for the middle noun position. The SRN appears to have learned about
the importance of the lexical categories of singular and plural nouns for the
purpose of successful performance on the prediction task, but at the cost of
losing information about individual nouns in the middle position.

The results of the discriminant analyses suggest that the SRN is well-
suited for learning sequential dependencies. The feedback between the con-
text layer a}nd the hidden layer allows the net to retain information relevant
to appropriate distinctions between previously encountered plural and sin-
gular items, even prior to learning. Of course, a net has to learn to take
advantage of this initial separation of the HU activations to produce the
correct output, which is a nontrivial task. Prior to learning, the output of an
SRN consists of random activation patterns. Thus, it must discover the lexi-
cal categories and learn to apply agreement information in the right order to
make correct predictions for center-embeddings and cross-dependencies.

Qn a methodological level, these results suggest that analyses of the un-
trained networks should be used as baselines for analyses of HU representa-
tions in trained networks. This may provide insight into which aspects of
netwgrk performance are due to architectural biases and which arise from
learning. A network always has some bias with respect to a particular task
and this bias depends on several factors, such as overall network conﬁgura:
Fi'm.’ choice of activation function, choice of input-output representations,
initial weight setting, and so forth. As evidenced by our discriminant analy-
ses, even prior to learning, HU representations may display some structural
differentiation, emerging as the combined product of this bias (also cf. Kolen
1994) and the statistics of the input-output relations in the test material?
Howevcr, all too often HU analyses—such as cluster analyses, multidimen-
sgmal scaling analyses, and principal component analyses—are conducted
without any baseline analysis of untrained networks.

GENERAL DISCUSSION

; V\_’e have shown that SRNs can learn to process recursive structures with
similar performance limitations regarding depth of recursion as in human
langqage processing. The SRNs’ limitations appear relatively insensitive to
the size pf the network and the frequency of deeply recursive structures in
the training input. The qualitative pattern of SRN results match human per-
fomance on natural language constructions with these structures. The SRNs
trained on center-embedding and cross-dependency constructions performed
well on singly embedded sentences, although, as for people, performance
Wwas by no means perfect (Bach et al., 1986; Blaubergs & Braine, 1974; King &
Just, 1991). Of particular interest is the pattern of performance degradation on
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sentences involving center-embeddings and cross-dependencies of depth 2,
and its close match with the pattern of human performance.

These encouraging results suggest a reevaluation of Chomsky’s (1957,
1959) arguments that the existence of recursive structures in language rules
out finite-state and associative models of language processing. These argu-
ments have been taken to indicate that connectionist networks cannot in
principle account for human language processing. But we have shown that
this in-principle argument is not correct. Connectionist networks can learn
to handle recursion with a comparable level of performance to people. Our
simulations are, of course, small scale, and do not show that this approach
generalizes to model the acquisition of the full complexity of natural language.
But this limitation applies equally well to symbolic approaches to language
acquisition (e.g., Anderson, 1983), including parameter-setting models (e.g.,
Gibson & Wexler, 1994; Niyogi & Berwick, 1996) and other models that
assume an innate universal grammar (e.g., Berwick & Weinberg, 1984).

Turning to linguistic issues, the better SRN performance on Cross-
dependencies over center-embeddings may reflect the fact that the problem
of learning limited versions of context-free and context-sensitive languages
may be very different from the problem of learning the full, infinite ver-
sions of these languages (compare Vogel, Hahn, & Branigan, 1996). Within
the framework of Gibson's (1998) Syntactic Prediction Locality Theory,
center-embedded constructions (of depth 2 or less) are harder to process
than their cross-dependency counterparts because center-embedding requires
holding information in memory over a longer stretch of intervening items.
Although a similar explanation is helpful in understanding the difference in
SRN performance on the two types of complex recursive constructions, this
cannot be the full explanation. First, this analysis incorrectly suggests that
singly embedded cross-dependency structures should be easier than compa-
rable center-embedded constructions. As illustrated by Figure 5.5, this is
not true of the SRN predictions, nor in the human data from Bach et al.
(1986). Second, the analysis predicts a flat or slightly rising pattern of GPE
across the verbs in a sentence with two cross-dependencies. In contrast, the
GPE pattern for the cross-dependency sentences (Figure 5.4) fits the reading-
time data from Dickey and Vonk (1997) because of a drop in the GPEs for the
second verb. Overall, the current results suggest that we should be wary of
drawing strong conclusions for language processing, in networks and per-
haps also in people, from arguments concerning idealized infinite cases.

A related point concerns the architectural requirements for learning lan-
guages involving, respectively, context-free and context-sensitive structures.
In our simulations the very same network learned the three different artifi-
cial languages to a degree similar to human performance. To our knowledge,

no symbolic model has been shown to be able to learn these three kinds of
recursive structures given identical initial conditions. For example, Ber-
wick and Weinberg’s (1984) symbolic model of language acquisition has a
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built-in stack and would therefore not be able to process cross-dependencies
Of‘ course, if one builds a context-sensitive parser, then it can also by deﬁ;
nition parse context-free strings. However, the processing models that are
able to account for the Bach et al. (1986) data (Gibson, 1998; Joshi, 1990
Rambow & Joshi, 1994) do not incorporate theories of learning tflat caI;
explain how the ability to process center-embedding and cross-dependency
could be acquired.

In this chapter we have presented results showing a close qualitative simi-
larity between breakdowns in human and SRN processing when faced with
complex recursion. This was achieved without assuming that the language
processor has access to a competence grammar that allows unbounded re-
cursion, subject to performance constraints. Instead, the SRN account sug-
gests that the recursive constructions that people actually say and hear may
be explained by a system with no representation of unbounded grammatical
competence, and performance limitations arise from intrinsic constraints on
processing. If this hypothesis is correct, then the standard distinction be-
tween competence and performance, which is at the center of contemporary
linguistics, may need to be rethought.

FURTHER READINGS

_Most of the early connectionist models of recursion were essentially simple
reimplementations of symbolic parsers (e.g., Fanty, 1986; Small, Cottrell,
& Shastri, 1982). The first more comprehensive model of this kind was
McClelland and Kawamoto’s (1986) neural network model of case-role as-
S}gnment. Many of the subsequent models of sentence processing and recur-
sion have sought to provide alternatives to the symbolic-processing models.
One approach has been to learn recursive structure from “tagged” input sen-
tences. Among these, Pollack’s (1988, 1990) recursive auto-associative
memory network has inspired several subsequent modeling efforts (e.g.,
Chalmers, 1990; Niklasson & van Gelder, 1994; see also Steedman, Chap-
ter 11, this volume). Another approach is to construct a modular system of
networks, each of which is trained to acquire different aspects of syntactic
processing. Miikkulainen’s (1996) three-network system provides a good
exarnp‘le of this approach. But the most popular connectionist approach to
recursion and syntactic processing builds on Elman’s (1990, 1991, 1993)
simple recurrent network model.

_ Recently, efforts have been made to model reading-time data from recur-
Sive sentence-processing experiments. The work by Christiansen (2000;
Christiansen & Chater, 1999; MacDonald & Christiansen, in press) is per-
haps the best example of this line of research. Turning to syntactic process-
ng more generally, Tabor, Juliano, and Tanenhaus (1997) provide a
dynamical sentence-processing model (see also Tabor & Tanenhaus, Chap-
ter 6, this volume). The most influential nonconnectionist model of sentence-



172 / The State of the Art

processing results is Gibson’s (1998) Syntactic Prediction Locality Theory
model. A slightly older nonconnectionist model is the CC-READER model

by Just and Carpenter (1992).
For discussions of the future prospects of connectionist models of syntax
(and recursion), see Seidenberg and MacDonald (Chapter 9, this volume)

and Steedman (Chapter 11, this volume).

NOTES

This chapter is in large part based on Christiansen and Chater (1999). We would
like to thank Joe Allen, Jim Hoeffner, Mark Seidenberg, and Paul Smolensky for
discussions and comments on the work presented here.

1. We leave aside generalization, which we discuss elsewhere (Christiansen,
1994, 2000; Christiansen & Chater, 1994).

2. Cross-dependency has also been alleged to be present in “respectively” con-
structions in English, such as Anita, and the girls, walks, and skip,, respectively.
Church (1982) questions the acceptability of these constructions with two cross-
dependencies, and even one, as in this example, seems bizarre.

3. Pullum and Gazdar (1982) have argued, controversially, that natural lan-
guage is, nonetheless, context-free (see Gazdar & Pullum, 1985; Shieber, 1985).

4. Their nets were trained using back-propagation through time (Rumelhart et
al., 1986).

5. Intuition may suggest that higher-order n-gram models should outperform
simple bigram and trigram models because they can encode more extended regulari-
ties. However, results using text corpora have shown that higher-order n-grams
provide for poor predictions due to distributional “undersampling”: Many higher-
order n-grams only have one or very few instances, or do not occur at all in a given
corpus (Gale & Church, 1990; Redington, Chater, & Finch, 1998).

6. The relation between grammaticality judgments and processing mechanisms
is controversial (see Christiansen, 1994; Schiitze, 1996).

7. These simulations used the Tlearn simulator available from the Center for
Research on Language, University of California, San Diego.

8. We adopt the convention that n and N correspond to categories of nouns and
v and V to categories of verbs, with capitalization indicating plural agreement. The
EOS marker is denoted by #. Individual word tokens are denoted by adding a sub-
script (e.g., N,).

9. We use bold for random variables.

10. These assumptions are, of course, very unrealistic given the skewed distribu-
tion of word frequencies in natural language, but are nonetheless used for simplicity.

11. Note that “total network activation” is not a possible interpretation, because
the difference between the total activation and hit activation (see Equation 5.4) cor-
responds to the false-alarm activation (see Equation 5.5).

12. Could GPE hide a failure to make correct agreement predictions for singly
center-embedded sentences, such as The man, the boys, chase, likes, cheese? If so,
one would expect high agreement error for the two verb predictions in the singly

center-embedded (complex depth 1) constructions in Figure 5.3. Agreement error
can be calculated as the percentage of verb activation allocated to verbs that do not
agree in number with their respective nouns. The agreement error for the first and
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seconq verbs was 1 percent and 16.85 percent, respectively. This level of agreement
error 1s comparable with human performance (Larkin and Burns, 1977)

13. The hurpan data presented here and later involve three ;:!ifferer;t scales of
measurement (f'e': differences in mean tesi-paraphrase comprehensibility ratings
mean grammaticality ratings from 1 to 7, and mean comprehensibility ratings t‘rorn,
110 9). It was therefore necessary to adjust the scales for the comparisons with the
mean GPEs accordingly.

14_. Curly brackets indicate that any of the nouns may occur in this position
creating the following combinations: nn-N,, nn-n,, nn-N,, and nn-n ’

) -
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Dynamical Systems for
Sentence Processing

Whitney Tabor and Michael K. Tanenhaus

THE DYNAMICS OF SENTENCE PROCESSING

The syntactic constraints of a language strongly determine the interpretation
that a reader or listener arrives at for a sentence. Thus, the human language
comprehe_nsion system must develop and evaluate hypotheses as to how to
map tl_w linguistic input into appropriate syntactic units. Temporary ambi-
guity is the central problem faced by the system. Because the linguistic
input is typically consistent with multiple syntactic possibilities, the pro-
cessing system must determine the set of possible syntactic hypotheses

maintain some or all of these in memory, and update them as new inpu,t
arrives,

Behavioral evidence from a rapidly expanding literature on how people
read temporarily ambiguous sentences provides an empirical benchmark for
evaluatmg' theories of syntactic processing (see Tanenhaus & Trueswell
1_995). Evidence from intuitions and from empirical studies of processiné
dlfﬁfsulty—typically studies using reading-time measures with temporarily
ambiguous sentences—have clearly established that readers have strong pref-
::;ence; for some structures over others. When subsequent input becomes
foioéllsels::;ée\:f.nh the preferred structure, the result is processing difficulty
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