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ABSTRACT

Gold's (1967) celebrated work on learning in the limit has been taken, by
many cognitive scientists, to have powerful negative implications for the
learnability of language from positive data (i.e., from mere exposure to
linguistic input). This provides one, of severa, lines of argument that
language acquisition must draw on other sources of information, including
innate constraints on learning. We consider an ‘ideal learner’ that appliesa
Simplicity Principle to the problem of language acquisition. The Simplicity
Principle chooses the hypothesis that provides the briefest representation of
the available data—here, the data are the linguistic input to the child. The
Simplicity Principle allows learning from positive evidence aone, given
quite weak assumptions, in apparent contrast to results on language
learnability in the limit (e.g., Gold, 1967). These results provide a
framework for reconsidering the learnability of various aspects of natural
language from postive evidence, which has been at the center of

theoretical debate in research on language acquisition and linguistics.
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Language acquisition involves the rapid mastery of linguistic structure of astonishing
complexity based on an input that appears noisy and partial. How can such an
impoverished stimulus support such impressive learning? One influentia line of argument
isthat it cannot---this “poverty of the stimulus’ argument (Chomsky, 1980) istypically
used to argue that language acquisition is guided by innate knowledge of language, often
termed “universal grammar,” that the child brings to bear on the learning problem (e.g.,
Chomsky, 1965, 1980; Hoekstra & Kooij, 1988). This type of argument for universal
grammar is of central importance for the study of human language and language
acquisition (e.g., Crain & Lillo-Martin, 1999; Hornstein & Lightfoot, 1981).

How can the poverty of the stimulus argument be assessed? At an abstract level, a
natural approach is to attempt to somehow define an “ideal” language learner, which lacks
universal grammar, but that can make the best use of the linguistic evidence that the child
isgiven. If it were possible to show that thisideal learner is unable to learn language from
the specific linguistic data available to the child, then we might reasonably conclude that
some innate information must be available. Indeed, a second step, athough not one we
will consider in this paper, would be to attempt to prove that the ideal language learner,
when provided with some appropriate innate information, is then able to learn language
successfully from data of the sort available to the child.

Clearly, the task of constructing such an ideal language learner is aformidable one.
We might reasonably suspect that the project of finding an optimal way of learning
language is inherently open-ended; and our present understanding both of the mechanisms

of human learning, and the computational and mathematical theory of learning, is



sufficiently undeveloped that it is clear that the project is, in full generality, well beyond
the scope of current research.

How isit, then, that many researchers are already convinced that, whatever form
such an ideal learner might take, there is not enough information in the child’s language
input to support language acquisition, without recourse to universal grammar? Two types
of argument have been proposed. The first considers the problem of language acquisition
to bein principle problematic. It isargued that thereis alogical problem of language
acquisition---essentially because the child has access only to positive linguistic data (Baker
& McCarthy, 1981; Hornstein & Lightfoot, 1981). Despite some controversy, it is now
widely assumed that negative linguistic data is not critical in child language acquisition.
Children acquire language even though they receive little or no feedback indicating that
particular utterances are ungrammatical; and even where they do receive such feedback,
they seem unwilling to useit (e.g., Brown & Hanlon, 1970). But learning from positive
data alone seems “logically” problematic, because there appears to be no available datato
allow the child to recover from overgeneralization. If this line of argument is correct, then
whatever ideal learner we might describe, it will inevitably face these logica problems; and
hence it will be unable to learn from positive evidence alone.

The second, and closdly related, type of argument, focuses on patterns of
acquisitions of particular types of linguistic construction and argues that these specific
constructions cannot be learned from postive data only (e.g., Baker, 1979; Chomsky,
1980). This type of argument is sometimes labeled Baker’s paradox, to which we return

below. The nature of this type of argument is necessarily informal---various possible



mechanisms for learning the problematic construction of interest are considered, and
rejected as unviable.

We shdll present mathematical results concerning an ideal learner, with relevance
to both issues. In particular, we shall show that, in a specific probabilistic sense, language
is learnable, given enough positive data, given only extremely mild computability
restrictions on the nature of the language concerned. Thus, the apparent logical problem
of language acquisition must be illusory---because a specific idea learner can
demonstrably learn language. Our arguments aso, a fortiori, address the construction-
specific version of the poverty of the stimulus argument. If language as a whole can be
learned from posditive data, then any specific linguistic construction can be learned from
positive data, despite intuitions to the contrary. Indeed, we shall see that there is a general
mechanism for such learning---one that has frequently been described, though sometimes
dismissed, in discussions of poverty of the stimulus arguments (e.g., Pinker, 1979, 1984).
That is, the absence of particular linguistic constructions in the positive data can serve as
evidence that these structures are not alowed in the language. This point is discussed
further below in our discussion of what we call the overgeneraization theorem, which
shows how the ideal learner is able to eliminate over-general models of the language.

The results presented here should not, though, be viewed as showing that language
is learnable by children from positive data. Thisisfor two reasons. First, results
concerning an ideal learner merely show that the information required to support learning
ispresent in principle. It does not, of course, show that the child has the learning
machinery required to extract it. Indeed, the ideal learner we consder hereis able to make

calculations that are known to be uncomputable---and it is typically assumed that the brain



is limited to the realm of the computable. Thus an interesting open question for future
research concerns learnability results that can be proved with a more restricted idea
learner. The second reason that this work does not show that the child can learn language
from postive datais that the results we describe are asymptotic---that is, we allow that the
child can have access to as much positive data as required. In practice, though, children
learn specific linguistic constructions having heard specific amounts of positive linguistic
data, with a specific degree of incompleteness, errorfulness, and so on. The formal results
that we describe here do not directly address the question of the speed of learning.
Nonetheless, thisis typically also true of poverty of both logical and construction-specific
poverty of the stimulus arguments. Both types of argument typically suggest that, however
much positive data is provided, learning will not be successful. These results presented
here therefore address these arguments, and raise the question of how to provide specific
bounds on the amount of positive datathat is required by the learner to learn specific
linguistic phenomena.

The formal resultsin this paper, then, aim to sharpen the discussion of poverty of
the stimulus arguments, rather than to resolve the issue one way or the other. According
to the results we present, there is enough information in podtive linguistic data for
language to be learnable, in principle, in a probabilistic sense, given sufficient linguistic
data. A challenge for future work on the poverty of the stimulus argument isto sharpen
existing arguments, and current formal results, to address the question of what
increasingly redlistic learners might be able to acquire from increasingly realistic models of
the amount and properties of the linguistic input available to the child. In particular, it is

interesting to ask whether it is possble to ‘scale-down’ the methods that we describe here,



to explore the question of whether there is sufficient information in the linguistic input
available to the child to acquire specific linguistic phenomena that have been viewed as
posing particularly difficult problems for the language learner. We hope this work will feed
into the current debate in linguistics and psychology concerning the scope and validity of
poverty of the stimulus arguments (e.g., Akhtar, Callanan, Pullum & Scholz, 2004; Fodor
& Crowther, 2002; Legate & Yang, 2002; Lidz, Waxman & Freedman, 2003; Perfors,
Tenenbaum & Regier, 2006; Pullum & Scholz, 2002; Regier & Gahl, 2004; Tomasello,
2004).

Theidedl learner that we analyse is based on a Smplicity Principle. Roughly, the
ideais that the learner postulates the underlying structure in the linguistic input that
provides the smples, i.e., briefest, description of that linguistic input. We require that the
description can actually be used to reconstruct the origina linguistic input using some
computable process---thus, the goa of the ideal learner is to find the shortest computer
program that encodes the linguistic input. The general ideathat cognition is a search for
simplicity has along history in psychology (Mach, 1959/1886; Koffka, 1962/1935), and
has been widely discussed, in ardatively informal way, in the field of language and
language learning (e.g., Fodor & Crain, 1987). We describe a formal theory of inductive
reasoning by smplicity, based on the branch of mathematics known as Kolmogorov
complexity theory (Li & Vitanyi, 1997). Kolmogorov complexity was developed
independently by Solomonoff (1964), Kolmogorov (1965) and Chaitin (1969).
Solomonoff’s primary motivation in developing the theory was to provide a formal mode
of learning by simplicity. Kolmogorov complexity and derivatives from it have been widely
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Paul, Seiferas & Simon, 1981), artificia intelligence (Quinlan & Rivest, 1989), and
statigtics (Rissanen, 1987, 1989; Wallace & Freeman, 1987). This mathematical
framework provides a concrete and well-understood specification of what it meansto
learn by choosing the simplest explanation, and provides away of precisely defining the
Simplicity Principle for cognitive science (Chater, 1996, 1997, 1999; Chater & Vitanyi,
2002). Moreover, the simplicity principle has been used practically in a wide range of
models of language processing and structure (e.g., Brent & Cartwright, 1996; Dowman,
2000; Ellison, 1992; Goldsmith, 2001; Onnis, Roberts & Chater, 2002; Wolff, 1988). This
framework will prove to be useful in considering the amount of information available
about the language that is inherent in postive evidence alone.

The first substantive section of this paper, Ideal language learning by smplicity,
outlines the framework for ideal language learning. Roughly, as we have said, the learner
finds the shortest “computer program” that can reconstruct the linguistic data that has so
far been encountered; it then makes predictions about future material based on what that
computer program would produce next. The second section, The Prediction Theorem and
Ideal Language Learning, presents a remarkable mathematical result, due to Solomonoff
(1978), that showsthat this learning method isindeed, in a certain sense, idea. This
method learns to make accurate predictions (with high probability) about the language
input, given mild computability constraints on the processes generating the linguistic data.
The subsequent two sections presents and proves new mathematical results.

In The ideal learning of grammaticality judgments, we show how Solomonoff’s
prediction theorem can be used to show that the ideal learner can, in a probabilistic sense,

learn to make arbitrarily good grammaticality judgments. Thisresult is particularly



important, given that grammaticality judgments are the primary data of modern linguistic
theory, and they are frequently thought to embody information that cannot readily be
extracted from corpora of language. Intuitively, the ideais that sentences which are
predicted with non-zero probability are judged to be grammatical; sentences that have zero
probability are judged to be ungrammatical. Note that this result does not alow for the
errorful character of linguistic input---although extensions to this case may be feasible.

In The ideal learning of language production, we show that prediction can also
alow the ideal language learner to produce language that is, with high probability,
indistinguishable from the language that it has heard. Intuitively, the ideais that the ability
to predict what others might say can be recruited to determine what the speaker should
say. Of course, language production is much more than this---in particular, it requires the
ability not merely to continue conversations plausibly, but to say things that reflect one's
particular beliefs and goals. Nonetheless, the result that an ideal language learner’s can
continue conversations plausibly is non-trivial. It requires, among other things, the ability
to produce language that respects the full range of phonological, grammatical, pragmatic,
and other regularities governing natural language.

Finally, in The Poverty of the Stimulus Reconsidered, we relate these results to the
logical version of the poverty of the stimulus (relating these results to Gold' s [1967]
results, and later work); and to the construction-specific version (reconsidering Baker’s
paradox); and we consider open-questions for the approach that we have described. We
leave a detailed analysis of the methodological and theoretical implications for the poverty
of the stimulus argument, and awhether a smplicity principle might explain some aspects

of human language acquisition, to future work.
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Ideal language learning by simplicity
To specify a set-up for learning a language from positive examples, we need to provide (1)
the class of linguigtic inputs to be learned (the linguigtic ‘environment’); (2) the class of
possible models of the language; (3) a measure of learning performance; and (4) alearning
method. Below, the class of linguistic inputs will be those that can be generated by a
computable process combined with random noise. Learning performance will be measured
both in terms of the ahility to predict new input and in relation to judgements of
grammaticality. And the learning method will be based on the Simplicity Principle—that
the learner should prefer hypotheses which provide the smplest explanations of the

linguistic input. We consider each of these points in more detall.

1. The class of allowable linguistic inputs

Let us assume that linguistic input corresponds to a potentialy infinite sequence of atomic
symbols (an ‘aphabet’). Without loss of generdity, we assume that the stream of
sentences that form the input to the learner can be represented as a continuous binary
string: a sequence of Osand 1s. A smple way of doing this is to associate afixed binary
string with each element of the original aphabet in which the language is expressed (e.g.,
the standard English alphabet and punctuation symbols for sentences of English). Thus,
the sequence of sentences of the input can be converted from its standard representation
into a continuous binary sequence.*

We assume, further, that the linguistic input is generated by areal computational

process. But how, exactly, should we model what counts asa‘rea computationa
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process ? A first suggestion would limit possible linguistic inputs to those that can be
generated by Turing machines. But this would be over-restrictive, because linguistic input
can aso be affected by random factors. For example, imagine a speaker reporting
successive tosses of afair coin: “Heads, heads, tails, tails, tails, heads...” and so on.
Assuming that the coin is tossed fairly, the corresponding utterance is arandom infinite
sequence, which cannot be generated by any Turing machine (Li & Vitanyi, 1997). Rea
language input to the child is presumably a mixture of both kinds of factor—deterministic
computational processes in the speaker (and perhaps aso in other aspects of the
environment which the speaker is describing or reacting to), mixed with random
influences.?

So how can we model this mixture of deterministic and random factors? One
natural approach (which turns out to be quite elegant and general) is to assume that
language is generated by a deterministic machine (concretely, a Turing machine), fed with
arandom input (concretely, the flips of an unbiased coin, which produce a potentialy
infinite string of binary inputs). As the stream of random input comesin, the machine
writes its output as a binary string on a dedicated output tape--this corresponds to the
utterances produced by the machine. This set-up needs to reflect a basic fact about
utterances--that once they have be said, they cannot then be ‘unsaid.” This can be
expressed by saying that symbols on the output cannot be deleted. The intuitive picture to
have in view isthat, asthe input grows, the output (the corpus of things ‘said’) gradually
increases, and can never decrease.® Let us call adeterministic Turing machine which has

this property a monotone Turing machine (Li & Vitényi, 1997).*
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We now have amodel for how the linguistic input presented to the learner is
generated. It is generated by a mixture of random factors (captured by the random input to
the machine); and deterministic factors (captured by an arbitrary monotone Turing
machine). The deterministic factors determine which sentences of the language are
allowed, and their probabilities—the random factors generate an actual corpus of
language, by choosing a particular stream of sentences. The output of the machineisa
finite® or infinite binary sequence, which can be viewed as encoding the corpus of
linguistic materia to which the learner is exposed. Because of the random component,
many different outputs (corpora) can potentially be generated, and some corpora will
more likely to be generated than others. The probability associated with each output
sequence X is the probability that x will be the output of the computational process, when
supplied with random binary input. Hence we can associate any given (monotone)
computational process, C, with a probability distribution, mx(x), over the set of finite and
infinite binary output sequences, x. The fundamental assumption concerning the nature of
the linguistic input outlined in this subsection can be summarised as the assumption that
the linguistic input is generated by some monotone computable probability distribution
m(X).

But is the definition of monotone computability sufficiently broad? Perhaps
language is generated by some cognitive process which is not monotone computable.
Thereis no definitive way to ascertain whether this occurs—a  monotone computability’
thesis must stand as a conjecture, which cannot be verified athough it may, a sometime

in the future, be falsified. There are three points to consider.
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The first point is the assumption that the ‘deterministic’ component is no more
powerful than a Turing machine. This seems relatively uncontroversial, becauseit isin line
with standard assumptions in cognitive science that cognitive processes are computable
(and the Church-Turing thesis, that any computational process can be modeled by a
Turing machine). Thus the deterministic component does not seem overly restrictive.

The second point appears more problematic. The assumption that the input to the
machine is the result of tossing afair coin seems extremely restrictive. But, fortunately,
this restriction can be weakened without affecting the class of probability distributions that
are alowed. Specifically, the assumption can be weakened so that the input is generated
by any ‘enumerable semi-measure.” Roughly, thisis the class of distributions that can be
approximated in the limit® by a computational process (Li & Vitéanyi, 1997). Thisisavery
broad class of probabilistic inputs indeed and includes all the distributions standardly used
in mathematics and probability theory.”

The third point concerns whether the sharp separation between deterministic
computational processes and purely random factorsis unrealistic. For example, on the
natural assumption that the computations of the cognitive system are disrupted by internal
‘neural’ noise, then some of randomness will creep into the workings of the computational
process itself. Fortunately, however, incorporating finite amounts of noise into the
workings of the computational process itself does not affect the class of probability
distributions over linguistic outputs that can be generated. This is because any finite
amount of randomness in the internal workings of the machine can be smulated by a
deterministic machine that ‘absorbs the relevant amount of randomness from part of its

random input.®
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We shall therefore tentatively adopt the monotone computability conjecture
henceforth, and therefore assume that language can be viewed as generated by a fair
random binary input into an arbitrary deterministic, monotone computational process.

To get an intuitive sense of how language generation occurs according to the
present model, consider avariant of a well-worn example. It is often remarked that a
monkey hitting typewriter keys at random would eventually produce the works of
Shakespeare. Here, instead, the monkey is hitting the keys, not of a typewriter, but of a
programmable computer. So the analogous remark is that a monkey randomly hitting the
keys of a programmable computer will eventually write a computer program that produces
the works of Shakespeare.

The change from random typing to random programming is of vital importance. In
the former case, the probability of a string being generated depends only on its length. So
the probability of any billion symbol binary string being generated random is the
probahility of a billion successve coin tosses coming up in some specific way, i.e., 2
1000000.000 Thyg all binary strings, whether they encode Shakespeare or are completely
random are treated as having precisely the same probability. But this would be of no use
as amodel of language generation--because in providing the same probability to all
outputs, the ‘monkey-at-the-typewriter’ scenario completely fails to favor grammatical, or
relevant, or coherent, utterances over unintelligible gibberish.

By contragt, the * monkey-at-the-programmable-computer’ scenario, allows for
such biases to be incorporated into the structure of the computer. These biases can take
forms as varied as the possible computer programs. To choose a smple example of

relevance to language generation, the programmable computer might, for example,
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support a‘programming language’ in which the rules of a phrase structure grammar can

be specified (in this case by the random input). When run, such a program then generates a
binary output, encoding a sequence of sentences that are in accordance with those rules. In
this case, some binary strings (those that correspond to sequences of sentences which are
grammatical according to a phase structure grammar) will be relatively probable; and
others (those that do not correspond to such sequences) will have probability 0. So while
the monkey typing at random is equaly likely to produce any random sequence, the
monkey programming at random (on this particular language generating ‘ machine’) is
very much more likely to produce some outputs than others.

The specific probability distribution over binary outputs depends crucialy, of
course, on the choice of programmable computer, C, into which the random binary input
isfed. But if we fix a particular C, we can quantify the probability that a particular output,
X, will be generated from random input quite straightforwardly. This probability depends
on the number of different ‘programs,” y, that produce output x, and on the length of each
of these programs, I(y).

Focussing on a specific program, y, the probability that it is generated from
random input is the probability that first 1(y) symbolsin the random input correspond
precisaly to y. There isa probability 1/2 that each particular symbol will correspond to the
corresponding symbol of the sequencey, and hence a probability 2'® that all 1(y) symbols
correspond to y. This means that outputs which correspond to short programs for the
computer, C, are overwhelmingly more probable than outputs for which there are no short
programsin C. Now we can derive the tota probability, m:(x...) that an output beginning

with, X..., is generated by random input to the computer C. We just need to sum the
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probabilities of all the inputsy which produce an output x... (i.e., an output that begins
with the subsequence x) when run on the C (in symbols, all they such that C(y...)=x...).

So the total probability, mx(x...), that x... is generated from random input to C is:’

m(x.)= a2'" )

Y-C(y-)=X..

where x... denote a finite or infinite sequence that begins with the subsequence x, and
similarly for y... We shall neglect the ellipsis“...” below. Thus, the fundamental
assumption of the framework presented here isthat the (possibly infinite) corpus of
utterances which forms the corpus, X, for the language learner is generated by a probability
distribution nmy(x), associated with a monotone computational process, C, provided with
fair coin flips."® We shall call such my(X) monotone computable probability distributions.
We show below that the structure of corpora generated in this way can be learned, to an
approximation, from positive evidence aone.

Finally, note that we have skated over some technical complications in the interests
of clarity. First, defining probability distributions over infinite sequences requires care,
because probabilities typically al tend to zero in the limit. Technically, this requires
introducing the notion of a measure (we introduce measures, from a non-standard point of
view [Li & Vitanyi, 1997], which will be useful in subsequent proofs, in Appendix A).
Second, the *probability distributions we have been discussing do not all obey a standard
feature of probahility: that the probabilities of outcomes sumto 1. In particular, this arises

because some inputs to a monotone machine may produce no well-defined output (the
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monkey typing into the computer may type a syntactically invaid program, or a program
which goesinto an infinite loop, or exhibits some other pathology). This means that the
sum of the probahilities of the well-defined outputs, s, which we wrote ny(s), may be less
than 1. This complication requires generalizing from the conventional measures used in
probability theory to the notion of a semi-measure (Appendix A). Where measures and
semi-measures are drawn on in the results below, the discussion is relegated to other
Appendices. Thus, the reader may ignore such complications without substantial loss of

comprehension or continuity below.

2. The class of possible models of the language.
Many standard formal analyses of the problem of language provide specific constraints on
the types of language that are learnable. From the point of view of Gold's (1967)
framework of identification in the limit, for example, the goal of the learner isto identify
the language by picking out one of a (typically infinite) set of possible languages: for
example, the set of finite state languages, context-free languages, or, from the point of
view of Chomsky's (1981) principles and parameters framework, the class of languages
defined by the possible values of afinite set of parameters (Gibson & Wexler, 1994).
Here, instead the class of languages from which the learner must choose is less
constrained; the learner is, in principle, able to entertain all possible processes that might
have generated the input. That is, the only restriction is that the model of the linguistic
data can be generated by a computable process, supplied, if required, with random input,
as described above. Of course, this weak assumption includes al the grammatical

formalisms currently used in linguistics and computational linguistics.
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3. Measuring learning performance
We have defined the class of monotone computable generating mechanisms—and we
assume that the linguistic input to the learner (e.g., the child) is generated by a monotone
computable process. But how are we to measure how well learning succeeds? Our primary
measure is prediction—how well can the learner specify the probabilities of each possible
continuation of a sentence or text? The use of prediction as a measure of learning
language structure can be traced back to Shannon (1951) and has been widely used in
connectionist models in language learning (e.g., Christiansen & Chater, 1994, 1999;
Elman, 1990, 1993).

This prediction criterion is very difficult to meet. Intuitively, it requires that the
learner must not merely uncover the phonologica and syntactic rules underlying language
structure, but must also master whatever other regularities determine which sentencesin
the corpus are generated, whether these regularities are pragmatic, semarntic, or due to the
influence of world knowledge. Thus, this criterion requires that the learner acquire not
merely the language, but much else besides. Nonetheless, it seems intuitively plausible that
if language is learned in this strong sense, it is necessarily learned in the weaker, and more
natural, sense of acquiring just language-specific information, such as the grammar of the
language. We shall see below that there is a precise sense in which thisis true, in the
section Prediction and grammaticality, below.

Let us frame the prediction criterion more exactly. A particular subsequence, X, is
generated according to a monotone computable probability distribution nt. The learner is

exposed to this specific x with a probability nt. The learner is faced with the problem of
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predicting how the binary sequence will continue, i.e., what language input isto come. Let
us congder this input, symbol by symbol. The basic problem isto decide the probability
that sequence, x, will be followed by either a‘1’" or a“0’. The true probability that it will

be followed by a“0’ can be written, using standard notation from probability, as:

n.(x0) >
m.(x) @

m(0]x) =
But, of course, the learner does not know the ‘true’ distribution mx (we will typically drop
the subscript below)—because the learner does not know the language at the outset.
Instead, the learner must use some other probability distribution, and hope that the
predictions that it makes will approximate, to some degree, the predictions that arise from

the true distribution.

4. The learning method: Predicting by simplicity
Rather than attempting to provide a model of human language acquisition, we shall instead
adopt an idealized formal model of learning. This formal modd will alow an analysis of
what can be learned from the linguistic input—and hence to address the issue of the
poverty of the linguistic stimulus.
Specifically, the forma model is that learning follows a Simplicity Principle. The
learner prefers hypotheses, theories, or patterns to the extent that they provide simple

explanation of the data. Thus, we assume that the learner chooses the underlying theory of
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the probabilistic structure of the language that provides the simplest explanation of the
history of linguistic input to which the learner has been exposed.

The learner can then make predictions about subsequent input by applying the
prediction of this best (smplest) theory of the language. More accurately, as we shall see
below, it makes predictions by considering the predictions of many different theories, and
being influenced by each prediction to the extent that the theory that generatesit provides
a simple encoding of the data.

So prediction by smplicity requires finding the theory which provides the smplest
explanation of the language input that has been encountered (or, more exactly, a weighted
combination of explanations with the simplest explanations weighted more heavily). What
does this mean in practice? A first suggestion is that the simplest hypothesis should be
preferred. To see how this might work, consider atrivial input which consists of, for
example, an initial sub-sequence of 1,000,000 aternations of 1 and 0O, that is: 1010...1010.
Intuitively, the smplest hypothesisisthat the sequence continuesto alternate
indefinitely—leading to the prediction that the next symbol will be 1. This hypothesisis
therefore favored over, for example, the intuitively more complex hypothesis that the
sequence consists of 1,000,000 alternations of 1 and O, followed by infinitely many Os,
which would make the opposite prediction. But, taken aone, the injunction to accept the
simplest hypothesis has an absurd consequence. An even smpler hypothesis, e.g., that the
sequence congists of an infinite sequence of 0s, leading to the prediction that the next
symbol will therefore be a 0, will always be preferred. Such possibilities are, of course,
ruled out by the constraint that the hypothesis hasto be consistent with the available

data—i.e., some hypotheses are just too simple. But this point itself raises difficult
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guestions. What does it mean for a hypothesis to be consistent with the available data?
Can congstency with the input be traded against simplicity of hypothesis? If so, how are
simplicity and consistency with the data to be jointly optimised? The theoretica account of
simplicity presented below answers these questions.

Thereis, however, aso a more subtle difficulty: What rules out the simplest
possible “vacuous’ hypothesis which allows any sequence whatever—such a “hypothesis’
could be interpreted as saying that “anything goes?” This hypothesis seems extremely
simple; and it is also consistent with the available data. Indeed it would be consistent with
any data, because it rules nothing out. Mere consistency or compatibility with the datais
plainly not enough; the hypothesis must also, in some sense, capture regularitiesin the
data. That is, it must have explanatory power (Harman, 1965). So we appear to be faced
with the unattractive conclusion that we must somehow jointly optimize two factors,
simplicity and explanatory power; and the relative influence of these two factorsis
unspecified.

Fortunately, there is an alternative way to proceed. Thisisto view a hypothesis as
away of encoding the data; and to propose that the hypothesis chosen is that which allows
the shortest encoding of the data. This proposal disfavours vacuous or nearly vacuous
hypotheses, that bear little or no relation to the data. These hypotheses do not help encode
the data simply because they capture no regularities in the data. Focussing on using the
hypothesis as away of encoding the data also suggests an operational definition of the
“explanatory power” of a hypothesis—as the degree to which that hypothesis helps
provide a smple encoding of the data. |f a hypothess captures the regularities in the data

(i.e., if it “explains’ those regularities), then it will provide the basis for a short description
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of the data. Conversely, if a hypothesis fails to capture regularities in the data, then it does
not provide a short description. Explanatory power is therefore not an additional
constraint that must be traded off against smplicity; maximizing explanatory power isthe
same as maximizing the simplicity of the encoding of the data.

Measuring simplicity as brevity of encoding appears to face two problems. Firg, it
seems that a new description language, in terms of which the linguistic or other data are to
be encoded, may be required for each new hypothesis (e.g., each new grammatical
theory). Second, it seems that brevity of encoding of hypotheses and data will depend on
the description language chosen—and hence the predictions derived from the Simplicity
Principle will likewise depend on the choice of description language.

These problems are addressed by the mathematical theory of Kolmogorov
complexity (Li & Vitanyi, 1997). The first problem, of needing a new language for each
new type of data, is avoided by choosing a general coding language. Specifically, the
language chosen is a universal programming language. A universal programming
language is a general purpose language for programming a computer. The familiar
programming languages such as Prolog, Java and Pascal are al universal programming
languages. All these programming languages are what is called “prefix-free,” that is, no
syntactically correct program in the language is a proper prefix of any other syntactically
correct program in the language. Moreover, the machine executing the program can
determine where the program ends without having to read past the last symbol of the
program. Such programs are prefix-free, effectively so, and are called “self-delimiting.”
For example, alanguage congisting of the programs “01, 001, 0001” is prefix-free, and the

language “10, 100, 1000” is not prefix-free. For technical reasons we require that all
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universal programming languages considered in this paper are prefix-free. Thisisacrucial
requirement for the development of the later mathematical arguments.

How can an object, such as a corpus of linguistic input, be encoded in a universa
programming language such as Java? The ideaisthat a program in Java encodes an object
if the object is generated as the output or fina result of running the program. By the
definition of a universal programming language, if an object has a description from which
it can be reconstructed in some language, then it will have a description from which it can
be reconstructed in the universal programming language. It isthisthat makesthe
programming language universal. Notice that, above, we assumed that linguistic input can
be viewed as generated by a computational process (possibly mixed with a source of
random input). By using a universal programming language, the learner can be sure to be
able, at least in principle, to represent every such computational process.™

Moreover, in solving the first problem, the second problem, that different coding
languages give different code lengths, is, at least partially, addressed. A central result of
Kolmogorov complexity theory, the invariance theorem (Li & Vitanyi, 1997), states that
the length of the shortest description of an object, X, isinvariant (up to a constant)
between different universal languages.'? The invariance theorem thus allows us to spesak of
the code length required to specify an object, X, related to afixed choice of universal
language, where this code length is, up to an additive constant, independent of the
particular universal language in which the shortest code for x is written. The additive
constant depends on the universal language but not on the particular object, x. The

shortest code length required to specify x is defined to be its Kolmogorov complexity,
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K(X). So, by assuming that the coding language that the cognitive system uses is universal,
we can avoid having to provide a detailed account of the codes that the learner uses.
Psychologists and linguists are frequently unsettled by the invariance theorem---
because such alarge part of both disciplines concerns attempting to determine the nature
of menta representations. Thus, any theoretica framework which treats very large classes
of menta representation as equivalent may appear to be missing something important. In
the present context, agnosticism concerning the specific way in which linguistic input is
coded is a decided advantage---because it is possble to prove asymptotic results
concerning learnability from positive evidence, irrespective of the psychological or
linguistic theoretical framework adopted. Given that there is such a diversity of such
frameworks currently under discusson, this lack of commitment is reassuring. On the
other hand, however, the question of the amount of data that is required in learning does
depend on representations. Thus, choice of representation can be viewed as providing the
learner with a specific inductive bias, albeit a bias which will ‘wash out’ given the
sufficient data. Nonetheless, however, the size of these biases may, for some grammatical
formalisms at least, be fairly small. For example, afew hundred or at the very most,
thousands, bits of information may be enough to provide aformal description of the basic
formalism of phrase structure (e.g., Gazdar, Klein, Pullum & Sag, 1985), tree-adjoining
grammar (e.g., Joshi & Schabes, 1997), or categoria grammar (e.g, Steedman, 1996). We
can think of these formalisms as analogous to the programming languages discussed
above---and hence we can conclude that the code length differences between these
formalisms will differ by at most hundreds, or perhaps thousands, of bits. Hence, the

difference in inductive bias inherent in such formalisms must be fairly small (and, of
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course, there are, moreover, close formal relationships between them). On the other hand,
the full complexity of government and binding would appear to be very much greater (e.g.,
Chomsky, 1981); and the complexity of the basic machinery of the minimalist program
would be appear to be intermediate between these two extremes (Chomsky, 1995).

So far we have considered how to measure the complexity of individual objects.
But linguistic input consists not of asingle ‘ objects (e.g., a single sentence, paragraph, or
whatever, which can be represented as afinite binary sequence) but a sequence of objects,
which may be indefinitely long. How can Kolmogorov complexity be applied to measure
the complexity to potentially infinite sequences? The only modification that we requireis
that complexity is measured in terms of the shortest input to a monotone universal
machine (as discussed above), which produces a particular sequence. Thus, given that a
short input to a universal monotone machine will generate along string of Os, then this
string has low monotone Kolmogorov complexity. We define the monotone Kolmogorov
complexity of afinite sequence x as the length in bits of the shortest string such that every
input that begins with this string produces an output that begins with x (the output
sequence may then continue in any way at al). The monotone Kolmogorov complexity for
a sequence, x, is denoted Km(x). The invariance theorem holds for Km(x) just as for K(x)
and, indeed, for finite sequences, Km(x) closely approximates K(X) (see Li & Vitanyi,
1997, p. 285). Note also that a program on a universal monotone machine can implement
a probability distribution over potentialy infinite binary strings. The probability associated
with a binary string is simply the probability the string will be generated by that random
binary input—that is, the probability that it will be generated by a monkey typing random

input to the program, to pick up our earlier picture. More formally, an initial program p of
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length K(n) (note that this program must be self-delimiting, so the interpreting machine
can parse it) causes the universal monotone machine to start smulating the machine Ty,
that transforms the following (possibly infinite) input sequence into a (possibly infinite)
output sequence in such away that the uniform distribution over the input sequences (that
is, infinite sequences of O's and 1's generated by fair coin flips) following the initial
program p is transformed in the distribution mover the output sequences. Thus, we can
speak of the monotone complexity, K(m), of a probahility distribution, m—signifying the
shortest self-delimiting program on the universal machine that implements m*?

We have been focussing up to now purely on finding the single simplest input
program which encodes the sequence, x. But for any sequence which can be encoded at
al, there will be many—in fact, infinitely many—such programs.™* Suppose that an input
program (i.e., abinary sequence) p has length I(p). The probability that it will be generated
by chance is 2'®. Thus, the probability, | (), of a sequence x being generated on a

universal monotone machine is a specia case of (1) above:

= a2'v €)

y:M(y..) =x

We shall call | (x) the universal monotone distribution, and, following Solomonoff
(1964, 1978), we assume that the learner uses| to predict the next linguistic input in the

seguence:
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|(0|x)=%;0)) (4)

Thisisaspecia case of (2) above. It isworth observing that | (x) is not computable—that
is, there is no computable program that, for given any subsequence X, can output the
probability of x according to the distribution | (.). | (X) can, however, be approximated
arbitrarily closely. We shal return to the implications of these observations in the final
section of this paper.

So far, we have specified the weak condition that language is generated by a
monotone computable distribution, m We have also specified that the learner follows a
Simplicity Principle—favoring hypotheses in so far as they provide brief encodings of
linguistic data—and that the learner makes predictions according to a universal monotone
computable distribution, | . We have, furthermore, suggested that the learner’s
performance can usefully be assessed in terms of its ability to predict the linguistic input
successfully, while alowing that another important criterion is the learner’ s ability to judge
the grammaticality of novel sentences. We can now consder the possible effectiveness of

language learnability by simplicity, from positive instances alone.

The Prediction Theorem and Ideal Language Learning

This section rests on a key result, which we label the Prediction Theorem, by Solomonoff
(1978). Thistheorem shows that, in a specific rigorous sense, the universal monotone
distribution | isreliable for predicting any computable monotone distribution m with very

little expected error.™
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Given the assumption, made in the previous section, that language is generated
according to such a distribution, Solomonoff’s result isimmediately relevant to the formal
problem of language acquisition. It implies that the universal monotone distribution | is
reliable for predicting what linguistic input isto come: it most always is guaranteed to
converge. For the moment, though, let us consider the result in general terms.

According to the prediction theorem, | isauniversal approximation for monotone
computable probability distributions. If the learner makes predictions by using | , the
learner will rapidly close in on the ‘correct’ predictions of m Given thisinformal
statement, it may seemthat | may sound too good to be true—and indeed it may seem
conceptually impossible that a single distribution can s multaneously approximate every
one of the entire class of computable probability distributions, because these distributions
will themselves be so diverse. To see how thisis possible, let us state Solomonoff’ s result
more precisdly.

Suppose that a sequence of n-1 binary values are generated by a computable data-
generating mechanism, associated with a probability distribution, m in the way described
in the previous section. Let us call this sequence of n-1 values x. Given this sequence, we
can ask how closdly the prediction according to magrees with the predictions from the
prior, | . Specifically, we measure the difference in these predictions by the square of
difference in the probabilities that mand | assign to the next symbol being 0.%° Formally,

thisdifferenceis:

Error(x)= (I (0|x)- m(0|x))’ ®)
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Error(x) measures how good an approximation | (0[x) isto n(O|x)—but its value clearly
depends on which previous sequence of items, x, has been generated. To get agenera
comparison between | and m we need to take into account the various sequences x that
m(X) might have generated. Moreover, we weight these sequences by the probability m(x)

that they were generated by the true distribution, m

s, = Q mMx)Error(x) (6)

xl(x)=n-1

S, is thus the expected value of the squared error between the predictions of | and mon
the nth prediction. The smaler the s,, the better | predicts m

This weighting by the actua distribution, m reflects the fact that we would
intuitively view | as a good approximation to the true distribution mif it assigns similar
probabilities to events which are actually likely to occur (according to ). It does not
matter whether mand | disagree on cases that never arise in practice (i.e., where n(x) is
0). This weighting by the actual distribution will be important below, when we apply these
ideas to language learning. Specifically, in assessng how well alearner has learned the
structure of alanguage, there will be considerable weight attached to linguistic material
which might actually be said; and little weight attached to sentences (e.g., a sentence
containing 1000 clauses linked by and) which will never actually be produced.

Finally, the expected prediction performance over the entire sequence is just:
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We shdll use this measure as our overall measure of predictive success. To get afeel for

¥
the meaning of é s, , consider the case where the expected value of the sum square
j=1

difference between two computable probability distributions m and m is always greater

¥
than some constant d, where d may be arbitrarily small. In this case, é § isat least

i=1

(¥)(d) which is, of course, ¥ . But, remarkably, Solomonoff’s Prediction Theorem shows

¥
that, in relation to the distributions| and mconsidered here, the sum é s hasalimit
j=1

bounded by a constant, and hence that as the amount of data increases, the expected
prediction error tendsto 0. That is, given enough data, expected prediction should be
almost perfect—using the universal digtribution | the learner should accurately be able to
learn, in an gpproximate sense, any true computable distribution m Specifically, the

following result holds:

Prediction Theorem (Solomonoff, 1978): Let mbe a computable monotone distribution.

Then,

g log.2
ast % K (m) (8)
i=1
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We shall consider below how the Prediction Theorem can be related to language
acquisition, but first, we show how Solomonoff’s remarkable theorem can be proved.”’
The proof has four steps.

Thefirst, and crucia, step isto show that, for any finite or infinite computable data

Iogsz, K(m 9)
(¥

This puts an upper bound on how much n(x) can exceed | (x). Intuitively, it impliesthat if
X is probable according to m it is also reasonably probable according to the universal prior
probability | .

The second step isto show that (9) implies a bound on a measure of smilarity
between the distributions mand | over the set of computable data strings x. This measure

of smilarity is Kullback-Liebler distance D(m|l ):

(10)
D(m[|1') £ K(m)

The third step breaks up this smilarity measure over the distribution over whole
strings x into an infinite sum of Kullback-Liebler similarity measures over each of thej
positionsin the string D;(|l ) . This step is conceptually straightforward, but algebraically

complex:
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Qox

Dy(m[| 1) =D(m[ 1) (11)

The final step makes the connection between the Kullback-Liebler measure of

similarity and the measure of smilarity with which we are primarily concerned: sum-

squared error.

(12)

S log, 2 log,.2
&0,ml1)z 2 D(mi) £ 20 Km (19

thus proving the theorem. We now prove each step in turn.

Sepl

To prove: [ m(x)

9
0%: 5 £ KM ©

Congder a universal monotone machine, U. Because U is universal, for any monotone

machine W, there will be afinite string, p, which ‘ programs’ U to behave like W.*® That is,

for any monotone machine W, there will be a program p (in fact, many such programs),
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such that for all x, U(px) = W(X). Since U must parse px into p and x it must be able to
detect the end of p; that is, p must be self-delimiting. As noted above, the probability of
randomly generating a binary program, p, of length [(p), is 2'®. This means that short
programs have the highest probability.

Let ustherefore focus on the shortest and hence most probable program for Win
U; if there are severa programs which tie for the shortest length, we choose one of them
arbitrarily. The length of this shortest self-delimiting programis K(W) by the definition of
prefix-complexity, K. Each monotone machine is associated with a distribution over al its
possible output sequences, as defined above. If Wis associated with the true probability
distribution m then we can write K(m) to denote the length of the shortest program which
generatesm

Now consider a string x, with probability m(x). What can we say about | (X)? By
the considerations above, we know that one input (of many inputs) to | which will
generate x is as follows: first a program of length K(m which converts U into W (and
hencel into n) followed by any of the inputs to W which produce x. The probahility of the
first part is the probability of a specific binary sequence of length K(n), which is 2¥™. The
probability that the second part of the sequence then generates x is, by definition, n{x).
Thus the probahility of both parts of the sequence is the product of these two:
2Mm(x). Thisisjust one way of obtaining x in U (there are infinitely many other
programs which produce any given output, of course), which means that the probability of
this single program cannot be greater than | (x), the overall probability of obtaining output

x from U. Thus,



(14
27 m(x) £1 (x)

Rearranging, we get:

) £ 2KM (15)
I (x)

Taking logsin base 2 of both sides of the inequality proves Step 1.

Sep 2

To prove: (10)
D(r [|1) £ K(m)

Let usintroduce a measure of the smilarity between two probability distributions, which
can berelated to, but is easier to deal with, than sum-squared difference, defined above.
This measure is Kullback-Liebler divergence, D(P||Q). This measure originatesin
information theory. It measures the expected amount of information that is wasted in
transmitting a message x which is actually generated by a probability distribution P, but is
encoded using a code which is instead optimally adjusted to transmit messages generated
by probability distribution Q. The waste arises because an optimal code assigns short
codes to probable items, and longer codes to less probable items. Thus, if P and Q are

very different, then codes will be assigned in an inappropriate way. Specifically, short
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codes will be used for items which are probable according to Q, but which may not be
probable according to the actual distribution P, and vice versa. When P = Q, thereis, of
course, no waste at all, and D(P||P) istherefore 0. Moreover, if Pt Q the expected waste
is positive, so that D(P||Q) 3 0—and the amount of waste measures how similar or
different the two probability distributions are.™

The Kullback-Liebler divergence between probability distributions P and Q is

defined:

o P(X)
D(P|| Q =a P(x)log,—= (16)

Let us now consder the Kullback Liebler divergence between the distributions

m(x) and | (X), where x ranges over (possibly infinite) output sequences.

g x) 17

D(m[| 1) = ax m(x)log; ; % (17)
Applying (9), we have:

D(M||1) £ & mMx)K(m) £ K(m (18)

where the second inequality follows because n(x) is a semi-measure, i.e., é mx) £ 1-

This proves Step 2.
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Sep 3

To Prove: 5 D,(m[[1) =D(m] 1) (11)

i=1

We have seen how Kullback-Liebler divergence can be defined over distributions of entire
(possibly infinite) sequences. It will turn out to be useful to relate thisto the Kullback-
Liebler divergence at each location in the sequence.

A useful intuition concerning how this works s as follows. D(j|l ) measuresthe
expected amount of ‘wasted’ information required to send a randomly selected sequence
generated by the digtribution m using codes which are optimal relative to the assumption
that the digtribution is| , over and above the expected amount of information required if
the codes were optimized to the true distribution, m Suppose we consider the expected
amount of information wasted in transmitting the first symbol; then the expected amount
of information wasted in transmitting the second symbol; and so on. These quantities
correspond to Kullback-Liebler divergences, defined over each symbol in turn. It seems
plausible that the sum of the expected amounts of information wasted in transmitting each
symbol should be equal to the total amount of information wasted in transmitting the
entire sequence—this is the intuitive content of the result that we are aiming to prove.

To put this more exactly, we need to express the expected amount of information
wasted at symbol j. Suppose that the sequence of symbols from 1 to j-1isx. According to
m the probahilities of the next symbols are given by n(*}x). Similarly, according to | , the

probahilities of the next symbols are given by | (3x).
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Then, using standard Kullback-Liebler distance regarding the outcomes for the jth

symbol, we have:

D,(mC4 X) 11 (4%) = & ma|¥)log, &L (19

a=01 I (@l x)

The expected value of this term with respect to the true distribution n{.) requires
weighting it by n(x), the probability that the first j-1 symbols in the sequence are x
according to the true distribution m Thus, the expected amount of wasted information in

encoding the jth symbol using | instead of m which we shall denote by D;(ni|l ) is:

D(mlll )= & m(x)D,(mx| %) [|1 (4 x)) (20)

xI(x)=j-1

Here we have merely defined the terms in the conjecture above, and explained the
intuition behind it. That is, the amount of information wasted in transmitting a sequence by
using a code optimized to the ‘wrong’ probability distribution is the same, whether the
sequence is encoded al at once, or symbol by symbol. A rigorous derivation that

substantiates this intuition is given in Appendix B.

Sep 4

To Prove
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92 8 b (mil) (12)

We have shown that the learner’ s distribution | is similar to any computable distribution
m where similarity is measured by Kullback-Liebler distance. Moreover, we have shown
how the expected divergence between the distributions over infinite sequences can be
converted to a sum of the expected divergences at each location in the series. It remainsto
relate Kullback-Liebler distance to the familiar measure of goodness of prediction with
which we began: the expected sum-squared error between mand | .

The key to doing thisisthe following result, which applies to arbitrary
distributions P and Q that can take just two values 0 and 1 (the proof is given Appendix

O).
(PO)- AO)* 24 D(P Q) @

It immediately follows that the same result holds if P and Q are conditional on a

previous string, X:
(PO1)- QW19 £-%2 D(Pe{ ) | A4 ) (22

Substituting mand | and for P and Q, and using the definition of Error(.) in equation (5),

we obtain:
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Error(x) = (m(0| X)- | (0] x))* £ "’%2 D(M(| x) || | (4 X)) (23)

Using the definition of 5 (Equation 6),

s = g MXEror(x) £

xA(x¥)=j-1

& ("2 o )11 (1) 22220 1) (24)

xl(x)=j-1

We now take the expected sum squared error over al symbols in the sequence, which
immediately gives equation (12), and hence proves Step 4.

Having proved Steps 1 to 4, we have hence completed the proof of the Prediction
Theorem.

The Prediction Theorem provides a counterweight (alongside more specific
positive learnability results, e.g., Horning, 1969; Feldman, 1972; van der Mude & Walker,
1978; Pitt, 1989) to some interpretations of Gold's (1967) negative results concerning the
apparently limited conditions under which languages can be learned in the limit from
positive evidence. It showsthat learning by smplicity can, in principle, be expected to
converge to the correct conditional probabilitiesin predicting subsequent linguistic
materia. Intuitively, if an idea learner can predict accurately, it seemsthat it must be able
to learn agreat deal about the range of linguistic, pragmatic, socia and environmenta
factors which influence the linguistic input that is received. This appears to imply that the

learner must know a good deal about the specificaly linguistic structure of the language.
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It is appropriate to ask whether this intuition can be backed up with a quantitative
measure of how well the learner must acquire specifically linguistic information. The
resultsin the next section shows that this can be done, by putting an upper bound on the
number of ‘grammaticality’ errorsthat the learner can make in the course of predicting the

linguistic input.

The ideal learning of grammaticality judgments

A straightforward test of the learner’ s ability to distinguish grammatical from non-
grammatical linguistic input: Suppose that the learner hasto ‘guess’ the next word in the
text at each point. How often doesthe idedl learner overgeneralize and guess
continuations that are ungrammatical? And how often does it undergeneralize, and
erroneously rule out continuations which are, in reality, acceptable in the language? We

consider bounds on each type of error in turn.

Overgeneralization errors
In overgeneralization, linguistic sequences are allowed by the learner’s probability
distribution (i.e., they are viewed as grammatical by the learner), but they are not allowed
by the true grammar. We wish both to measure, and to attempt to put limits on, the
amount of overgeneralization that learning according to the Simplicity Principle will
involve (here, we ignore the possibility of “performance error” by speakers producing the
linguistic input to the learner---we assume that the linguistic input consists purely of

grammatical sentences).
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In the discussion of both overgeneralization and undergeneralization, it is
convenient to consider language input as a sequence of words,* rather than coded as a
binary sequence. Of course, a binary sequence is, by stipulation, smply a particular way of
encoding words—words are encountered one-by-one, and each word stands in one-to-one
correspondence with a binary string. Thus, each possible corpus of language, viewed as a
sequence of words, stands in a one-to-one correspondence with a possible binary string;
and the probabilities of each corpus of words are identical to the probabilities associated
with the corresponding binary strings. Thus, instead of dealing with distributions over
finite and infinite binary sequences, m and the learner’s universal approximation, | , we
shall deal with corresponding distributions defined over finite and infinite sequences of
words. We shall call these corresponding distributions Pp,and P, .

Suppose that the learner has seen a specific corpus, X, of j-1 words. Suppose that
the learner has a probability D(X) of erroneously guessing that the next (i.e., the jth) word
in the input is aword which is actually not allowed by the grammar. In symbols, we can

define:

D= aRKIx (25)

k:xk is ungrammétical,
I(x)=j-1

That is, D(x) isthe amount of probability that the learner devotesto grammatically

impossible overgeneraization on the jth word. Because we assume that the linguistic input

contains no noise, ungrammatical continuations have zero probability of occurring.
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The probability Dy(x) will, of course, depend on the specific x that has been

encountered. The expected vaue of D(x), which we shall write ( D, > , iIsdefined as

follows:

(D)= & PD,( (26)

xl(x)=j-1

Our goal isto put some bound on the expected number of overgeneralization errors

¥
throughout the corpus, i.e., to put abound on é <Dj>. The following Overgeneralization

i=1

Theorem holds.

Overgeneralization Theorem.

Where ( D, > is defined as above,

(27)

That is, the expected amount of probability devoted by the learner to overgeneralizations,
in the course of encountering an infinite corpus, sums to a finite quantity. Thus, the typical

degree of overgeneralization, asthe corpusincreasesin size, must go to 0.



Proof. The proof has two parts. The first part concerns how the waste of probability,
D(X), due to overgeneralization after seeing a sequence x, inevitably leads to a waste of
information. This information is quantified by the Kullback-Liebler divergence between P,
and P, , which can later on be related to K(m). But this leaves a crucia gap—it deals with

D(x) for some particular x; but it says nothing about (Dj > , the expected amount of

probability wasted by the learner, averaged across all x. The second part of the proof fills

¥
in this gap, and hence provides the required bound on é <Dj>. To finish the proof, we

j=1
also need to relate the results from these two steps to some of the analysis we have
described above, in proving the Prediction Theorem.

Thefirst part of the proof begins by considering the following scenario. Suppose
that the learner uses its probability distribution P, to encode the output from the true
underlying distribution, P, . After the sequence, x, of j-1 words has been encountered, we
can ask: What is the expected amount of wasted information in encoding the jth item?
Such waste is inevitable, because the learner is using codes which are optimized to the
learner’ s distribution (i.e., P, (.[X)), rather than to the true (but from the learner’ s point of
view, unknown) distribution (i.e., Py{.|X)). The key underlying intuition is that, to the
extent that the learner has a tendency to overgeneralize, the learner must necessarily waste
acertain amount of information. Thisis because the learner encodes items as if some
continuations are possible, where in reality they are not possible. This means that some
code length must be ‘used up’ in specifying the actual continuation in order to rule out
these continuations. The greater the degree to which the learner overgeneralizes, the

greater the amount of wasted information.



Suppose, then, that the learner has a particular Dj(X). How much wasted
information must follow from this wasted probability? The minimum level of wasted
information is achieved as follows.” Assume that, for all the other lexical items, k, which
are possible continuations, the probability assigned by the learner to this continuation,

P (k[X)), isjust (1-Dy(X)) times the true probability P(Kk|X). Thus, acertain amount of
‘probability’ is wasted by the learner, on continuations that are impossible; but otherwise
the probabilities of al the possible continuations are correct, except that they have to be
appropriately re-scaled. What is the expected amount of waste that occurs by encoding the
actual continuation in terms of the learner’s P, (k|x)), rather than the true P(k|x), using this

maximally efficient ‘re-scaled’ encoding? Applying Kullback-Liebler divergence:

. p.(k] %)

DRI (10)* & R(kIlog,

o Pkl s P.(KX)

= imk)log @ RkDIlos e kg P

P (Kx)=0 P (kIx)* 0

Thefirst termis O, because P(k|X) is zero for ungrammatical continuations. Simplifying

the second term, we obtain;*

& 1 0 o
log,6—————2 & P (k|x 29
%@ D,00) Begea (29)

Pi(k]x)® 0
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Because the input continues in some way or other, é P_.(k|x) =1, and hence we can
xk grammetical,
P, (kKIx)® 0

conclude that:

&
D(RLDINR C1X)* logig o

(30)
Thisisthe minimum expected amount of waste that accrues for a particular guess, with
probability D(x) of the learner guessing an ungrammatical continuation.

We have considered a particular x. We now average over all the possible
sequences of j-1 words, to get the expected amount of information loss on encoding the
jthitem, which is denoted by D;(P,(.| X) | R (.| X)) (using the definition in equation 20

above). Thus, we obtain:

D(P.(IXNP(]x)3 é P (x)lo u9= lo ug (31
Jhm l. XI()=j-1 " gzél' DJ(X)@ gzél' DJ(X)Q

This completes the first part of the proof.

The second part of the proof shows how the above result can be applied to put a

¥
bound on é <Dj>. Log is a concave function, and we can therefore use the standard result
i=1

that for expectations over an arbitrary random variable, z (where z> 0):
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log,X2) ? log, z) (32)
Thisimplies that:

- (Iog2 23 - log2

(10g, ) og. 75 (33)

if we then substitute in 1 - By(x) for z, we obtain:

- log,——— (34)

Thisisacrucid part of the second step in the proof—we have now introduced the

expected value, <Dj (x)> , &cross al possible x. We can now get at (Dj (x)> more directly,

but replacing the log expression on the right hand side of the inequality using a Taylor

expansion.
e 1 O _ & <Dj (X)>2 <DJ (X)>m 0 3
Iogzm;—logzegg (X)>+ > toot m +; <DJ(X)>Inge

(35

Stringing together the inequalities (31), (34) and (35), we obtain:
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D,(R.(I) IR (-1%) 2 {D,(x)log, e (36)

So far we have only considered the probability of overgeneralization, and consequent
waste of information, for the jth word in the corpus. We now sum over al j. The left hand

side of equation (36) immediately smplifies, using the result above (eguation 20) that

a D,(m|l1) =D(m]|| ). Thisgives

D(R, I R )2 (D, (x))log, e (37)

I'n this section, we have so far worked with probability distributions Ph,and P, over
sequences of words, rather than with the familiar mand | , which are defined over binary
sequences. We can now relate the present discussion back to the binary analysis. By
stipulation, there is a one to one correspondence between possible binary states and
sequences of words.* There is therefore also adirect correspondence between the
probabilities of these corresponding states. The probability of generating a particular word
sequence is the same as the probability of generating the corresponding binary sequence.

I nformation-theoretic measures, such as Kullback-Liebler distance, are of interest precisely
because they are independent of the details of the coding scheme used to represent a
probahility distribution. Thus, it makes no difference whether the probability distributions
are defined over strings of words (like P,and P,) or are defined over the corresponding

binary strings (likemand | ). Hence,



D(R, IR )=D(m 1) £ K(m) (39)

where the right hand inequality follows from (20) above. Putting (37) and (38) together

givesthe result:
3 K(rr)
D )E——= 39
a(p) e s (39)

The intuitive sgnificance of the overgeneralization theorem can be thought of in
the following way. Suppose that the language learner were to continually attempt to guess
the next word of every linguistic interchange. If the learner follows the Simplicity
Principle, and makes predictions according to the distribution P, (or, equivalently,
accordingto | over abinary code), then the expected number of times that the learner will
make a prediction that violates the grammar of the language has a finite bound, even on an
infinite corpus. Thisimplies, for example, that, for alinguistic input of n words, the

K ()

expected average number of overgeneralization errors can be no more than: loq. 2"
nlog,

Thus, if we consider a sufficiently large corpus (i.e., we increase n), the average expected

number of overgeneraization errors tends to zero.

Undergeneralization errors
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In undergeneraization, a sentence, s, is alowed by the true grammar, but it disallowed by
the learner’ s probability distribution. If this were to occur, after hearing a prior sequence
of words x, aword, k, would be encountered which the learner had assigned a probability
of 0. The learner would have undergeneralized, by assuming that the language is more
restrictive than it in fact is.®

For alearner using the Simplicity Principle, however, such undergeneraizations
never occur. This apparently remarkable result can be understood intuitively as following
simply from the fact that the learner’ s probability distribution, | , correspondsto a
universal monotone computer. Any computable output (including any corpus of language
generated by a monotone computable process) therefore has a non-zero probability of
being generated by this universal machine—because a universal machine, by definition, can
simulate the computable process that generated this output. There is therefore a non-zero
probability that a program that simulates this computational process will be generated by
chance.”®

But further reflection suggests that the problem of undergeneralization has not
really been ruled out effectively by the analysis above. So far we have ruled out the
possibility that the learner assumes a continuation to be impossible, when it is actually
possible; but it seemsrelevant also to consider the case where the learner drastically
underestimates (perhaps by a vast factor) the probability that a sentence might occur. In
this case, the true distribution might allow that a continuation (e.g., dogs after the context
raining cats and...) is actually rather common; whereas the learner believes that it is so
infinitesimally probable that it is unlikely to occur in the entire history of the universe.

Such alearner would seem, intuitively, to be making an undergeneralization error (and a
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rather blatant onel); but such errors will not be detected by the previous criterion, asthe
learner believes the probability of the continuation to be non-zero.

To address this concern, let us therefore consider a‘soft’ version of
undergeneralization. Suppose, as before, that the sequence of words encountered by the
learner is generated according to a computable probability distribution Py, and that the
learner attemptsto predict this sequence by a universal probability distribution P, . As
usual, we denote the sequence of the initial j-1 words that the learner encounters by x, and
let us call the jth word, k. If the learner undergeneralizes on word k by a factor f, this
means that the learner underestimates the probability that k will occur after x by afactor f.
That is, P, (KX)f £Pa{K|x). What is the probability that the k that is chosen according to the
true distribution is a word on which the learner undergeneralizes, given the preceding

sequence, X? This probability, which we denote L ;(x), can be expressed:

L= aPyklx) (40)

k:f R (KIX)E P, (K]X)

The expected probahility, ( L, > , with which this occurs on the jth item is expressed:

(L)= aPMLX (42)

xl(x)=j-1
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Our goal isto put some bound on the expected number of undergeneralization errors
¥
throughout the corpus, i.e., é <L J. > The following result can be derived (see Appendix F

i=1

for a proof):

Soft undergeneralization theorem

(L) EKm—

1 log, f/e (42)

(solong asf >¢)

The theorem implies that the expected number of ‘soft’ undergeneralizations is bounded
by a constant, even for an infinitely long sequence of linguistic input. As with
overgeneralizations, the upper bound is proportional to the complexity of the underlying
probabilistic mechanism generating the language (including, presumably, the grammar of
the language). Moreover, the more severe the criterion for an undergeneralization (the
greater the value of f), the fewer such undergeneralizations can occur.

We have shown that, if language is generated by an arbitrary computable
probahility distribution, Py, and the learner employs the universa distribution P, , the
expected number of over- and under-generalizations that the learner makes will be

bounded by a congtant, over an infinitely long linguistic input.
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Thus, in testing grammaticality judgements by prediction, as discussed above (and
assuming the highly idealized case where linguistic input consists only of grammatical

sentences), the learner can, in the limit, make highly accurate grammaticality judgements.

The ideal learning of language production

So far we have presented two results. First, we have shown that learning using a
Simplicity Principle can be used to successfully predict linguistic input, in the asymptote;
this result arises directly from Solomonoff’s (1978) Prediction Theorem. Second, we
showed that the Prediction Theorem has implications for the ability to learn to make
grammaticality judgements from positive evidence alone. Roughly, the logic of the
argument was to show how alearner that can predict effectively can use this ability to
make grammaticality judgements; and hence to use the result concerning the quality of
prediction to provide an insght to the quality of grammaticality judgements.

It might appear, however, that a more challenging task for the learner is not merely
to judge whether sentences that it hears are grammatical, but to successfully produce
sentences of its own. Fortunately, it is possible to show that by learning using the universal
distribution, | , the learner can aso produce language effectively, in the asymptote.

To see how thisworks, we can imagine that our idea learner has been exposed to
alarge corpus of linguistic input, involving conversation between other speakers. The
learner’ s goal isto be able to join the conversation with linguistic outputs of its own---in a
way that is indistinguishable from the linguistic outputs of other speakers. If the learner is
able to blend in successfully with such conversation, then it must have learned to produce

language in conformity with the grammatical, semantic, and other, regularities respected
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by other speakers. Of course, the mere ability to blend in with other speakersis alimited
goa---in practice, language learners wish to be able produce language that does much
more: that reflects their own specific beliefs and utilities. We consider an aspect of how
this ability can be learned, by learning to map represenatations of linguistic meaning and
linguistic form, in future work.

Let us consider some particular contribution, y, that our ideal learner decides upon,
after hearing a linguistic corpus, x (for convenience, assume these are encoded as binary
strings). The probability that the sentence has this continuation, if the sequence continues
to the generated by the existing speakers, is n{y|x). The learner generates utterances
instead by the same distribution that it usesin prediction, i.e., with probahility | (y[x). The
learner blendsiin, to the extent that | (y|x) is agood approximation to ny|x).

The following result ensures that the match is agood one (Li & Vitanyi, 1997,
Theorem 5.2.2). Where mis a probability distribution (strictly, a semi-measure) generated
by a monotone computable process, and | isthe universal distribution (used by the

learner), then for any finite sequence y, then as the length of sequence x tends to infinity:*’

|31 g 4
iy %)

(43)

with a probability converging to 1 for fixed y and as the length of x increases (provided
thereisan ¢ > 0 such that u(y|x) > ¢ for dl y and x involved). Interpreting (43) in the
context of language production, this means that, in the asymptote, the learner will blend in

arbitrarily well. The probability of the learner producing any continuation of the



conversation will tend towards the probability of that continuation being made by another
speaker. In particular, this means that there will not be sentences that the other speakers
might say with some significant probability, but which the learner is incapable of saying;
and conversdly that everything that the learner might say with significant probability will
be something that the other speakers might have said. Thus, in the asymptote, the learner
can speak the language indistinguishably from the speakers in the language community in

which the language was learned.

The Poverty of the Stimulus Reconsidered

We have shown that, under quite broad assumptions about the linguistic input over which
learning occurs, there is enough information in postive input alone to learn a good deal
about alanguage. In this section, we briefly consider the application of these resultsto a
concrete linguistic discussions; we reconsder the relationship of the present resultsto the
logical and construction-specific versions of the poverty of the stimulus argument, as

discussed earlier, and we aso outline open questions for future research.

Implications for theories of language acquisition
To make the implications of this theorem linguistically concrete, note that our results have
direct implications for the learnability, from positive evidence, of any specific principle of
grammar. Suppose, for example, we consider the subtle principles of government and
binding (e.g., Chomsky, 1981, 1986) that are presumed to explain that 44a and 44b are

possible in English, but that 44c and 44d are not:
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a Johnistoo stubborn [to talk to]
b. Johnistoo stubborn [to expect [anyone to talk to]] (44)
c. *Johnistoo stubborn [to visit [anyone who talked to]]

d. *Johnistoo stubborn [to ask anyone [who talked to]]

The principles underlying these and many related phenomena (Chomsky, 1986) seem to be
enormougly intricate. It might therefore be expected that they cannot be learned from
positive evidence alone. Nonetheless, the results described here show that, given sufficient
positive evidence, these constraints (or rather, approximations to these constraints) are
learnable from positive evidence. For suppose that the learner is never able to master these
constraints. Then, either the learner will persistently fail to realize that viable structures
(such as 44a and 44b) are in fact allowed. Thiswill lead to indiminable on-going
prediction errors: after John is too stubborn to... the learner will not consider that the
sentence might continue with .. talk to, or ...expect anyone to talk to. Alternatively, the
learner may falsely believe that nonviable structures (such as 44c and 44d) are part of the
language. Thus, on hearing John is too stubborn to..., the learner may wrongly predict
that the speaker may continue .. .visit anyone who talked to or ...ask anyone who talked

to. Aswe have noted, any ineliminable prediction errors, summed over predictions over an
indefinitely large corpus, will lead our error measure to go to infinity. Thisiswhat the
Prediction Theorem rules out: an ideal learner, with sufficient positive evidence, will learn
to respect these linguistic constraints. This does not, of course, imply that the learner will
necessarily respect these congraints by discovering the specific principles of the theory of

government and binding; the theorem concerns the predictions of the learner, rather than
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the specific representational methods that the learner might use. This linguistic application
suggests that the ability to learn to predict over a corpus requires finding all the linguistic
regularitiesin that corpus. Thus, the ideal learner might be viewed as an “ideal structural
linguist” (Harris, 1951)---in that it finds the regularities in alanguage purely from
exposure to a corpus of that language (although, of course, it merely outputsits
predictions---it does not output a “theory” of the linguistic structure of the language,
which is of course the goa of the linguist).

Chomsky (1957, 1965) has, however, re-oriented linguigtics, to be concerned
primarily with linguistic judgments, rather than with attempts to find regularitiesin
corpora. Most notably, speaker/hearers judgments of which linguistic forms
(phonological, syntactic, semantic) are acceptable in the language, are the primary
linguistic data of linguistic theory. Human language acquisition clearly results in our ability
to make such judgments---speakers of English typically agree that 44a and 44b are
acceptable, and that 44¢ and 44d are not. Can the ability to make such judgments be
learned purely from a corpus? Our analysis of grammaticality judgments, described above,
indicates a positive result. An ideal learner will, with arbitrarily high probability, learn to
be able to make approximately correct grammaticality judgments concerning stimuli of this
kind, where the expected approximation becomes arbitrarily accurate, depending on the
amount of available data

The same point applies, more generally, to the wide range of linguistic phenomena
that have been argued to be difficult or impossible to learn from positive evidence aone.
For example, awell-known textbook, Crain and Lillo-Martin (1999) makes frequent use

of the argument that constraints on what sentences can occur cannot be learned, and
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hence must be innate, because constraints can only be learned from negative data (data
concerning what the constraints rule out). For example, they discuss the Empty Category
Principle (ECP), the statement of which is rather technical, but which aims to explain

patterns such as:

a Who do you think Sarah will hire
b. Who do you think that Sarah will hire (45)
¢. Who do you think will win

d. *Who do you think that will win

They argue “Like other constraints, the ECP is used to rule out ungrammatical sentences,
hence it must beinnate...” (p. 225). But according to the analysis above, this argument is
not correct. Constraints are learnable from positive data alone; but, of course, the

guestion of how much datais required to learn specific congtraints, and whether the child

is able to explain this data, remains unresolved.

The logical problem reconsidered: Relationship to identification in the limit
We noted at the outset that the scope for learning language from positive evidence alone
has been viewed as limited in the light of Gold’s (1967) classic paper “Language
identification in the limit.” These results were one motivation for the view that thereisa
fundamental logical problem with language acquisition from postive data. By contrast, the

present results suggest that under very general conditions positive evidence can provide
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enough information for alearner to gain a great deal of information about a language
(though we shall mention a number of caveats below).

Gold's (1967) paper, and the subsequent literature, has proved a range of positive
and negative results concerning what can be learned from positive evidence. Gold’s most
celebrated result, and variants upon it, cast the problem of learning from positive evidence
in what appearsto be a negative light. Specifically, we define identification in the limit to
require eventually correctly identifying alanguage (purely extensionally---i.e., picking out
the, typically infinite, set of sentences that it does contain), from any text of that language
(where atext is a semi-infinite sequence, i.e., with a determinate start, but no end item, of
sentences of the language, such that each sentence in the language eventually appears).
The learner need merely settle on the correct hypothesis and “stick” withit; it is not
required that the learner is able to announce that it has identified the language successfully
(and indeed this will typically not be possible). Now, we can informally state Gold's key
result as follows: for any family of languages consisting of al finite languages (i.e.,
languages consisting of any finite set of sentences) and at least one infinite language, then
that family of languages is not learnable in this limit. This means that thereis at least one
language, and atext generated by that language, such that the learner will not settle on the
correct language, and stick with it, however much of the text it sees. The emphasis on
finite languages is not crucia---similar negative results hold when learning only infinite
languages (e.g., Niyogi, in press). In particular, these results lead to the conclusion that
finite state languages, and all languages generated by more complex grammatical
formalisms are not learnable in the limit. Interestingly, these negative results have been

extended to the case where the goa is merely probabilistically approximately correct
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(Vaiant, 1984) identification of the target language (Niyogi, in press), which follow,
roughly, because almost any interesting class of languages has an infinite VC dimension
(Vapnik, 1998; see Niyogi, in press, for anaysis and discussion).

The present results do not, of course, cast doubt on the validity of these negative
results. Nor does it cast doubt on the usefulness of Gold’ s approach to the study of
learning. Indeed, an important subfield of research, learning theory, has emerged from
extensions of Gold' s results (Angluin, 1980; Blum & Blum, 1975; Jain, Osherson, Royer
& Kumar Sharma, 1999; Martin & Osherson, 1998; Osherson, Stob & Weingtein, 1985).
Moreover, results from learning theory have been extensively related to human learning,
including language learning (e.g., Niyogi, in press; Osherson & Weingein, 1982;
Osherson, Stob & Welinstein, 1982, 1984; Pinker, 1979, 1984).

The present results do emphasize the general truism that different formal
idealizations of a single process--here the process of language acquisition--can lead to very
different theoretical conclusions. The pressing question, therefore, is in what ways do the
idealizations differ, and which idealization appears to be most relevant to how children
learn natural language. An exhaustive analysis of the issues is beyond the scope of this
paper. Here we briefly mention three critica points of difference (see Rohde & Plaut,

1999 for related discussion).

I dentifying vs. modeling the language
A firg difference is that Gold’s criterion for successful learning is more exacting than that
considered here. Gold is concerned with precisely ‘identifying’ alanguage—i.e., specifying

exactly (or amost exactly—see Osherson, Stob & Weinstein, 1985) what sentences it
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does or does not contain. This seems too grict a criterion of learning in relation to how
children learn language—after all the idiolects of any two native speakers will presumably
show at least subtle differences. Moreover, even a single difference over a specific
grammatical rule between two idiolects can lead two speakers to disagree on the
grammaticality of the infinite number of sentences in which that grammatical rule is
involved. Thus, we would expect that any two people would disagree on the
grammaticality of an infinite number of sentences. This means that theoretical results
showing that alearner cannot precisely identify a language from a teacher providing only
positive evidence, such as Gold provides, may not apply directly to language acquisition in
the child. The model developed here allows that the learner and the ‘teachers from whom
the language is learned may make different judgments about the grammaticality of an
infinite number of sentences (and the teachers may, presumably, aso differ among
themsealves). But the learner and teachers will agree on amost al sentences that have a
substantial probahility of being said. This means that, for example, a disagreement between
learner and teachers concerning the application of a controversial grammatical rule in aten
billion word long sentence will not count noticeably against the learner’s having
successfully acquired the language. From the pragmeatic point of view of explaining how
learners come to understand the actual sentences that they hear, and learn to produce
similar sentences, the more relaxed criterion adopted here seems reasonable, and indeed,
arguably required to explain “endogenous’ aspects of language change (e.g., Niyogi, in

press).

The impact of statistical properties of language
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A second, and related, differenceisthat Gold’s result makes a crucial simplification in
ignoring statistical properties of the language. In Gold' s learning set-up, alanguageisa
collection of sentences,; and the goa of learning is to identify this set. But in the speech to
which children are exposed, some types of sentences are more common than others—and
learning the language critically involves learning these types of sentences, over and above
types of sentences which are rarely or never produced. Thus, all native speakers of English
agree that the cat is on the mat is an acceptable grammatical sentence; but examples of a
rare structure, such as the multiply center-embedded such as the cat the dog the man saw

chased ran leaves native speskers uncertain regarding grammaticality.

Worgt case vs. typical case analysis

A third difference between Gold’ s framework and the present set-up isthat Gold' s origina
results demand that for alanguage to be learnable, it must be possible for the learner to
learn the language given any text for that language. Here atext is defined as a (typicaly
infinite) sequence of sentences (allowing arbitrary repetitions) which includes all and every
sentence of the language. This means that every grammatical sentence of the language will
be encountered eventualy, but that there are typically no further constraints concerning
the order in which sentences are encountered. Gold (1967) notes that the demand that
language can be learned from every text may be too strong. That is, he allows the
possibility that language learning from positive evidence may be possible precisely because
there are restrictions on which texts are possible. As we have noted, when texts are

restricted severely, e.g., they are independent, identical samples from a probability
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distribution over sentences, positive results become provable (e.g., Pitt, 1989); but the

present framework does not require such restrictive assumptions.

The power of absence asimplicit negative evidence

Indeed, once the demand that the learner must successfully acquire the language from any
text is abandoned, then a potentially powerful source of ‘implicit’ negative evidence
becomes available: absence as implicit negative evidence. To see how critically important
this factor can be consider alanguage learner that is considering the viability of the
‘vacuous grammar, that any set of words in any order is grammatical—‘ anything goes.’
But suppose that the ten million words that the learner has so far encountered have been
generated by atrivid finite state grammar. It might seem that the learner can pretty safely
rule out the ‘vacuous' hypothes's, under these conditions—and, indeed, it might seem that
any intelligent learning mechanism is likely to reach this conclusion. The absence of al but
atiny fraction of possible sentences would seem to be strong evidence that these sentences
(or at least, the vast bulk of them) are not alowed in the language. Thus, it seems
reasonable to interpret absence as a potential source of implicit negative evidence. But in
Gold's set-up, alearner that adopts this assumption will be found wanting, because
learners are required to acquire the language successfully, whatever the text on which they
learn (so long as the text includes all and only the grammatical sentences of the language).
Thus, any text at al is a perfectly legitimate text for the ‘vacuous grammar, including the
one mentioned above; that is, the text can be ‘rigged’ arbitrarily to ‘midead’ the learner;
and Gold' s criterion requires that the learner should, nonetheless, always ultimately

succeed in identifying the language correctly. More broadly, because the text can be
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rigged arbitrarily, the learner can never rule out ‘over-general’ grammars—i.e., grammars
that allow more sentences in the language than the target grammar. Intuitively, the point is
that for any ‘reasonable’ text, including the linguistic inputs to which children are exposed,
absence can be used as negative evidence. Thus, by allowing ‘unreasonable’ texts, Gold’s
idealization makes the learning problem unduly difficult.

The potentia importance of absence as a source of negative evidence applies not
just at the general level mentioned above. As Rohde and Plaut (1999) have elegantly
argued, it isalso at the core of awide range of specific proposals that attempt to explain

how the child can acquire aspects of language from positive evidence alone. These

proposals, which include the “uniqueness principle,” “competition,” “preemption,”
“blocking,” the “principle of contrast,” “mutual exclusivity” and the “M-congtraint”
(Bowerman, 1988; MacWhinney, 1993, 2004; Pinker, 1984; Wexler & Culicover, 1980),
all rely on absence as an implicit signal than certain forms cannot occur. Rohde and Plaut
(1999) point out that these principles require the learner to use ‘soft’ constraints such as
that verbs typicaly have a single past tense, or that nouns typically have a single plural
form. The constraints are * soft’ because they are some cases in which they do not apply.
For example, in US English, ‘dive’ has two past tense forms ‘dived’ and ‘dove,’” both of
which are reasonably frequent. But the soft constraint can nonetheless be extremely useful
to the learner, if combined with the use of absence as negative evidence. Suppose, for
example, that the learner hears countless examples of ‘went’ as the past tense of ‘go.” The
constraint that verbs typically have just one past tense means that the learner may

reasonably conjecture that ‘goed’ is not viable. By using absence as surrogate negative

evidence, the more examples of ‘went’ are heard, the more confident the learner can be.



The learner can reason that if ‘goed’ existed, it would very likely have been encountered.
Indeed, presumably it is just such an inference which underlies our adult intuition that
‘goed’ is not viable—it would seem incredibly unlikely that ‘goed’ isa valid past tense
form, but that due to aremarkable chain of coincidence, one has never heard anyone say
it. Note, by contrast, that this style of reasoning would not be appropriate in the context of
atypica learnability set-up; this is because the learner must succeed even in the ‘rigged’
text where ‘goed’ is legitimate, but is only heard after one billion examples of ‘went.’

To use absence as a source of negative evidence requires, then, some restrictions on
the class of possible inputs to the learner (texts cannot be arbitrarily rigged). But which
assumptions about the class of texts are appropriate? One extreme idealization would be
to assume that texts are created by concatenating sentences chosen independently from an
identical distribution over the (infinite) space of possible sentences (e.g., Horning, 1969).
Thisidedization is attractive from a formal point of view—because it alowsthe
application of the standard probability theory concerned with the properties of such
sequences. But this assumption is clearly too restrictive, because there are patently very
strong, and linguistically crucial, interdependencies between successive sentences. A
natural direction to explore isto weaken this assumption by allowing dependencies
between short sub-sequences of sentences, or in some other way assume that the language
isrelatively sationary (Rohde & Plaut, 1999).

Any such assumption that the language is ‘ stationary’ is subject to the concern,
however, that there are dependencies between chunks of language over arbitrary scales.
To seethis, consder the dependencies in an academic journal, which apply between

sentences and subsequent sentences; between paragraphs and subsequent paragraphs,
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between sections and subsequent sections,; and even between articles and subsequent
articles. Thus, it isnot clear that language is a stationary stochastic process over any time-
scale, athough the possibility remains that it may be approximately stationary, to some
useful degree, or at some level of linguistic analysis. The present framework places strong,
but rather general, restrictions on texts, but without requiring stationarity. Specifically,
infinite texts must be monotone computable. This restriction is sgnificant. The
overwhelming majority of infinite texts will correspond to uncomputable sequences.?®
However, the uncomputable sequences, being incompressible (every initial segment is
incompressible) to some degree, correspond more or less to "white noise”" and have no
meaning or regularity, and hence there is no cogent reason why one should want to learn
them or that they would express any interesting structure. Note, too that the restriction to
computability is still quite weak, in the sense that it does not impose any constraints which
are specific to learning natural language. Nonetheless, the results we have discussed here

show that adding this constraint on inputs suffices to make language learning possible.

Summary

Inanutshell, Gold s learning paradigm embodies the view that the child’s goal in learning
language is primarily theoretical: The goal isto get the correct theory that decides all
possible cases, whether or not they arise in practice or not; and Gold demands that this
theory is learnable on all possible texts for the language. But it may be more appropriate
to view the child’s primary goal as practical: What mattersis learning to handle the
language as it is actually spoken, from samples of the language that might actually be

heard. In brief, Gold' s results show that language learning from postive evidence alone is
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impossible, when viewed as a problem of theory discovery; but the present results show
that practica knowledge of how to predict, judge and produce sentences of a language
can in principle be derived from positive evidence alone. The present analysis seems
appropriate for natura languages where there is typicaly little consensus concerning what
constitute correct sentences is necessarily fluid: different native speakers and linguists may
completely disagree on the correctness of infinitely many sentences; and grammaticality

judgments may be inconsistent across different occasions for the same speaker.

Open questions
The analysisin this paper considers the amount of informeation available to a learner from
positive evidence alone; but it does not consider the extent to which it is possible for a
learner to exploit thisinformation fully.

To consider whether this information can be exploited fully, let us assume that the
learner has the same computational power as the mechanism producing the corpus (this
seems a reasonable assumption, as today’s learner istomorrow’ s corpus-generator for
future learners). Thus, the learner is modeled as a monotone Turing machine with access
to arandom input. To obtain optimal learning, the learner needs to predict according to
the universal distribution, | , conditional on previous input. But in general, a least, this
will not be possible, because | is an uncomputable distribution--thisis a sandard result of
Kolmogorov complexity theory (Li & Vitanyi, 1997). So, although the information may be
available, the learner cannot exploit it fully.

Hence, a psychological mechanism that learns using a Simplicity Principle must

operate by approxi mating the probability distribution | --i.e., finding a short, but not
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necessarily the shortest, encoding of past linguistic data. This opens up the very interesting
guestion of how approximationsto | will fare in language acquisition--in prediction,
making grammaticality judgements, and language production. Two extreme possibilities
may be envisaged. One extreme possibility is that computational restrictions change the
picture dramatically. Although for alearner with no computational limitations, the
linguistic input contains enough information for successful learning, it might be that for
real computational learners, very little useful information about language structure can be
extracted from the input. The other extreme possihility is that computational limitations do
not qualitatively affect what can be learned--i.e., the learner can predict, judge
grammaticality, and produce language successfully, by choosing the smplest account of
the language that it is able to find, although not, of course, quite as accurately as would be
possible if the Simplicity Principle could be implemented precisely. The question of which
extreme represents the true situation, or which compromise between them is appropriate,
is currently an open problem. Nonetheless, some steps have been made in this direction.
Vitényi & Li (2000) consider a computable approximation to the universal distribution--
the statistical Minimum Description Length Principle (e.g., Rissanen, 1987, 1989) and
show via mathematical analysis that, under certain conditions, this computable
approximation is expected to lead to successful predictions with probability 1. There
remains, though, arich set of open questions concerning the properties of learners which
various more specific computational properties and restrictions (e.g., learners that can only
entertain certain languages). Most important, of course, is the analysis of idealized learners

that are psychologically realistic as models of human learners.
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A related area set of questions concerns more specific models of both of the
language to be learned, and of the nature of the learner. In the analysis here, our only
constraint on the language is that it could be produced by a‘monotone’ Turing
computable process (with access to a source of randomness). The learning problem may
be expected to become substantialy easier if constraints are placed in the class of
languages that might need to be learned. These constraints might range from very generd
properties of language (which might emerge from communicative constraints, cognitive
limitations, or in a variety of other ways) to highly specific and elaborate constraints of
language structure, such as those embodied in ‘universal grammar’ (Chomsky, 1981).

A third important set of open questions, that we touched on at the end of the last
subsection, concerns the quality and amount of data required for language acquisition to
occur. Formal results both in the tradition of formal learning theory started by Gold and
learning by smplicity started by Solomonoff have focussed on learning in the asymptote,
using a potentially infinite supply to data. But rea language learning must occur reliably
using limited amounts of data (although the available data to the child will comprise many
millions of words each year). Thus a crucia set of open questions concerns how rapidly
learners can converge well enough on the structure of the linguistic environment to
succeed reasonably well in prediction, grammaticality judgements and language
production. Some progress on this issue has already been made by Solomonoff (1978),
who has shown that the expected squared error in the n-th prediction probabilities of using
the universal distribution to decrease more rapidly than 1/(n log(n)) (seeLi & Vitanyi,

1997).
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Conclusion

This paper presents some positive results concerning what is learnable from positive
linguistic data. We have seen that exposure to positive data is sufficient for an ideal learner
to predict new material from a corpus, learn to make grammaticality judgments, and learn
to produce language. These results re-open the question of the viahility of language
learning from positive evidence under less idealized conditions, of limited computational
resources or amounts of linguistic data available to the learner. The framework developed
here presents a complementary idedlization of the problem of language acquisition to that
initiated by Gold (1967). They also suggest that purely logical arguments against the

general viability of language acquisition from positive evidence may need to be rethought.
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Appendix A: Measures and semi-measures

We want to specify a probability distribution over one-way binary sequences of Osand 1s.
This requires us to introduce the notions of measures and semi-measures. A non-standard
approach to measures is standard in the relevant areas of Kolmogorov complexity theory,
namely the sub-field of algorithmic probability (see Li & Vitanyi, 1997, pp. 242-244).

Let us define a probability measure, f, over these sequences, as satisfying:

f (empty-string) = 1 (A2)

f(x) =f (x0) +f (x1) (A2)

where x is a binary sequence. According to this definition, the empty string has probability

1; for any n, the sum of the probabilities of strings of length nisaso 1.

For the analysis below, it is convenient to introduce a more general notion. Let us

define a probability semi-measure, s, over these sequences, as satisfying:

s(empty-string) < 1 (A3)

S(X) > s(x0) +s(x1) (A4D)

According to this definition, the probability of the empty string isless than 1. The sum of

the probability of strings of length n+1 will be less than or equal to the sum of the
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probahility of the strings of length n. The definitions of measures and semi-measures can
be generdized in the obvious ways to sequences which can contain more than two
symbols.

Notice that monotone computable distributions, m discussed above will typically
be semi-measures, but not measures. This is because there may be some inputs that lead to
undefined outputs from the associated monotone machine at some point in the output
sequence, so that the sum probability over the output sequences will be lessthan 1. In
particular, the universal monotone distribution, | , is a semi-measure rather than a

measure.
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Appendix B: Proof of Step 3:

We need to prove:

D(mill) =& by (mi! ) (B1)

where misameasure and | is a semimeasure.

o (X X00)
D(m[ 1) = & m(x...x ...)Iog—")

B2
Xy X oo I ()(1XJ ( )

Fn(x) mx |x) M [%.%.,) O

= é Xp... X:...) O .
B O OO ) T 0 1) T, ey 1)
° mx) o mx, | x)
= m(x,...X;...)log + m(x,...X;...)log————=+ ...
A M08y 8 MO0 )
. X, 1%-%,0)
ot M. X, ..)log—— =+
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=8 m0)log T 8 i, ;1) + & mix, ) log o) B )
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Because mis a measure, the sum of conditional probabilities of al possible continuations

of asequenceis 1. This means that, for any j,

A (X ,pn [ Xex) =1 (B3)
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leading to the simplified form of (B2) as:

m(x,) mx, | %)
- | 17 2
= me)logres + @ M) ET

.t a m(X;...X; )M + ... (B4)

Xp. X

This can be rewritten as

(X, [ x,)

m(x,)
antl)Og (Xl)+an(1)an(2| 1)|( | 1)

(X | Xy 1) (B5)

+am(><1><,1)an(x|x1 )I(xlx X)

which, by the definition of standard Kullback-Liebler distance (Equations (17) and (19)),

can be rewritten:

= D((x) 11 (%)) + & mx)D(M(X, | %) 11 (% | X))
et @ MO )DT(X %X ) I (X | %X 1)) + o (B6)

Xg X1

which, by the definition of the Kullback Liebler distance, D;, (equation 20) is:

D, (mi1 ) (B7)
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1l
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This proves the theorem.

Thereis,
however, a complication, with respect to applying this theorem in the wider context of the
proof. Thisis because the proof holds only if mis ameasure, whereas, in general mwill
often be a semi-measure. Thisis because mmay can correspond to an arbitrary monotone
Turing machine M, and such machines will not typically lead to a well-defined output for
each input (e.g., the machine may halt or go into an infinite loop after a certain input, and
then produce no further output). Given that this can happen the sum of the probabilities
over al possble infinite output sequences of Os and 1swill be less than 1, because of the
non-zero probability than a well-defined infinite output will not be produced at all. Li and
Vitanyi (1997) show that this can be handled smply by adding a third symbol ‘u’ for
undefined. In these terms, an input that leads to the output 010100 and then goes into an
infinite loop is viewed as producing the infinite sequence 010100uuu.... Thus, we definem
(and hence dso | ) as a measure over the set of infinite sequences of the three symbols 0, 1
and u. This meansthat the Kullback-Liebler divergences above are defined over sequences
of the three symbols. We shall pick up the ramifications of this complication for Step 4 of

the proof in Appendix C.
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Appendix C: Proof of part of Step 4

The material in this section is an elaboration of the discussonin (Li & Vitanyi, 1997, p.

329). We have to show that

(PO)- AO) £°%2D(P Q) ()

where P and Q range over 0 and 1. Define p = P(0) and g = Q(0). Then we expand the

Kullback-Liebler term, and rewrite the result in terms of p and g to give the inequality:

pO

pO | +(1- p)log,—=
: o P N
gp % p ge ey

(p- g £12%2 gplogz—+(1 D)l 092—5—2

(C2)

where the equality involves switching from base 2 to base e, which will be convenient

below, using the fact that:

(C3)
loge 2.10g5 x =loge X

The inequality will hold if, for al p and q:



oinP+@- pintP. 2p- g?2 0 (C4)
q 1-q

let usfix p and treat it as a constant. We can then consider the left hand side of the
inequality (C4) as afunction of q, F(q). To prove the inequality, we need to show that
F(qg) > 0, whatever the value of g, for arbitrary p.

It is useful to consder in which direction F(q) changes as g changes—i.e., to know

the derivation dF/dqg, which can evaluate term by term:

Z—';=-p/q+(1- p)/(L- 6) +4(p- q) (C5)
and rearrange:
1
_ ] ] i Cc6
q(1_q)(q p+4(p- Ad(L- ) (C6)

Because is posgitive, Z—Z 3 0 if and only if:

q(1- q)

(C7)
q- p+4(p- 9gl- )20

which can be rewritten:
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(C8)
(@- p)(1- 49@1- ) O

Notethat 1- 4q(1- q) 3 Ofor any q between 0 and 1—specifically, the left hand side is

always nonnegative, reaching a minimum of 0, when q is 1/2. This means that the sign of

z—z depends only on the g-p term. This means that: if g > p, Z—z 8 0,andif g<p,

d—FEO.

dqg
We are now in a postion to show that F(q) 3 0 for all g. First, note that if g =p,
we have:

p 1‘p 2
F = pln< + (1- In—= - 2(p- =0 (C9)
(9= pin2+ 1 P2 - 2(p- p)

Now suppose that we increase g above p. Where q > p, 3—'; 3 0, whichimpliesthat F(q)

will increase, and hencethat F(q) 3 0. Suppose instead that we decrease g below p.

Whereq < p, Z—z £ 0, which impliesthat F(qg) will increase as q decreases, and hence

againthat F(q) 3 0. Thus, we have shownthat F(q) 2 Ofor al g, and for arbitrary p, and
the theoremis proved.

A final complication arises because, as we noted in the proof of Step 3 (seethe
discussion at the end of Appendix B), the Kullback-Liebler distance between mand | is

0Lu

calculated over three symbols, O, 1, u—we shall writethis D™~ "(ml ). But the result
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bounding sum-squared error above applies only for the case where there are two symbols.
To fill in this gap in the proof, we consder the Kullback-Liebler distance between mand |
for two symbols, 0 and v, where v collapses together 1 and u. This distance, which we
shall write D*'(m| ) is binary, and hence the upper bound on sum-squared error applies.
Moreover, we shal show that Kullback-Liebler distance can only decrease when symbols
are collapsed in this way—and hence that the Kullback-Liebler distance between mand |
calculated over the three symbols, 0, 1, u must exceed the two symbol case, which itself
must exceed sum-squared error. Thus the three-symbol Kullback-Liebler distance does
provide an upper bound on sum-squared error.

To complete the proof, then, we need to show that D**“(ml )3 D°*'(m!). To

show this, we start by rewriting the three outcomes of D°*"

(ml ) assequences: 00, v1,
vu, where we define meq(00) = m(0), mey(v1) = n(1) and me(vu) = n(u), and similarly for
| . All other two item sequences have zero probability. The Kullback-Liebler divergence
between mand | over these two symbol sequences will be just D®*(m| ), because there
are three outcomes with exactly the same probabilities as in the standard definition of

D% (m! ). But using the representation as sequences of two items, we can use a general

result, which is a special case of main derivation in Step 3 above:

D™9(ml )= DMy () 1 s () = & My (%) logmel22) g

X, =0,v; % =0,Lu I seq(xixz)
= & moglog]’ 3+ & i) éngq(xuxolog—['“gjl':))
X =0,V X =0,v X,=01u seq

= DV(m0) 1 () + & MOID(ML 06 1)1 (% 1)
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Kullback-Liebler distance cannot be negative, as we have noted, so the sum on the right

hand side cannot be negative, and we can conclude:

D**(ml )£ D®(m|I ) (C11)

which proves the reault.
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Appendix D: Proof of the re-scaling lemma

We have a probability distribution P(y;). We wish to encode these outcomes according to
a probability distribution Q(y;). A proper subset of outcomes that Q assigns a non-zero
probability are actualy impossible in P (i.e., Q(y;) > 0 but P(y;) = 0). The re-scaling lemma
states that given this constraint the minimum expected number of bits of information

& 0

wasted, measured by the Kullback-Liebler divergence, D(P||Q), is Iogzg(1 1D )+, which
e\l- Yj)g
isattained when, for al y, I S,
(D1)

Q(y;) = (1- D)P(y;)

That is, the minimum waste is obtained by re-scaling all the P(y;) values that can occur
into the available probability for these items under the distribution Q.

Proof. Consider a probability distribution P. We want to find the probability
distribution Q(y;) which minimizes the Kullback Liebler divergence D(P||Q), subject to the
constraint that there is a subset S of outcomesy; for which Q(y;) > 0, but P(y;) = 0, such

that:

aQy)=D (D2)
Yl Sy
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The Kullback-Liebler distance between P and Q will be the same as the Kullback-
Liebler distance between probability distributions over sequences with the same
probabilities (see the last part of Appendix C for asimilar method). Define
Qsxq(0yi) = Q(yi) for yi in &; and Q«q(1y:) = Q(yi) for yi not in &. These are the only
allowable sequences—other binary sequences have probability 0. Define
Pseq(Oyi) = 0 and Psq(1yi) = P(y:) for all yi. It iseasy to verify that the probabilities of the
different sequences are the same as the probabilities of the single outcomesin the origina

distributions so that:

(D3)
D(P1Q ° D(Ry Il Qu)

Now, using the representation as sequences of two items, we can use a standard result,

which is a special case of the result used in the main derivation of Step 3 of the prediction

theorem (equation 11) above:

D(R(%%,) | S4%,)) = D(ROY) | S(x.)) + @ ROGD(R %) | (%, [%,))

(D4)
and apply the specia cases of Psq and Qs We obtain:
_ P PO
D(Reg (X1%,) [| Qg (X,%2)) = P(1)l0g, o) + P(O)long(O) (05)

+P(1) D(Req (¥; 1D 1| Qe (Y 1)) + PO)D (P (Y; 10) Il Qg (y;10))
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This can be smplified using the factsthat P(1) = 1, P(0) =0, Q(1) =1- D, Q(0) =D,
Pseq(Vi |1) = P(Yi), Psg(Y: |0) = 0. Moreover, we know that for y; not in &, Qseq(Yi [1) =

Qxq(1¥1)/Q' (1) = Q(Y)/(1 - D). Theresulting smplification is:

= log, =L+ D(P(y) 122

(D6)

The choice of Q only affects the second term. (D6) can be minimized if the two
distributions compared by Kullback-Liebler divergence are the same (we use the general
result that Kullback-Liebler diverge is minimal, and attains 0, only between a probability

distribution and itself). This means the minimum is attained when:

Py =22 (b7

When rearranged, this gives the required result.
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Appendix E: Proof of the undergeneralization theorem
Suppose that a past sequence of words, X, has been encountered. The next word, K, is
allowed by the true grammar, and has a non-zero probability of being said, but is
disalowed by the learner’s probability distribution. As usual, we assume that language is
generated from a monotone computable probability distribution, P, over word sequences;
and that the learner is using the universal prior distribution, P, over word sequences.
Then undergeneraization will occur when P(xk) > 0O, but when P, (xk) = 0. It is
convenient to convert this formulation into the equivalent binary representation. Suppose
that the word sequence xk corresponds to the binary sequence y. Then, because the binary
code stands in one-to-one correspondence with the representation in terms of word
sequences, the criterion for undergeneralization can be stated as: n{y) > 0, whereas| (y) =
0. Can there be such a sequence, y? There cannot, because by applying equation (14)

above, we obtain:

I (y)3 2" m(y) >0 (ED)

Thisimplies, trividly, that n(y) > 0, then| (y) > 0. Hence undergeneralizations cannot

OcCcur.
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Appendix F: Proof of the soft undergeneralization theorem

Suppose that the sequence of words encountered by the learner is generated according to
a computable probability distribution Py, and that the learner attempts to predict this
sequence by a universal probability distribution P, . We denote the sequence of the initial |-
1 words that the learner encounters by x, and let us call the jth word, k. If the learner
undergeneralizes on word k by afactor f, this means that the learner underestimates the
probability that k will occur after x by afactor f, i.e., f.P, (K|]X) EP(k|x). We write L;(x) to
denote the probability that the k that is chosen according to the true distribution isaword
on which the learner undergeneralizes, given the preceding sequence, x. L j(x), can be
expressed:

L= &Pkl (F1)

k:R (kIx) f £R,,(K[x)

The expected probahility, ( L, > , with which thisoccurs onthe jthitemis:

(L)= aPMLX (F)

xl(x)=j-1

The Soft Undergenerdisation Theorem states that:

1
log, f/e

(L )£ Km(m) (F3)

- Qyox

1
=
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(solong asf >¢)

Proof. The overall logic of the proof is similar to that used in proving the
overgeneralization theorem. As before, we consider the scenario in which the learner uses
its probability distribution P, to encode the output from the true distribution, Py, After the
sequence X, of j-1 words, has been encountered, we can ask: What is the expected amount
of wasted information in encoding the jth item? As in the case of overgeneralization, such
waste is inevitable, because the learner is using codes which are optimized to the learner’s
distribution (i.e., P, (.[x)), rather than to the true (but from the learner’ s point of view,
unknown) distribution (i.e., P{.[X)). The key underlying intuition is that, to the extent that
the learner has a tendency to undergeneralize, the learner must necessarily waste a certain
amount of information. Thisis because the learner encodes some items with long codes,
because the learner assumes that they are very unlikely; but in redlity, they are likely, and
hence should optimally be assigned short codes. By using long codes where short codes
would do, the learner therefore wastes information in encoding the sequence. The greater
to degree to which the learner undergeneralizes, the greater the amount of wasted
information.

More specificaly, the am of the proof isto put alower bound on the amount of
information that is wasted (as measured by Kullback-Liebler divergence), given that a
specified amount of undergeneralization occurs.

To get started, we aim to specify to know how information waste can be
minimized, given that a certain amount of undergeneralization occurs. That is, suppose

that, instead of the specific distributions, Py, and P, , we consder arbitrary distributions Q
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and R (where Q standsin for P, and is viewed as the true distribution, and R stands in for
P, and isviewed asthe learner’ s distribution). The only constraint on R and Q, isthat R
undergeneralizes with respect to Q with probability, L . We then specify the distributions Q
and R in away that we can show minimizes the information wasted. This amount of waste
incurred in this ‘minimal’ case must therefore be alower bound on the amount of waste
incurred in the case where we use the distributions of interest, Ppand P, . In an analogous
aspect of the proof of the overgeneraization theorem, the ‘re-scaling lemma’ (Appendix
D) showed that the lowest information loss was achieved by specifying the learner’s
distribution as are-scaled version of the true distribution (for the items where
overgeneralization did not occur). We shall see that a similar, though slightly more

complex, result holds here.

Lemma. Congder probability distributions Q and R over outcomes, i, with a probability,
L, (with respect to the ‘true’ distribution Q) that an outcome i arises for which R

‘undergeneralizes’ with respect to Q by afactor of at least f. That is, we assume that:

L =Q Q) (F4)

iTu

where U ={i |R(I) T £Q( )}. (The set U consists of the items on which

undergeneralization occurs.) Then,

DQIR® L log, (F5)
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aslong asf > e. Thus, thislemma relates the amount of undergeneralization to the amount
of informational waste involved in usng R to encode Q.

We now prove the Lemma. We break down the proof into two steps. First, we
specify that the sum probability in R of the items that are underestimated by Ris L ,

where:

L'= & R() (F6)
iIR(i) f£Q(i)

Now we consider how the probabilities for all the R(i)should be set in order to minimize

D(Q||R). The second step isto consider the optimal value of L to minimize D(Q||R).

To prove the first step, we begin by rewriting the distribution R in arather indirect

way, in terms of anew digtribution S, where R(i) =TS(I) foril U;and

R(i) = % S(i) for i | U. Notethat Ssumsto one, and hence is a probability

distribution, as shown below:

éS(i)=_és<i)+ési)=éfR(i)+é—i_' t R()

i ity ity itu ity (W)
_Lo . 1' L o] . _L 1 1- L _ " =
—L.%R(I)+—1_ L'%R(')‘L'“l- o4 L)=1
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Now we adopt the method used in proving the re-scaling lemma above (Appendix D). The
Kullback-Liebler distance between Q and R will be the same as the Kullback-Liebler
distance between probability distributions over sequences with the same probabilities. Let
us call the distributions over sequences, corresponding to Q and R, Qsq aNd Req
respectively. Define Q, (0i) = Q(i) for il U; and Q. (1) =Q(i) for il U. Similarly,
define R, (0i) = R(i) for i 1 U;and R,,(1i) = R(i) for i | U. Thesearethe only
alowable sequences—other sequences have probability O in both Q and R.

Now we write down probabilities associated with the sequential representation.

The probabilities associated with the first symbol are:Q, (0) = é Qi)=L
iTu

QD =1- L; R, (0)= é R(i)=L"; R,(1)=1- L'. By routine caculation, the

ity

conditiona probabilities of the second symbol, given the first symbol,

are:Qseq(iIO)—Q(l) Qe (11D =T Q(') ; Ry |0)_R(') R 1D =005 () . For these
last two expressions, we substitute Sfor R, to obtain: R, (0i) = Ll eLzS() ()

1 & L'y

. S(l)
Reall) =T Cer L) T

Now the Kullback-Liebler distance between the sequences Q and R is defined as

(adapting equation D4):

D(Quq (%) | R %)) = D(Qug (%) | R (%)) + @ Qug (%)D(Que (%2 %) | Req (%, %))
X
(F8)
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Expanding and filling in the specific formulae above gives the following derivation:

DQIIR = Qy (O)Iogzﬁu +Qy(Dlo gzﬁ(—)+

R (0) Re(D)
€ (i|ou Qu(ilD 0
0 0)log, 2l 1O 1 1log, el 1D Y
Qg ( )ﬁQseq(ll )log R.( 10 + Quy ()S%Q (1 [1)]0g R.(1DH
=LI092£'+(1- L)log, 1_' L' +
QL u, Q@)1-L u
I - log, ———
Léa(Q(l)/L)ogz s @ L)gﬂj(Q(l)/l L)log: iy s
=LIogZ%+(1- L)Iog21 aQ(l)Iogzcsg(())
—Llogz—+(1 L)|og2 +D(Q||S) (F9)

The choice of S(i) to minimize thisexpressionis S(i) = Q(i) for al i. Thissets D(Q||S) at

its minimum value of 0. Trandating back from Sto the origina distribution R, we have
L . L 1-L . . . .
R(i) ZTQ(I) foril U;and R(i) :ﬁQ(') for i1 U. Thiscompletesthefirst step in

the proof.

The second step concerns choosing the optimal choice of L' . By definition,

L'= & R(i).Moreover, we know that L' isbounded by:
i:R() F£Q(1)
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0£L' = & R() gt a Qi) L (F10)
iR(i) FEQ(i) iR(I) f£Q(i) f

Let us view the quantity to be minimized as afunction of L'

L 1-L
F(L'Y=L log,— +(1- L)I (F11)
( ) 092 L| ( )0921_ Ll

Differentiating and smplifying, we obtain:

dF

L .
= —a‘u —+ 1- L)l 0
o - 0g.e gk loge + (- L) oge o

_1 60
d %% e'l_@'(l L)e 1- L'9%0

OF gtk O
dL ed-L')L'g

(F12)

By equation F10, we know that L' < L , which implies that dF

— < - Thismeansthat to
dL’

minimize F, we should maximize L', which means that it should be set to its maximum

value (again by equation F10) L' = L

Putting the results of steps 1 and 2 together, we have the result that the

distribution R should be chosen as follows, in order to minimize the Kullback-Liebler
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/ () L/

distance with Q: R(i) = Qi) = foril U;and R(i) = 1 Q@) foril U,
with the resulting minimum Kullback-Liebler distance:
1-L
D(P Q) =L log, f +(1- L)log, 7=~ (F13)

We can bound this quantity as follows. We first note that this expression increases

monotonically asf tends to infinity, which implies that:

D(P||Q¢2 Llog, f +(1- L)log,(1- L) (F14)
A Taylor expansion of the right hand side of F14 gives:

(1- L)log,(1- L) = (- L)g- L - L?Z - L—r:%ogze

g 2L 3"— '+m(anm 1)9Iogze3 Llog,e (F15)
Putting these results together, we have:
D(P|| Q) Llog, f - Llogze:LIogz—:; (F16)

This completes the proof of the Lemma.
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In proving the Lemma, we have consdered arbitrary P and Q. We now consider
the case where a sequence of j-1 words have made up the linguistic input so far, which we
denote, x; and the distributions are the ‘true’ distribution Py{.|x) (corresponding to P in
F16) and the learner’ s distribution P, (.[x) (corresponding to Q in F16). Let uswrite the
probability of an undergeneralization error after the sequence x as L, (x) . The expected
number undergeneralization errors at the jth word in the sequence, which we shall write

(L J.), is the sum of the probabilities of such an error after x (i.e., L, (x)) weighted by the

probability of the initia sequence, X, (i.e., Pa{X)). Thus,

(L)= aPML( (F17)

xI(x)=j-1

Applying the equation for the expected amount of information wasted in encoding

the jth item, D;, is defined (equation 20, in the main text):

D,(P,IIR)=" & P.)D(R,C{ X) I, (4 X))

x:1(x)=j-1

f o f
3log,— Q Pm(x)l_j(x):|og2€<|_j> (F18)

xl(x)=j-1

where the inequality follows from F16 and the equality from F17.

Iff>e then |Og2_f > 0» and hence we can divide through by this factor to give:
€
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1

. 7o (F19)

(L,)ED,(mIIT)

Thus, the expected number of ‘soft’ undergenerdization errors for an infinite input

sequence, where the probability of a sequence is underestimated by afactor f > eis:

(F20)

Qox

(L)E el D;(ml1 )Iogz f/eE Km(m) R

j=1

where the final inequality follows from Step 2 of the proof of the Prediction Theoremin

the main text. This completes the proof.
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Notes

! The only subtlety hereis that the mapping into the binary alphabet should be reversible,
meaning that the original aphabetic representation can be uniquely decoded. This can
be ensured by, for example, using a prefix binary code for the origina alphabet and
punctuation marks—that is, a code such that no initia portion (i.e., prefix) for any item
corresponds to the code for some other item.

No great metaphysical weight needs to be borne by the concept of randomness here.
What matters is that many aspects of linguistic input (e.g., those affected by coin
tosses, the weather, and ‘ chance’ events of all kinds) will be, from a practical point of
view, random for the learner. That is, no underlying pattern can conceivably be found
by the learner, whether or not some such pattern ultimately exists. This epistemic
notion of randomness is made precise by defining random sequences as sequences that
are their own shortest description, leading to the mathematical theory of algorithmic
randomness (Li & Vitanyi, 1997).

Technically, it is alowed that, at some point, no further output might be produced.
More precisely, the requirement is that the output is a produced by a monotone
computational process acting on the input. We define a monotone computational
process as follows: it reads itsinput in one direction only (i.e., it cannot ‘go back’ to
look at earlier inputs, although it can store thisinput in its memory); and it cannot

modify thisinput (the input is ‘read-only’). Moreover, the output can be written in one
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direction only (i.e., one an output is ‘written’ it cannot be altered); and the output
cannot be read (the output is ‘write-only’). The output of the machine is defined as the
binary sequence on the output tape, if the machine halts (and hence all subsequent
inputs are ignored); and the infinite sequence binary sequence on the output tape, if the
machine does not halt, but continues producing further outputs indefinitely. See Li and
Vitényi (1997, p.276-277) for arigorous description. Thus, asinput is added, output
cannot be deleted--although it is possible that the machine becomes *mute’ --it produces
no more output after a certain point.

The output isfinite if the machine produces no more output after a certain point in the
infinite binary input sequence. For example, the machine might halt, or go into an
infinite loop.

Strictly, approximated in the limit from below.

Provided that these distributions have rational parameters.

This class of outputs of the machine is broader, however, if the internal noise in the
system can contribute an infinite amount of randomness--more technically, if the
internal randomness supplies an infinite number of bits of information. This is because
the model presented here only allows a finite amount of randomness to be absorbed
from the environment in making any particular output. For example, a computational
process which depended on the real valued variable sampled from a probability density
function--i.e., where the value of this variable must be known to infinite precision in
order to assessits computationa significance--could not be smulated by the model

described here. It is conceptually possible that this might arise--but this assumption is
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11

12

not embodied in any current theoretical and computational model of language
processing, to our knowledge.

Equation 1 is asimplification, because it ignores the issue of double counting two input
sequences which both start with a sub-sequence z, and where z lone generates x. See
Li & Vitényi, 1997 for arigorous specification, which takes account of this problem.
We have ignored this subtlety here and elsewhere below in the interests of clarity.

Or some other enumerable (semicomputable) probability distribution. Thisisavery
broad class of distributions, including all those that are used in statistics (see Li &
Vitanyi, 1997). It disallows, though, distributions with arbitrary, infinite precision, real
parameters, for example (see footnote 7). These do not, of course, arisein practicein
statistics, which inevitably works with finite precision approximations.

Strictly, a universal language can represent only the deterministic part of the mixture
between deterministic and random factors assumed above to be involved in generating
the corpus. Thisis not a substantia limitation for the learner in encoding the input,
however. At any point in learning, the learner has only encountered a finite amount of
data, and thisfinite amount of data only contains afinite amount of randomness. A
universal machine can straightforwardly represent an input that contains only afinite
amount of randomness (e.g., by just storing it verbatim).

Crucidly, thisis true if all languages use the same alphabet—here, for smplicity, we
assume that any coding language is, at bottom, encoded in a binary aphabet. With
larger alphabets, shortest code lengths get shorter, as each choice of symbol can carry

more information. Converting code lengths depending on aphabet size is
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straightforward—we lose no generality by restricting ourselves to a binary aphabet
here.

The reader may wonder why, given that we are dealing a monotone Universal Turing
machine, the relevant measure for the complexity of a probability distribution is not
Km(m) rather than K(m). The reasons are technical, but the essence is that we shall want
to be able to specify a probability distribution, and then to sample from it—and to do
this, we have to know when the probability distribution has been specified. Therefore,
we need to be able to specify a description of the distribution, rather than a sequence
which begins with a specification of the distribution (see Li & Vitényi, 1997)—that is,
the code for the distribution must be self-delimiting.

Consider, for example, padding a computer program with arbitrarily large amounts of
null operations, in the case of a conventional computer language.

Similarly it can be shown that the predictions according to the universal distribution
asymptotically approximate those according to the real distribution m for amost all
sequences (the mrandom sequences) (Li & Vitanyi, 1997). Asit happens, this doesn't
follow from Solomonoff's result and Solomonoff's result doesn’t follow from this one.
Solomonoff's result states that the expected prediction error (square difference) in the
n-th prediction decreases faster than 1/(nlogn), but it doesn't state that with m
probabilityl the ratio between the conditional real probability of the n-th prediction and
the universal probability of the n-th prediction (given the previous n-1 outcomes) goes
to 1. The key point concerning the present result is that it must hold for aimost all

sequences individually, whereas Solomonoff's prediction theorem tells us something
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over the average taken over all sequences. Thisisa similar difference as that between
the “Strong Law of Large Numbers’ that holds for almost all infinite sequences
individually and the “Weak Law of Large Numbers’ that holds on average. The
problem is that it is consistent with Solomonoff's result that n{0]x) = O infinitely often
which prevents the ratio | (O]x)/n{0}x) from going to 1 in the limit. Nonetheless,
Solomonoff's result has a speed-of-convergence estimate that is quite strong (but only
holds for the average) while the convergence law has no speed-of-convergence
estimate athough it guarantees convergence with probability 1.

We could, of course, equally well consider the difference in the probability that the next
symbol isa 1, with no substantive change to the proof.

We here follow the spirit and much of the notation of Li and Vitanyi’'s (1997)
treatment, which is based on a proof suggested by Peter Gacs. Solomonoff’s origina
proof is quite different. We have also reworked the proof in order to reduce it to its
essentials as far as possble, and to provide a self-contained presentation, not
presupposing knowledge of agorithmic probability theory (e.g., Zvonkin & Levin,
1970) or the genera theory of Kolmogorov complexity (Li & Vitanyi, 1997).
Strictly, we stipulate that this program is self-delimiting, which meansthat it is clear
when the end of the program has been reached, and hence when the data input to the
program begins. This apparently minor point actually has substantial mathematical
conseguences, which bedeviled early attempts to formalize these ideas (e.g.,

Solomonoff, 1964).
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19 Some theories of similarity in cognitive science presuppose that similarity must be

20

21

22

23

24

symmetrical. That is, A must be exactly as smilar to B as B isto A. But Kullback
Liebler divergence is not symmetrical. Hence, from the perspective of these accounts,
Kullback-Liebler distance can be related to similarity only at a metaphorical level. We
nonetheless use the term ‘similarity’ in relation to Kullback-Liebler distance here, for
clarity, without intending any particular stand on these issues (see, e.g., Chater &
Vitanyi, 2003; Hahn & Chater, 1998).

Kullback-Liebler divergence is sometimes defined using logs in base e, rather than base
2. Thisleads to some minor differences between statements of results here and those in
Li and Vitanyi (1997).

Nothing theoreticaly substantia rests on the choice of the word as the unit of choice.
The important point hereis that language is considered as a sequence of afinite number
of linguistically significant and separate chunks. The arguments below would equally
well go through if we assumed that language input were coded in terms of phonemes,
morphemes or syllables.

See Appendix D for a proof of this ‘re-scaling lemma.’

Note that this formula allows for the possibility that there are grammatical sentences
which have zero probability of being heard.

Strictly, thisis true for binary states with non-zero probability of occurrence. We
assume that al and only the binary strings that can be generated are sequences of

words—the whole point of the binary code is to encode language input.
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Note that the learner might undergeneralize not only because of an underestimation of
which sentences are grammatical. The learner might, instead, assume that a certain
sentence isimpossible for a variety of other reasons. For example, the learner might
wrongly assume that people can only produce center-embedded sentences of depth
one—this could be viewed as an incorrect estimation of peopl€’ s short-term memory
congtraints, rather than a misconstrual of the grammar. In more genera terms, to the
extent that a distinction between linguistic competence and linguistic performance can
be made (Chomsky, 1965), the learner may undergeneralize with respect to either
competence or performance. The bounds that we develop here apply to
undergenerdization of both kinds; and hence automatically provide bounds on
undergenerdizations of linguistic competence, which are of most interest to linguists.
Hence, we need not consder the difficult questions concerning how, if at al, the
competence/performance distinction can be made precise (though see Christiansen &
Chater, 1999).

A proof isgiven in Appendix E.

Strictly, this theorem does not hold for al sequences xy; but the probability that the
theorem holds tends to 1, as the length of x tends to infinity. Thus, the ‘ pathological’
sequences where the theorem does not hold will do not arise too often in practice.
Thisfollows because the number of computable texts is bounded by the number of

Turing machines, which is countable; but the set of all infinite textsis uncountable.
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