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Introduction: The Segmentation Problem

Contrary to the impression that a listener might have, the words in a stream
of conversational English are, in the main, not clearly delimited by acoustic
discontinuities or pauses (Cole 1980). Given this, a neonate faced with
the problem of learning a language must find some way of isolating the
linguistically relevant chunks of the input in order to eventually compile a
lexicon and access meaning.

In explaining how the infant learns to segment, there is a dichotomy
between explanations that posit INTERACTIVE processing, and those that are
BOTTOM-UP. These differing accounts are paralleled by a distinction in adult
processing models that has been debated in the literature.

The interactive position (e.g., Cole and Jakimik 1980; Marslen-Wilson
and Welsh 1978) is that the lexeme licenses segmentation. As the speech
inputarrives over time, the words that become incompatible with the input are
incrementally eliminated until one winning candidate emerges. The stored
lexical phonology of the winner specifies the boundary at which the next
word begins. Thus, after the initial portion of the input has activated the
lexical cohort, the information that facilitates segmentation crucially flows
from the lexical level, and therefore is essentially top-down. The Cohort
Model (Marslen-Wilson and Welsh 1978) formed the basis of the TRACE
connectionist model (McClelland and Elman 1986) in which activation from
lexical nodes serves to cut up the input— lexical segmentation is a by-product
of word recognition,

Bottom-up accounts, on the other hand, propose that listeners segment
on the basis of some marking in the speech signal. These theories preclude
any top-down influence from the lexicon or other sources. The bottom-up
cues that may be used to aid segmentation can be divided into three main
groupings: (i) Acoustic/phonetic juncture markers or pauses (Lehiste 1971)
(i1) Prosodic marking that specifies the initial portion of a word, given a pre-
syllabified input (Cutler and Norris 1988; Cutler 1993; Cutler and Butterfield
1992). (iii) Distributional cues: for example differing probabilities of certain
phonological sequences at various points in the speech stream (PHONOTACTICS
— see Harrington, Watson and Cooper 1988). :

. The dominant bottom-up approach in current psycholinguistic theory is
(ii), which has been thoroughly investigated by Cutler and colleagues. Her
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METRICAL SEGMENTATION STRATEGY (MSS) holds that segmentation depends
on the exploitation of prosodic rhythm. Speakers of a particular language are
sensitive to its rhythmic pattern, and chunk the input accordingly, initiating
lexical access at the beginning of each chunk. In English, the relevant rhythm
is the alternation between strong and weak syllables, where weak syllables
have /a/ or another lax vowel as nucleus — all others are strong. When a
strong vowel is heard, a boundary is hypothesized at the beginning of the
syllable of which the vowel is nucleus.

The interactive and bottom-up approaches represent the main division in
models of adult segmentation behaviour. In acquisition, both approaches have
been suggested. Therefore, there are two relevant questions which must be
answered by any model of the acquisition of segmentation: (1) how likely is
it that a learner could use a particular strategy given what we know about the
language input?; and (2) how effective would that strategy be? Note that (2)
can be partly answered by studying the effectiveness of the adult models.

The interactive strategy seems initially unlikely as a method for bootstrap-
ping segmentation since it presupposes that the listener has a lexicon with
which to segment. However, it has been suggested that the presence of words
spoken in isolation in the input to the infant could allow a lexicon to be com-
piled without recourse to segmentation (e.g., Suomi 1993). When a word is
heard in isolation it could be added to the lexicon and thus subsequently used
in interactive segmentation. As time goes on, more words are added to the
lexicon and thus more interactive segmentation is possible. This cumulative
effect finally allows the infant to acquire a full lexicon. However, there are
two problems with this account: First, only a small proportion of utterances
are one-word, and; second, how is a child to know that any given utterance is
composed of only one word, and not two or three?

Data from the CHILDES corpus (MacWhinney and Snow 1985) show that
only around 14% of child-directed utterances are composed of just one word.
Moreover, these items are typically words such as yeah, uhhuh, and ok which
will seldom occur embedded in phrases in any case, and are thus of little use
in carrying out interactive segmentation. An analysis of the London-Lund
Corpus (LLC — Svartvik and Quirk 1980) carried out by the authors, showed
that this figure is somewhat higher for normal adult conversation: around 20%.
So, it seems that we need further experimental or computational evidence
before a decision can be reached as to the plausibility of the interactive
strategy in infant development.

Of course, there are also doubts as to how effective an interactive strategy
would be, even if it could be bootstrapped by the infant. These problems have
been described in various works which criticise strictly left-to-right models
such as the earlier versions of the Cohort Model. Critics have pointed out
that the vocabulary structure of English is such that the majority of words
do not become unique until after their offset (?), and that in experimental
studies, listeners do not recognise some 20% of words until after their acoustic
offsets (Bard, Shillcock and Altmann 1988). These problems have not gone
unnoticed by interactive theorists. For example, Marslen-Wilson has produced
arevised version of the Cohort model in which strictly left-to-right processing
is abandoned (Marslen-Wilson 1987). However, it still seems to be the case
that the interactive account, which involves some lexical matching, is prone to
failure under conditions in which noise in the signal undermines the matching

"Thanks to Steve Finch (pers. comm.) for this statistic.
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procedure.

The status of bottom-up theories in acquisition would seem to be less
problematic. Although the MSS was originally a theory of adult behaviour,
there has been recent discussion of how the MSS could be acquired (Cutleret al.
1992; Otake et al. 1993). The basis of the theory is that infants are endowed
with a sensitivity to rhythm, and when presented with speech input will tend
to extract portions of the stimulus that correspond to the prosodic sequences
with the smallest periodicity. This approach seems much more likely as the
basis of a theory of infant segmentation behaviour than does the interactive
stance, principally because it seems to impose no unreasonable constraints on
the nature of the input to the child, but also because it is robust and requires
only minimal a priori knowledge. Furthermore, experimental work seems to
demonstrate a sensitivity to metrical patterns in infants of 9 months (Jusczyk,
Cutler and Redanz 1993). However, if we take the case of English, there
remain questions that a fully developed theory of MSS acquisition would have
to answer:

e Stress is a perceptual phenomenon — there is no simple relationship
between perceived stress and acoustic variables such as amplitude dur-
ation and pitch. Furthermore, the mechanisms of stress realization vary
from language to language. Therefore, the MSS will need to be aug-
mented with an explanation of how the categories STRONG VOWEL and
WEAK VOWEL come to be established as salient perceptual categories.

e If the categories STRONG VOWEL and WEAK VOWEL are perceptually
salient primitives, then the input will be perceived as a string of strong
and weak syllables: SWSWWSWSSWSW... But, even if the infant ap-
prehends the rhythmic alternation in the input, there is still no reason
why boundaries should be hypothesized before each strong syllable, as
opposed to, say, after every strong syllable.

It has been shown that the MSS is an effective strategy for English due to
the structure of the English lexicon, in which the overwhelming majority of
content words have strong initial stress, and thus can be extracted by the MSs
(Cutler and Carter 1987). However, it is important to note that the MSS does
not cover exactly the same problem domain as the interactive accounts, since
the complex issue of syllabification is presupposed by the model, yet not dealt
with explicitly.

In our discussion of bottom-up accounts so far, we have concentrated on
the MSS, which relies on prosodic marking, ignoring the role of the two other
bottom-up information sources for segmentation that were outlined above.
In the rest of this paper we will investigate the role of the third type of
cue: PHONOTACTICS — constraints on the segmental phonological structure
of words and syllables.

It is generally the case that sequences of segments are more constrained
within words than across word boundaries. Thus, the sequence /nd/ is only
licenced in English if there is a morpheme boundary between /y/ and /8/.
However, phonotactics do not have to be absolute constraints, probabilistic
structure is present too: thus the sequence /z 3/ is very common across wor
boundaries, but much less common word-internally. :

The role of phonotactics has been studied in the speech recognition lit-
erature (see Harrington, Watson and Cooper'1988), but has received little
attention in the domain of psycholinguistics. In this study, by attempting
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to quantify the role of phonotactics in bootstrapping segmentation, we will
clarify the parameters of a more complete model which would integrate the
various bottom-up information sources.

Empirical motivation for examining the role of phonotactics in infant
segmentation behaviour comes from experiments which seem to demonstrate
a sensitivity to phonotactic structure in infants as young as 9 months (Jusczyk
et al. 1993). If infants are sensitive to such information then it seems likely
that they would also come to appreciate it’s power in predicting boundary
location.

Bootstrap Modelling of Segmentation

We now outline a neural network model that is used to investigate the pos-
sible contribution of phonotactic information to bootstrapping segmentation.
First we describe the phonological input corpus, before discussing the neural
network model itself.

The input corpus

The London-Lund Corpus is a large body of English conversation transcribed
orthographically and available on-line. Because of its size (around 460,000
words) an automatic method was developed for its phonetic transcription.
First, the words are replaced by their phonemic citation forms using an on-
line dictionary. Then, these forms are input to a set of re-write rules that
introduce phonological alternations into the string (e.g., assimilation, vowel
reduction). None of the rules uses word boundary information to specify its
context of application. The output from the rule-set is a corpus of 1.5 million
phonetic segments.

It is, of course, impossible to recreate the original speech data, but this
method has two advantages: First, we need a very large corpus of conversa-
tional speech if its statistics are to be representative — at present there is no
comparably large corpus with a genuine phonological transcription; Second,
this method provides a higher-order approximation to genuine data, when
compared with a corpus derived from a phonemic dictionary in combination
with word frequency counts. Thus, our data will be representative of the
distribution of strings of closed-class words such as if I can.

This segmentally transcribed version of the corpus is then retranscribed
in terms of 9 binary features that represent the cognitive elements of Gov-
ernment Phonology (see Harris and Lindsey (in press); Kaye, Lowenstramm
and Vergnaud 1985; Kaye, Lowenstramm and Vergnaud 1990). The nine
elements are seen as cognitive categories which are universals and which are
sufficient for the representation of speech. The sound patterns of the acoustic
input are mapped onto these elements. Harris and Lindsey advance a Realisa-
tional Autonomy hypothesis, which allows each of the elements to be realised
phonetically, independent of the other elements. Recent work (Williams and
Brockhaus 1992) has shown how the government phonology elements can be
automatically extracted from the speech stream, providing further motivation
for the use of this representation in a psychologically responsible model.

The model

We have constructed unsupervised n-gram models in which no word boundary
marking is employed in construction. These models, are admissible as models
of infant development because no top-down information is employed during
training. However, such models inherently employ phonemic categories, and




36 / PAUL CAIRNS, RICHARD SHILLCOCK, NICK CHATER, & JOE LEVY*

hence cannot be used to address the pre-categorial phase of infant develop-
ment. Therefore we developed a neural network model that is feature, rather
than phoneme category based. We consider a feature based representation to
be one step closer to the genuine speech signal.

The central idea of the network model is that of prediction: the network is
presented with an uninterrupted stream of input speech and is asked to predict
what the values of the nine Government Phonology features will be at the
next time step. This is, of course, an extremely difficult task, with complete
predictability being impossible. However, in striving to achieve its goal the
network is forced to learn about the sequential featural statistics of English
speech, thus lowering its prediction error. The rationale used in postulating
boundary points follows from what we know about phonotactics: lack of
constraint in phonotactic structure (high ENTROPY in information theoretic
terms) will make the next segment difficult to predict. If prediction is hard,
therf( error will be high. Thus, boundaries are proposed at prediction error
peaks.

Network training

The network has a recurrent, self-supervised, architecture (see figure 1). The
task is to echo the current slice of input, remember the previous, and, most
importantly for this study, to predict the next. Noise is added to the input
by flipping features from O to 1 (or vice versa) with a certain probability, in
order to encourage the network to rely on sequential information (i.e., if the
current segment is degraded, then the net will have an incentive to use the
local phonetic context to recover its identity). The net is trained using Back-
propagation Through Time (Rumelhart, Hinton and Williams 1986), a steepest
descent procedure, and a cross-entropy error measure (see Hinton 1989 —
cross entropy is a good measure to use when one wishes to interpret continuous
valued outputs as probabilities of binary decisions). Training comprises two
passes through a training stretch of the corpus one million phonemes in length
(with different noise on each pass), thus two million phonemes in total. The
learning rate is decayed as training progresses.

previous current next
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{ o hidden units O N ..
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Figure 1: The Network — The solid arrows between layers indicate complete con-
nectivity with modifiable uni-directional links. The dotted arrows show how the input
corpus arrives over time to specify the input and output target.
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Network segmentation

The model was tested by providing as input a noise-free 10,000 phoneme
(about 2,700 words) stretch of corpus, and measuring the Cross Entropy
error on the prediction sub-group of the output units. This yields a variable
error signal in which we define a ‘peak’ by placing a cutoff point at varying
numbers of standard deviations above the mean. As stated above, high error
will tend to indicate increasing likelihood of a juncture point because lack
of phonotactic constraints across boundaries makes prediction of word-initial
segments difficult. At the cutoff that maximizes the network’s performance,
21% of the boundaries are correctly identified with a hits:false-alarms ratio of
1517

In the following sections we evaluate the significance of these results by
comparison with a random segmentation algorithm which was averaged over
five different runs. This algorithm was designed to yield a distribution of
pseudo word lengths similar to that of the network. We consider this to be
a more stringent test of the network’s performance than comparison with a
random segmentation algorithm that uses a uniform distribution.

Although network performance peaks with correct identification of about
one in five boundaries in the test corpus, there is a sizable proportion of false
alarms at this cutoff (i.e., cases in which the network predicts a boundary when
in fact there is none). It may well be that although the false-alarms do not
actually correspond to existing boundaries in the test stretch, they are actually
plausible guesses based on the low-level data that is the only information
source available to the model. We tested this hypothesis by examining the
phonotactic acceptability of the boundaries that the model postulates, defined
by the legality of the sequence of segments over the postulated boundary.
Thus the sequence /tp#ra/ is a phonotactically malformed boundary postulate,
while /pti#ra/ is well-formed. We found that false-alarm boundaries of the
network are much more likely to be phonotactically well-formed than those
of the random case (for the initial boundaries: X?l) = 221.8, p < 0.001,

while for the final boundaries Xf1) =119.1, p < 0.001).

In summary, phonotactics provide a fairly weak source of information for
the bootstrapping of segmentation, but the cumulative effect of such inform-
ation may well be useful in the initial phases of compiling a lexicon.

Network segmentation and the MSS

In this section we provide a qualitative analysis of network segmentation and
present the surprising result that there is a statistical basis for the emergence
of the MSS in our purely bottom-up model.

We investigated the performance of the model by counting the instances
in which a boundary is correctly postulated before a strong or weak syllable.
As an operational definition of STRONG and WEAK we took the lax vowels
/al, N/, and /a/ to be weak, and all other monothongs and dipthongs to be
strong. Given this criterion, in the 2,700 word test set 53% of the words are

strong-initial.®> The network performance is proportionally skewed towards

2To decide when network segmentation was optimal, we measured the MUTUAL
INFORMATION for each cutoff, and maximised this value. This allows our estimation
of network performance to be independent of any assumptions about the relative
desirability/undesirability of hits/false-alarms.

This is representative of the proportion for real speech, see Cairns et al. 1994.
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successful detection of strong-initial words to a striking degree (see Figure 2a,
X(Ql) = T77.2,p < 0.001). A similar result was obtained when we changed the

= glrong
e Wwenk

s ¢|0sed-open
ez Open-open
= open-closed
—= closed-closed

Percentage of hits
:

% bounds. successfully detected

Network Chance
(a) P

(b)

Figure 2: Network segmentation performance mimics the MSS: (a) shows the propor-
tions of boundaries inserted before strong and weak syllables. (b) shows the breakdown
of boundary insertions for boundaries between open- and closed-class words.

definition of WEAK to just /o/ (x?l) = T70.4,p < 0.001). A natural conclusion

to draw is that the model is segmenting more before open-class words, and
examination of the totals of hits before open- as opposed to closed-class shows
that this is the case (recall that the majority of open-class content words in
English have strong initial syllables). The initial portions of open-class words
are much more likely to be detected than beginnings of closed-class items
(see Figure 2b, X?” = 14.0, p < 0.001). Note also that the boundaries with

which the model has most difficulty are the closed-closed boundaries, thus
strings of closed-class words such as up fo the are less likely to be segmented
than strings of open-class items.

When we consider the contiguous pairings of these individual segmenta-
tions — the words that emerge from the network — the same pattern is evident.
A word count of the LLC revealed that 65% of all items were closed-class, so
one would expect that this ratio would hold in network output, all other factors
being equal. While the network does not segment more whole words from the
test stretch than it would by chance (showing that the model does not develop
a lexicon), of the correctly extracted tokens 41% are closed-class. This is
significantly less than the random segmentation performance: x?l) = 19.46,

p < 0.001.

So, our network produces segmentations which broadly mimic the pattern
predicted by the MsS, yet the net is not retrodictive in the way that the MSS is:
Crucially, the nuclear vowel of the initial syllable of a word is not visible to the
network when it makes a segmentation decision (at least for CV...syllables
— recall that boundaries are inserted on the basis of the ease of prediction of
the first segment in the word). Thus, this model does not need to posit that
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the Strong/Weak distinction has a priori perceptual salience for the infant.
The reason why our network exhibits this pattern of results is simply that the
initial segments of strong-initial, open-class words tend to be less predictable
than those of closed-class words.

However, we would emphasize that phonotactic information is a relatively
weak predictor, and that it is unlikely that a purely phonotactic approach could
enable the infant to acquire a lexicon. Rather, we see phonotactic information
as being a possible method for bootstrapping of the MSS, which is a more
robust and reliable tool for lexical acquisition. This bootstrapping could be
mediated by sensitivity to the correlation of the boundaries that phonotactics
predict with metrical structure.

Adding categorial knowledge

The results from the previous section were obtained by segmenting with
raw scores that were not normalized for phoneme type. This can be seen as
simulating the phase of infant development in which phonemic categories, and
information about their frequencies, are not available to the infant. However,
we know that towards the end of the first year of life the child’s phonological
space is becoming structured in terms of phonemic categories (e.g., Kuhl 1983;
Werker 1993). Therefore, we decided to mimic the effect of this phonemic
restructuring in our model, to see if the qualitative pattern of segmentations
would remain constant.

We carried out the same segmentation procedure as before, but this time
normalizing the network error scores for phoneme type. We found an entirely
different pattern of results with respect to strong-syllables and word class than
before: in general the network no longer mimicked the MSS. Segmentation
before strong as opposed to weak syllables was not significantly different
from chance: x(gl) = 0.387, n.s. Neither was segmentation before open

as opposed to closed-class items: x7,, = 0.035, n.s. Furthermore, using

phoneme-normalized scores, 78% of correctly extracted word tokens were
closed-class, in contrast to the 41% with raw scores. This figure once again
differs significantly from the expected distribution: x?l) = 8.07, p < 0.005,
except that now it is the closed-class items that are favoured, rather than the
open-class.

The intuitive explanation of why segmentation behaviour should change in
this way when scores are normalized is that closed-class words, because they
are most frequent in the language, also contain the most frequent phonemes.
Therefore, the network will predict these phonemes more easily than ones
which do not occur often in closed-class words. Because predicting these
segments is easier, errors are lower. Hence normalizing for phoneme type will
augment the error scores for phonemes that most often occur in closed-class
words, and effectively increase the probability of boundaries being proposed
before such segments.

Conclusions

We have provided a computational underpinning to the claim that low-level
phonotactics could be used by a neonate as a cue for initially breaking up the
continuous stream of input speech.

Moreover, we have given an account of how the MSS could arise without
recourse to positing sensitivity to metrical information as part of a genetic
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endowment. The network segmentation performance was si gnificantly biased
in favour of detecting open-class words that have strong initial syllables.

Furthermore, we have shown that our model’s mirroring of the Mss disap-
pears when we add knowledge about the frequencies of individual phoneme
categories — detection of closed-class words becomes favoured.

We see the overall picture of the role of phonotactics that emerges from
these results as follows: Initially, phonotactics could provide tentative seg-
mentations from which the Mss could be induced in the pre-categorial infant.
Once the MSS is in place, and the infant’s phonological space comes to be struc-
tured with the phonemic categories of English, then the Mss would pick out the
open-class words, while phonotactics could help in isolating the closed-class
items. Also, we would not wish to rule out some form of lexical competition
in segmentation once a lexicon is in place.

The disappearance of Mss-like behaviour raises the possibility of a critical
period for realization of the Mss: If we assume that categorial knowledge is
pervasive after a certain stage of development, then the utility of the phonot-
actic strategy for bootstrapping the MsS is only visible in the pre-categorial
phase. However, while standard accounts of critical period phenomena sup-
pose that the driving force behind the changes is the infant’s/maturation (e.g.,
Lenneberg 1967), our work suggests that there may be alternative explana-
tions arising from informational constraints and interactions external to the
child, but intricately linked to the learning process.
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