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6.1. Introduction

The speech signal is typically continuous; only a minority of word boundaries
are marked by any recognizable acoustic cue such as a pause. The continuous
nature of speech poses a problem for the adult speaker of the language, in that
processing the signal requires a complete parse into words yet any string of more
than a few segments is locally multiply ambiguous: given only a phonetic tran-
scription, most words contain other words, in the way that curtain contains cur,
or floor contains or. Segmentation strategies are available to the adult listener
that are not given to the infant, as the former possesses both a lexicon contain-
ing the phonological specification of the words of the language, and a knowledge
of the syntax and semantics of the language. For instance, the adult listener may
recognize a word before its acoustic offset and hence may be able to predict the
end of the current word and the start of the next; indeed, this strategy featured
explicitly in one early model of word recognition (Cole and Jakimik 1980). The
adult listener may be able to recruit syntactic knowledge to predict and identify
closed-class words (the short grammatical, or function words) (Shillcock and
Bard 1993), and hence identify their boundaries too. The infant, faced with the
speech sounds of an unknown language, is unable to draw on such knowledge,
yet over the first two years of life individual words are isolated in comprehen-
sion, stored and begin to be deployed in production. This chapter is concerned
with the nature of the information that the infant might exploit to obtain a
foothold on the segmentation problem.

We investigate the nature of the speech segmentation problem faced by the
infant and we assess a range of ‘statistical’ solutions based on the principle that
all that the infant brings to the problem is a general-purpose capacity to induce
the very local statistical structure of sensory input. The simplest form of this
statistical strategy asserts only that the sequence of segments within words and
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syllables is more constrained than the sequence of segments between words, as
evidenced by the sonority hierarchy for instance, so that an unusual transition
between two segments is likely to correspond to a word boundary." This is
clearly not a sufficient strategy: it is likely to miss some word boundaries and to
divide some complex words into syllables. Nevertheless, as we will show below,
such a strategy can potentially reveal the usefulness of other, more complex
strategies and can contribute to a conspiracy of soft constraints that effectively
solve the segmentation problem. Because this simplest statistical strategy assumes
very little on the part of the processor, it may play a more important role during
language acquisition than it plays in the final, adult repertoire of types of infor-
mation relevant to segmentation. In contrast to the range of category-types and
representational levels required by other types of segmentation information used
by the adult listener, the simplest statistical strategy requires only a small num-
ber of phonological primitives, together with a general sensitivity to statistical
structure—something which seems to be the brain’s forte.

In the speech segmentation literature, such statistical models of segmentation
are judged to be of very limited value, in spite of the desirability of the minimal
assumptions of such models. Cutler et al. (1992) refer to studies by Harrington,
Watson, and Cooper (1989) and Briscoe (1989) as grounds for not relying on
simple models based on phonotactic constraints: such strategies require a very
reliable phonetic transcription of the speech stream and are not robust against
degradation in the quality of this information. Further, even when given an
accurate phonological transcription, purely phonotactic models have been re-
ported as not performing particularly successfully. For instance, Harrington,
Watson and Cooper (1988) found that using a dictionary to assess the distribu-
tion of different phoneme trigrams within single words, as opposed to straddling
a word boundary, gave 37 per cent of the boundaries in their test set of sen-
tences, with one erroneous boundary for every eight correct boundaries identi-
fied (a ‘hits:false-alarms ratio” of 8:1). We will demonstrate that this pessimism
concerning low-level statistical models is not entirely warranted, and that a sta-
tistical approach to segmentation may play a significant role both in language
acquisition and in adult speech processing.

6.2. Corpus-based Research

Our research has involved the intensive study of a large corpus of transcribed
conversation. Over the last few years the availability of speech and text corpora
together with the advance in computing power has made the corpus-based anal-

" Other researchers have developed information-theoretic approaches to segmentation concentrat-
ing on finding frequent sequences and parsing the input in terms of these sequences (see for example
Brent 1993; Redlich 1993).
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ysis of language processing increasingly feasible and attractive. A naturalistic
corpus represents, at some level of description, a ‘full-scale’ or comprehensive
approach to the phenomenon: it forces us to deal with the full repertoire of
phonological segments, for instance, and it confronts us—in the case of Eng-
lish—with the complete range of closed-class words in their naturally occurring
distribution both with open-class words (nouns, verbs, adjectives, adverbs) and
with other closed-class words. The larger the corpus, the more it tends to a
realistic representation of the frequency of its linguistic constituents, at all levels.
A purely dictionary-based approach to modelling speech processing cannot re-
veal the distribution of short strings of closed-class words, such as in the, of a,
or out of the that are so pervasive in conversational English.

The work we describe employs the London Lund Corpus (LLC) (Svartvik and
Quirk 1980), the largest available corpus of English conversation and one which
permits large-scale statistical investigation. The corpus is replete with repetitions
and false starts of normal conversation, and presents us with a formidable seg-
mentation problem.

6.3. Representing the Speech Signal

The LLC is publicly (electronically) available in orthographic form, with some
prosodic marking in addition. The ideal corpus for the work we describe would
be a corpus of speech with a genuine phonological transcription. Since this is
currently not feasible given the size of corpus required (the version of the LLC
we used contains some 460,000 words), the closest approximation is to generate
an idealized phonological transcription from the LLC’s orthographic transcrip-
tion, our claim being that the inaccuracies inherent in this approach are more
than outweighed by the insights that the general approach allows. We have de-
scribed in more detail elsewhere the complete process of retranscription
(Shillcock et al. 1993; Cairns et al 1997). First each orthographic word in the
corpus (minus the prosodic marking, punctuation and annotations) was auto-
matically replaced by its citation-form phonological transcription, as given in an
electronically available phonological dictionary. The closed-class words were
given transcriptions suitably phonologically reduced in appropriate contexts. The
spaces between words (including marked pauses) were then eliminated, and a
limited number of rules applied to the resulting continuous stream to stimulate
the effects of coarticualtion—specifically assimilation and non-release of certain
stops—between adjacent segments (N.B. these rules were applied with no know-
ledge of word boundaries in the stream). As an example of a short stretch of the
final continuous stream of segments, corresponding to the words I won’t be the
corpus contained /o w ou m p' b i/, in which the /p/ is an unreleased /p/.
The resulting idealized phonetic transcription is a rather abstract repre-
sentation of any original speech signal. Phonetic symbolic representations are
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convenient but, at least in formal terms, are inadequate in many ways (see for
example Harris and Lindsey 1993). For our modelling of segmentation informa-
tion, many underlying relationships will be lost by a system which employs more
than 4o different categories. Accordingly, we converted the idealized phonetic
transcription into a feature-based one (Shillcock et al. 1992) grounded in current
advances in Government Phonology (Kaye, Lowenstamm, and Vergnaud 198s;
Harris and Lindsey 1993). This phonological theory employs nine phonological
primitives, or ‘elements’, defined as follows:

oral cavity openness; alone, the vowel quality of palm
palatality; alone, the vowel quality of see

labiality; alone, the vowel quality of boot

occlusion; abruptness; alone, glottal stop

aperiodic energy; alone [h]

nasality

apicality/coronality/coronal formant locus

: velarity/centrality

: voicelessness.

ZeRZETOTE

TasrLe 6.1. Example transcriptions of three
segments into Government Phonology elements

Segment  Elements

? h UNRG®@HI A
p (pat) 111 0001 0 0
t (tap) 11 0 01 01 0 0O
k (cat) 11 0 0 01 1 0 0

Table 6.1 illustrates the way in which each phoneme may be represented as an
aggregate of features, occupying a single timeslice. For the full inventory, see
Shillcock et al. (1992). Affricates, diphthongs, and long monophthongs are de-
composed into two consecutive segments, as illustrated in Table 6.2.

Within the theory of Government Phonology, the elements are seen as being
closer to perceptual considerations as opposed to production ones, in contrast
to some other phonological theories; indeed some of the elements are ascribed
characteristic speech spectogram instantiations. The elements are seen as univer-
sal phonological primitives. Thus, Government Phonology elements suit our

TaBLE 6.2. Example expansion of
affricates and long monophthongs

Segment  Expansion
tf (chair) tf
d3 (germ) d3
21 (bird) 22
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current goals well, in representing a principled, coherent, low-level idealization
of the speech stream. Note, finally, that our transcription of the corpus remains
particularly abstract in the temporal dimension. We have imposed discrete
timeslices, with one segment occupying each timeslice and coarticulation only
operating over immediately adjacent timeslices. We have avoided the complexi-
ties of, for instance, smearing the elements over numerous, finer-grain timeslices
(but see, for example, Gupta and Mozer 1993).

6.4. Statistical Modelling of the Corpus using a Connectionist Network

We have carried out extensive investigations of the statistical properties of both
the phonetic and the feature-based versions of the corpus (see for instance Cairns
et al. 1997). In the present chapter we present a complete picture of the acquisi-
tion of segmentation behaviour in these terms. We begin with the feature-based
version of the corpus described above and a minimal processor that assumes only
the nine different categories represented by the elements of Government Phonol-
ogy. We progress from this simplest statistical model through processors that are
increasingly complex, assuming more and more sophisticated levels of representa-
tion. At each stage we assess the implications for segmentation performance and
we explore the relationship with the foregoing stage of the model in order to
understand how the adult segmentation competence may emerge.

To begin with we ask what statistical regularities are apparent in a large cor-
pus consisting of nine parallel continuous streams of binary elements, and what
are the implications for segmentation. We have employed a connectionist net-
work to compute these statistics. With this approach, there is the potential for
the model to register regularities between elements within a single timeslice, and
between continuous, and perhaps discontinuous, timeslices. Moreover, the model
may choose to operate over its own idiosyncratic combination of lengths of
dependency (pairs, triples of items, and so on), whereas the more traditional
statistical approach which we also describe below concentrates exclusively on
pairs or triples of consecutive items.

The network used in our research employed the Backpropagation-Through-
Time (BPTT) algorithm (Rumelhart, Hinton, and Williams 1986) to learn the
regularities of the corpus. Compared to the computationally more straightfor-
ward simple recurrent net, a network employing the BPTT algorithm allows the
error signal to be backpropagated uncorrupted over more timeslices and was
therefore judged to be preferable for the current task. The network received as
input the binary vectors corresponding to the Government Phonology transcrip-
tion, one per timeslice. At any one moment only the ‘current’ timeslice was
visible to the model at its input. Sixty hidden units mediated between this input
and the output units, at which the model was required to generate three vectors,
corresponding respectively to the ‘current’, the ‘previous’ and the ‘next’
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timeslices. The requirement to remember a past timeslice and predict the next
one forced the network to learn the regularities contained in the corpus, as did
the imposition of limited random noise (flipping binary features with a certain
probability). The noise meant that the network could be less sure of the precise
contents of any one timeslice and was thereby forced to rely more on the imme-
diate context to adjudicate the identity of a segment compromised by noise. A
cross entropy error measure was used (Hinton 1989), with training consisting of
two passes over a section of the corpus 1 million segments long, and with the
learning rate being reduced as training progressed.

The statistical approach to segmentation which we explore here means that
we are principally concerned with the error at the next timeslice at the output.
The constraints present within a word or syllable should increase predictability,
but if the current timeslice represents the last segment of a word, then it should
be relatively difficult to predict the contents of the next timeslice and the error
should be high. Thus, in a continuous stream of error measurements for the
prediction of the next timeslice at each point, the peaks in the stream should
tend to correspond to word boundaries. There is no one measurement of the
results of this approach; the outcome will depend on where the cut-off is placed.
If the initial assumption of unpredictability at word boundaries has any value,
then a very high cut-off point will be a conservative measure which settles for
hitting fewer correct boundaries but is misled into fewer false-alarms (declaring
a boundary incorrectly); conversely, a more liberal criterion will guarantee that
more correct boundaries are hit, but at the expense of more false-alarms. The
ROC graph in Figure 6.1 shows the network’s performance, with a hit rate and

chance

Ficure 6.1. ROC graph showing the network’s segmenta-
tion performance, adapted from Cairns et al. (1997)
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false-alarm rate varying over different cut-off points. Greatest success is repre-
sented by a curve that departs most from the chance level represented by the
diagonal. The strictness of the criterion used may vary depending on a range of
other factors, which can only be assessed in the context of a fuller theory. For
instance, over-segmenting (generating more false-alarms) may lead the infant to
store too many (partial) ‘words’, whereas under-segmenting may result in too
few (compound) ‘words’ being stored. These two outcomes will have different
consequences. What we emphasize with the use of the ROC graph is the range
of segmentation performance that a particular type of information can provide;
precisely where on the graph represents the performance in any one case may
be determined by other factors.

The assessment of a particular model’s performance involves both statistical
and psychological criteria. The dot on the curve in Figure 6.1 corresponds to the
maximum value of the information theoretic measure mutual information, which
we discuss elsewhere (Cairns et al. 1997):* at this point on the curve 21 per cent
of the word boundaries are correctly identified, with a hits:false-alarm ratio of
1.5:1. However, it is misleading, and ultimately contrary to the approach we take
here, to use the single statistic of number of boundaries detected to characterize
any segmentation model that relies on a quantitative criterion, such as a cut-off
point at a certain probability. As the ROC graph shows, hit rate can be improved
at the expense of false-alarm rate. The optimal compromise between the two is
a psychological question that involves model-specific issues of the cost of false-
alarms relative to misses (failures to identify boundaries). For instance, there may
be a different optimum point on the curve depending on the size and contents
of the lexicon (if a lexicon exists at the stage considered), on the other segmenta-
tion algorithms available, or on the quality of the speech input available at the
time. A high level of false-alarms may be relatively acceptable at a very early
stage of development, when populating a lexicon with ‘words’ of a variable
boundary-accuracy may be more important than trying to segment the speech
stream veridically. Later on in development, false-alarms from this simplest sta-

* The mutual information of two sources, M is defined as follows: My =1I; + I; — I, where I
and I are the total information of sources § with states 5; and T with states t, respectively, and I, -
is the joint information between 5 and T. Thus:

I _z p(s) log(p(s))
I == p(t) log(p(t))

]
Ly =—3, pls,t) log(p(s, 1))

v
For the binary data with which we are concerned, each source has only two states (boundary-present
and boundary-absent) yielding four possible combinations: hit, false alarm, miss, and correct rejection.
The mutual information measure tests whether the general shape of the distributions of boundary
points is the same for the segmentation algorithm and the veridically segmented corpus, and the
extent to which the individual decisions match.
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tistical strategy may be less important if they can be offset against different distri-
butions of false-alarms from coexisting strategies. Finally, we may speculate that
false-alarms may even have some positive features associated with them in that
they may reveal to the lexicon the morphological structure of complex words.

The segmentation performance of this simplest model, whatever the cut-off
point, is modest in many respects, although it was significantly better than a
random segmentation algorithm that was designed to produce the same number
of boundaries with ‘word’-lengths of comparable distribution. Further, analysis
of the network’s false-alarms showed that they were respecting English syllable
structure; in effect, the network was not distinguishing word boundaries from
syllable boundaries, which is quite appropriate given the preponderance of
monosyllables in conversational English.

In isolation, the model’s performance represents only the first foothold on the
segmentation problem. Note that a hit rate of 21 per cent does not represent 21
per cent of words isolated; a single word will only be isolated when two such
boundaries border the same word. If the output of this segmentation process is
stored, then the resulting ‘lexicon’ will mostly contain short strings of two, three,
four, or more words, sometimes starting or finishing midway through a word,
and occasionally representing a single isolated word. Whereas we may speculate
that even these fragments might be consolidated into a lexicon of single words,
given a sufficient number of overlapping fragments being laid down in the ap-
propriate architecture, the performance of this minimal model is actually consid-
erably better than it first appears, as it may be augmented by those boundaries
defined by pauses and changes of speaker. (Pausing is the only other inarguably
bottom-up evidence for a boundary, and has in fact been proposed as a means
of getting the lexicon started (Suomi 1993).) This additional information does
not add to the representational complexity of the model. When the 21 per cent
of boundaries recognized in Figure 6.1 are combined with those revealed by
pausing, the total is 32 per cent, the hits:false-alarms ratio being around 3:1.
Almost one third of word boundaries may be identified by a processor which is
sensitive to local, featural statistical regularities, including pausing; again, this
figure is only illustrative—false-alarm considerations may increase or decrease
it. This performance represents a definite first step—and a bottom up one at
that—on the path to adult segmentation competence.

During the first six months of life the infant begins to perceive speech sounds
categorically (see for example Kuhl ef al. 1992), and this structuring of an internal
phonological space continues past the first year (see Werker 1993 for a review of
the evidence). If we increase the sophistication of our model by allowing it a
phonemic level of representation, then we considerably improve its capacity to
segment the speech stream. We constructed n-gram models of segmentation by
counting the frequency of occurrence of all sequences of n contiguous items
throughout the corpus and then hypothesizing word boundaries at points where
the n-gram frequency is low. Figure 6.2 shows the ROC graph for three n-gram
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measures of segmentation, using (non-connectionist) probability statistics. In this
approach, it was hypothesized that the lower a bigram’s or trigram’s frequency of
occurrence the more likely it is to straddle a word-boundary. As the different
phonemic categories are only being established during the first half of the first
year of infancy, all we assume is the simple ability to distinguish between these
categories (perhaps even on the basis of diphone storage in the case of the
bigrams). The relevant performance in the ROC graph in Figure 6.2 is the curve
for the simple bigrams, which shows an improvement over the performance of the
network model. The introduction of a phonetic level and explicit n-gram statistics
have together provided the model with a better strategy. Note that the increas-
ingly powerful and complex sources of information being incorporated into the
model do not necessarily supplant the earlier sources of information; together
they represent a more and more effective conspiracy of segmentation cues, allow-
ing the developing processor to identify a wider range of word boundaries.

The bigrams strategy referred to in Figure 6.2 required only that the different
segment identities be distinguished, irrespective of frequency; a particular error
score was treated identically when predicting both the frequent segment /3/ and
the much less frequent segment /3/. However, as the first year of life continues,
more and more experience with these phonetic categories accrues; the brain
gathers information about the frequency of the different segments and their
distributions. This information may be used to construct a yet more sophisti-
cated model, one in which the probability of occurrence of a particular bigram
is normalized by taking into account the probability of occurrence of its con-
stituent segments. It is precisely this information that produces the best perfor-

bigrams:
normalized

bigrams

chance

trigrams

FiGgure 6.2. ROC graph showing segmentation per-
formance using traditional n-grams
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mance in Figure 6.2 when the bigram measure is normalized for phoneme fre-
quency. This new model gives, for instance, a success rate of 38 per cent with a
hits:false-alarm ratio 0.85:1.

The previous figure of 38 per cent is almost identical to the Harrington et al.
trigram-model performance, referred to above; in fact, the latter was more reli-
able, having a hits:false-alarms ratio of around 8:1. It should be noted that the
information assumed in the current bigram and trigram approach is radically
less sophisticated than that assumed in the Harrington et al. study. The results
in Figure 6.2 were obtained without reference to the actual identity of the word
boundaries, and hence still represent a ‘strongly bottom-up approach’, whereas
the approach used by Harrington et al. made use of a dictionary to obtain
known word-boundary information and hence had recourse to lexical know-
ledge. We will not assume a lexical level of representation until later in the
progression of models we are currently describing.

We move on now to the next most advanced model and to the segmentation
algorithm that has attracted most of the recent attention in studies of adult
segmentation performance in English: the Metrical Segmentation Strategy (MSS)
(Cutler and Norris 1988). This strategy is seen by Cutler et al. as the instanti-
ation, for spoken English, of a universal strategy to segment speech according
to prosodic criteria. The strategy requires the processor to posit a word bound-
ary before any strong syllable,” where a ‘strong syllable’ is defined as one bearing
primary or secondary stress and containing a full vowel. Strong syllables contrast
with weak syllables, which are unstressed and contain short, central vowels such
as /a/. Jusczyk, Cutler, and Redanz (1993) have shown that the MSS develops
somewhere between the ages of six and nine months in infants in an English-
speaking environment. It therefore develops in parallel with the refining of the
categorical perception of phonemes. The potential contribution of the MSS to
lexical segmentation has been placed, at its most optimistic, at approximately
90 per cent of open-class words, in that this proportion of open-class words
begins with a strong syllable (Cutler and Carter 1987). Note that more than half
of the words in the LLC are closed-class words, two-thirds of which are probably
realized as weak syllables. Our own calculations made on the basis of the distri-
bution of word types in the LLC and on careful listening to a different, very
much smaller, taped corpus of conversational English, show that strong syl-
lables, on which the MSS depends, potentially identify some so per cent of all
word boundaries, with an almost negligible false-alarm rate (that is, non-word-
initial strong syllables).* The MSS can clearly contribute very substantially to

* In later work by Cutler et al.,, the necessity of inserting a word boundary is changed to a quanti-
tative contribution of metrical prosody to the competition between simultaneously activated lexical
hypotheses.

* We gloss over the fact that the MSS necessitates a syllabification strategy that may be non-trivial
for complex clusters of consonants.
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segmentation behaviour. However, it must be bought at the cost of developing
a categorical distinction between strong and weak syllables, meaning that our
model becomes even more sophisticated as it now possesses a prosodic level of
representation in addition to its existing phonetic competence.

In Figure 6.3(a) we see that the emergence of the MSS is prefigured in the
segmentation performance of the network, our simplest model which operates
on information taken to be available from earliest infancy. The network prefers
to segment the speech stream before strong syllables. This does not constitute
a reduction of the MSS to the level of feature-based processing. Rather, it allows
us to conceive of how the MSS might emerge from the general statistical extrac-
tion of regularities from the speech stream, rather than, for instance, by some
‘parameter-setting’ on a hand-wired, limited choice between metrical, syllabic,
and moraic strategies. It is part of the brain’s characteristic activity that it is able
to create discrete processing modules geared to specific input regularities, which
may then interact very flexibly with the rest of processing. However, the input
regularities must first become apparent to the processor to prompt the develop-
ment of categorical distinctions, in this case the distinction between strong and
weak syllables. Note finally that when the network’s calculations were normalized
for segment frequency (by dividing each prediction error score by the frequency
of the segment being predicted) the network no longer showed a preference for
segmenting before strong syllables and before open-class words, and showed
instead a preference for detecting initial closed-class boundaries.

Each increasingly sophisticated level of competence proves to be more power-
ful in its segmentation ability than the previous competence. The MSS is the
most powerful strategy encountered so far in this account of the development

’— strong

weak

FIGURE 6.3. Network performance in relation to the MSS and to syntactic variables
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of segmentation ability. The 5o per cent of boundaries which we calculate the
MSS potentially identifies are overwhelmingly the onsets of open-class words.
Figure 6.3(b) shows that the network model identifies a proportion of the onsets
of closed-class words. Combining the success of the MSS with the performance
of simpler strategies, the segmentation problem seems to be much less daunting.
The conspiracy of cues at this stage will correctly identify the majority of word
boundaries. The resulting lexicon will increasingly be supplied with single words
and those badly segmented ‘words’ it contains from the earlier stages will find
no confirmation. A lexical competence emerges.

With the appearance of reliable lexical categories, the stage is set for the most
powerful segmentation information that we have seen in this developmental
progression. Now the processor is able to compile reliable information concern-
ing the probabilities that individual bigrams and trigrams straddle word bound-
aries. Note that the processor will have been able to start doing this as soon as
phonetic identities were established, although its ‘words’ will have been far less
reliably defined. We see a spiralling reliability in defining segments and words
which gives rise to ever-increasing segmentation performance. Once categorical
phonotactic information is assumed, then it is possible to investigate the utility
of specific types of information at that level by supplying the model with the
relevant knowledge, such as, for instance, all the legal initial and final consonant
clusters, or syllable-internal constraints reflecting the sonority hierarchy; see
Cartwright and Brent (1994); Brent and Cartwright (1996).

Figure 6.4 shows the powerful segmentation capacity of n-gram models with
reliable lexical level representations. These curves were obtained by calculating
the relative probabilities that particular n-grams did or did not straddle a word
boundary in the LLC. A cut-off point is then established, so that a boundary is
hypothesized if its probability is sufficiently small given a particular n-gram. The
most conservative cut-off point for bigrams gives a segmentation performance
that converges on that obtained by Harrington ef al. (who employed an all-or-
none approach as opposed to a probabilistic one); cut-off points that allow for
a measure of false-alarms give extremely good segmentation performance. For
instance, the mutual information maximum for the bigrams in this model gives
a 75 per cent detection rate with a hits:false-alarms ratio of 4.7:1. Performance
is even more powerful when the statistics are calculated over trigrams: for in-
stance, 93 per cent of boundaries detected at the mutual information maximum,
with a hits:false-alarm ratio of 9:1. It might be argued that this powerful perfor-
mance is premised on a correct close phonetic transcription, information that
is not always available in the perception of conversational speech. Accordingly,
we retranscribed the corpus into six broad phonetic classes, as in the approach
taken by Zue and his colleagues (for example, Huttenlocher and Zue 1983):
stops, nasals, weak fricatives, strong fricatives, liquids and glides, vowels. Even
without finegrain phonological information the segmentation performance using
a bigram measure is 74 per cent detection, with a 1.5:1 hits:false-alarms ratio at
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the mutual information maximum, a performance which compares favourably
with those of the models encountered so far. In summary, then, the initial devel-
opment of a lexical competence dramatically increases segmentation performance
in that it allows the calculation of veridical bigram and trigram probabilities
across word boundaries.

At this point in our progression through models of increasing complexity, we
have shown that sufficient structure may be discovered in the speech stream,
with minimal initial assumptions, to make substantial inroads into the segmenta-
tion problem. Not only do the models at this latest level of competence perform
better than any individual previous ones, but, overall, a conspiracy of the strate-
gies we have considered now seems to be enough to overwhelm the problem.
Nevertheless, we will continue with our consideration of models of increasing
sophistication. Before leaving those models with a lexical-level competence, it
should be remarked that a novel element appears at this stage. For the first time
it is possible for the processor to predict when a word will end. The lexicon
contains stored phonological representations of words and if the beginning of
one of these matches the current speech stream, then it is possible to predict the
boundary at which this word ends and the next starts. Until this stage in the
progression it has not been possible to make useful boundary predictions other
than those concerning the next timeslice. The utility of such predictions is af-
fected by several factors, however. First, Luce (1986) has calculated that a high
percentage of short words are not phonologically unique by their offsets, mean-
ing that it will often not be feasible to predict a word ending reliably as the

broad classes

trigrams

Ficure 6.4. ROC graph for n-gram performance
when veridical knowledge of n-gram probabilities
across word boundaries is known
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current cohort of lexical candidates will contain more than one word. This ob-
servation is particularly relevant given that conversational English is dominated
by short words; the mean length of the words in the LLC is 3.7 segments. Sec-
ond, Luce’s dictionary-based study does not take into account the unpredictabil-
ity of closed-class suffixes: knowing that park is a word will not predict the end
of parks or parking. However, when knowledge of the phonological form of
words is augmented by their frequencies, predictability is probably increased
considerably, given that lexical cohorts typically consist of only one or two high-
frequency members and a larger number of low-frequency members (Bard and
Shillcock 1993).

The next level of competence to be achieved concerns syntactic processing.
Shillcock and Bard (1993) have demonstrated that there is genuine ‘top-down’
interaction between syntactic processing and the lexical-level representations of
closed-class words. We may speculate that this behaviour associated with closed-
class words also holds for bound morphemes, the suffixes which are unpredict-
able on the basis of lexical information alone. The development of syntactic com-
petence will allow predictions about the identity of the large proportion of
closed-class words in conversational speech, and the location of their boundaries.
Figure 6.3(b) shows that the segmentation behaviour of the simplest network
model that we consider is not irrelevant to the syntactic dimension. There is a
clear gradation of segmentation performance, with boundaries associated with
open-class words being more likely to be identified: performance is best with
open—open boundaries and worst with closed—closed boundaries. From the earli-
est segmentation behaviour, then, there is a preference for isolating open-class
words in English. When we assess the individual words completely isolated by the
network (that is, both boundaries identified) there are significantly more open-
class words than chance: 59 per cent of those extracted, compared with 40 per
cent in the corpus as a whole. This concentration on open-class words is accentu-
ated by the development of the MSS (which is disproportionately more successful
with open-class word beginnings), but is counteracted by the development of
accurate segment frequency information, which allows normalized probabilities
to be calculated, thus offsetting the tendency for those (frequent) segments con-
tained in the very high frequency closed-class words to be very easy to predict.

The final competences associated with semantic and pragmatic processing
simply add to the effectiveness of the predictions of the ends of words, and we
will not discuss these competences further.

We have seen that a statistical analysis of the ‘phonological space’ being
developed by the infant gives an insightful account of the development of seg-
mentation ability. In particular, connectionist modelling involving a Government
Phonology-based representation of phonological space shows how a processor
with minimal representational assumptions can gain an initial foothold on the
segmentation problem and then step up into ever more complex processing by
making more and more representational innovations.
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Our analysis of the development of segmentation behaviour, particularly its
early stages, would be stronger if we could demonstrate that the connectionist
modelling we have described can provide an account of other language process-
ing phenomena, unrelated to segmentation. Below, we briefly refer to two other
phenomena.

First, our model gives a parsimonious account of a widely discussed demon-
stration of phoneme restoration in a ‘compensation for coarticulation effect’.
Elman and McClelland (1988) present data from an elegant experiment which
they claim is evidence for ‘the cognitive penetration of the mechanisms of per-
ception’, or genuine top-down processing. Using the connectionist model, the
spoken language corpus and the phonological representations we have described
above, we have demonstrated that the results reported by Elman and McClelland
are also explained as purely bottom-up effects based on the phonological statis-
tics of spoken English (Shillcock et al. 1993).

Second, initial explorations suggest our approach to modelling phonological
space can capture some of the data concerning the acquisition profile of individ-
ual phonological segments (Shillcock et al. 1993) as reported by Sander (1972)
and Prather, Hedrick, and Kern (1975). By interrupting the training of the net-
work and testing it at regular intervals to see on which segments a critical per-
formance has been achieved, we can obtain a profile to compare with the human
developmental data. Our initial observations show that the sequence of segments
obtained from the model is marginally significantly correlated (p < .1, using
Kendall’s tau) with the human data. In addition, the early establishment of
vowel representations mirrors human performance (Kuhl ef al 1992). The order
of acquisition by the model does not simply reflect the overall frequency of the
different segments in the training corpus.

6.5. Discussion and Conclusions

Connectionist statistical modelling has allowed us to assess the possibility of
acquiring effective segmentation behaviour with minimal assumptions as to the
initial state of the processor. All that is assumed is the brain’s sensitivity to the
small-scale statistical structure of the stimulus environment. Perhaps we might
view the problem not from the point of view of where the speech stream might
best be segmented (this assumes that active segmentation should occur) but
where a representation of the speech stream will naturally ‘snap’ if the only rule
is ‘try and store the entire speech stream (bounded, perhaps, by pauses)’. This
strategy is clearly impossible—the attempted representations will disintegrate
into smaller ones—but what we have shown is that, if these disintegrations occur
at points of low predictability, then there is a clear tendency for them to occur
at word boundaries. We have seen that the network’s predictions, together with
pausing, can account for 32 per cent of word boundaries (with around a 3:1
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current cohort of lexical candidates will contain more than one word. This ob-
servation is particularly relevant given that conversational English is dominated
by short words; the mean length of the words in the LLC is 3.7 segments. Sec-
ond, Luce’s dictionary-based study does not take into account the unpredictabil-
ity of closed-class suffixes: knowing that park is a word will not predict the end
of parks or parking. However, when knowledge of the phonological form of
words is augmented by their frequencies, predictability is probably increased
considerably, given that lexical cohorts typically consist of only one or two high-
frequency members and a larger number of low-frequency members (Bard and
Shillcock 1993).

The next level of competence to be achieved concerns syntactic processing.
Shillcock and Bard (1993) have demonstrated that there is genuine ‘top-down’
interaction between syntactic processing and the lexical-level representations of
closed-class words. We may speculate that this behaviour associated with closed-
class words also holds for bound morphemes, the suffixes which are unpredict-
able on the basis of lexical information alone. The development of syntactic com-
petence will allow predictions about the identity of the large proportion of
closed-class words in conversational speech, and the location of their boundaries.
Figure 6.3(b) shows that the segmentation behaviour of the simplest network
model that we consider is not irrelevant to the syntactic dimension. There is a
clear gradation of segmentation performance, with boundaries associated with
open-class words being more likely to be identified: performance is best with
open—open boundaries and worst with closed—closed boundaries. From the earli-
est segmentation behaviour, then, there is a preference for isolating open-class
words in English. When we assess the individual words completely isolated by the
network (that is, both boundaries identified) there are significantly more open-
class words than chance: 59 per cent of those extracted, compared with 40 per
cent in the corpus as a whole. This concentration on open-class words is accentu-
ated by the development of the MSS (which is disproportionately more successful
with open-class word beginnings), but is counteracted by the development of
accurate segment frequency information, which allows normalized probabilities
to be calculated, thus offsetting the tendency for those (frequent) segments con-
tained in the very high frequency closed-class words to be very easy to predict.

The final competences associated with semantic and pragmatic processing
simply add to the effectiveness of the predictions of the ends of words, and we
will not discuss these competences further.

We have seen that a statistical analysis of the ‘phonological space’ being
developed by the infant gives an insightful account of the development of seg-
mentation ability. In particular, connectionist modelling involving a Government
Phonology-based representation of phonological space shows how a processor
with minimal representational assumptions can gain an initial foothold on the
segmentation problem and then step up into ever more complex processing by
making more and more representational innovations.
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Our analysis of the development of segmentation behaviour, particularly its
early stages, would be stronger if we could demonstrate that the connectionist
modelling we have described can provide an account of other language process-
ing phenomena, unrelated to segmentation. Below, we briefly refer to two other
phenomena.

First, our model gives a parsimonious account of a widely discussed demon-
stration of phoneme restoration in a ‘compensation for coarticulation effect’.
Elman and McClelland (1988) present data from an elegant experiment which
they claim is evidence for ‘the cognitive penetration of the mechanisms of per-
ception’, or genuine top-down processing. Using the connectionist model, the
spoken language corpus and the phonological representations we have described
above, we have demonstrated that the results reported by Elman and McClelland
are also explained as purely bottom-up effects based on the phonological statis-
tics of spoken English (Shillcock et al. 1993).

Second, initial explorations suggest our approach to modelling phonological
space can capture some of the data concerning the acquisition profile of individ-
ual phbnological segments (Shillcock et al. 1993) as reported by Sander (1972)
and Prather, Hedrick, and Kern (1975). By interrupting the training of the net-
work and testing it at regular intervals to see on which segments a critical per-
formance has been achieved, we can obtain a profile to compare with the human
developmental data. Our initial observations show that the sequence of segments
obtained from the model is marginally significantly correlated (p < .1, using
Kendall’s tau) with the human data. In addition, the early establishment of
vowel representations mirrors human performance (Kuhl et al. 1992). The order
of acquisition by the model does not simply reflect the overall frequency of the
different segments in the training corpus.

6.5. Discussion and Conclusions

Connectionist statistical modelling has allowed us to assess the possibility of
acquiring effective segmentation behaviour with minimal assumptions as to the
initial state of the processor. All that is assumed is the brain’s sensitivity to the
small-scale statistical structure of the stimulus environment. Perhaps we might
view the problem not from the point of view of where the speech stream might
best be segmented (this assumes that active segmentation should occur) but
where a representation of the speech stream will naturally ‘snap’ if the only rule
is ‘try and store the entire speech stream (bounded, perhaps, by pauses)’. This
strategy is clearly impossible—the attempted representations will disintegrate
into smaller ones—but what we have shown is that, if these disintegrations occur
at points of low predictability, then there is a clear tendency for them to occur
at word boundaries. We have seen that the network’s predictions, together with
pausing, can account for 32 per cent of word boundaries (with around a 31
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hits:false-alarm rate). As a result of the low-level statistics of the spoken English
speech stream, the infant is set on a course of acquiring a word-based lexicon.
The network’s performance was modest and a brief comparison with the n-gram
results suggests that its performance was overwhelmingly determined by relation-
ships spanning only two or three timeslices. Nevertheless, its strengths lie in the
fact that it assumes very little (not even an active predisposition to segment) and
that it opens the way for the discovery of potentially more effective segmentation
cues such as the Metrical Segmentation Strategy.

Throughout, we have simply assumed that there are real-world interactions
occurring, between the infant and others, to consolidate the lexical entries that
the different statistical strategies suggest, providing referential content and poten-
tially allowing erroneously stored multiword strings to be decomposed.

The eventual success of the adult listener in segmenting speech may be due
to the ability to recruit results flexibly from all of the levels of segmentation
competence we have described, basing segmentation judgments on the sensitivity
of the different competences to different aspects of the input. Thus, for instance,
at the very beginning of an utterance higher-level competences may be relatively
less useful, as little lexical, syntactic, or semantic context has been established.
At this point, rhythmic or low-level cues may be particularly important. The
ability of the adult processor to respond flexibly is shown by the fact that even
the ‘best’ French-English bilinguals possess only one prosodic segmentation
strategy (metrical or syllabic) (Cutler et al 1992), indicating perhaps that the
flawed results of an inappropriate prosodic segmentation strategy might be offset
by greater reliance on the rest of the range of cues. Similarly, when the speech
quality is poor, segmentation strategies based on full knowledge of phonological
teatures are untenable, and processing will rely more heavily on the metrical
strategy and on the level of performance possible with only ‘broad class’ tran-
scriptions. At those points in the speech stream when segmentation is heavily
determined by higher-level contextual factors, then the low-level statistical pro-
cessing we have described will be relatively superfluous.

The simplest overall model of the processor would perhaps ascribe each of the
levels of processing we have considered to a separate module, allowing the out-
puts of the individual modules to contribute to an overall boundary likelihood
at any one point in time. The value of flexibility in the importance attached to
the different sources of information is shown by the fact that each source pos-
sessed its own strengths and weaknesses. Thus, for instance, when the network
results and the bigram results were normalized for segment frequency, the pre-
ponderance in the identification of strong-syllable boundaries and open-class
words ceased, and, in the closed—open case, a reversal occurred in which more
closed-class word-boundaries were identified. In contrast, the MSS has an inher-
ent bias towards detecting open-class word-beginnings.

In conclusion, our connectionist and non-connectionist statistical approach
provides a psychologically plausible account of the different types of information
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that the developing processor can draw upon to solve the problem of speech
segmentation and perform flexibly in the adult state. The segmentation results
obtained demonstrate that the relevant information is there in the speech
stream, awaiting discovery by the developing infant.
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