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Human languages are characterized by a number of universal patterns of structure and 
use. Theories differ on whether such linguistic universals are best understood as arbitrary 
features of an innate language acquisition device or functional features deriving from 
cognitive and communicative constraints. From the viewpoint of language evolution, it is 
important to explain how such features may have originated. We use computational 
simulations to investigate the circumstances under which universal linguistic constraints 
might get genetically fixed in a population of language learning agents. Specifically, we 
focus on the Baldwin effect as an evolutionary mechanism by which previously learned 
linguistic features might become innate through natural selection across many generations 
of language learners. The results indicate that under assumptions of linguistic change, 
only functional, but not arbitrary, features of language can become genetically fixed. 

1. Introduction 

Although the world’s languages differ considerably from one another, they 
nonetheless share many systematic constraints on how they are structured and 
used. Explaining how such universal linguistic constraints evolved in the 
hominid lineage is the focus of much debate in language evolution research. 
One view suggests that linguistic universals are best viewed as arbitrary 
features of language with no functional explanation, but instead deriving from 
an innate Universal Grammar (UG; Chomsky, 1965). This abstract body of 
linguistic knowledge is proposed, by some theorists, to have evolved gradually 
through biological adaptations complex grammars (e.g., Briscoe, 2003; Pinker 
& Bloom, 1990). An alternative view seeks to explain linguistic universals as 
functional features of language, emerging due to communicative and cognitive 
factors outside of grammatical knowledge (e.g., Bybee, 1998). These features 
are seen as by-products of linguistic adaptation, in which language itself has 
been adapted through cultural transmission across many generations of language 
learners (e.g., Tomasello, 2003). 



  

The Baldwin effect (1896) is the primary evolutionary mechanism by which 
the arbitrary features of UG are envisioned to have been genetically fixed in the 
human population. Although a Darwinian mechanism, the Baldwin effect 
resembles Lamarckian inheritance of acquired characteristics in that traits that 
are learned or developed over the life span of an individual become gradually 
encoded in the genome over many generations (see Weber & Depew, 2003). 
That is, if a trait increases fitness, then individuals that, due to random genetic 
variation, require less exposure to the environment to develop that trait will have 
a selective advantage. Over generations, the amount of environmental exposure 
needed to develop this trait decreases, as individuals evolve increasingly better 
initial conditions for its rapid development. Eventually, no environmental 
exposure may be needed; the trait has become genetically encoded. A frequently 
cited example of the Baldwin effect (e.g., Briscoe, 2003) is the ability to 
develop hard skin on certain areas of the body with relatively little 
environmental exposure. Over time, natural selection would have favored 
individuals that could develop hard skin more rapidly (because it aids in 
mobility, prevents infection, etc.) until it became fixed in the genome, requiring 
little environmental stimulation to develop. Similarly, it has been suggested that 
arbitrary linguistic features, which would originally have had to be learned, 
gradually became genetically fixed in UG via the Baldwin Effect (Pinker & 
Bloom, 1990). 

In this paper, we use computer simulationsa to investigate the circumstances 
under which the Baldwin effect may operate, for arbitrary and functional 
features of language. Building on previous work (Chater, Christiansen & Reali, 
2004), Simulation 1 indicates that arbitrary linguistic features cannot be 
genetically fixed via the Baldwin effect when linguistic change is incorporated 
— even when this change is driven in part by the genes themselves. In 
Simulation 2, we show how functional features of language can come to be 
genetically fixed in the population when they promote better communicative 
abilities. Finally, we discuss the implications of the simulations for theories of 
language evolution. 

2. Simulation 1: Arbitrary Language Features 

Following recent work on the possible evolution of UG (e.g., Briscoe, 2003; 
Nowak, Komarova & Nyogi, 2001), we model language and learners as a set of 
binary vectors. Specifically, we adopt the framework of the pioneering 

                                                           
a All simulations were replicated several times due to their stochastic nature. 



 

simulations of Hinton & Nowlan (1987), used by Pinker & Bloom (1990) to 
support their suggestion that the Baldwin effect underlies the gradual genetic 
fixing of arbitrary grammatical features in UG. Our previous work indicated that 
although the Baldwin effect can occur within this framework in the context of 
arbitrary linguistic features, the effect disappears when language is allowed to 
change (Chater et al., 2004). However, these simulations were limited in scope; 
we therefore conducted a new series of simulations to determine whether our 
original results would replicate after addressing the limitations. 

In our earlier simulations, a language was defined as a set of arbitrary 
binary features, F1…Fn, taking the values 0 or 1. The n “genes” of the learners 
correspond to each of the n features of the language. The genes can take three 
values, representing an innate bias (0, 1) for a feature being 0 or 1 in the 
language; or neutrality (represented as ‘?’). For example, if n = 3 the language 
may correspond to [0, 1, 1] and the genes of a random agent to [?, 1, 0]. At the 
beginning of each generation, an initial language (phenotype) is expressed for 
each agent based on its genes (genotype). The innate bias toward a particular 
feature value will in most cases result in that value being expressed in the 
phenotype (in most of the simulations the ‘stickiness’ of the bias is 95% in the 
direction of the designated value), but on occasion it will be expressed in the 
opposite direction. For the neutral (learning) genes there is a 50% change of 
either setting (1 or 0). Thus, in our previous example, the initial language of the 
agent could be [1, 1, 1]. If the initial language does not match the target 
language, the agent begins a process of trial and error learning, in which 
learners randomly sample features using the biases in their genes. Once a feature 
is ‘guessed’ correctly, it is not changed. The learner keeps guessing until all the 
features in its language match those of the target language, with the fastest 
learners being selected to form the basis for the next generation. Some 
mutations would occur across generations, with an equal probability of 
randomly reassigning a gene to 0, 1, or ? (mutation rate varied between 
simulations). Although the neutral bits initially speeds learning, agents that are 
genetically biased toward a feature Fi will guess it faster. Thus the Baldwin 
effect should gradually ensure that all the arbitrary features of the language 
become genetically encoded. 

Chater et al. (2004) found a Baldwin effect for arbitrary linguistic features, 
for the case where the language is fixed. In these simulations, reproduction was 
implemented as simple duplications of the top 50% of the learners subject to a 
1% mutation rate. Does the same result hold, given a more realistic model of 
genetic  transmission?  To better approximate hominid  evolutionary  dynamics, 



  

Table 1. Number of generations needed to reach the success criterion for the Baldwin effect 
(parameter value : number of generations) 

Genome Size Population 
Size 

% Initial 
Neutral Bits 

Stickiness of 
Innate Bias 

% Survivors  % Mutation 
Rate 

10 : 25     24 : 369   0 : 23 100 : 152 26 : 52 0.1 : 232 
20 : 51 100 : 51 25 : 69 95 : 51 50 : 51  1 : 51 

  50 : 201 250 : 47   75 : 137 90 : 85   74 : 195 2.5 : 104 
    80 : 1045  100 : 147 80 : 88   

 
the current simulations use a simple model of sexual reproduction, instantiated 
as random cross-over between two sets of learner genes.  

We first replicated our original results in which the language/genome size 
was set to 20, the population size to 100, the number of initially neutral bits to 
50%, the ‘stickiness’ of the innate genetic bias to 95%, the number of surviving 
agents to the top 50%, and a 1% mutation rate. Using a success criterion that 
more than 95% of the initial bits in the top 50% of the learners’ genomes should 
correctly match the target language, we found that a robust Baldwin effect 
occurred after 51 generations. We then varied the simulation parameters and 
found that a robust Baldwin effect occurred in all circumstances, with parameter 
variations only affecting the speed with which it emerged (see Table 1). These 
results show that our earlier results generalize to sexual reproduction, and show 
that the Baldwin effect is highly robust, with a fixed language. If such a robust 
effect disappears under when the language is allowed to change, this cannot 
easily be dismissed. 

An important limitation of our original simulations is that language change 
was completely independent of the genes. It seems reasonable to assume that if 
the genes control language learnability then they should also influence the 
direction of language change in a process similar to Baldwinian niche 
construction (e.g., Odling-Smee, Laland & Feldman, 2003). To explore this, we 
carried out a set of simulations in which language at time t+1 was determined 
by a combination of genes and language at time t. Specifically, p percent of the 
change would be determined by the most frequent gene values in the previous 
population and the remaining 1-p percent of change by the previous language. 
Given that other pressures than learnability also affects language change (such 
as cognitive/communicative constraints, parsability, language contact, linguistic 
drift, etc.), we also incorporated random language change at a rate of ten times 
faster than the mutation rate (i.e., 10%). The faster rate of linguistic change 
reflects the fact that cultural evolution is much faster than biological evolution 
(Dawkins, 1976). Whereas linguistic change is measured in thousands of years, 
biological  evolution  is  measured  in  hundreds of  thousands  of  years.  Other  



 

 
Figure 1. The effect of population influence on the emergence of the Baldwin effect. 

 
simulation parameters were the same as in our initial replication above.  

The results of these simulations (Figure 1) show that only when there is a 
very high degree of population influence does the Baldwin effect emerge. Only 
when the direction of linguistic change is at least 50% determined by the 
previous generations genes do we observe a robust Baldwin effect after 835 
generations. This suggests that arbitrary features of language would have to be 
predetermined strongly by the genes from the very beginning, thus leaving little 
room for subsequent evolution of the kind envisioned by Pinker & Bloom 
(1990). This corroborates our previous findings that under reasonable 
assumptions about language change, the Baldwin effect does not occur for 
arbitrary linguistic features. Unlike the example of hard skin, where the 
environment provides a stable target for the Baldwin effect, language change is 
too fast for genetic commitments to arbitrary features to be worthwhile. 
However, it is possible that non-arbitrary features of language could become 
genetically fixed in the population if they facilitated communication in some 
manner; e.g., improved abilities for word learning, increased working memory 
capacity for language, vocal apparatus optimizations for speech, and so on. 

3. Simulation 2: Functional Language Features 

Because the arbitrary features of language by definition do not affect 
communicative function (e.g., Pinker & Bloom, 1990), Simulation 1 did not 
need to incorporate communication between agents. However, to explore the 
degree to which functional features of language could have become genetically 



  

fixed via the Baldwin effect, it is necessary to take communication into account 
to provide a context within which the non-arbitrary features can be functional. 

We used the same representation of language and genes as before, with the 
initial language expressed in the same way. However, learning was implemented 
differently, now mediated by communicative interactions. Communication was 
only possible between agents who had a majority of the same kinds on language 
features (either 0 or 1). Thus, an agent, a1, whose language is [0, 0, 0, 0, 1], 
would be able to communicate with an agent, a2, with a [0, 0, 0, 0, 0] language 
but not with agent a3 that has a [0, 1, 1, 1, 0] language. Agents benefit mutually 
from successful communication in proportion to the overlap in their features. 
The successful two-way interaction between a1 and a2 would result in an 
increase in both agents’ communication scores by 9 (the combined number of 0s 
in their two languages). The simulations also integrate the developmental trend 
that comprehension precedes production: even though a1 can only “produce” 
four 0s, it can “comprehend” a2’s five 0s. However, if the difference between 
the productive abilities of two agents is more than one unit, then lesser 
competent “speaker” will not be able to understand its more proficient 
communication partner, resulting in a one-way interaction. In this case, the 
proficient speaker received the combined communication score (as before), 
whereas the less competent agent would only receive its own contribution to 
that score. Hence, if a2 interacted with a4, whose language is [0, 1, 0, 1, 0], a2 
would increase its communication score by 8 while a4’s score would only 
increase by 3.  

In this framework, less competent agents are able to learn from more 
competent agents (with stronger bias towards 0s or 1s); this is meant to reflect 
the tendency for children to learn much of their language from others with 
greater language skills than themselves (e.g., adults or older children). Learning 
can only happen when two-way communication is possible (as described 
above), and consists in a process in which the less competent agent, based on 
the biases in its genome, re-samples the first bit in its language that differs from 
the more competent agent’s language. For example, in a communicative 
interaction between a1 and a4, the latter would resample its second language bit. 
If a4’s genome encoded an innate bias (0 or 1), then there would be a 95% 
chance of getting this bit expressed; but if the genome encoded a neutral bit, the 
chance of either value would be 50%. Thus, genes constrain learning as in 
Simulation 1.  



 

To further mirror the learning conditions from the previous simulations, we 
introduced noise into the learning process at a rate ten times higher than the 
mutation  rate.  During 10% of the  learning  opportunities a  random  bit in the 

 
Figure 2. The influence of variations in the number of initial learnable bits on the Baldwin effect for 
different mutation rates (mr) and noises rates (nr). 
 
learner’s language would be chosen for potential reassignment (given the 
learner’s genetic bias for that bit) instead of the first bit that deviated from the 
competent speaker’s language. This paralleled the 10% random change in the 
target language in Simulation 1.  

From each generation of 100 learners, pairs of agents were randomly picked 
for 500 interactions. The 50 agents with the highest communication scores were 
selected, and cross-over sexual reproduction used to create the next generation 
(combined with a 1% mutation rate). The results (Figure 2) show that a robust 
Baldwin effect emerges across several different variations in mutation rate and 
number of neutral bits in the first generation. Even when the first generation has 
all neutral (learnable) bits, a robust Baldwin effect emerges after 33-269 
generations. Thus, functional features that improve communication abilities may 
become genetically fixed in the population. For example, vocabulary learning is 
likely to rely on innate domain-general abilities for establishing reliable 
mappings between forms and meanings (e.g., Bloom, 2002). As such, the ability 
to acquire a large vocabulary may have become gradually innate by way of the 
Baldwin effect because it would have increased communicative abilities. 



  

4. General Discussion 

These results indicate that the Baldwin effect may not provide a suitable 
evolutionary mechanism for explaining the emergence of arbitrary features of 
language. Rather, the results suggest that functional features that facilitate 
communication may be a better candidate for aspects of language that have 
come to be genetically fixed over evolutionary time. For a trait to be amenable 
to the Baldwin effect, it needs to be stable over a period of many generations. 
Functional features are stable in that they facilitate communication on a 
continuous basis and thus are likely to become ‘Baldwinized’ when 
communicative abilities affect selective fitness in a population. In contrast, 
abstract linguistic features are free to change randomly exactly because they are 
non-functional and not subject to direct selective pressures. More generally, the 
simulations raise doubts about the gradual evolutionary emergence of a UG, as 
proposed by Pinker & Bloom (1990), and instead support a cultural transmission 
model of language evolution in which the Baldwin effect has enabled certain 
cognitive/functional features to become genetically encoded. 
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