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Abstract

Connectionist techniques for modeling the temporal statistics of phonemically transcribed spoken
discourse are described. The aim is to investigate the limits of modeling psycholinguistic data at this pre-
lexical level. The training data respect the frequency with which phoneme strings occur in conversational
speech. The general model proposed uses a back propogation through time learning procedure to train
a network that can predict the identitiy of the phoneme at the next time step, identify the current one
and confirm the last five, after training on noisy data. The model eschews local representations of words
and will have implications for current models of word recognition which employ such representations.

Introduction

(e

Although most connectionist methods deal with static patterns, there has been much recent work on networks
that can extract temporal structure from their input sequences (Elman 1990, Norris 1988; also see Hertz
et al. 1991). The work reported here experiments with a class of these methods in an attempt to account
for psycholinguistic data concerning word recognition and phoneme identification, using a network that can
extract the temporal statistics from a continuous stream of (idealised) phonemically transcribed speech. In
general we believe that there is a methodological imperative to investigate exhaustively the role of pre-
lexical representations, and their low-level statistics of co-occurence, before higher level representations are
invoked in modelling psycholinguistic data. The models presented here do not include lexical entries, i.e.
local representations of the phonology of a particular word.

aw

This paper will discuss some of the available algorithms and architectures and outline the type of data we
seek to model. We will briefly describe some of the simulations of psycholinguistic data.

Connectionist approaches to learning temporal sequences

Of the many recent connectionist approaches to learning temporal structure, one of the easiest to im-
plement and least computationally expensive is that described in Elman (1990) and Norris (1988). The
back-propagation algorithm is given a limited ability to capture temporal sequence by “copying back” the
activation of the hidden units on the last time step to a set of context units on the input layer. This method
is a simplification of the more general method of “back propagation through time” (Rumelhart, Hinton and
Williams 1986). One of our chief concerns is the extent to which this simplification weakens the ability of
a network to extract high order statistical regularities (see Chater 1989). We are currently comparing the
performance of the “copyback” method with full and truncated back propagation through time. Even the
simplest copyback architecture has proved more adequate than we had predicted (Shillcock, Levy and Chater
1991).
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Models of lexical access

Speech sounds arrive over time and must be matched against some kind of stored representation. Psycholin-
guistic theories have employed various idealised levels of representation involving such entities as features,
phonemes, morphemes and words. There has been a “lexicalist-localist” tradition in which the incoming
signal is seen as directly contacting specific lexical representations: it is assumed that contacting the lexical
entries for words makes available all of their associated information, in particular a complete phonological
description. The contacted word(s) partly determine the sublexical processing of the input.

Within this approach, little has been said about the development of the representation which makes initial
contact with the lexical entry. One computationally explicit account of the development of pre-lexical and
lexical representations, the TRACE model (McClelland and Elman 1986), has captured many aspects of
human spoken word recognition in a principled way and represents a coherent stance on issues such as
constraining the activation of lexical representations and segmenting the continuous input. In contrast to
TRACE, the model discussed in this paper employs the full range of phonemes in a description of spoken
English, is capable of learning and does not involve local lexical representations.

The model advanced below does not distinguish at the input and output levels between representations of any
frequent sequence, whether they are specifically morphemes, syllables, words or idioms. The model builds
on a recent departure from the lexicalist-localist view of lexical access, involving a distributed connectionist
model of word pronunciation (Seidenberg and McClelland 1989). Seidenberg and McClelland’s model has
achieved considerable coverage of the relevant psycholinguistic data. In the model of spoken word recognition
described below, an analogous approach is taken within the auditory domain: feature-level representations
are mapped onto phoneme-level representations. The training regime is taken from spoken discourse and
reflects the frequency with which speech sounds corresponding to phonemes occur and co-occur in spoken
language.

Our perspective does not rule out the possibility that explicit specific lexical representations might be
necessary to account for certain data. Only after investigating exhaustively how much of the data can be
accounted for by a model which does not possess such representations can the role of lexical representations
in explaining psycholinguistic data be properly assessed.

A second computational model of spoken word recognition has been presented by Norris (1988), employing
the copyback architecture mentioned above. In Norris’ model feature-level representations of consecutive
phonemes are mapped onto local representations of words via one layer of hidden units, a copyback mechanism
giving the network the potential to respond to patterns of input across time.

Norris’s model learns from its training set the frequency of the words it can recognize, and captures a range
of human behaviour. In small scale simulations a spread of activation is generally assigned to all words
congruent with the input up to and including the current phoneme. When the input word becomes unique
the model generally opts overwhelmingly for that word and maintains its level of activation until the end of
that word in the input. In contrast, the model described below instantiates a more comprehensive phoneme
level description of spoken English, is potentially able to model data concerning infra-lexical processing (e.g.
phoneme-monitoring) and, again, stops short of local lexical representations.

The general model

We aim to account for psycholinguistic data concerning word recognition using the temporal statistics of
phoneme sequences derived from spoken discourse data. Connectionist nets provide a powerful way of
extracting these statistics and implementing an explicit computational model. Such a model might be
expected to have a degree of predictive ability as well as one of confirming past hypotheses about its input
data. Our current model has seven groups of output units representing a temporal window of seven phonemes.
The groups correspond to the prediction of the next phoneme, the identification of the current phoneme and
the confirmation of the previous five phonemes, The confirmatory units constitute an “active memory” of
the recent past input. Rather than act as a simple delay line we would like to see them display effects
of “right context”, perhaps correcting past mistaken hypotheses when more reliable current information is
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received.

The input to our model is a vector representing the binary phonetic features of the current phoneme. At
10lin- the moment we are using an encoding consisting of 11 features. Figure 1 illustrates the structure of our
;ures, general model. The output of the model consists of sub-vectors specifiying the identity of the next phoneme,
ming the current phoneme and the previous five phonemes. Each sub-vector contains a unit for each of the 36
:xical phonemes we use. Thus, in the full case the output layer contains 252 units. In most of our simulations we
gical have used 15 hidden units. In the simulations using the Elman/Norris architecture, this entails the use of

15 context units on the input layer.
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an be Figure 1: A schematic view of the general model. The input vector consists of 11 units representing the values
itions of binary phonetic features specifying the current phoneme. Activation flows to a hidden layer consisting
of 15 units. Recurrence is implemented by a “copy-back” or back propagation through time method. The
; output layer consists of seven groups of 36 units. Each group represents a separate time step from ¢t — 5 to
loy ng t + 1. The units within each group represent the evidence for the different phonemes at each time step. The
:ut:lve example here displays the units that might be activated most strongly for the last seven phonemes from the
B phonetic transcription of “the model”.
range Previous work (Shillcock, Levy and Chater 1991) confirmed the promise of this approach using a cut-down
words version of our general model consisting of only three output slots (previous, current and next phoneme).
tnique The full network (252 output units) is large and training it with the large amounts of data needed to
:nd of expose it to a representative statistical sample of linguistic input is computationally very expensive. Using
neme

. an algorithm such as back propagation through time effectively enlarges the network many times making
3(e8 training times even longer.

Input coding

R The transcribed words constituting the training data were converted to idealized phoneme-level descriptions
ties of _ using a text-to-phoneme program, developed by the University of Edinburgh Centre for Speech Technology
g d of 1 Research (CSTR), and employing 36 different phonemes based on those of the CSTR Machine Readable
iht be Phonetic Alphabet. The eight dipthongs were each converted to sequences of two phonemes. This phonemic

nput transcription was then converted to an idealized feature-level representation, consisting of the following 11 fea-

. tures based on those of Jakobson, Fant and Halle (1952): vocalic/non-vocalic, consonantal/non-consonantal,
¥ :md voiced/unvoiced, discontinuous/continuant, strident/mellow, nasal/oral, diffuse/non- diffuse, compact /non-
ry” of compact, tense/non-tense, grave/acute, flat/plain. Thus the phonemes schwa and /I/ were represented
gzd; respectively as below.
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All 36 phonemes were given a value of 1 or 0 for each of the 11 features. The final form of the training set
was a continuous stream of feature-level descriptions of segments, with no word boundary information.

0 00 0 0 0 1 O
0 0 010 0 0 0

Training regimes

One of our main concerns is that the data presented to the networks during their training reflects the
statistical nature of real spoken language. As far as possible the frequency of different phoneme sequences
in the training set should match the frequencies of those strings in spoken dialogue. The ideal method of
achieving this is to take a corpus of spoken language (e.g. the LUND corpus, Svartvik and Quirk 1980)
and transcribe it into the appropriate input coding for the network. This is laborious and it is difficult
to transcribe enough material to represent relatively infrequent phoneme sequences. A less ideal but more
practical alternative is the approach taken by Seidenberg and McClelland (1989). They sampled words from
a dictionary with a probability proportional to their frequency in the language. Each epoch consisted of a
different set of words sampled in this way. In some of our simulations we have used a similar method using
a 33,000 word phonetic dictionary derived from the MRC Psycholinguistic Database (Coltheart 1981).

In order to force the networks to capture as much temporal structure as possible we have usually added noise
to the training set in our simulations. Usually this took the form of randomly changing a feature value of,
on average, one of the binary features in the input vector. This should tend to make the network consider
the temporal context surrounding each particular time-slot in order to reduce its error during training.

In order to avoid the network overfitting the data, we set aside a portion of the original transcribed data to
use for cross-validation. We stop training when the error on the cross-validation set seems to have stopped
decreasing. This decision can sometimes be difficult to make, especially when noise has been added to the
training set. The method is convenient however, since it allows us to estimate the appropriate number of
hidden units without having to find the ideal minimum number for generalisation empirically,

A further concern is the use of an appropriate learning algorithm. Although we have achieved some suec-
cess with the Elman/Norris approximation to back-propagation through time, we are concerned that such
approaches may be limited in the richness and extent of temporal structure they can capture. Qur current
simulations use a truncated version of back propagation through time where the current time step and the
four previous ones are used during training. The closer a training regime approaches full back propogation in
time the more computationally expensive it becomes. We plan to compare the degree of structure captured
by different regimes such as the Elman/Norris architecture and full and truncated back propagation through
time.

Modelling psycholinguistic data

Using a network architecture where the output layer represented the last, current and next phoneme, Shillcock
et al. (1991) reported two successful simulations of psycholinguistic data from phoneme restoration and
phoneme monitoring tasks. Here we extend this work to the seven time-slot architecture.

Capturing phonotactic constraints

Simulations using an Elman/Norris algorithm have shown that the expansion of the previous work to a model
with a five-slot buffer is feasible. When this model is given an input corresponding to the phonemically
transcribed phrase “this is a test of the model”, the mean activations of the predictive unit, the current unit
and the five confirmatory units are all significantly greater than when the same phonemes are presented in
random order. The network is sensitive to the phonemic context both before and after a specific phoneme;
the five confirmation units were not simply functioning as delay lines.
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Phoneme restoration

Listeners’ perception of degraded individual speech sounds in words is often restored: if the /s/ in legislature
ning set is replaced by white noise, the word is still heard as intact, but with a cough perceptually displaced from the
ion. word (Warren 1970). This was modelled by putting test words in the carrier sentence “and the next word
: is ...and the next word is” and observing activation levels. Restoration effects are limited at this stage of
the development of the model. Even for frequent words like got, this, and yes, the phonotactic knowledge
encoded in the network was insufficient to overturn clear feature-level descriptions of one phoneme into
a different one: thif is not interpreted as this — the unambiguous feature-level description of /f/ is not
interpreted as /s/ simply because of its phonemic context. Thus the model respects the input and does

acte the not hallucinate phonemes on the basis of word frequency. This captures the effect more accurately than
pnEne: TRACE, for instance, in which a local lexical level representation of vocabulary, for instance, overturns
sthod of bottom-up evidence and converts the erroneous /t/ in vocabulaly to /r/. Limited phoneme restoration does
"k. 1980) occur, however, when feature-level descriptions are ambiguous between two phonemes. For instance, when
difficuls ; the input was /* e s/, in which * was ambiguous between /y/ and /r/, the model restored the /y/. In
_l:lts Eore principle, the model is capable of recruiting both right and left context in the identification of a particular
:te d 0‘;‘2 phoneme.
>d using .
i) Monitoring for word-medial phonemes
ed noise
value of, Listeners are faster to monitor for word-medial phonemes like /p/ in prefixed words like repel compared
consider ' with monomorphemic words like lapel, reflecting the fact that strings of phonemes beginning with prefix-
ing. like phonemes (/rIp/) are more frequent (regardless of position in words) than the comparable strings
: beginning with un-prefix-like strings (Shillcock submitted). The stimulus materials from the experiment
data to were transcribed and embedded in the context “and the next word is . ..and the next word is” and presented
stopped to the network. Activations for the critical phoneme in each word (e.g. /p/ in repel) were recorded. Mean
d to the activations were higher for the prefix cases, compared with the monomorphemic cases, at all positions in the
mber of net’s memory (including the prediction position) except for the last one, where the two were precisely equal.
The difference was only significant for the second position, however, (t = 2.26,df = 14,p < .02) possibly
e bdes: b reflecting the poor sampling of polymorphemic words in the training corpus. Althought the training corpus
1at such | was small, the network still reflected the bigram and trigram information available from a large phonemic
eurrent | dictionary which had proved to be a good predictor of this particular human data.
and the
;ation in |
aptured Conclusions and future work
through
The architecture discussed above promises to be useful in modelling the pre-lexical phonotactic constraints
which affect word perception.
Current work is involving changes to the characterization of the input; specifically we are replacing the
Jakobsonian features with those elements recognized by Government Phonology (Kaye et al. 1985). This
thilleock work begins to converge with the connectionist approach to phonology, particularly with the processing
st approach espoused by Gasser and Lee (1989), who suggest an architecture similar to the model described
ion and above, but without the confirmatory output units. Extending the corpus, so as to ensure better sampling of
the open-class vocabulary is important, as is the enrichment of the corpus to ensure that the input contains
information currently excluded, such as phonological reduction and coarticulation. We expect the back
propagation through time algorithm to extract richer temporal statistics than the copyback algorithms used
so far.
a model
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