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Constituency and Recursion in Language

Morten H. Christiansen and Nick Chater

Introduction

UPUB

k. refiection, most people would agree that the words in a sen-
nce

are not merely arranged like beads on a string. Rather, the
Words Eroup together to form coherent building blocks within a
Sentence Consider the sentence, The girl liked a boy. Intuitively,

€ chunks the girl and liked a boy constitute the basic components

of this sentence (compared to a simple listing of the individual
words or alternative groupings, such as the girl liked and a boy).
Linguistically, these chunks comprise the two major constituents
of a sentence: a subject noun phrase (NP), the girl, and a verb
phrase (VP), liked a boy. Such phrasal constituents may contain
two types of syntactic elements: other phrasal constituents (e.g.,
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the NP a boy in the above VP) or lexical constituents (e.g., the
determiner the and the noun gir! in the NP the girl). Both types of
constituent are typically defined distributionally using the so-called
replacement test: If a novel word or phrase has the same distribu-
tion as a word or phrase of a known constituent type—that is if the
former can be replaced by the latter—then they are the same type
of constituent. Thus, the lexical constituents the and a both belong
to the lexical category of determiners because they occur in similar
contexts and therefore can replace each other (e.g., A girl liked the
boy). Likewise, the girl and a boy belong to the same phrasal cate-
gory, NP, because they can be swapped around, as in A boy liked
the girl (note, however, that there may be semantic constraints on
constituent replacements. For example, replacing the animate sub-
ject NP the girl with the inanimate NP rthe chair yields the seman-
tically anomalous sentence, The chair liked a boy).

In linguistics, grammar rules and/or principles determine how
constituents can be put together to form sentences. For instance,
we can use the following phrase structure rules to describe the
relationship between the constituents in the example sentences
above:

S = NP VP
NP — (det) N
VP — V (NP)

Using these rules we obtain the following relationships between
the lexical and phrasal constituents:

[s[nploe: The ]l girl Jllvelv liked Jlvp e @ Jiv boy 111

To capture the full generativity of human language, recursion
needs to be introduced into the grammar. We can incorporate re-
cursion into the above rule set by introducing a new rule that adds
a potential prepositional phrase (PP) to the NP:

NP — (det)N(PP)
PP — prep NP

These rules are recursive because the expansion of the right-hand
sides of each can involve a call to the other. For example, the
complex NP rthe flowers in the vase has the simple NP the vase
recursively embedded within it. This process can be applied arbi-
trarily often, creating, for instance, the complex NP with three em-
bedded NPs:

[np the flowers [pp in [yp the vase
[pp O [np the table
[pp DY [np the window]]]]1]]

Recursive rules can thus generate constructions of arbitrary
complexity.

Constituency and recursion are some of the most fundamental
concepts in linguistics. As we saw above, both are defined in terms
of relations between symbols. Symbolic models of language pro-
cessing therefore incorporate these properties by fiat. In this article,
we discuss how constituency and recursion may fit into a connec-
tionist framework and the possible implications for linguistics and
psycholinguistics.

Constituency

Connectionist models of language processing can address constit-
uency in three increasingly radical ways. First, some connectionist
models are implementations of symbolic language processing mod-
els in “neural” hardware. Many early connectionist models of syn-
tax used this approach; an example is Fanty’s (1986) network
implementation of a context-free grammar. This kind of model con-
tains explicit representations of the constituent structure of a sen-
tence in just the same way as a nonconnectionist implementation

of the same model would. Connectionist implementations of this
kind may be important; they have the potential to provide feasi-
bility proofs that traditional symbolic models of language process-
ing are compatible with a “brain-style” computational architecture,
But these models add nothing new with respect to the treatment of
constituency.

The remaining two classes of connectionist models learn to pro-
cess constituent structure, rather than having this ability hardwired.
One approach is to have a network learn from input “tagged” with
information about constituent structure. For example, Kim, Srini-
vas, and Trueswell (2002) train a network to map a combination
of orthographic and co-occurrence-based “semantic™ information
about a word onto a structured representation encoding the minimal
syntactic environment for that word. With an input vocabulary con-
sisting of 20,000 words, this model has an impressive coverage and
can account for certain results from the psycholinguistic literature
concerning ambiguity resolution in sentence processing. But be-
cause constituent structure has been “compiled” into the output
representations that the network was trained to produce, this kind
of model does not offer any fresh insight into how linguistic con-
stituency might operate, based on connectionist principles.

The third class of connectionist models addresses the more am-
bitious problem of learning the constituent structure of a language
from untagged linguistic input. Such models have the potential to
develop a new or unexpected notion of constituency, and hence
may have substantial implications for theories of constituency in
linguistics and psycholinguistics.

To understand how the more radical connectionist models ad-
dress constituency, we need to frame the problem more generally.
We can divide the problem of finding constituent structure in lin-
guistic input into two interrelated parts: segmenting the sentence
into chunks that correspond, to some extent, to linguistic constit-
uents, and categorizing these units appropriately. The first problem
is an aspect of the general problem of segmenting speech into ap-
propriate units (e.g., phonemes, words) and more generally is an
aspect of perceptual grouping. The second problem is an aspect of
the general problem of classifying linguistic units—for instance,
recognizing different classes of phonemes or establishing the parts
of speech of individual lexical items. The segmentation and clas-
sification problems need not be solved sequentially. Indeed, there
may be mutual influence between the decision to segment a partic-
ular chunk of language and the decision that it can be classified in
a particular way. Nonetheless, it is useful to keep the two aspects
of the analysis of constituency conceptually separate.

It is also important to stress the difference between the problem
of assigning constituent structure to novel sentences where the lan-
guage is known and the problem of acquiring the constituent struc-
ture of an unknown language. Statistical symbolic parsers are able
to make some inroads into the first problem (Charniak, 1993). For
highly stylized language input, and given a prestored grammar,
they can apply grammatical knowledge to establish one or more
possible constituent structures for novel sentences. But symbolic
methods are much less advanced in acquiring the constituent struc-
ture of language, because this requires solving the hard problem of
learning a grammar from a set of sentences generated by that gram-
mar. It is therefore in relation to the acquisition of constituency
that connectionist methods, with their well-developed learning
methods, have attracted the most interest.

We begin by considering models that focus on the problem of
classifying, rather than segmenting, the linguistic input. One con-
nectionist model (Finch and Chater, 1993) learns the part of speech
of individual words by clustering words together on the basis of
the immediate linguistic contexts in which they occur. The rationale
is based on the replacement test mentioned earlier: if two words
are observed to occur in highly similar immediate contexts in a
corpus, they probably belong to the same syntactic category. Finch
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and Chater used a single-layer network with Hebbian learning to
store co-occurrences between “target” words and their near neigh-
bors. This allowed each target word to be associated with a vector
representing the contexts in which it typically occurred. A com-
petitive learning network classified these vectors, thus grouping
together words with similar syntactic categories. This method is
able to operate over unrestricted natural language, in contrast to
most symbolic and connectionist models. From a linguistic per-
spective, the model slices lexical categories too finely, producing,
for example, many word classes that correspond to nouns or verbs.
On the other hand, the words within a class tend to be semantically
related, which is useful from a cognitive perspective. The same
method can be extended to classify sequences of words as NPs,
VPs, etc. An initial classification of words is used to recode the
input as a sequence of lexical constituents. Then, short sequences
of lexical constituents are classified by their context, as before, The
resulting groups of “phrases” (e.g., determiner-adjective-noun) are
readily interpretable as NPs, and so on, but again, these groupings
are too linguistically restrictive (i.e., only a small number of NPs
are included in any particular cluster). Moreover, this phrasal level
classification has not yet been implemented in a connectionist
network.

A different attack on the problem of constituency involves train-
ing simple recurrent networks (SRNs) on linguistic input (Elman,
1990). An SRN involves a crucial modification to a feedforward
network: the current set of hidden unit values is “copied back” to
a set of additional input units, and paired with the next input to the
network. The current hidden unit values can thus directly affect the
next hidden unit values, providing the network with a memory for
past inputs. This enables it to tackle sentence processing, where the
input is revealed gradually over time rather than being presented
at once.

Segmentation into constituents can be achieved in two ways by
an SRN trained to predict the next input. One way is based on the
assumption that predictability is higher within a constituent than
across constituent boundaries, and hence that high prediction error
indicates a boundary. This method has been advocated as poten-
tially applicable at a range of linguistic levels (Elman, 1990), but
in practice it has been successfully applied only on corpora of un-
restricted natural language input in finding word boundaries (Cairns
etal,, 1997). Even here, the prediction strategy is a very partial cue
to segmentation. If the network is provided with information about
naturally occurring pauses between utterances (or parts of utter-
ances), an alternative method is to assume that constituent bound-
aries occur where the network has an unusually high expectation
of an utterance boundary. The rationale is that pauses tend to occur
at constituent boundaries, and hence the prediction of a possible
utterance boundary suggests that a constituent boundary may have
occurred. This approach seems highly applicable to segmenting
sentences into phrases, but it, too, has primarily been used for find-
ing word boundaries in real corpora of language, when combined
with other cues (Christiansen, Allen, and Seidenberg, 1998).

So far we have considered how SRNs might find constituents.
But how well do they classify constituents? At the word level,
cluster analysis of hidden unit activations shows that, to some ex-
tent, the hidden unit patterns associated with different word classes
group naturally into syntactic categories, for SRNs trained on sim-
ple artificial grammars (Elman, 1990). These results are important
because they show that even though the SRN may not learn to
classify constituents explicitly, it is nevertheless able to use this
information to process constituents appropriately.

Another way of assessing how SRNs have learned constituency
is to see if they can generalize to predicting novel sentences of a
language. The logic is that to predict successfully, the SRN must
exploit linguistic regularities that are defined across constituents,
and hence develop a notion of constituency to do so. However,

Hadley (1994) points out that this type of evidence is not compel-
ling if the novel sentences are extremely similar to the network’s
training sentences. He suggests that, to show substantial evidence
for generalization across constituents, the network should be able
to handle novel sentences in which words appears in sentence lo-
cations where they have not previously occurred (see SYSTEMACITY
OF GENERALIZATIONS IN CONNECTIONIST NETWORKS). For exam-
ple, a novel sentence might involve a particular noun in object
position, where it has previously occurred only in subject position.
To generalize effectively, the network must presumably develop
some abstract category of nouns. Christiansen and Chater (1994)
demonstrated that an SRN can show this kind of generalization.

Despite this demonstration, though, connectionist models do not
mirror classical constituency precisely. That is, they do not derive
rigid classes of words and phrases that are interchangeable across
contexts. Rather, they divide words and phrases into clusters with-
out precisely defined boundaries, and they treat words and phrases
differently, depending on the linguistic contexts in which they oc-
cur. This context-sensitive constituency can be viewed either as the
undoing of connectionist approaches to language or as their radical
contribution.

The potential problem with context-sensitive constituency is the
productivity of language. To take Chomsky’s famous example,
how do we know that the statement colorless green ideas sleep
furiously is syntactically correct, except by reference to a context-
insensitive representation of the relevant word classes? This seems
necessary, because each word occurs in a context in which it has
rarely been encountered before. But Allen and Seidenberg (1999)
argue that this problem may not be fatal for context-sensitive no-
tions of constituency. They trained a network to mutually associate
two input sequences, a sequence of word forms and a correspond-
ing sequence of word meanings. The network was able to learn a
small artificial language successfully: it was able to regenerate the
word forms from the meanings, and vice versa. Allen and Seiden-
berg then tested whether the network could recreate a sequence of
word forms presented to it, by passing information from form to
meaning and back. Ungrammatical sentences were recreated less
accurately than grammatical sentences, and the network was thus
able to distinguish grammatical from ungrammatical sentences. Im-
portantly, this was true for sentences in which words appeared
in novel combinations, as specified by Hadley’s criterion and as
exemplified by Chomsky’s famous sentence. Thus, the context sen-
sitivity of connectionist constituency may not rule out the possi-
bility of highly creative and novel use of language, because abstract
relations may be encoded at a semantic level as well as at the level
of word forms.

If the apparent linguistic limitations of context-sensitive con-
stituency can be overcome, then the potential psychological con-
tribution of this notion is enormous. First, context sensitivity seems
to be the norm throughout human classification. Second, much data
on sentence processing seem most naturally to be explained by
assuming that constituents are represented in a fuzzy and context-
bound manner. The resulting opportunities for connectionist mod-
eling of language processing are extremely promising. Thus, con-
nectionist research may provide a more psychologically adequate
notion of constituency than is currently available in linguistics.

Recursion

As with constituency, connectionist models have dealt with recur-
sion in three increasingly radical ways. The least radical approach
1s to hardwire recursion into the network (e.g., as in Fanty’s (1986)
implementation of phrase structure rules) or to add an external sym-
bolic (“first-in-last-out™) stack to the model (e.g., as in Kwasny and
Faisal’s (1990) deterministic connectionist parser). In both cases,
recursive generativity is achieved entirely through standard sym-
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bolic means, and although this is a perfectly reasonable approach
to recursion, it adds nothing new to symbolic accounts of natural
language recursion. The more radical connectionist approaches to
recursion aim for networks to learn to deal with recursive structure.
One approach is to construct a modular system of networks, each
of which is trained to acquire different aspects of syntactic pro-
cessing. For example, Miikkulainen’s (1996) system consists of
three different networks: one trained to map words onto case-role
assignments, another trained to function as a stack, and a third
trained to segment the input into constituent-like units. Although
the model displays complex recursive abilities, the basis for these
abilities and their generalization to novel sentence structures derive
from the configuration of the stack network combined with the
modular architecture of the system, rather than being discovered
by the model. The most radical connectionist approaches to recur-
sion attempt to learn recursive abilities with minimal prior knowl-
edge built into the system. In this type of model, the network is
most often required to discover both the constituent structure of
the input and how these constituents can be recursively assembled
into sentences. As with the similar approach to constituency de-
scribed in the previous section, such models may provide new in-
sights into the notion of recursion in human language processing.

Before discussing these modeling efforts, we need to assess to
what extent recursion is observed in human language behavior. It
is useful to distinguish simple and complex recursion. Simple re-
cursion consists in recursively adding new material to the left (e.g.,
the adjective phrases (AP) in the gray cat — the fat gray cat = the
ugly fat gray cat) or the right (e.g., the PPs in the flowers in the vase
= the flowers in the vase on the table — the flowers in the vase on
the table by the window) of existing phrase material. In complex
recursion, new material is added in more complicated ways, such
as through center-embedding of sentences (The chef admired the
musicians = The chef who the waiter appreciated admired the
musicians). Psycholinguistic evidence shows that people find sim-
ple recursion relatively easy to process, whereas complex recursion
is almost impossible to process with more than one level of recur-
sion. For instance, the following sentence with two levels of simple
(right-branching) recursion, The busboy offended the waiter who
appreciated the chef who admired the musicians, is much easier to
comprehend than the comparable sentence with two levels of com-
plex recursion, The chef who the waiter who the busboy offended
appreciated admired the musicians. Because recursion is built into
the symbolic models, there are no intrinsic limitations on how
many levels of recursion can be processed. Instead, such models
must invoke extrinsic constraints to accommodate the human per-
formance asymmetry on simple and complex constructions. The
radical connectionist approach models human performance directly
without the need for extrinsic performance constraints.

The SRN model developed by Elman (1991) was perhaps the
first connectionist attempt to simulate human behavior on recursive
constructions. This network was trained on sentences generated by
a small context-free grammar incorporating center-embedding and
a single kind of right-branching recursive structure. In related work,
Christiansen and Chater (1994) trained SRNs on a recursive arti-
ficial language incorporating four kinds of right-branching struc-
tures, a left-branching structure, and center-embedding. The be-
havior of these networks was qualitatively comparable with human
performance in that the SRN predictions for right-branching struc-
tures were more accurate than on sentences of the same length
involving center-embedding, and performance degraded appropri-
ately as the depth of center-embedding increased. Weckerly and
Elman (1992) further corroborated these results, suggesting that
semantic bias (incorporated via co-occurrence restrictions on the
verbs) can facilitate network performance in center-embedded con-
structions, similar to the semantic facilitation effects found in hu-
man processing. Using abstract artificial languages, Christiansen

and Chater (1999) showed that the SRN’s general pattern of per-
formance is relatively invariant across network size and training
corpus, and concluded that the human-like pattern of performance
derived from intrinsic constraints inherent to the SRIN architecture.

Connectionist models of recursive syntax typically use “toy”
fragments of grammar and small vocabularies. Aside from raising
concerns over scaling-up, this makes it difficult to provide detailed
fits with empirical data. Nonetheless, some attempts have recently
been made to fit existing data and derive new empirical predictions
from the models. For example, the Christiansen and Chater (1999)
SRN model fits grammaticality rating data from several behavioral
experiments, including an account of the relative processing dif-.
ficulty associated with the processing of center-embeddings
(with the following relationship between nouns and verbs:
NN,N; V4V, V) versus cross-dependencies (with the following re-
lationship between nouns and verbs: N;N;N;V,V, V). Human data
have shown that sentences with two center-embeddings (in Ger-
man) are significantly harder to process than comparable sentences
with two cross-dependencies (in Dutch). The simulation results
demonstrated that the SRNs exhibited the same kind of qualitative
processing difficulties as humans on these two types of complex
recursive constructions.

Just as the radical connectionist approach to constituency devi-
ates from classical constituency, the above approach to recursion
deviates from the classical notion of recursion. The radical models
of recursion do not acquire “true” recursion because they are unable
to process infinitely complex recursive constructions. However, the
classical notion of recursion may be ill-suited for capturing human
recursive abilities. Indeed, the psycholinguistic data suggest that
people’s performance may be better construed as being only quasi-
recursive. The semantic facilitation of recursive processing, men-
tioned earlier, further suggests that human recursive performance
may be partially context sensitive. For example, the semantically
biased sentence, The bees that the hive that the farmer built housed
stung the children, is easier to comprehend than the neutral sen-
tence, The chef that the waiter that the busboy offended appreciated
admired the musicians, even though both sentences contain two
center-embeddings. This dovetails with the context-sensitive no-
tion of constituency and suggests that context sensitivity may be a
more pervasive feature of language processing than is typically
assumed by symbolic approaches.

Discussion

This article has outlined several ways in which constituency and
recursion may be accommodated within a connectionist frame-
work, ranging from direct implementation of symbolic systems to
1e acquisition of constituency and recursion from untagged input.
‘We have focused on the radical approach, because this approach
has the greatest potential to affect psycholinguistics and linguistic
theory. However, much of this research is still preliminary. More
work is needed to decide whether the promising but limited initial
results can eventually be scaled up to deal with the complexities
of real language input, or whether a radical connectionist approach
is beset by fundamental limitations. Another challenge is to find
ways—theoretically and practically—to interface models that have
been proposed at different levels of linguistic analyses, such as
models of morphology with models of sentence processing.
Nevertheless, the connectionist models described in this article
have already influenced the study of language processing. First,
connectionism has helped promote a general change toward re-
placing “box-and-arrow” diagrams with explicit computational
models. Second, connectionism has reinvigorated the interest in
computational models of learning, including learning properties,
such as recursion and constituent structure, that were previously
assumed to be innate. Finally, connectionism has helped increas¢
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interest in the statistical aspects of language learning and
processing. :

Connectionism has thus already had a considerable impact on
the psychology of language. But the final extent of this influence
depends on the degree to which practical connectionist models can
be developed and extended to deal with complex aspects of lan-
guage processing in a psychologically realistic way. If realistic con-
nectionist models of language processing can be provided, then the
possibility of a radical rethinking not just of the nature of language
processing, but of the structure of language itself, may be required.

Road Map: Linguistics and Speech Processing

Background: Language Processing

Related Reading: Language Acquisition; Recurrent Networks: Learning
Algorithms
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