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Transfer in Artificial Grammar Learning: A Reevaluation 

Mart in  Red ing ton  and N i c k  Cha te r  
University of Edinburgh 

This article covers methodological and theoretical issues in artificial grammar learning. 
Arguments that such tasks are mediated by abstract knowledge (e.g., A. S. Reber, 1969, 1990) 
are based primarily on evidence from transfer experiments, where the surface vocabulary is 
changed between learning and test items. Because of a number of methodological concerns, 
the small magnitudes of artificial grammar leaming effects generally are difficult to interpret. 
Possible solutions are offered here. Furthermore, even reliable transfer effects imply neither 
that subjects have acquired abstract knowledge of the underlying grammar nor that they are 
performing a process of abstract analogy from memorized whole exemplars. Models that 
learn only surface fragments of the training stimuli and perform abstraction at test rather than 
during learning are wholly consistent with transfer phenomena. 

One of the most fundamental questions in cognitive psy- 
chology is whether the knowledge is stored in terms of 
abstract rule-like descriptions or as sets of specific in- 
stances. According to the first view, novel items or events 
are dealt with by applying the stored abstract rules to the 
novel case. According to the second view, there is some 
process of comparison or analogy between stored examples 
and the current event. The controversy between these points 
of view arises in the study of memory (Hintzmann, 1986), 
categorization (Barsalou, 1990; Reeves & Weisberg, 1994), 
and analogical reasoning (Gentner, 1989), and aspects of 
language learning (Pinker & Prince, 1988; Plunkett & 
Marchman, 1991; Rumelhart & McClelland, 1986). Artifi- 
cial grammar leaming appears to be a domain in which the 
case for stored abstract rules is especially strong. It is argued 
that in artificial grammar learning experiments, subjects are 
able to leam the grammatical rules underlying the training 
stimuli (Reber, 1967, 1990). Results from so-called "trans- 
fer experiments," in which the training and test stimuli have 
different surface forms but the same underlying abstract 
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structure, have been assumed to unequivocally rule out any 
instance-based account, because these accounts are inevita- 
bly tied to surface forms. 

In this article, we show that the argument from transfer 
experiments to abstract knowledge is flawed in two ways. 
First, a number of methodological problems render the 
interpretation of many transfer experiments difficult--the 
results of many experiments are consistent with no transfer 
having occurred at all. For instance, almost all studies lack 
adequate control groups. This is of particular concern be- 
cause control subjects who have received no training what- 
soever have been observed to perform at the same above- 
chance levels found in typical transfer studies. However, on 
the basis of the small number of relatively well-controlled 
studies that have been conducted, it seems likely that trans- 
fer is a genuine phenomenon. Our second argument is that 
in any case, transfer does not imply that subjects acquire 
abstract rules during learning. We demonstrate this by pro- 
viding a simple fragment-based account (i.e., the subject's 
knowledge consists purely of letter pairs and triples found in 
the training stimuli) that can attain levels of transfer perfor- 
mance well in excess of those obtained by experimental 
subjects. This shows that successful transfer does not imply 
that knowledge is stored in the form of abstract rules. 

The Artificial G r a m m a r  Learning Paradigm 

In a typical artificial grammar learning experiment (e.g., 
Dulany, Carlson, & Dewey, 1984; Perruchet & Pacteau, 
1990; Reber, 1967), subjects are instructed to memorize a 
set of learning strings generated by a finite state grammar 
such as that shown in Figure 1. Subsequently, when in- 
formed that the learning strings were generated by a set of 
rules and asked to distinguish between test strings that 
follow those rules and test strings that violate them, subjects 
perform at above-chance levels. However, subjects are typ- 
ically unable to articulate much of the knowledge that 
allows them to perform this task. This is the archetypal 
implicit learning effect. If  the actual letters of the strings are 
changed between learning and test, subjects are still able to 
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Figure 1. The standard finite state grammar. Grammatical 
strings are generated by following the paths starting at #0 and 
continuing until one of the three exiting paths is taken, with each 
path generating the letter that labels it. This grammar, although not 
necessarily with these particular letters, was used to generate the 
stimuli for Reber and Allen (1978), Dulany, Carlson, and Dewey, 
(1984), Perruchet and Pacteau (1990), Dienes, Broadbent, and 
Berry, (1991), and Redington and Chater (1994). 

perform at above chance on the discrimination task--they 
are able to transfer their knowledge to a different letter set 
(e.g. Brooks & Vokey, 1991; Whittlesea & Dorken, 1993), 
although at a slightly lower level of performance than in the 
standard nontransfer condition. 

A controversial claim in implicit learning in general and 
artificial grammar learning in particular is that subjects 
acquire "an unconscious abstract representation of the struc- 
ture in the information given" (Reber & Lewis, 1977, p. 
355). The issues of whether the knowledge used in these 
tasks is unconscious and how this hypothesis might be 
tested have been discussed extensively in a recent review 
(Shanks & St. John, 1994). The concern of this article is 
whether, and to what extent, the knowledge that subjects 
acquire is abstract. 

There has been an extensive empirical debate concerning 
abstract knowledge in artificial grammar learning. How- 
ever, there has been relatively little precise definition of 
exactly what abstract knowledge could be, except that what- 
ever it is, it is more than knowledge of surface fragments of 
the training items, and transfer experiments are evidence for 
it. We therefore begin by delimiting the scope of abstract 
knowledge that we take to be at the heart of this debate. 

Notions of  Abstract Knowledge 

Many different notions of abstract knowledge have been 
discussed in the interpretation of artificial grammar learning 
experiments (e.g., Dulany et al., 1984; Mathews, 1990; 
Mathews, Buss, Stanley, Blanchard-Fields, Cho, & Druhan, 
1989; Reber, 1969, 1989; Shanks & St. John, 1994; Whit- 
tlesea & Dorken, 1993, and many others). Here we do not 
attempt the ambitious project of a taxonomy of notions of 
abstraction; we simply aim to separate out those notions of 
abstract knowledge that are generally accepted from those at 

issue here. We consider three different notions, or degrees, 
of abstraction: 

1. In any learning process, there is clearly abstraction 
from the stimulus, in a relatively trivial sense. The fact that 
a stimulus is interpreted as, for example, a string of letters, 
rather than as a pattern of light and dark, indicates abstrac- 
tion to the level of letters. The reality of this kind of 
knowledge is not at issue in the artificial grammar learning 
literature. 

2. A second notion of abstract knowledge refers to ab- 
straction over surface properties of individual training 
items. For instance, Whittlesea and Dorken (1993) point out 
that if subjects simply code the training items inefficiently 
(for instance, retaining only a random pair of adjacent letters 
from each exemplar) "such degenerate coding of particular 
items could . . .  make subjects' subsequent performance 
sensitive to the underlying structure of the set of exemplars 
. . .  because non-grammatical items often contain pairwise 
violations and grammatical items do not" (p. 228). Simi- 
larly, mechanisms that learn common chunks of letters in 
the training stimuli (Servan-Schreiber & Anderson, 1990) 
are thereby abstracting some information across the training 
items. Again, this is not the notion of abstraction that has 
been controversial in the literature. Even those commenta- 
tors who lie furthest from the unconscious, abstract position 
are comfortable with knowledge of this kind (e.g., Per- 
ruchet, 1994; Shanks & St. John, 1994). 

3. The third notion of abstract knowledge, which appears 
to be central to artificial grammar learning research, con- 
cerns knowledge that abstracts away from the specific vo- 
cabulary used in the training set. As distinct from the 
previous notions, subjects are seen as possessing knowledge 
of the grammatical structure underlying the training stimuli 
that is independent of the actual surface letters of the train- 
ing strings. The principal source of support for this position 
is taken to be the fact that knowledge acquired from training 
items with one surface vocabulary can be transferred to test 
items with a different vocabulary but the same underlying 
structure. Unless otherwise indicated, this is the sense of 
abstract knowledge that we use below. 

Theories of  Artificial Grammar  Learning 

In parallel to these three kinds of knowledge are three 
accounts of artificial grammar learning and the knowledge 
that subjects acquire during training: 

1. Exemplar-based accounts, which propose that sub- 
jects' knowledge primarily consists of relatively unproc- 
essed representations of whole strings (Brooks, 1978; 
Brooks & Vokey, 1991); 

2. Fragment-based accounts, which posit that the primary 
knowledge acquired is of two- and three-letter "chunks" of 
the training strings (e.g., Perruchet & Pacteau, 1990); 

3. Accounts based on the acquisition of abstract knowl- 
edge, in the third of the senses described above (Reber, 
1969, 1990; Manza & Reber, 1994). 

These accounts differ considerably in their explanation of 
the transfer phenomenon: In the earliest account of implicit 
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learning, Reber adopts the third of these notions of abstrac- 
tion, proposing that subjects are learning "abstract struc- 
tures to which a particular set of symbols are assigned. They 
are not simply learning to string together explicit symbols" 
(1969, p. 119). These abstract structures can be applied 
relatively easily to strings that share the same underlying 
structure, allowing these strings to be discriminated from 
those with a different underlying structure. 

Explicit descriptions of abstract knowledge are provided 
by Whittlesea and Dorken (1993), who characterize it as 
knowledge of "deep structure"--the pattern of repetitions 
occurring within each string, encoded in terms that are not 
tied to the surface features of the string, and by Roussel and 
Mathews (as cited in Altmann, Dienes, & Goode, 1995), 
whose THIYOS (THe Ideal YOked Subject) model explic- 
itly encoded whether each letter of the training strings was 
identical or different to the previous letter. 

The abstract knowledge account does not rule out the 
learning of some surface fragments, in particular the starts 
and ends of strings and common and highly salient frag- 
ments. Indeed, Manza and Reber (1994) claim that some 
fragmentary, explicit knowledge is acquired, but that only 
abstract implicit knowledge can be used during transfer, 
thus explaining the decrement in performance between the 
standard (same letter set) and transfer (changed letter set 
case). The very existence of above-chance transfer perfor- 
mance is taken as prima facie evidence of abstract knowl- 
edge. 

Exemplar-based accounts (Brooks & Vokey, 1991; 
Vokey & Brooks, 1992) propose that training items are 
relatively unprocessed during training. Grammaticality 
judgments, in both the standard and transfer case, are as- 
sumed to be made on the basis of similarity of test strings to 
memorized training strings. 

In the standard case, this is relatively straightforward. The 
string MXVVVM is similar to the test string MTVVVM. 
Strings that are sufficiently similar to memorized training 
items (on an unspecified scale) will be accepted as gram- 
matical. In the transfer case, this similarity is based upon a 
process of abstract analogy; the test string BDCCCB can be 
seen as analogous to the training string MTVVVM. Note 
that although the process of abstract analogy posits abstrac- 
tion, this takes place at test rather than during training. 
There is no acquisition of abstract knowledge per se. The 
problem of deciding whether the abstraction underlying 
generalization occurs at training or test is methodologically 
difficult, as has been discussed in other domains such as 
categorization (Barsalou, 1990). In line with this, Brooks 
and Vokey do not accept generalization at test as necessarily 
indicating abstraction during the acquisition phase. 

The evidence for whole item memorization is that items 
that are similar to specific training items are more likely to 
be accepted by subjects as grammatical (Brooks & Vokey, 
1991; Vokey & Brooks, 1992). As well as this similarity 
effect, there is also some evidence of a separate, additive 
grammaticality effect (i.e., similar grammatical items are 
more likely to be accepted than similar nongrammatical 
items). Brooks and Vokey propose that a process of pooling 
across multiple training items at retrieval, or a broader 

notion of sirnilarity (than the one-letter-different criterion 
used by Brooks and Vokey) might account for more of this 
variance. 

One blow to the exemplar account comes from recent 
findings by Knowlton and Squire (1994). They based their 
stimuli on Brooks and Vokey's, with test items that were 
similar to (i.e., only one letter different) or different from 
(i.e., more than one letter different) particular training items. 
They also controlled for the frequency of particular bigrams 
and trigrams, ensuring that these were equally common in 
both similar and different test items. When chunk frequen- 
cies were carefully controlled for in this manner, the effect 
of similarity between test items and specific training items 
disappeared. Therefore, there is no evidence that subjects 
are comparing test items with memorized whole training 
items, as the exemplar account proposes. However, Knowl- 
ton and Squire did not run a transfer condition with these 
controls, and it is still possible that effects for similarity to 
specific training items might occur under transfer condi- 
tions. 

The core claim of fragment-based accounts (e.g., Per- 
ruchet & Pacteau, 1990; Servan-Schreiber & Anderson, 
1990) is that subjects' knowledge primarily consists of 
chunks of letters (two, three, or more letters long). At test, 
they classify as nongrammatical those strings that contain 
unfamiliar chunks. 

As Perruchet (1994, p. 226) observes, "the occurrence of 
transfer to a new letter set raises some problems for the 
[fragment knowledge] account." One solution to this has 
been the proposal (Shanks & St. John, 1994) that the low 
levels of observed transfer (typically .55-.6 of classifica- 
tions correct, where chance would be .5) can be accounted 
for by subjects' explicit knowledge of the deep structure 
(repetition patterns). For instance, with the standard mate- 
rials (see Figure 1 and Table 1), subjects might note that the 
first two letters of a string are always different from each 
other. Classifying all strings for which this is not the case as 
nongrammatical and all others as grammatical would result 
in a score of .58 of classifications correct. 

Perruchet's solution (1994) to the problem of transfer is 
somewhat different. He argues that transfer effects have not 
been conclusively demonstrated, on the grounds that the 
small effects observed in transfer studies are not larger than 
effect sizes observed for control subjects, in the relatively 
rare cases in which control conditions have been run. Fur- 
thermore, Perruchet (1994, p. 226) argues that even if trans- 
fer effects are real, "the effect does not appear to be strong 
enough to prompt questioning" of fragment-based accounts. 

We agree with Perruchet's point that transfer experiments 
should be run with proper controls. Indeed, we argue that 
this is particularly important, as the observed above-chance 
levels of control performance are easily explicable, and may 
be routine, rather than exceptional. We also discuss a num- 
ber of important related methodological issues, which may 
have implications for artificial grammar learning in general 
but are of particular concern for transfer studies, given the 
magnitude of their observed effects. 

Nonetheless, we suggest that transfer is probably a real 
phenomenon and is observed in relatively well-controlled 
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Table 1 
The Standard Set of Acquisition and Test Strings, First 
Used by Reber and Allen (1978) 

Test 

Training Grammatical Nongrammatical 

MSSSSV VXSSSV VXRRS 
MSSVS MSSSV VXX 
MSV a MSSVRX VXRVM 
MSVRX MVRXVS" XVRXRR 
MSVRXM MSVRXV XSSSSV 
MVRX MSVRXR MSVV 
MVRXRR MVRXM MMVRX 
MVRXSV VXVRXR MVRSR 
MVRXV MSSSVS MSRVRX 
MVRXVS" VXRM SSVS 
VXM MVS MSSVSR 
VXRR MSVS RVS 
VXRRM MSSV MXVS 
VXRRRR MVRXR V_RRRM 
VXSSVS VXRRR VVXRM 
VXSVRX VXSV VXI~S 
VXSVS VXR MSRV 
VXVRX" VXVS" VXME, X V 
VXVRXV" MSV ~ MSM 
VXVS a VXRRRM S_XRRM 

VXSSV MXVRXM 
VXV MSVRSR 
VXVRX a SVSSXV 
VXVRXV a XRVXV 
MVRXRM RRRXV 

Note. For nongrammatical strings, underlining indicates the 
point of grammatical violation. The actual identity of the letters is 
not necessarily consistent across studies; for instance, most studies 
used T instead of S. 
a Indicates strings that are present in both the training and test sets. 

studies (e.g., Altmann et al., 1995). However, we argue, and 
demonstrate, that the vexed question of transfer effects does 
not have the theoretical significance that it has been ac- 
corded: Transfer implies neither abstract knowledge nor the 
memorization of whole exemplars. 

Methodological  Issues 

The Importance of Controls 

Artificial grammar learning studies have largely failed to 
use any controls to guard against the possibilities that some 
(or all) of subjects' advantage over chance performance 
may be due to (a) learning during the test phase, as opposed 
to knowledge acquired during training, or (b) grammatical 
and nongrammatical strings being distinguishable from each 
other, without benefit of prior training. Instead, it has been 
assumed that subjects could not learn anything of value 
during the test phase and that grammatical and nongram- 
matical strings could not be distinguished from each other 
without prior exposure to the training strings. The obvious 
baseline, against which experimental subjects have been 
compared, is chance performance. 

In the first study to use controls, Dulany et al. (1984) 
observed control performance at .56, ~ performance reliably 
above chance. Dulany et al. comment on the importance of 
using control subjects, but do not discuss this finding much 
further. D.E. Dulany (personal communication, May 11, 
1994) has suggested that the effect might be due to the 
inclusion of certain items (such as MTV Music TeleVi- 
sion, and MTM--Mary  Tyler Moore) that were both famil- 
iar to the subjects and grammatical. It is indeed quite 
possible that the effects of individual stimulus items are 
important, as we argue below. However, the majority of 
subsequent studies have not used controls, presumably be- 
cause it was assumed that this was an aberrant observation. 

To our knowledge, four other relevant studies have used 
control groups. Perruchet and Pacteau (1990) report control 
groups who did not significantly differ from chance perfor- 
mance, as do Altmann et al. (1995), and St. John and Shanks 
(in press). Redington and Chater (1994) found control sub- 
jects performing at .57, reliably above chance. 2 Thus, of 
these five studies, two have found nonchance control per- 
formance. Additionally, Z. Dienes (personal communica- 
tion, June 1, 1994) has observed control subject perfor- 
mance as high as .60. 3 

These nonchance findings suggest that control (and pos- 
sibly experimental) subjects can learn something about the 
distinction between grammatical and nongrammatical items 
during the test phase. 

How Control Subjects Could Learn 

During the test phase, control (and experimental) subjects 
are effectively in an unsupervised learning situation. They 
must make their grammaticality judgments in the absence of 

1 With the exception of Gomez and Schvaneveldt (1994), all of 
the studies we discuss used equal numbers of grammatical and 
nongrammatical items and reported performance in terms of the 
proportion of items correctly classified as grammatical or non- 
grammatical (where the performance expected from purely ran- 
dom responding is .5). When discussing Gomez and Schvan- 
eveldt's results, performance is reported in terms of D (the 
proportion of correct rejections minus the proportion of misses, see 
Perruchet & Pacteau, 1990). Here, the value expected from purely 
random responding is 0. 

2 The task used was a guessing game paradigm, which is similar 
to Dienes et al.'s (1991) stem letter detection task. Subjects recon- 
structed each test item by successively guessing the next letter in 
the sequence and then made a grammaticality judgment for the 
item, which is the measure of interest here. On conventional 
performance measures experimental subjects' grammaticality 
judgments were comparable, both quantitatively and qualitatively, 
to judgments obtained in the standard paradigm (for instance, 
Dienes et al., 1991; Perruchet & Pacteau, 1990; Reber & Allen, 
1978). 

3 Subjects performed only the grammaticality judgment task, 
and the effect was observed both for subjects who were informed 
that they were untrained controls and for subjects to whom the task 
was presented as a discrimination task, with no mention of training 
(Z. Dienes, personal communication, August 15, 1995). 
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any error signal, or feedback, as to the correctness of their 
responses. 

Subjects are aware that 50% of the test items are gram- 
matical, and 50% are not. Thus, as regards the underlying 
grammar, they are exposed to positive evidence, albeit very 
errorful; half of the items are known to contain violations of 
the underlying rules or grammar. 

Some types of grammatical violation, however, may be 
relatively obvious. If subjects are gradually acquiring 
knowledge about what a typical 4 item looks like, in the 
sense that it matches their knowledge of previous items, as 
they proceed through the test set, then subsequent items will 
fit this notion of typicality to a greater or lesser degree. 
Since most nongrammatical items (in the test sets usually 
employed) differ very little from the grammatical ones, it 
seems reasonable to suppose that control subjects will reject 
those items that seem less typical and accept those that seem 
more typical. As long as a subject's notion of typicality is 
correlated, even weakly, with grammaticality, then above- 
chance performance may be observed. 

In what we shall term the standard materials (see Table 
1), grammatical items always commence with the letters V 
or M. Of 25 nongrammatical items, 17 obey this constraint. 
Thus, it is possible that the 16% of test items that do not 
follow this pattern are likely to appear atypical to the subject 
and to be rejected as nongrammatical. In Redington and 
Chater's (1994) data, of the 8 test items violating this 
constraint, 6 are amongst the 10 easiest nongrammatical 
items for control subjects to classify correctly. It is known 
that experimental subjects are sensitive to initial bigrams 
(e.g., Perruchet & Pacteau, 1990; Reber & Allen, 1978). 
These initial bigrams are only an obvious example of the 
many cues to which control subjects may attend and that 
might be correlated with grammaticality. 

It is possible to argue that, if effects of leaming during 
testing are observed for control subjects, then they should 
also be observed for experimental subjects. However, a 
ceiling effect is likely to operate here--experimental sub- 
jects have already had good evidence of what grammatical 
items are like, in the training phase, and hence can gain little 
from learning from the much less reliable evidence avail- 
able at the test phase. In addition, experimental subjects are 
presumably much less motivated to attempt to use this 
source of information, as compared with control subjects, 
who have no other information to draw upon. 

It is plausible that transfer subjects might rely much more 
on the information presented in the new letter set than 
whatever (old-letter-set-based) knowledge they acquired 
during training. This possibility strengthens the case for the 
routine use of untrained controls in transfer studies. 

One might expect that if control subjects are learning 
during the test phase, it will be possible to see order effects. 
However, these may be highly dependent on the strategies 
that subjects use and the particular items that they have 
seen. It is also possible that once the subjects have seen 
many items, their notion of typicality may grow to include 
previously rejected items. Thus no clear pattern of perfor- 
mance can be predicted, aside from chance performance on 

the first item. Additionally, it is possible that subjects' 
notions of typicality will be correlated negatively with 
grammaticality, and thus that subjects will perform below 
chance. Where this is the case, a more stringent comparison 
for experimental subjects is against chance performance, 
rather than against that of the controls. Otherwise, chance 
performance by the experimental subjects could be taken as 
evidence for learning, when they are compared against 
below-chance controls. Thus, to show learning from expo- 
sure to the training materials, experimental subjects should 
perform reliably above both chance and controls. 5 

We conjecture that the crucial difference between the 
performance of control subjects in the above-chance in- 
stances and Altmann et al. (1995), Perruchet and Pacteau 
(1990), and St. John and Shanks (in press) is that in the 
former cases, subjects' tasks forced them to pay attention to 
the structure of the items during the test phase (in the 
Dulany et al. study, subjects underlined the part of the string 
that they perceived as relevant to grammaticality; in Red- 
ington & Chater, 1994, they performed the guessing game 
task, in which test items were reconstructed through a 
sequence of guesses), whereas in Altmann et al. and Per- 
ruchet and Pacteau's studies, subjects performed only the 
standard grammaticality judgment task. It is therefore pos- 
sible to argue that control subjects in many previous studies 
would not in fact have deviated reliably from chance per- 
formance. Dienes's above chance results lessen this possi- 
bility, as control subjects were observed to perform reliably 
above chance in the absence of a second task (Z. Dienes, 
personal communication, June 1, 1994, and August 15, 
1995). Additionally, even when control subjects have been 
observed to perform at chance, this may simply be because 
control subjects are influenced by different motivational 
factors from experimental subjects, and this may crucially 
affect performance, as we now argue. 

Motivation and Belief as a Factor in Artificial 
Grammar Learning Studies 

Control subjects who have not seen any previous material 
have little reason to believe that anything but a random 
strategy of responding is worthwhile, especially when they 
have no task other than to make grammaticality judgments. 
Hence they are unlikely to examine the test items with any 
care. This might suggest that some control subjects respond 
completely at random, whereas others seriously engage the 
task. Thus, it may be that the observed performance of 
control groups significantly underestimates the level of per- 

4 It is only necessary that this knowledge involve abstraction in 
the second sense described above, that is, of features that are 
common across items, or that subjects are memorizing exemplars 
and matching subsequent items to them; it could be any kind of 
knowledge concerning the items they have seen. This is by no 
means necessarily the sense of typicality suggested by Vokey and 
Brooks (1992). 

s Altmann, Dienes, and Goode (1995) made some comparisons 
with controls whose performance is slightly below chance, but 
their effect sizes were such that this is probably not of importance. 
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formance it is possible to obtain without exposure to the 
training items. Unlike control subjects, experimental sub- 
jects have better reason to believe that they possess infor- 
mation relevant to the task and to be motivated to attempt 
good performance. In particular, they may be expected to 
examine the test items in detail and consider their responses 
carefully. The potential influence of these factors is un- 
known, but in view of the small size of many artificial 
grammar learning effects, it may be of considerable impor- 
tance to control for both exposure to the relevant training 
stimuli and perceived self-competence and level of motiva- 
tion. 

How is it possible to control for these factors? An obvious 
suggestion is to give control subjects a random string of 
letters (as Altmann et al. did for a second control group), or 
strings from some other grammar, in place of the training 
phase received by the training subjects. However, this pre- 
caution alone may not be an adequate control, because 
experimental subjects will see items to which the knowl- 
edge they have acquired is applicable, whereas control 
subjects will see a baffling array of relatively novel items, 
hence they may be somewhat discouraged relative to the 
experimental subjects. In our experience, all subjects, and in 
particular control subjects, find the task confusing, and on 
occasion, distressing. Attempting to classify a set of stimuli 
on the basis of irrelevant training is likely to be equally 
discouraging. 

As we see below, it may not be possible to control for all 
important factors simultaneously. We present one possible 
approach, using a crossover design, which attempts to pro- 
vide relatively stringent controls for many factors. 

A Crossover Design for Artificial Grammar 
Learning Studies 

We propose that some motivational factors can be con- 
trolled for by the use of a crossover design: Two experi- 
mental groups are trained on items from distinct grammars 
(i.e., which generate nonovedapping sets of items) with 
similar properties (e.g., length of string, same letter set6). In 
the test phase, each subject group receives a test set half 
composed of items from the grammar their training items 
were drawn from (equivalent to the grammatical items in 
the standard paradigm), and half composed of items from 
the other group's training grammar (equivalent to nongram- 
matical items). Similar designs have been used by Brooks 
and Vokey (1991), Dienes and Altmann (in press), and 
Vokey and Brooks (1992). 

Each subject group acts as the other group's control, 
because they both see the same test items, and the congru- 
ence between the training and the test items is the same for 
each group. One crucial observation is whether the subjects 
from the different experimental groups categorize the test 
set differently (relative to the grammar to which they have 
been exposed). If so, then this is presumably due to their 
initial training experience. An additional control group is 
also required, who would receive no training experience, in 

order to assess the baseline discriminability of items from 
the two grammars. For instance, if the strings of one gram- 
mar were always symmetrical, and those of the other were 
not, then this baseline might be well above chance perfor- 
mance. If experimental subjects are observed to perform at 
above control group performance, 7 then it seems reasonable 
to conclude that this is again due to their initial training. 

Of course, it is still possible that untrained control sub- 
jects might perceive themselves as ill-equipped to perform 
the task and so not make as great an attempt as experimental 
subjects. However, test instructions that framed the task as, 
for instance, a problem in distinguishing between items 
from two different grammars might lessen this difficulty, by 
making the task meaningful for control as for experimental 
subjects. A second implication of this design, pointed out by 
P. Perruchet (personal communication, June 17, 1994), is 
that in many cases it may be difficult, or impossible, to 
design two opposing grammars that differ by permitting or 
forbidding single letters in particular positions--the kind of 
violations that have heretofore characterized nongrammati- 
cal test items. 

We do not propose this design as an absolute prescription. 
Indeed, there may be no ideal control for artificial grammar 
learning, and experimenters will obviously have to tailor 
their controls to the particular question under investigation. 
Rather it is an attempt to stringently control for learning 
during the test phase and for possible motivational factors. 
Although the importance of such factors and the conditions 
under which they play a role in implicit learning are effec- 
tively unknown, this is precisely why experimenters should 
try to control for them. It is conceivable that more stringent 
controls would not radically alter the conclusions of the 
existing experimental literature, and we suspect that this is 
true. However, the amount of care and attention that sub- 
jects pay to the test items and subjects' motivation are 
potentially so variable, and the effect sizes observed in 
experimental subjects are typically so small (especially in 
the context of transfer), that these factors cannot be ignored. 
We believe that many present and past studies of artificial 
grammar learning are potentially fatally flawed by failing to 
provide controls of any kind. 

The Item-as-Fixed-Effect Fallacy 

The discussion of possible learning in control subjects 
highlights the fact that the strategies that subjects may 
successfully use to tackle discrimination tasks may be 
highly dependent on the specifics of the training and test 
stimuli. This raises a further possible source of methodolog- 
ical concern with artificial grammar learning studies: that 
the use of the same stimuli for all subjects means that 

6 We discuss a range of criteria it may be worthwhile to control 
for in artificial grammar learning experiments below. 

7 Obviously individual control subjects performance must be 
assessed in terms of the distinction between the underlying gram- 
mars--they cannot classify the strings with reference to previous 
training strings. 
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conclusions cannot be drawn with respect to learning the 
grammar in general, but only for those particular stimuli. 

The specific grammatical strings used in training and 
grammatical test items are a subset of the strings allowed by 
that grammar; the nongrammatical test items are drawn 
from a larger population of nongrammatical items. For us to 
be able to draw any general conclusions concerning the 
learning of a particular grammar, it is desirable that these 
populations are specified and sampled from and that exper- 
imental design and statistical analysis is conducted accord- 
ingly. In artificial grammar learning experiments, experi- 
menters have tended not to treat variability that might be 
due to particular choices of item as a random factor, varied 
across subjects, and taken into account in statistical analysis 
(Vokey & Brooks, 1994, p. 1509, make a similar point). 

Nonetheless, the stimuli used have generally been chosen 
with some care. Grammatical items are selected to be "rep- 
resentative" of the grammar, in some intuitive sense; and the 
nongrammatical violations are specified by a few relatively 
simple distortions of grammatical stimuli. It is also the case 
that because much experimentation has been concerned 
with comparing different tests of explicit knowledge, and 
other procedural differences, the same (nonrandomized) 
stimuli have been used across studies to facilitate this 
comparison. 

Strictly speaking, this is legitimate as long as the conclu- 
sions drawn from the experiment are taken to apply only to 
the particular materials used (including such factors as the 
meaningfulness to the subjects of fragments such as MTV 
and MTM) rather than used to draw conclusions about 
performance with the grammar in general. That such general 
conclusions cannot legitimately be inferred has been 
pointed out by Clark (1973) and has been accepted as 
standard in many areas of psychology. 

It can be argued (Z. Dienes, personal communication, 
June 3, 1994) that one can generalize from current data on 
grounds of plausibility--given the observed effects with a 
variety of grammars, it seems highly implausible that these 
effects are due solely to the particular choices of items or 
order of presentation that experimenters have adopted. But 
given that effect sizes in typical transfer studies are so small, 
even very small effects of, for example, particular vocabu- 
lary items, could lead to spurious transfer results, unless 
randomization is carried out. 

It is not possible, of course, to randomize all factors that 
might conceivably influence the experimental outcome 
(e.g., time of year, time of day, sex of subjects). As in other 
areas of experimental psychology, it is therefore important 
to choose which factors should be randomized and which 
can simply be ignored. In the case of artificial grammar 
learning, assessing whether or not the particular choice of 
grammar or vocabulary is important is difficult, because 
experiments tend to focus on a small number of standard 
stimuli. We therefore suggest that rather than choosing 
which factors to randomize arbitrarily, experimenters 
should choose these factors on the basis of empirical re- 
search concerning the importance of different grammars and 
letter sets (e.g., letters, numbers, symbols, Chan, 1992; 

tones, Altmann et al., 1995). Until this research is con- 
ducted, it is difficult to assess the extent to which the 
problem of fixed effects casts doubt on current empirical 
studies. 

We believe that it is generally preferable to err on the side 
of caution and that even where the constraints of the gram- 
mar are such that the number of test items is very limited, it 
is typically straightforward to randomize the division of 
grammatical items between training and test sets, the choice 
of nongrammatical items, and the order of presentation of 
training and test items. We believe that these steps should be 
taken where appropriate in order to minimize the possibility 
of spurious effects. 

What Should Be Controlled for in Artificial 
Grammar Learning Experiments 

Let us summarize our points so far. We stress that exper- 
imenters should take great care to stringently control for 
possible sources of contamination. We further suggest that 
experimenters might routinely use two grammars and have 
subjects exposed to either one learn to discriminate within a 
test set of items from both grammars and that control 
subjects who are exposed to no training items be included to 
test the discriminability of the two grammars without prior 
experience. We also argue that potential effects of motiva- 
tion between conditions must be borne in mind and mini- 
mized if possible. Furthermore, we suggest that materials 
should be randomized across subjects when appropriate, 
rather than treated as a fixed effect, in order to obtain results 
of the maximum generality. 

We now turn to the rather different, but equally important, 
issue of controlling properties of the learning and test stim- 
uli. Specifically, where the focus of research is what is 
learned in artificial grammar learning tasks, then in addition 
to the precautions outlined above, it is necessary to select 
grammars and to sample stimuli from them so that the 
manipulations of interest are not confounded with simple 
alternative hypotheses. Just as psycholinguists routinely 
control for word frequency, cloze value, and the like, so 
researchers should routinely control for factors such as 
bigram and trigram frequencies, if they intend to eliminate 
hypotheses based on knowledge of such simple fragments, 
rather than, for example, memory for whole strings, the 
extraction of an underlying grammar, and so forth. Per- 
ruchet (1994) and Knowlton and Squire (1994) have ele- 
gantly demonstrated how Vokey and Brook's (1992) ma- 
nipulations were confounded with such factors. 

Are Transfer Effects Real? 

As Perruchet (1994) has observed, the magnitude of prac- 
tically all transfer studies is so small that the absence of 
control subjects makes the interpretation of the results ex- 
tremely difficult. We have noted a variety of additional 
difficulties that reinforce this concern. We agree with Per- 
ruchet that the studies by Brooks and Vokey (1991) and 
Mathews et al. (1989) do not satisfactorily demonstrate 
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transfer, and we also follow Perruchet (1994) in limiting 
ourselves to the standard paradigm. Hence, we do not con- 
sider Reber's (1969) study, which measured memorization 
advantage rather than discrimination performance. How- 
ever, five more recent studies claim to show significant 
positive transfer. 

Whittlesea and Dorken (1993), Experiment 5c, reported 
transfer performance of .53, with the nontransfer experi- 
mental group performing at .59. They concluded that this 
"indicates availability of deep-structural knowledge" (p. 
243). However, because they had no control group, and 
given the marginal above-chance level, this claim is impos- 
sible to assess. 8 

Gomez and Schvaneveldt (1994) demonstrated reliable 
transfer performance in subjects taught strings, as compared 
with subjects taught only isolated bigrams, who showed no 
such transfer effect. They used D, the percentage of non- 
grammatical items correctly rejected minus the percentage 
of grammatical items incorrectly rejected (see Perruchet & 
Pacteau, 1990, p. 267) as their measure of performance and 
reported that for strings containing illegal pairs, subjects' D 
scores were 13.68, whereas comparable subjects taught 
strings from a different grammar scored only 2.35 (Exper- 
iment 4, p. 406). 

Altmann et al. (1995), Experiment 1, in an investigation 
of cross-modal transfer, found transfer effects of .56 when 
subjects trained on letter strings were tested on sequences of 
musical tones and .54 when transfer was from tone se- 
quences to letter strings, with tone sequence controls per- 
forming at .49 and string controls performing at .50. A 
control group trained on random tones performed at .48 
when tested on strings of letters. Although these effects are 
small, they appear to be reliable and relatively well con- 
trolled. Altmann et al. demonstrated similar reliable transfer 
effects in three further experiments. 

Similar effects were shown by Dienes and Altmann (in 
press), with transfer between sequences of color names and 
sequences of color patches and between letter strings and 
sequences of color patches. Transfer performance in either 
direction was in excess of .6. This experiment used a cross- 
over design similar to that described above, although there 
was no untrained control group. This leaves open the pos- 
sibility that the stimuli from the two grammars may have 
been highly discriminable in the absence of any training, but 
it does strongly suggest the occurrence of positive transfer. 

St. John and Shanks (in press) reported transfer subjects 
performing at .59 of classifications correct, whereas con- 
trols performed at .51 (nontransfer subjects performed at 
.60). This would appear to be another strong demonstration 
of transfer. 

Manza and Reber (1994) reported six experiments, with 
transfer performance ranging from .53 (Experiment 5) to .61 
(Experiment 3). Although the levels of performance for 
some of their experiments are suggestive of transfer, they 
did not run control groups of any kind, rendering interpre- 
tation of their results difficult. 

In addition, in our own research, we have also observed 
transfer effects, with memorization to criterion as training, 

and the standard discrimination task, at levels of .60, which 
is reliably above chance. Controls with no training materials 
performed at .47 and controls trained on a different gram- 
mar performed at .49 (Morrison, 1994). 

Although many of the methodological concerns expressed 
above apply to aspects of all of these studies, the results of 
Gomez and Schvaneveldt (1994), Altmann et al. (1995), and 
St. John and Shanks (in press) appear to provide fairly 
conclusive evidence of a genuine transfer effect. 

The Theoretical  Implications of  Transfer Effects 

The main reason for the interest in transfer effects is that 
they are seen to have implications for the nature of the 
subjects' representation of the knowledge acquired during 
learning. In particular, the claim is that transfer effects must 
be mediated by abstract knowledge. We propose that al- 
though transfer effects, by definition, imply abstraction, 
this might be very different from the standard conception of 
abstract knowledge. 

Two distinct types of accounts of transfer performance 
have been proposed. One uses the third notion of abstract 
knowledge introduced above: knowledge of the structure of 
the strings that is independent of their surface vocabulary. 
Whittlesea and Dorken (1993) call this the "deep structure" 
of the string, which includes the patterns of repetition within 
items and the commonality of these patterns across items. 
For example, the deep structure of the string VXSSV might 
be represented as []~/~AD. A common deep structural 
feature of the grammar in Figure 1 is that no grammatical 
strings begin with the repetition of the same symbol. Similar 
views of what is learned are vague, but appear to imply that 
common structural features of the training items are repre- 
sented in terms of a grammar in some way akin to that 
which was used to generate the training items (Reber, 
1969), or in terms of abstract rules (e.g., Mathews, 1990). 
An alternative view, advanced by Brooks and Vokey 
(1991), uses the first notion of abstract knowledge intro- 
duced above: that a very shallow representation is formed, 
which encodes the surface structure of whole training items. 
Subjects are assumed to base transfer performance on a 
process of "abstract analogy" between the novel test item 
and memorized whole training items. In this process, deep 
structure is not encoded during training but is only com- 
puted for purposes of making the analogy. 

8 In a footnote, Whittlesea and Dorken (1993, p. 242) argued 
that they did not run a control group because their interest in these 
experiments was primarily in the difference in success between 
different conditions of test, for example, the interaction between 
training task and original or novel test letter set. Furthermore they 
argued that because their "incidental repetition" subjects (whose 
training consisted of naive repetition of grammatical strings as 
distractors in a task irrelevant to the experiment) performed at only 
51.5% accuracy on the transfer task, this value can be taken as a 
ceiling for control performance. But if this is the case, they should 
have compared the performance of the relevant transfer group here 
against this ceiling rather than against chance. 
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Both these approaches suggest that the knowledge that 
mediates transfer is something more than that of surface 
fragments. 

We show below that transfer experiments, even where 
they show large effects (e.g., .60 of classifications correct, 
St. John and Shanks, in press) are entirely consistent with 
various accounts based on the memorization of surface 
fragments, for which there is good experimental evidence 
(Dienes, Broadbent, & Berry, 1991; Perruchet & Pacteau, 
1990; for a review, see Shanks & St. John, 1994), together 
with simple processes of abstraction occurring at test, rather 
than during learning. This alternative account is similar to 
Brooks and Vokey's, apart from the emphasis on the pri- 
macy of fragments rather than whole exemplars. This view 
is also suggested by Altmann et al.'s (1995) notion of 
"domain-independent processes." We suggest that this fam- 
ily of relatively simple and empirically supported fragment- 
based hypotheses should serve as "null hypotheses" against 
which hypotheses involving more elaborate representations 
should be compared. 

What Knowledge Is Required to Account for 
Transfer? 

First, let us draw a distinction between knowledge that is 
abstract and knowledge that is "abstractable." Suppose we 
assume, hypothetically, that during memorization of the 
training stimuli, subjects perfectly memorize each of the 
training items. If subjects truly abstract deep structure (let us 
assume for the moment that they discard the surface struc- 
ture; the actual identity of the symbols in the learning 
items), then the representation of the strings could be con- 
ceived as something like Figure 2A. Conversely, if subjects 
learn only the surface structure, then the representation 
might look something like Figure 2B. However, as Brooks 
and Vokey's (1991) abstract analogy process makes clear, 
there is no information in the first representation that is not 
also available from the second; the deep structure is "im- 
plicit within," or "abstractable from" the representation of 
the surface structure. 

Furthermore, this distinction applies whether one takes 
"abstract" knowledge to mean, for instance, a partial but 
veridical representation of the grammar underlying the 
strings (Reber, 1967, 1969), or a set of rules defining what 
is and isn't grammatical, or any knowledge that allows one 
to make grammaticality judgments at better than chance. 
Such knowledge could always be abstracted from knowl- 
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Figure 2. Deep structure (A) and surface (B) representations of 
the learning strings from Table 1. 

edge of the surface structure of the training items. This point 
applies equally in other cognitive processes that involve 
generalization from experience. For instance, Barsalou 
(1990) argues that exemplar-based models of categorization 
and memory may, with certain restrictions, be indistinguish- 
able from accounts involving abstraction during acquisition. 

Just as whole exemplars, such as MSSSSV, can be 
considered analogous to the transfer test item, such as 
JDDDDB, in that they both share a common deep structure, 
the string initial fragment MS can be considered analogous 
to the initial fragment JD of a (transfer) test string. This 
analogy implies that within this test string, J corresponds to 
M, and D corresponds to S. Thus, one could imagine that 
subjects might try to fit other surface fragments to the string, 
respecting these mappings. The "goodness" of the string 
might then be assessed in terms of how extensively it could 
be fitted to the surface fragments, given the implied map- 
ping. Thus abstraction processes are necessitated only for 
the purpose of comparing memorized surface fragments 
with surface level representations of the test items. Al- 
though definitions of abstraction are hard to pin down in the 
literature, it would appear that no researchers count surface- 
based processing of this kind as involving abstract knowl- 
edge. Indeed, if theorists were to view this as involving 
abstract knowledge, then this notion would appear to be so 
bland that it could hardly be a point of theoretical conten- 
tion. 

As we mention above, we believe that the well-supported 
fragment learning theories should serve as null hypotheses 
for those wishing to propose more elaborate claims. We do 
not propose the specific "analogy" processes described 
above as serious psychological proposals. However, we 
illustrate in detail below that knowledge of simple surface 
fragments together with simple mapping/abstraction strate- 
gies are capable of matching the observed performance of 
subjects in the transfer literature and, in many cases, of 
significantly exceeding it. We therefore conclude that hy- 
potheses invoking abstract knowledge or whole-item repre- 
sentations are not required to account for transfer perfor- 
mance. 

Two Kinds of Transfer Experiment 

All except one of the transfer studies involves a single 
change of vocabulary between the training and the test 
items; the mapping from old to new symbols applies 
throughout the entire test set. If subjects can find this 
mapping, then transfer performance can rely purely on 
translation from surface level memories for aspects of the 
training items into the vocabulary of the test stimuli. We 
refer to this single change of letter set as simple transfer. In 
the other kind of study, the mapping between the original 
training vocabulary and the symbols of the new vocabulary 
is randomly assigned for each and every test item, rather 
than just once, between the training and test phase. We refer 
to this change of letter set for each test item as randomly 
changing transfer. The Whittlesea and Dorken (1993) study 
is the sole published example using this approach, although 
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it is difficult to interpret their results because they did not 
use a control group of any kind. However, recent unpub- 
lished studies by Z. Dienes (personal communication, June 
1, 1994, and, August 15, 1995) and by Redington and 
Chater (1996) which do use controls (a cross-over design 
and untrained controls, respectively), suggesting that sub- 
jects can transfer their knowledge under these conditions. 
Successful performance on the randomly changing transfer 
task would appear to provide a more stringent test for the 
presence of abstract knowledge. Transfer performance on 
both kinds of task can be accounted for by surface fragment 
knowledge, together with a process of on-line abstract 
analogy. 

Simple Transfer 

between training items and grammatical test items is their 
deep structure. It might be assumed that transfer to such 
stimuli must show that this structure is being stored (or that 
entire training items are being encoded, and abstract anal- 
ogy used, as Brooks and Vokey, 1991, suggest). However, 
we constructed a number of simple "toy" models, based on 
surface fragments, in the spirit of previous such models 
(Perruchet, 1994; Perruchet & Pacteau, 1990). Below, we 
show that these models are capable of demonstrating sig- 
nificant transfer effects, and even better same letter set 
effects with the Whittlesea and Dorken stimuli. 

Additionally, the models apply to the simple transfer case 
as well as to randomly changing transfer. We shall show 
that this class of models can perform similarly well on 
stimuli from the other relevant transfer experiments. 

In the simple (single letter set change) transfer task, 
finding the correct mapping can be surprisingly easy. We 
give here a trivial example of one of the numerous strategies 
that could discover the mapping without recourse to abstract 
knowledge. 

We do not intend to argue that subjects are consciously or 
unconsciously pursuing such strategies; only that the very 
possibility of such a multitude of simple strategies that do 
not require abstract knowledge in the sense at issue in the 
literature shows that the inference from transfer effects to 
abstract knowledge is unsound. 

Let us assume that the standard training and test items 
(see Table 1) are in use. We assume that the subject recalls 
only bigram information from the initial training set. We 
here use only the string initial bigrams in discovering the 
mapping. In the training set, MS, MV, and VX are the initial 
bigrams. 

The first test item that the subjects see is JDHBHF, and 
they respond at random. The second test string is BFHHHH, 
and again they respond at random. The third string is 
JBHFJ. The subject now deduces that an initial J can be 
followed by one of two letters, and assuming that the three 
test strings do not contain any initial bigram violations, J = 
M, B = V (because it can both follow M and commence a 
string), and F = X, because it is the only letter that can 
follow an initial V. Additionally, D = S (because it is the 
only letter, apart from V, that can follow an initial M, as in 
the first test string). Four out of five mappings are now 
known, so H = R by elimination. 

Of course, the subjects may be wrong in their assumption 
that there is no initial bigram violation, but first, many 
subjects will be correct, because only 16% of test strings 
have such violations, and second, the error may rapidly be 
corrected as more information accumulates. Given more 
information than initial bigrams, or more examples, there 
are many possible constraints that would allow the subject 
to solve the problem. 

Randomly Changing Transfer 

In the randomly changing transfer task, where the map- 
ping changes for each new test item, the only relation 

Toy Models 

We call the models in this section toy models because 
their purpose is to show that information about fragments is 
sufficient to account for transfer performance. Thus they 
constitute a feasibility proof that fragment knowledge, to- 
gether with abstraction at test, is compatible with current 
experimental findings. They are not intended as detailed 
psychological models, although the basic assumptions that 
they make--concerning fragment knowledge and abstrac- 
tion at test--are intended to be psychologically plausible. 

The models below work on the following principles: they 
leam some surface features of all of the training strings 
(e.g., the bigrams that occur in the training strings). When 
judging a test string, they consider it a good string if it 
contains no novel features (e.g., a bigram that did not occur 
in the training strings), and otherwise they consider it a bad 
string. Thus, if only the bigram VX and XV occurred in the 
training strings, the string VXVX is good, but the string 
VXXV is bad, as the bigram XX is unknown. 

In the transfer case, if there is any possible mapping 
between the original letter set and the new letter set so that 
the string can be considered good (i.e., it contains no novel 
features after the mapping has been performed), then the 
string is considered good. If no such mapping is possible, 
the string is considered bad. The possible mappings be- 
tween letter sets are constrained so that each old letter maps 
to one, and only one, new letter (the mapping is consistent 
and unique). This constraint, though rarely explicitly stated, 
is implicit within the description of the task. Thus, again 
given the bigrams VX and XV, BFBF is a good string, 
because given the mapping V = B and X = F, all of its 
bigrams are known, whereas BFFB is bad, because there is 
no possible mapping that results in no unknown bigrams. 

The decision criterion. Additionally, a decision rule is 
required, specifying how strings are to be classed as gram- 
matical or nongrammatical. For the purpose of these toy 
models, we assume that all of the strings can be accessed 
simultaneously. This is not generally the case in these 
experiments; subjects are at the very least encouraged to 
proceed through the response set one string at a time and are 
often prevented from, or encouraged against, consulting 
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their previous responses. To make these models more real- 
istic, we could have used an on-line decision criterion (for 
instance considering the goodness of the current string 
relative to a number of previous strings, e.g., Servan- 
Schreiber & Anderson, 1990) and obtained similar results to 
these. However, we wanted to keep these models as simple 
as possible, and this would be an additional and largely 
arbitrary and irrelevant technical point. 

The criteria used for all models, except for the St. John 
and Shanks (in press) and the Gomez and Schvaneveldt 
stimuli, were as follows: 

1. Always ensure that half of the responses are grammat- 
ical, and half nongrammatical. 

2. If half or less of the test items are good, accept these 
as grammatical and allocate the remaining grammatical 
responses, and the nongrammatical responses, to the re- 
maining items at random. 

3. If more than half of the test items are good, reject all 
of the bad test items and allocate the remaining nongram- 
matical responses and all of the grammatical responses to 
the good items on a random basis. 

Thus, on average, a subject who viewed g grammatical 
items as good, and ng nongrammatical items, where g + ng 
was half or less of the total number of test items, T, would 
score as follows: 

p(correct) = {g + 1 + ng)) 

In the cases where g + ng was greater than TI2, subjects 
would on average score as follows: 

+ 1 
P(c°rrect)={T-ng g - -~ng [g (~  

+ng(g+ng--~2 ]}/T. (2) 

These formulas of course assume that half of the test 
items are grammatical, and half nongrammatical. 

In the St. John and Shanks (in press) study, subjects' 
grammaticality judgments were a forced choice between 
two test items, instead of a grammatical-nongrammatical 
decision about a single item. Of each item pair, one item 
was grammatical and one nongrammatical, the pairs being 
constructed randomly without replacement from the set of 
test strings. The model was assumed to choose the good 
string of a mixed pair, or randomly if both strings were good 
or bad. Where the numbers of grammatical and nongram- 
matical items are equal, g and ng are the numbers of good 
grammatical and nongrammatical strings, and T is the total 
number of strings, the expected proportion of correct deci- 
sions is given as follows: 

p(correct) = .5(1 - ng/N + g/N). (3) 

For the Gomez and Schvaneveldt (1994) stimuli, the 
numbers of grammatical and nongrammatical stimuli were 
unequal. They reported their results in terms of D. Here, we 
assumed that subjects accepted all good strings and rejected 
all bad ones. Thus, where g and ng were the numbers of 
grammatical and nongrammatical good strings, and Tg and 
Tng were the total number of grammatical and nongram- 
matical strings, 

(T~g- ng Tg_- g) 
O = ~-~g Tg ] X 100. (4) 

Classes of models. We used three different classes of 
models, dividing them in terms of the type of knowledge 
that they were assumed to acquire in the training phase. 

1. Here the model knows either all of the bigrams or all 
of the trigrams that occur in the training items, in terms of 
their surface letters. Some models are assumed to represent 
beginnings or ends of strings (or both) with explicit START 
and END symbols. For example, bigrams might include 
START V and trigrams might include SV END. We con- 
sidered the following models: 

a. bigrams alone; 
b. bigrams, with an explicit START symbol; 
c. bigrams, with an explicit END symbol; 
d. bigrams, with an explicit START and END symbol; 
e. trigrams alone; 
f. trigrams, with an explicit START symbol; 
g. trigrams, with an explicit END symbol; 
h. trigrams, with an explicit START and END symbol. 

2. The second class of models also acquire surface bi- 
grams or trigrams, but here they acquire only those frag- 
ments that occur at the start or end (or both) of the training 
items. Thus the model might represent, for instance, that 
MV is a legal initial bigram or that RRM is a legal final 
trigram. We considered the following models: 

i. initial bigrams only; 
j. final bigrams only; 
k. both initial and final bigrams; 
1. initial trigrams only; 
m. final trigrams only; 
n. initial and final trigrams. 

3. The final class of model has only one instance: 

o. exact match, 
and acquires perfect, surface representations of each whole 
training string. Thus the model knows, for instance, that 
MVRXVS occurred amongst the training items. 

Simulation Results 

Table 2 below shows the proportion of correct responses 
obtained by our models in both standard and transfer con- 
ditions for the stimuli used by Brooks and Vokey (1991), 
Whittlesea and Dorken (1993), and St. John and Shanks (in 
press). Table 3 shows similar results for the stimuli used by 
Altmann et al. (1995), and Table 4 shows the results for 
Gomez and Schvaneveldt's (1994) stimuli. For each set of 
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Table 2 
Proportion of Classifications Correct From Observation and for Each of the Toy 
Models for the Stimuli From Brooks and Vokey (1991), Whittlesea and Dorken (1993, 
Experiments 4 and 5), and St. John and Shanks (in press, Experiment 1) 

Stimuli 

Whi~lesea&Dorken 
Brooks & St. John& 

Vokey Exp. 5 Shanks 

Source Same DiE Exp. 4 Same Di~ Same Di£ 

Observation .60 .56 .57 .59 .53 .60 .59 
Model 

1. Bigrams .61 .50 .50 .54 .50 .78 .50 
2. Bigrams w/start .61 .50 .50 .54 .51 .78 .50 
3. Bigrams w/end .63 .50 .50 .54 .50 .78 .50 
4. Bigrams w/both .63 .50 .50 .54 .51 .78 .50 

5. Trigrams .68 .62 .59 .71 .51 .90 .68 
6. Trigrams w/start .68 .69 .73 .71 .54 .90 .70 
7. Trigrams w/end .65 .63 .62 .71 .58 .90 .70 
8. Trigrams w/both .65 .67 .84 .71 .67 .90 .72 

9. Initial bigrams .55 .50 .50 .57 .51 .60 .50 
10. Final bigrams .60 .50 .50 .56 .51 .60 .50 
11. Initial/final bigrams .66 .50 .52 .63 .53 .70 .50 

12. Initial trigrams .53 .51 .50 .59 .51 .74 .54 
13. Final trigrams .67 .56 .50 .61 .51 .70 .50 
14. Initial/final trigrams .65 .61 .80 .71 .53 .82 .62 

15. Exact match .50 .52 1.00 .50 .50 .50 .48 
Note. The observed scores cited are taken from the original experiments. Same and different (Dif.) 
indicate whether the letter set was changed between training and test (i.e., they refer to standard and 
transfer conditions). Whittlesea and Dorken's (1993) Experiment 4 was an unusual randomly 
changing transfer condition (the assignment of letters to elements of their pseudogrammar varied for 
every single item, during both training and testing). Their Experiment 5 was a randomly changing 
transfer condition, with the letter set being changed for every single test item. Transfer in Brooks 
and Vokey (1991) and St. John and Shanks (in press) was simple transfer (although the models do 
not differentiate between simple and randomly changing transfer). 

materials, we also present figures for observed human per- 
formance. It should be noted that the latter are in fact 
generally low for the artificial grammar learning task. For 
example, with the standard materials, Dulany et al. (1984) 
observed experimental subjects with a mean proportion 
correct of .64 and a range of .63 to .70, and others have 
found performance of around .8 with these materials on the 
same letter set (nontransfer) task (e.g., Reber & Allen, 
1978). 

These results clearly show that many of the simple mod- 
els can perform exceedingly well on the transfer task. For 
certain stimuli, some models perform at chance. This is 
particularly evident in the bigram-based models, confirming 
the empirical findings of Gomez and Schvaneveldt (1994) 
and Manza and Reber (1994); with these stimuli, bigram 
knowledge is not sufficient to support transfer (because it 
does not place strong enough constraints on the mapping 
between the old and new letter set). However, this finding 
does not disconfirm the fragment learning hypothesis in 
general; when larger fragments (e.g., trigrams) are consid- 
ered, it can be seen that in all cases, the trigram based 
models, or some simple variant, are sufficient to support 

relatively high degrees of transfer. These results suggest that 
transfer is entirely consistent with a knowledge base con- 
sisting essentially of fragments of two and three letters, 
together with some knowledge of starts and ends of strings. 
This is not to say that subjects might not learn larger 
fragments, but in the main, knowledge of legal letter pairs 
and triples is sufficient to account for performance. This 
knowledge is not abstract in the sense under consideration 
here. 

An important point to bear in mind is that for all except 
the Whittlesea and Dorken (1993) observations (Table 2), 
the empirical transfer results are for the simple transfer 
versions of the task, whereas these models have been ap- 
plied to the randomly changing transfer case. To simulate 
performance with simple transfer, these models might, for 
instance, simply retain the first mapping found, changing it 
only if it contradicts successive input more than might be 
expected (intuitively, if the same mapping does not fit 
approximately 50% of the test items, it is likely to be 
wrong). In the simple transfer case, the figures for the 
nontransfer case are essentially an upper bound on perfor- 
mance. It seems likely, given the ease of finding the correct 
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Table 3 
Proportion of Classifications Correct, From Observation, and for Each of the Toy 
Models, for the Stimuli From Altmann, Dienes, and Goode (1995) 

Stimuli 

Exp. 1 & 2 Exp. 3 Exp. 4 

Source Same Dif. Same Dif. Same Dif. 

Observation .58 .55 - -  .58 .71 .65 
Model 

1. Bigrams .83 .51 .85 .53 .89 .52 
2. Bigrams w/start .96 .58 .89 .63 .89 .54 
3. Bigrams w/end .83 .51 .85 .53 .89 .52 
4. Bigrams w/both .96 .58 .89 .63 .89 .54 

5. Trigrams .88 .53 .80 .61 .83 .58 
6. Trigrams w/start .89 .63 .81 .70 .83 .59 
7. Trigrams w/end .76 .52 .80 .61 .83 .58 
8. Trigrams w/both .78 .66 .81 .70 .83 .59 

9. Initial bigrams .68 .54 .68 .50 .71 .50 
10. Final bigrams .58 .50 .62 .50 .75 .50 
11. Initial/final bigrams .85 .56 .78 .51 .95 .52 

12. Initial trigrams .75 .54 .80 .59 .81 .50 
13. Final trigrams .61 .50 .73 .50 .74 .50 
14. Initial/final trigrams .75 .58 .71 .68 .71 .59 

15. Exact match .56 .48 .50 .69 .51 .61 
Note. The observed scores for Experiments 1 and 2 are the average across conditions for 
Experiment 1. Experiments 1 and 2 used the standard materials (see Figure 1 and Table 1) with 
transfer across modalities (letter strings to auditory tones, and vice versa), Experiment 3 used a 
simple phrase structure grammar, with transfer from spoken sequences (the grammar generates 
strings of nonsense words instead of letters) to graphical symbols. Experiment 4 used the same 
grammar, but different training and test sets, with transfer from strings of graphical sequences to 
written syllables. In each case, subjects performed simple transfer. 
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mapping, as described above, that the performance of these 
models would closely approach this bound. 

At a relatively coarse level, these models provide a good 
overall match with the patterns of observed data, with 
superior performance on the same letter set task as com- 
pared with the transfer task (which appears to be the pattern 
for human subjects), and in terms of the range of perfor- 
mance; the majority of the models are within the acceptable 
human range and would cause little comment if reported as 
empirical observations. Where the models exceed human 
performance, the simple assumption that only some, rather 
than all, of the relevant features from the training set are 
retained would appear to be an obvious remedy. 

It would be inappropriate to attempt to find a precise 
match to the empirical data with models of this kind. The 
variety of possible models is so wide that there will be many 
different combinations consistent with any observed pattern 
of data, and for the transfer task the empirical database is 
relatively poor, at least as far as the fine-grained data needed 
to assess particular models (e.g., rankings of difficulty of 
various strings, see Dienes, 1992). Given the variety of even 
these toy models, it is also hard to imagine future empirical 
results from the transfer paradigm disconfirming the class of 
fragment-based models as a whole. Aside from the simple 
models we have considered here, it is easy to imagine a host 

of more complex fragment-based accounts, which might 
make use of frequency information or be able to make 
partial matches with remembered information, rather than 
insisting on a complete match, and so on. It seems inappro- 
priate to explore such models at present, given that even the 
simplest ones appear able to account for transfer perfor- 
mance as well as, if not better than, accounts based on 
abstract knowledge or abstraction from whole exemplars. 

Discussion 

We argue that the experimental methodology used in 
many artificial grammar learning tasks has a number of 
potential flaws. Furthermore, we have shown that even 
where the experimental evidence concerning transfer can be 
taken at face value, it does not necessitate the hypotheses 
either of abstract knowledge or of whole-exemplar memo- 
rization. A simple alternative is that subjects simply acquire 
knowledge of fragments of the training items and, explicitly 
or implicitly, attempt to abstract from these to the test 
strings, accepting as grammatical those for which a good fit 
can be found. Given that subjects' knowledge of fragments 
of the training strings is well documented (e.g., Dienes et 
al., 1991), this simple hypothesis appears to take precedence 
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Table 4 
D Scores From Observation and for the Toy Models for 
the Stimuli From Gomez and Schvaneveldt (1994) 

Source 

Stimuli 

Same Different 

NPP NPL NPP NPL 

Observation 21 17 14 7 
Models 

1. Bigrams 100 0 12 0 
2. Bigrams w/start 100 0 47 0 
3. Bigrams w/end 100 0 29 0 
4. Bigrams w/both 100 0 65 0 

5. Trigrams 94 65 47 35 
6. Trigrams w/start 94 65 76 53 
7. Trigrams w/end 94 65 53 53 
8. Trigrams w/both 94 65 82 65 

9. Initial bigrams 29 0 0 0 
10. Final bigrams 12 0 0 0 
11. Initial/final bigrams 41 0 12 0 

12. Initial trigrams 41 35 29 41 
13. Final trigrams 24 12 6 0 
14. Initial/final trigrams 59 47 47 47 

15. Exact match 18 18 29 35 
Note. NPP (nonpermissible pair) and NPL (nonpermissible loca- 
tion) refer to two different types of grammatical violation and 
correspond to the presence of illegal bigrams and trigrams, respec- 
tively (see Gomez & Schvaneveldt, 1994, p. 400, for details). 

over more complex ones. Additionally, it seems likely that 
the family of simple models presented here may serve as a 
starting point for more detailed psychological models, ca- 
pable of empirical test. 

Concerning the issue of whether subjects' fragment 
knowledge and mapping or abstraction processes during 
testing are conscious, we remain neutral. It is possible to 
argue that because subjects are generally informed of the 
rule-governed nature of the stimuli prior to testing, any 
abstractive processes taking place should be ascribed to 
conscious analytical reasoning (Perruchet, personal commu- 
nication, 1995). Although we are sympathetic to this view- 
point, given the current controversy over consciousness in 
implicit learning (see Shanks & St. John, 1994, and com- 
mentaries) and the wide variety of definitions and proposed 
tests for conscious awareness, relatively few of which have 
been applied to the transfer paradigm (although see Dienes 
& Altmann, in press), we believe that it would be premature 
to make any assertion either way at this time. 

The transfer phenomenon in artificial grammar learning is 
a startling and counterintuitive one, and the hypothesis of 
abstract knowledge (especially in conjunction with uncon- 
scious processes) is particularly seductive, as Perruchet and 
Pacteau (1990) have pointed out. One reason why simpler 
hypotheses have been somewhat ignored may be that re- 
searchers simply did not realize how powerful very simple 
mechanisms, relying on only (literally) fragmentary knowl- 
edge, could be. We hope that our toy models have shown 

clearly that a little knowledge can go a long way. The 
second possible reason for the neglect of simple hypotheses 
may be the failure to consider the locus of abstraction (this 
point is also anticipated by Perruchet & Pacteau, 1991). The 
same considerations are equally applicable in other areas of 
psychology. 

In general, whenever one posits the existence of a repre- 
sentation that is abstract with respect to the learning stim- 
ulus, for example, a categorization rule, an abstract schema 
underlying an analogy, deep structural knowledge, or ab- 
stract rules acquired during implicit learning, it is not 
enough simply to demonstrate that subjects' performance 
requires the existence of such a representation. Assuming 
that the latter can be shown, this says little about whether 
subjects acquired the abstract knowledge in the course of 
learning or whether it is a manifestation of processes result- 
ing from the requirements of the test, acting on representa- 
tions that are less abstract with regard to the original learn- 
ing stimuli. 

Although transfer experiments, in themselves, do not 
provide convincing evidence that subjects have acquired 
abstract knowledge from exposure to the initial learning 
stimuli, this does not imply that such evidence could not be 
found. Three sorts of tests of the representation suggest 
themselves. First, can the subjects verbalize the abstract 
knowledge that they are hypothesized to possess? For in- 
stance, in implicit learning, we assume that subjects abstract 
from the patterns of light and dark that they see to the level 
of letters during learning. If subjects are asked to name the 
letters constituting the stimuli, they can do so with little 
difficulty. Similarly, in categorization tasks, subjects can 
often easily describe the rule on which they base their 
decision. Unfortunately, in implicit learning, subjects' spon- 
taneous verbal reports typically do not reveal knowledge 
sufficient to explain their level of performance on the task. 
A more general difficulty with this approach is that just as 
subjects may only derive the more abstract representation 
for the purposes of performing the task, they might similarly 
derive an abstract representation in the process of providing 
a coherent explanatory verbalization; even verbalization is 
no guarantee that the representation was acquired during 
learning. The second approach avoids this by attempting to 
utilize indirect, or incidental, tests of the knowledge that 
subjects acquire. Here, the intent is to avoid placing de- 
mands on the subject that might lead to abstraction beyond 
that which has already taken place. Some steps in this 
direction have been taken by Whittlesea and Dorken (1993), 
who used old-new discrimination instead of the grammati- 
cality judgment task. Using this task, subjects need not be 
told that experimental materials are governed by a rule or 
that their responses should attempt to conform with that 
rule. A third approach is to argue from processing con- 
straints, or parsimony. For instance, all theories of past tense 
learning propose that language learners extract regularities 
and exceptions from their exposure to many examples of 
past tense formation (Pinker & Prince, 1988; Plunkett & 
Marchman, 1991). It is possible that learners simply store 
all of the past tense formations they have ever experienced 
and then compute the appropriate regularity or exception 
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every time they are called on to form the past tense. How- 
ever, this would seem to be a prohibitively expensive ap- 
proach, in terms of both storage and computat ion-- i t  is 
more parsimonious to assume that they do abstract from 
their experience to form a set of  rules (which may be 
embodied in a symbolic or connectionist fashion) governing 
past tense formation. 

In the case of  transfer in implicit learning, subjects are 
unable (easily) to verbalize the knowledge that they use to 
perform the discrimination task, and there do not appear to 
be any convincing computational or processing reasons why 
abstraction should take place during learning, as opposed to 
at test. In the absence of evidence from indirect or incidental 
tests, there appears to be little convincing support for the 
abstract knowledge hypothesis. 
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