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17 A revised rational analysis of the
selection task: exceptions and sequential
sampling

Mike Oaksford and Nick Chater

Results in the psychology of reasoning appear to show that people make many errors
when confronted with tasks having superficially obvious logical solutions. The task
most often used to illustrate this point in both the philosophical and the
psychological literature is Wason’s (1966, 1968) selection task. In the selection task
an experimenter presents participants with four cards, each with a number on one
side and a letter on the other, and a rule of the form ifptheng, e.g. ifthereisavowelon
oneside (p), thenthereisanevennumberon the other side (g). The four cards show an ‘A’
(p card), a ‘K’ (not-p card), a ‘2’ (¢ card) and a ‘7’ (not-q card). Participants have to
select those cards that they must turn over to determine whether the rule is true or
false. Logically, participants should select only the p and the not-g cards. However,
as few as 4% of participants make this response, other responses being far more
common (p and g cards (46%); p card only (33%), p, ¢ and not-q cards (7%), p and
not-q cards (4%) (Johnson-Laird and Wason, 1970a).

Oaksford and Chater (1994) provided a rational analysis (Anderson, 1990) of the
selection task based on Bayesian optimal data selection (henceforth, the ODS
model; Lindley, 1956; Fedorov, 1972; Mackay, 1992). They argued that participants’
behaviour reflects a rational strategy of optimizing the expected amount of
information gained by turning each card. On this view, the selection task is not a
logical reasoning task but a task of probabilistic optimal data selection in inductive
hypothesis testing. Oaksford and Chater (1994) also generalize their optimal data
selection model to all the main experimental results on the selection task.
Specifically, it accounts for the non-independence of card selections (Pollard,
1985), the negations paradigm (e.g. Evans and Lynch, 1973), the therapy
experiments (e.g. Wason, 1969), the reduced array selection task (RAST)
(Johnson-Laird and Wason, 1970b), and work on’ so-called fictional outcomes
(Kirby, 1994). Oaksford and Chater (1994) also showed how a related maximum
expected utility model accounts for deontic versions of the selection task (e.g. Cheng
and Holyoak, 1985), where participants must reason about how one ought to
behave, including perspective and rule-type manipulations (e.g. Cosmides, 1989;
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Gigerenzer and Hug, 1992), and the manipulation of probabilities and utilities
(Kirby, 1994).

The status of Oaksford and Chater’s model is contentious (see, e.g. Almor and
Sloman, 1996; Evans and Over, 1996a; Laming, 1996; and for a reply, Oaksford and
Chater, 1996). On the one hand, support for this model derives from Oaksford
and Chater’s (1995b) re-interpretation of Sperber etal’s (1995) results, and the recent
results of Manktelow etal, (1995, see, Oaksford etal, 1997). In particular, Oaksford
etal (1997a) have shown that probabilistic manipulations in the ‘RAST’, (Girotto,
1988; Girotto etal 1988, 1989; Johnson-Laird and Wason, 1970b; Light etal., 1989;
Wason and Green, 1984)—where participants only choose between the g and the
not-q cards—follow the predictions of ODS. On the other hand, Evans and Over
(1996a) argue that the ODS model fails to capture the data from Kirby (1994) and
that data from Pollard and Evans (1983) falsify the ODS model. Moreover, the
recent work of Oaksford er al. (1997), although generally supportive of ODS,
revealed some effects of sequential sampling in the RAST that may require some
revisions to the model. '

The goal of this chapter is to show that some straightforward revisions of the ODS
model to deal with exceptions and sequential sampling can: (i) meet the objections
raised by Evans and Over (1996a), and (ii) explain the effects of sequential sampling
in the RAST, observed by Oaksford et al. (1997). We first introduce the ODS
framework.

Optimal data selection

In this section we outline Oaksford and Chater’s ODS model (we refer the reader to

- Oaksford and Chater, 1994, for the complete description of the model).

In Wason's selection task (Wason, 1966, 1968), participants confront a problem
that is analogous to the scientist’s problem of which experiment to perform.
Scientists have a hypothesis (the conditional rule) to assess, and they aim to perform
experiments (turn cards) likely to provide data (i.e. what is on the reverse of the card)
bearing on its truth or falsity. Oaksford and Chater’s (1994) model is based on
contemporary Bayesian accounts of scientific inference that reject Popper’s (1959)
falsificationist view that only potentially falsifying evidence should be sought
(Horwich, 1982; Howson and Urbach, 1989; Earman, 1992). Bayesian accounts
adopt an explicitly subjective as opposed to a frequentist approach to probability. On

 the subjective interpretation, probabilities are degrees of belief (Keynes, 1921;

Ramsey, 1931) rather than limiting frequencies (e.g. von Mises, 1939). Oaksford and
Chater’s model is about how prior beliefs affect judgements about the most
informative data to select.'! In particular, peoples’ prior beliefs about the
probabilities of the antecedents, p, and consequents, ¢, of rules, if p then g, play a
central role.

Oaksford and Chater (1994) suggest that hypothesis testers should choose
experiments (select cards) that provide the greatest possible ‘expected information
gain’ in deciding between two hypotheses: (i) that the task rule, ifptheng, is true, i.e.
ps are invariably associated with gs (although gs are not invariably associated with
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ps), and (ii) that the occurrence of ps and gs are independent. Participants’ prigy
degree of belief in (ii) is P(M;) and their prior degree of belief in (i) is P(Mp), i.e
1 — P(Mjy). Where ‘M refers to the contingency table representing indcpendenc:: (})
between p and ¢, and “Mp’ refers to the contingency table representing a depend-
ency (D) between p and g (see Table 17.1). For most purposes Oaksford and Chater
assume that these are equally likely, i.e. P(M;) =0.5. For each hypothesis

Table 171 (a) Shows the contingency table appropriate for the
dependence model My, where there is an ptionl dep

dency between the p and g (b) Shows the equivalent table for the
independence model M, z corresponds to the probability of p, P(p),
and b corresponds to the probability of g in the absence of

p; P(q|not-p)

My q : not-q M, q not-q

p a 0 p ab a(l —b)
not-p (1—a)b (1—a)(1—b) not-p M—ab (-a@-b

Oaksford and Chater (1994) define probability models (M and Mp) that derive
from participants’ prior beliefs about the probabilities of p and of g in the task rule,
They define information gain as the difference between the uncertainty before
receiving some data and the uncertainty affer receiving that data where they
measure uncertainty using Shannon—Wiener information (Wiener, 1948; Shannon
and Weaver, 1949). This is the same approach to optimal data selection proposed by

Lindley (1956). Thus, Oaksford and Chater (1994) define the information gain of
data D as: '

information before receiving D: I(H;) = — z P(H;)log, P(H;) 17.1

i=l1

n
information after receiving D: I(H;|D) = — Z: P(H;|D)log, P(H;|D) 17.2
i=1

information gain: I, = I(H;) — I(H;|D) 17.3

j“he posterior probabilities (P(H;|D)) are calculated using Bayes’ theorem. Thus
information gain is the difference between the information contained in the prior
probability of a hypothesis (H;) and the information contained in the posterior
probability of that hypothesis given some data D.

When choosing which experiment to conduct (that is, which card to turn),
participants do not know what that data will be (that is, what will be on the back of
the card). So they cannot calculate actual information gain. However, they can
compute expected information gain. Expected information gain is calculated with
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respect to all possible data outcomes (e.g. for the p card: ¢ and not-g) and both
hypotheses.

Given the expected information gains associated with each card, a decision has to
be made about which cards to select. Oaksford and Chater (1994) incorporated two
aspects of the decision process in their measure. First, they introduced a noise factor
by adding 0.1 to the information gain for each card. This allows that people may
occasionally see the not-p card as informational. Second, card selection is a
competitive matter. To reflect this Oaksford and Chater (1994) scaled their
information gain measure by the mean value for all four cards. Consequently,
card choice is relative to the total expected information gain available and is not
determined by the absolute E(J;) value alone. The higher the proportion of the total
available E(I,) a card possesses the more likely it is to be selected. Oaksford and
Chater refer to this derived measure as ‘scaled expected information gain’ (SE(Iy)).

Oaksford and Chater (1994) calculated SE(I,)s for each card assuming that the
properties described in p and g are rare, ie. they have a low probability of
occurrence. Take the rule all ravens are black, for example, the probability that any
given bird is a raven is low, as is the probability that it is black. The ‘rarity
assumption’ seems to apply to the vast majority of everyday categories that are used
to construct hypotheses about the world. Moreover, there is evidence that people
adopt this assumption from the literature on other reasoning tasks (Klayman and
Ha, 1987; Anderson, 1990, see, Oaksford and Chater, 1994). Oaksford and Chater
(1996) point out that further evidence for the rarity assumption comes from the
normative literature on Bayesian epistemology (e.g. Horwich, 1982; Howson and
Urbach, 1989). Making a rarity assumption resolves the ravens paradox of non-
Bayesian confirmation theory (Goodman, 1954), whereby non-black, non-ravens,
e.g. a pair of white socks, must confirm the hypothesis that all ravens are black.
Consequently, there are strong normative and empirical grounds for Oaksford and
Chater’s (1994) assumption that people’s strategies for dealing with conditional rules
are adapted to the case where rarity holds. )

Adopting the rarity assumption, the order in SE(J,) is:

SE(I(p)) > SE(I(q)) > SE(I,(not—q)) > SE(Ig(not—p)) 17.4

This corresponds to the observed frequency of card selections in Wason'’s task: n(p)
> n(g) > n(not-g) > n(not-p), where n(x) denotes the number of cards of type x
selected. This account thus explains the predominance of p and g card selections as a
rational inductive strategy. This ordering holds only when P(p) and P(g) are both
low. Oaksford and Chater note that task manipulations that suggest that this
condition does not hold (at least one of P(p) or P(g) is high) leads to alternative
orderings, predominantly that:

SE(Iy(p)) > SE(Iy(not—q)) > SE(L,(q)) > SE(I,(not—p)) 17.5

This ordering is more consistent with Popperian falsificationism, which favours the p
and not-q instances. The effects of rarity and its violation permit us to explain the
range of results we outlined above and make definite predictions in the RAST.
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Implementation and sensitivity

The ODS model provides a rational analysis (Anderson, 1990, 1994) of the selection
task that suggests that manipulating P(p) or P(g) should lead to predictable variations
in the proportions of cards selected. However, as Oaksford and Chater (1994) and
Qaksford er al. (1997) discuss, the level of detail at which the model can make
predictions also depends on how the cognitive system implements this model (see also,
Anderson, 1990). As Oaksford et al. (1997) argue, the critical question is how sensitive
can we expect people to be to changes in P(p) or P(g) and consequently to changes in
the SE(I,) values?

- At one extreme the cognitive system may implement the rational analysis directly,
i.e. it may perform all the computations specified by the model. If this is the case then
varying the parameters of the model should lead to card selections that directly mirror
the resulting SE(/;) values. At the other extreme, the cognitive system may implement
this analysis via a hard-wired and cognitively impenetrable (Pylyshyn, 1984) heuristic
that has evolved to deal with an environment where rarity is the norm. If this is the
case then, although our model would explain why selecting the p and g cards is an
adaptive rational strategy, we could not predict any performance variation in
response to varying the model’s parameters. '

To explain the data, Oaksford and Chater (1994) already assume that people are
sensitive to manipulations of P(p) and P(g), and consequently we regard the second
possibility as implausible. We also regard the first possibility as implausible because,
as Oaksford and Chater (1994) argue, the full Bayesian analysis it assumes is likely to
prove computationally intractable when scaled up to real human reasoning (see also,
Chater and Oaksford, 1990; Oaksford and Chater, 1991, 1992, 1993, 19954). In sum,
the truth must lie somewhere between these two extremes of perfect sensitivity to
changes in P(p) or P(g) and no sensitivity to such changes. '

Oaksford etal. (1997) argue that sensitivity may depend on a variety of factors. If
people compute and mentally represent something analogous to SE(I;) values, then
noise and/or imperfect transduction may lead to reduced sensitivity. Moreover, there
is quite a broad region where SE(Ig(not—q)) = SE(Ig(q)) as P(p) or P(g) vary.
Depending on the discriminability between the mental analogues of SE(I,(not—q))
and SE(I,(g)), this could lead to quite a broad region of uncertainty about which card
to choose. Oaksford etal (1997) explore the possible consequences of this uncertainty
for performance on the reduced array version of the selection task.

One immediate consequence, which Oaksford and Chater (1994) pointed out, is
that it may be difficult to override habitual strategies by explicit instruction in
psychological experiments. In particular, in the selection task we would expect it to be
difficult for participants to violate rarity to which Oaksford and Chater (1994) assume
the cognitive system is adapted. Evans and Over (1996b, p. 20) reiterate this point,
arguing that many ‘habitual methods of reasoning . . . will not easily be modified by
presentation of verbal instructions for the sake of experiment’. As we will see later on,
despite the apparent unanimity on this point, it will provide a point of disagreement
between us and Evans and Over.
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Exceptions and Evans and Over

In this section we observe that some recent criticisms of the ODS model by Evans and
Over (1996a) centre on the fact that, in the version presented in Oaksford and Chater
(1994), exceptions were not permitted in the dependence model, i.e. P(not-g|p) was 0.
Evans and Over (1996a) argue that a consequence of not allowing exceptions is that
the ODS model cannot really explain Kirby’s (1994) data which, Oaksford and
Chater (1994) argued, provided strong support for ODS, nor can it account for data
reported by Pollard and Evans (1983).

Most everyday generalizations about the world, such as birds fly, admit exceptions.
Indeed, elsewhere we have discussed at length the possible consequences of exceptions
for the adequacy of logicist approaches to cognition in general (Chater and Oaksford,
1990, 1993; Oaksford and Chater, 1991, 1992) and to human reasoning in particular
(Oaksford and Chater, 1991, 1992, 1993, 1995a). Our own previous research therefore
clearly indicates the need to consider the consequences of allowing exceptions in the
ODS dependence model. In this section we make this modification and re-model the
data reported in Kirby (1994a) and in Pollard and Evans (1983).

Kirby (1994)

Kirby’s experimental instructions described a device for printing cards that had just
made an error after printing out 100 cards (in experiment 1) or 10 cards (in
experiment 2). Evans and Over note that this means that participants know that any
exceptionless and universal rule describing the device’s behaviour must be false. If so,
they argue, the ODS model cannot apply because there is no information to be
gained—the rule is known to be false from the outset. Consequently, they argue that
for our model to apply to Kirby’s experiments at all, participants must interpret the
rule not as universal (i.e. applying to all cards that the device may print), but as
applying only to the four cards presented in the task. The subject’s task is to decide
whether these particular cards contain errors. On this assumption, they use the error
rate specified in the instructions to compute P(M;) values that differ from those used
by Oaksford and Chater (1994).

In the original ODS model, Oaksford and Chater (1994) always assume that
participants regard the four cards in the selection task as a sample from a larger
population of cards, over which the conditional rule is defined. Evans and Over are
correct to point that this interpretation apparently cannot apply to Kirby’s
experiments, where participants know that there are exceptions to the rule. We
have argued elsewhere that people do not interpret everyday conditional rules as
exceptionless (Chater and Oaksford, 1990, 1993; Oaksford and Chater, 1991, 1992,
1993, 1995a; Oaksford, 1993). Any everyday rule, such as birdsfly, ifyou put money in
the coke machine, you get a coke, and so on, succumb to indefinitely many exceptions,
such as ostriches, penguins and broken or empty coke machines. In the original ODS
model, Oaksford and Chater (1994) did not allow for exceptions for simplicity, and
because they did not appear necessary to model the data.

Exceptions can be straightforwardly incorporated in our model by the introduction
of an exception parameter, e, in the dependence model. e is the probability of not-q
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given p, in the dependence model Mp (P(not—gq|p, Mp)) This involves the following
changes to the p, ¢ and p, not-¢ cells of Oaksford and Chater’s original dependence
model (see Table 17.1 above): P(p, ¢|Mp) =a(l — e) and P(p, not—q|Mp) = ae. We
assume that e has a small fixed value—rules will tolerate some exceptions, but must be
rejected in the face of large numbers of exceptions. Once exceptions are allowed, then
there is a genuine question concerning whether the rule holds or not, and Oaksford
and Chater’s information gain analysis can therefore be applied. This provides an
intuitively obvious alternative to Evans and Over’s analysis of the task, from which
they derive their P(M;) values.

We now show that adding exceptions to Oaksford and Chater’s (1994) account
does not substantially alter its predictions. Following Evans and Over, we assume
that subjects interpret the error rate to refer to the proportion of not-gs associated
with ps. e corresponds to the proportion of such cases that would be predicted from
Mp. Apart from the fact that e must be small (because if there are too many exceptions
then the rule will presumably be rejected), we have no grounds to set e at any
particular value. We do assume, however, that e is large enough to tolerate the error
rates in Kirby’s experiments, so that subjects are likely to believe the rules to be true
(that is, P(Mp) is high—specifically, we set P(Mp) = 0.99 throughout). Fortunately,
our predictions do not appear sensitive to the precise value of e. We set e = 0.1
and e = 0.01, which happen to correspond to the error rates used by Kirby. However,
note that e is the tolerance to exceptions of the participant, and is not directly
determined by the experimental set-up. As in Oaksford and Chater’s original analysis,
we set P(p) directly from Kirby’s instructions. Oaksford and Chater somewhat
unrealistically set P(¢) = P(p). Adopting this assumption here allows good fits with the
data, but we take the opportunity here to show that this assumption is not necessary.
The basic restriction on our model is that P(p) < P(g). We somewhat arbitrarily
set P(g)=2/1001 when P(p)=1/1001 and P(g)=1000.5/1001 when P(p)=1000/1001
in Kirby’s experiment 1. We also set P(g)=2/100 when P(p)=1/100, P(q)=75/100
when P(p) =50/100, and P(g)=95/100 when P(p)=90/100 in Kirby’s experiments 2
and 3. These values were not optimized to produce the best fits with the data.

As in Oaksford and Chater (1994), for each experiment we generated SE(I,) values
for each card, and computed the Spearman rank order correlation coefficient with the
selection frequencies in Kirby. In experiment 1, correlations were positive, but weaker
than found by Oaksford and Chater (1994), and not statistically significant (there are
only eight data points in the analysis). We found that p(N = 8) = 0.69, p = 0.07,
with e = 0.01, and that p(N = 8) = 0.60, p = 0.14, with e = 0.1. In experiment 2,
the correlations were comparable with those obtained by Oaksford and Chater:
p(N=12)=0.92, p<0.01, with e=0.01 and p(N=12) =0.84, p<0.01, with
e=0.1. In experiment 3, introducing exceptions produces much better fits than
Oaksford and Chater (1994) obtained: p(N = 12) = 0.80, p < 0.01, with e = 0.01 and
p(N =12) =0.85, p < 0.01 with e = 0.1. The fit across the three experiments is very
similar to Oaksford and Chater (1994). The principal difference is that Oaksford and
Chater found the worst fit to experiment 3, while the current analysis provides the
worst fit for experiment 1. Interestingly, Over and Evans (1994) argue that experiment
1 is the least interpretable of Kirby’s experiments, and hence attention should focus
on experiments 2 and 3.
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Evans and Over (1996a) raise an important issue about the compatibility of our
model with Kirby’s data concerning the presence of exceptions. The revised ODS
model includes the possibility of exceptions to take account of Evans and Over’s
observation. Importantly, the model fits with the empirical data are comparable with
Oaksford and Chater’s original analysis. Moreover, incorporating exceptions 1is
consistent with our previous work, which emphasizes that everyday conditionals
always admit exceptions (e.g. Chater and Oaksford, 1990, 1993; Oaksford and
Chater, 1991, 1992, 1993, 1995a).

Pollard and Evans (1983)

Evans and Over (19964) argue that Pollard and Evans’ (1983) data falsifies our model.
Pollard and Evans gave participants an initial learning phase with seven p, g cards,
one p, not-q card, seven not-p, q cards, and seven not-p, not-q cards. Participants
predict what is on the reverse of each card, before turning it over. The experimenter
then draws four cards from this set and participants perform the selection task. In a
‘usually true’ condition participants consider a rule of the form ifpthen g, and in a
‘usually false’ condition they consider a rule of the form ifp then not-q.

Evans and Over assume that participants can directly estimate the probabilities
used in our model from the card frequencies, so that P(p)=0.36 and P(g)=0.64 and
they argue for a way of calculating priors that would lead participants to set
P(M/)=0.242 in the usually true condition, and P(M;)=0.940, in the usually false
conditions. Putting these values into our model, we find the scaled E(;) for the
not-g card is 0.198 in the usually true condition and 0.039 in the usually false
condition.? This predicts more not-q card selections in the usually true condition than
in the usually false condition, whereas Pollard and Evans obtained the opposite
result.

Evans and Over (1996a) argue that this result falsifies the ODS model. However,
there are several reasons to doubt the significance of this isolated and unreplicated
result. First, the conclusion that Evans and Over wish to draw from this result is only
clear from a falsificationist perspective (Popper, 1959) where a single predictive failure
is taken to falsify a hypothesis. However, the ODS model (see Oaksford and Chater,
1994, 1996) and Evans and Over (19965b) both explicitly reject Popper’s falsificationist
philosophy. It is inconsistent of Evans and Over (1996a) to employ a falsificationist
argument against ODS, that they reject in their own theoretical work (Evans and
Over, 1996b). Second, Evans and Over (1996b) have suggested (see above) that
altering people’s habitual strategies by explicit instruction may be very difficult.
However, in the case of Pollard and Evans’ experiments, Evans and Over (1996a) are
happy to assume that the learning phase has overridden participants’ habitual rarity
values for P(p) and P(q). This would be legitimate if Pollard and Evans (1983)
provided evidence that their procedure leads their participants to abandon these
habitual values. However, they did not report any measures that could bear on this
question.’

We now argue that it is quite consistent for participants in Pollard and Evans’
experiment to succeed on the learning task while retaining their habitual rarity values
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for P(p) and P(g). In Pollard and Evans’ (1983) learning task, participants are
required to predict what is on the other side of a card. Participants are not asked to
estimate the proportion of p or g cards they have seen. Therefore, the prediction task
relies on knowledge of the conditional probabilities P (¢g|p) only, not on knowledge of
P(p) or P(q). Consequently, it is reasonable to argue that although participants may
accurately estimate P(g|p), because this is the quantity on which success at the task
relies, they will be unable to estimate accurately P(p) or P(g), because the task does
not draw their attention to these values. Indeed, it seems reasonable to suggest that
although participants estimate P(g|p) from the data, they continue to adhere to their
habitual strategy of assuming rarity values for P(p) and P(g). This is consistent with
our revised model with exceptions. Note that on this model P(g|p, Mp) is not
determined by P(p) and P(q), this is because P(g|p, Mp)=1—e, i.e. it depends on the
value of the exceptions parameter alone. Consequently, P(g|p) can be regarded as
simply providing participants with an estimate of e.

None the less, it could be argued that participants estimate P(p) and P(g) implicitly,
However, the standard Bayesian assumption would be that their estimates should
depend on prior beliefs (in this case, our rarity assumption) as well as current
observations. One psychological account of how this occurs is that updating beliefs
depends on the sample size on which the priors are based (Gigerenzer, 1994). For
example, if your prior P(p) is 0.2 based on N = 1000, then observing one p card won’t
alter your beliefs very much, i.e. P(p) now equals 0.2008. Alternatively, if your prior
P(p)is 0.2 based on N = 5 then observing one p card will have a far greater effect, i.e.
P(p) now equals 0.33. Oaksford and Chater argue that the rarity assumption is
ubiquitous. Consequently, the sample sizes on which participants base their prior
beliefs about P(p) and P(g) are presumably very large. This suggests that the
experience participants have of the materials in Pollard and Evans is unlikely to move
their beliefs about P(p) and P(g) very far from their default rarity values.

We have argued that all of Evans and Over’s predictions using the ODS model rely
on assumptions about what participants have implicitly learned about P(p) and P(g),
about which there is no empirical evidence. Hence their claim that these tasks
unambiguously falsify Oaksford and Chater’s model seems premature. Evans and
Over’s arguments would make a strong case, if there were no reasonable set of
parameters in Oaksford and Chater’s model that could capture Pollard and Evans
(1983) data. We now show that there is such a reasonable set of parameters. But first
we consider a consequence of introducing the exceptions parameter.

Evans and Over manipulate P(M;) in order to model whether people believe the
task rule to be true or false. They assume that a low probability rule (i.e. where P(g|p)
is low) will not be believed. However, once exceptions are admitted the possibility
must be allowed that a low probability rule may be believed to be in force. A classic
example from the philosophy of science illustrates that this possibility is intuitively
reasonable (Bromberger, 1965). Paresis is an unpleasant disease that someone can
only contract if they have latent untreated syphilis. However, the probability of
catching paresis given that you have syphilis is only about 0.01, i.e. the probability of
an exception is 0.99. Nonetheless physicians have a strong belief that this weak
relationship holds! In the context of modelling Pollard and Evans experiments this
means that simply because P(g|p) was low or high cannot be unambiguously
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interpreted as resulting in a correspondingly low or high belief in the rule, especially
where that rule might be interpreted as a cause-effect relationship.

Although, the presence of a large number of exceptions does not always lead to
disbelief in a rule, along with Evans and Over, we will assume that they go together.’
Consequently, we model the believed true condition as having a small number of
exceptions and as having a low value for P(M;) and we model the believed false
condition as having a large number of exceptions and as having a high value for
P(Mj). The precise values of P(M]) are not critical, but for the sake of argument we
use Evans and Over’s estimates for P(M;): in the believed true condition,
P(M/)=0.242, and in the believed false condition, P(M;)=0.940. For e we will use
the empirical values: in the believed true condition, e = 0.125, and in the believed false
condition, e = 0.875. For the reasons we outlined above, we retain the default rarity
values for P(p) and P(gq), ignoring the possibility of implicit learning (P(p)=0.1 and
P(g)=0.11). Table 17.2 shows the SE (I;)s for each card in the usually true and the
usually false conditions. Fits to the standard if p then ¢ rule form were good,
r(6)=0.87, P < 0.005, as were the fits to the overall data, including all rules types,
r(6)=0.86, P < 0.01. These close fits suggest that Pollard and Evans experiments can
be viewed as consistent with the ODS model.

Table 17.2 SE(lg)s for each card in the usually true (True) and the usually false (False) con-
dition of Pollard and Evans’ (1983) experiment 2 showing the freq y of card selections for
the standard if p then q rule (If p, q) and for all four rules (All) collapsed

Cards

Condition [ not-p q not-q
True* SE(lg)(e = 0.125) 1990 0365 1190 0451

fp,q 96 13 83 29

All 85 17 77 35
Falset SE(ly)(e = 0.875) 100 0999 1001 0999

if o, g ] 33 58 50

All 78 33 56 58

*P(M)) = 0.242; P(M)) = 0.940; P(p) = 0.1; P(q) = 0.11, For the if p, then q rule (if p, ), & = 0.125, r(6) = 0.87, P < 0.005.
For all rules collapsed (All), e = 0.875, r(6) = 0.86, P < 0.01.

Conclusions

In this section we have shown that a revised ODS model is compatible with the
empirical data cited by Evans and Over (1996a), under reasonable parameter values.
Importantly, the only real change required was the addition of exceptions, a change
that is consistent with our continued insistence that the possibility of exceptions has
profound consequences for theories of reasoning. Our proposal for revising ODS and
the parameter values we recommend, like those suggested by Evans and Over, must
ultimately be assessed by further empirical research to provide a more rigorous test of
Oaksford and Chater’s and other related models.
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Sequential sampling in the reduced array selection task

In the last section we showed how modifying the ODS model to take account of
exceptions successfully captured some aspects of the empirical data that the original
model seemed unable to explain. In this section we explore whether the recent results
of Oaksford et al (1997) in the RAST similarly require modifications to the ODS
model.

In the RAST participants choose between the g and not-g options only (hence
‘reduced array’; Johnson-Laird and Wason, 1970b; Wason and Green, 1984). The
stimuli in the original RAST consisted of 30 coloured shapes. The experimenter
informs the participants that there are 15 black shapes and 15 white shapes, each of
which is a triangle or a circle. The shapes are in two boxes one containing the white
shapes and the other containing the black shapes. On being presented with a test
sentence, e.g. all the triangles are black, participants have to assess the truth or falsity
of the sentence by asking to see the least number of black or white shapes. In Johnson-
Laird and Wason (197054), although all participants chose some confirmatory black
shapes (no participant chose more than nine), they all chose all 15 potentially
falsificatory white shapes. Thus, where participants in effect perform multiple
selection tasks, they tend to show falsificatory behaviour. Wason and Green (1984)
report a variant on the RAST (see, Oaksford and Chater, 1994) and Girotto and
Light and their colleagues (Girotto, 1988; Girotto etal., 1988, 1989; Light etal., 1989)
have used it in developmental studies using thematic content.

Oaksford and Chater (1994) suggest the following explanation for the basic
findings on the RAST. The RAST makes explicit that the rule applies to a limited
domain of cards or shapes that the experimenter describes as being in a box or in a bag
(or in Wason and Green (1984) ‘under the bar’). The experimenter also informs
participants that in this limited domain there are equal numbers of ¢ and not-g
instances. It follows that P(g)= P(not-g)=0.5, violating the rarity assumption. If
participants are sensitive to these experimentally given frequencies, then this leads to a
value of SE(I;(not-q)) which is higher than SE(I(g)). Consequently, ODS predicts
more not-q card selections than g card selections as is typically observed in the RAST.

Oaksford et al (1997) tested this explanation of performance on the RAST by
systematically varying P(g). They did this by using stacks of cards rather than boxes
of coloured shapes. The number of cards in each stack was varied to achieve the
probability manipulation. By varying these probabilities they were able to show that
the proportions of g and not-¢ cards selected varied according to the ODS model, i.e.
as P(q) falls, g card selections rise and not-g card selections fall.

A crucial feature of the RAST, that distinguishes it from the standard selection
task, is that it involves sequential sampling, i.e. participants can look at many cards
and at each trial they can turn the card to see what is on the other side. This procedure
raises many questions about the resulting sequence of selections that subjects make
that are not addressed by the current ODS model. This is pressing because Oaksford
et al’s (1997) results revealed some minor discrepancies with the ODS account.
Specifically, in a medium P(g) condition, where P(g) was set to 0.5, the proportion of
g cards selected was the same as (experiment 1) or higher (experiment 3) than the
proportion of not-q cards selected. However, according to ODS, at this value of P(q)
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participants should have preferred the not-g card to the g card. This result was robust
and therefore in need of explanation. Oaksford etal suggested that the process of
sequential sampling may explain this discrepancy. Here we explore some possible
models for how sequential sampling should proceed in the RAST.

Two critical questions are raised by the introduction of sequential sampling. First,
what is the stopping criterion? That is, when do people stop sampling, satisfied that
the rule is true or false? Second, are there any trial-by-trial effects on the sequence of
cards selected, that might discriminate between theories? Oaksford etal. (1997) were
not primarily concerned with these questions and did not record the precise sequence
of cards selected (they were concerned with the total number of each card selected and
the initial card selected). We will look at three possible models of sequential sampling
behaviour in the RAST: probability matching, Bayesian revision and epistemic utility
models.

Probability matching

The first possibility we look at is probability matching. Our initial assumption in
Oaksford etal (1997) was that the proportion of trials on which participants choose
the ¢ card or the not-g card in the RAST would reflect the underlying expected
information gains of the cards computed at the beginning of the experiment. A
rationale for this assumption follows from a straightforward adaptation of Myerson
and Miezen’s (1980) model of matching behaviour (Herrnstein, 1961) during
foraging. Myerson and Miezen were concerned to model the finding that animals
tend to distribute their time spent foraging at particular patches in proportion to
the prevalence of food at those patches. We assumed that people tend to distribute the
trials at which they select particular card types (g or not-g) in proportion to the
expected information gains of those card types.

In order to show how this account could apply to selection behaviour in the RAST,
we translate Myerson and Miezen’s (1980) model into the language of the RAST
and ODS. The first assumption is that for each available card, in the RAST the g
and not-q card, people can compute a relative preference variable based on the
expected information gains. Gallistel (1989) calls this ‘relative patch affinity’ and
computing this quantity corresponds directly to Oaksford and Chater’s (1994)
computation of scaled expected information gains.® Given the two cards in the RAST
we calculate:

(10 -G
SEl(@) =gt mrea SN = e s e

The second assumption is that probability matching is a consequence of modelling the
distribution of time spent at different food patches as a random Poisson process where
the rate parameter is proportional to patch affinity. Because the RAST involves a
small number of discrete trials, and hence the Poisson process is not appropriate, we
show how probability matching also arises in the RAST from modelling which card is
chosen at each trial using the binomial distribution where the probability of selecting
a card on a given trial is given by the SE[I,()] value. Given # trials (the actual number
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will vary from participant to participant) the mean number of trials on which g
participant will select either card in the RAST is therefore:

tg =n.SE[I;(q)]
png =n.SE[Ig(~q)]
=n(1 - SE[L(9)])

74

It follows from these equations that the ratio of the expected number of g card and
not-q card selections is equivalent to the ratio of the expected information gains, that
is:

Hg  _ SE[L(q)] . EUg(Q’)]
H-g SE[Ig("‘I)] E[Ig(ﬁqn

17.8

Such an account makes a variety of predictions about the structure of sequential
samples in the RAST that can be empirically tested. For example, predictions can be
made about the probability of selecting a card on any trial, given any initial set of
SE[I,()] values, and about the likelihood of particular sequences containing different
numbers of g and not-g card selections. One prediction, well confirmed in the data, is
that people often sample from both stacks rather than sticking with the stack ODS
initially recommends. This is understandable if the trial sequence is generated by a
random process.

There are some problems with this account, however. First, this model provides no
stopping criterion. In the RAST participants are only allowed to stop sampling when
they have selected all the cards from one stack. However, they are not told that this is
the case. Nonetheless, exhausting a stack is a natural landmark in the course of the
experiment that might be expected to prompt participants to suggest that they
terminate the experiment. This is not a rational response to the sequence of evidence
that they have just experienced. So one problem with this proposal is that it removes
any rational content from the decision to stop sampling, i.e. there is no rational
stopping rule. Of course, this conceptual point does not invalidate the ODS model,
especially if the predictions for sequential samples based on initial SE[f,()] values
proved to be correct. However, the lack of a rational stopping rule does not sit very
well with the claim that people’s data selection behaviour can be regarded as rational
(Oaksford and Chater, 1994).

Second, in Oaksford eral (1997) the values of P(q) chosen for the low and medium
P(q) conditions produced roughly symmetrical SE [I,()] values for these conditions.
In the low condition, calculated as above, SE[Ig(g)]=0.799 and SE[I, (not-q)]=0.201;
and in the medium condition, SE[Z,(¢)] =0.282 and SE[/,(not-¢)]=0.718 (calculated
with P(p)=0.1, e=0.1 and P(M;)=0.5). In the low condition this means that g cards
should be preferred to not-g cards in the ratio of 4:1 (approximately) whereas in the
medium condition the not-g card should be preferred to the ¢ card in the ratio of
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2.5:1 (approximately; for completeness in the high condition, the not-g card should
be preferred to the ¢ card in the ratio of 31:1, approximately). However, a robust
finding in Oaksford et al’s experiments was that in the medium P(g) condition,
participants chose the same (experiment 1) or more (experiment 3) g than not-q
cards. The current probability matching model seems unable to explain this result.

Bayesian revision

As Oaksford and Chater (1996; see also Oaksford et al., 1997) commented, the ODS
model only becomes a model of hypothesis testing in the context of sequential
sampling (Fedorov, 1972; see also, Jessop, 1996; Laming, 1996). During sequential
sampling participants can revise their priors, re-compute SE[I;()]s to determine the
next card to select and so on until the odds on either the dependence model or the
independence model being true are so high that no more evidence need be collected,
that is, either P(M}) = 0, or P(M;) =~ 1 (see, Fedorov, 1972). As Jessop (1996)
outlines, the decision process can be described more formally using Bayesian decision
trees. He also shows that when applied to a sequential version of the standard four
card selection task, where each card is turned as it is selected, ODS predicts the
empirically observed sequence of card selections (this relies on what Jessop calls a
‘sequential rarity’ assumption). '

The immediate advantage of this approach is that there is a rational stopping
criterion, i.e. stop when either P(M;) = 0, P(M;) ~ 1. However, there are some
immediate problems in applying this natural extension of the ODS model to the
RAST. First, in the standard RAST procedure, participants are not allowed to stop
sampling until one stack is exhausted. Therefore, before this model can be tested
properly experiments need to be conducted where people are allowed to stop sampling
naturally, i.e. when they want to. Second, the earliest research on Bayesian inference
shows that people are ‘conservative’, insofar as they revise their beliefs more slowly
than Bayes’s theorem dictates that they should (Edwards, 1968). Moreover, there is
likely to be individual variation in the degree of conservativeness. We would therefore
need to include a learning rate parameter to model actual human performance. Third,
as Oaksford and Chater (1994) observed, the order over SE[I,()] values is insensitive
to variation in P(M7j). On the assumption that the experimental set up in the RAST
fixes P(p) and P(q) at the outset, all that varies on a trial by trial basis is P(Mj).
Consequently, the order of SE[/,()] values and hence the card that ODS recommends
selecting will not change over trials. For example, in the low condition ODS will
recommend selecting the g card at every trial until P(M;) = 0 (in the RAST none of
the cards are falsifying instances which is another factor that needs to be varied in
these experiments). As we noted above, one advantage of the probability matching
model was that occasional response alternations, which are observed in the data, are
predicted. However, a straightforward application of Bayesian revision with ODS
cannot predict these response alternations. Finally, a second consequence of the ODS
model’s insensitivity to variation in P(Mj;) is that it will not be able to capture
Oaksford et al.’s results for the medium condition. In this condition, this model
recommends selecting the not-g card at every trial until P(M;) = 0. Consequently, it
could not predict any g card selections, let alone that they can be in the majority.
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Despite these apparent limitations there is an assumption in this application of the
ODS model that may well be violated in the RAST. We have assumed that only prior
beliefs, P(M/), in the two hypothesis (models) are revised trial by trial—we assume
that P(p) and P(q) are fixed at the beginning of the experiment and that they remain
fixed throughout. In Oaksford et al. (1997) participants are told the values of P(p) and
P(gq) in the form of frequency statements and they also have stacks of cards in front of
them that concretely reflect these frequencies. Although this may successfully
encourage participants to utilize these probabilities, in their initial assessment of
which card to select, it may not, and perhaps should not, prevent participants from
actively updating these probabilities when they begin to sample the actual cards.
Oaksford et al. (1997) speculated that subjects may revise P(p) and P(q) trial by trial
in the RAST and that this may explain the apparent failure of the ODS model to
predict the results for the medium P(g) condition. Here we show that this is indeed the
case.

How should participants update their beliefs about P(M;), P(p) and P(q)? We
make two assumptions. First, as we mentioned above, people are conservative in
revising their beliefs. Consequently, we assume that participants revise their degree of
belief in a hypothesis by only a half of what Bayes’s theorem would recommend. So if
Bayes recommended that your degree of belief in a hypothesis should be revised from
0.5 to 0.3, i.e. it should be decreased by 0.2, we assume that you only revise your
degree of belief by half this amount, i.e. from 0.5 to 0.4. More formally, on trial n your
conservative degree of belief in the independence model, ConsP(Mj),, is:’

ConsP(M;), = P(M)), + %(ConsP(M;)ﬂ_l — P(M)),) 17.9

Second, we assume that if people revise their degrees of belief about P(p) and P(g),
this is because they lack confidence in the values they have been given. We embody
this lack of confidence by assuming that participants regard the values they are given
for P(p) and P(g) as being based on a small sample size. As we argued above in our
discussion of Pollard and Evans (1983), this will influence the magnitude of the effects
of sequential sampling on participants estimates of P(p) and P(g). In the simulations
we report we assume that participants base the initial values of P(p) and P(g) on a
sample of six cards.

Table 17.3 shows the predicted sequence of card selections for the low P(g)
condition in Oaksford er al. (1997). The first row of the table shows the initial
parameter values and the consequent SE[I,()]s upon which the decision about which
card to select on the first trial is based. The parameters are updated on each trial as we
described in the last paragraph. We show P(p) and P(g) as fractions where the
denominator always reflects the sample size on which that value is assumed to be
based. Whenever a g card is selected it is also a p card, so the numerators of both P(p)
and P(g) are incremented by 1 as well as both their denominators. In contrast,
whenever a not-g card is selected it is also a not-p card, therefore only the
denominators of both P(p) and P(g) are incremented by 1. For these simulations
P(p)= P(q). This is not a critical assumption and seems reasonable given the low
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sample size on which participants assume the estima}tes of P(p) and If(q) are based.
Which card is selected on trial n is determined by which card has the highest S}?[Ig()]
value on trial n — 1. As a stopping rule we have used a_99% confidence level in the
dependence model. Consequently, we have stopped sampling when Con‘sP(M 1) < 0.01.
Observe that when P(p) and P(q) are also updated, response altern?twns away from
the card initially recommended are predicted by the ODS mo'del (trials 3, 4, 6., 8, 11).
Although for the low P(g) condition g card selections predommg.te (100of 15 tn:%ls)_ the
model also predicts that a not-g card will be selected on five trials. Tl}ese pre(lilf.:tlons
are consistent with Oaksford eal.’s finding that in the low P(g) condition participants
select more g cards than not-¢ cards.

Table 17.3 The sequence of card selections predicted by the ODS model for the low P(q) con-
dition in Oaksford et al. (1997) when P(p) and P(q) are updated trial-by-trial in the RAST

Trial no. Card selected P (p) P(g) P(M) ConsP (M) SE[Iy{a)] SE[I(-q)]
16 16 05 05 0720 0.280
1 q 217 217 0196 0348 0515 0485
2 q 3/8 3/8 0166 0257 0397 0603
3 not-q 3/9 3/9 0179 0218 0481 0519
4 not-qg 310 310 0157 0188 0550 0450
5 q am 4am 0075 0131 0483 0517
6 not-q 4412 4112 0088 010 0543 0457
7 q 513 5M3 0044 Q77 0498 0502
8 not-q 514 5/14 0049 0063 0551 0449
9 q 6/15 6/15 0025 0044 0520 0480
10 q 716 76 0019 0031 0497 0503
1 not-q i mni o018 0025 0543 0457
12 q 818 8/18 oon o018 0526 0474
13 q 919 919 0008 0013 0513 0487
14 q 10/20 10/20 0006 000 0504 0496
15 q w21 w21 0005 o008

On trial n, ConsP{M)»=P(M),+} (ConsP(M),_, — P(M)),); e = 0.01

Table 17.4 shows the predicted sequence of card selections for the medium P(g)
condition in Oaksford etal. (1997). Oaksford etal. found that participants selecte.d the
same proportion (experiment 1) or more (experiment 3) g cards than not-¢ cards_ in the

‘medium P(q) condition. This pattern of results appeared contrary to the predictions
of the ODS model because if P(p) and P(q) remain fixed then ODS can only
recommend selecting not-g cards in this condition. However,_as Ta}ble' 1?._4 reveals,
when P(p) and P(g) are updated trial-by-trial, before the stopping criterion is reached
(trial 16) the ODS model will recommend selecting equal numbe_rs‘ of g carfis _and not-q
cards. If one more trial is conducted then in this condition, participants will indeed be
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predicted to select more ¢ cards than not-g cards. The reason for this trial-by-tria]
behaviour is as follows. Taking the low P(g) condition, as participants select ¢ cards
their estimates of P(p) and P(q) will go up because these are all p, g instances. If the
stopping criterion is not reached before rarity is violated the model is bound to predict
that participants should select some not-g cards. Taking the medium and high P(q)
conditions, as participants select not-q cards their estimates of P(p) and P(q) will go
down because these are all not-p, not-q instances. A further factor is that although in
the normal range P(M;) has little effect on the ordering of SE[I,()] s, as P(M;) — 0, it
would appear that rarity is relaxed, i.e. higher values of P(g) can still lead to
SE|[Ly(q)] > SE[l,(not—gq)). This factor is responsible for the prediction of long
sequences of g card selections as P(M;) approaches the stopping criterion. An
interesting example is when P(p)= P(g) =8/18. In the medium P(gq) condition
(see Table 17.4) this occurs when ConsP(M;)=0.028 and consequently
SE[Iy(q)] = 0.496 and SE[l;(not—q)] = 0.504, so the ODS model recommends
selecting a not-g card. In contrast, in the high P(¢) condition (see Table 17.5)
P(p)= P(q)=8/18 when ConsP(M;) = 0.014 and consequently SE[I,(q)] = 0.542
and SE[I,(not—gq)] = 0.458, so the ODS model recommends selecting a ¢ card.

Table 17.4 The sequence of card selections predicted by the ODS model for the medium P(q)
condition in Oaksford et al. (1997) when P(p) and P(q) are updated trial-by-trial in the RAST

Trial no. Card selected  P(p) Pla)  P(M) ConsP(M,)  SE[ifa)]  SE[l(~q)]
36 3/6 05 05 0152 0848
1 not-g 37 a7 0337 0419 0.257 0743
2 not-g 3/8 3/8 0294 0.356 0.358 0642
3 not-q 3/9 3/9 0258 0.307 0444 0.556
4 not-q 310 310 0229 0268 0517 0483
5 q 4/ 4Mm 0120 0194 0445 0555
6 not-q 4/12 412 0134 0164 0509 0491
7 q 513 513 0070 on7 0462 0538
8 not-g 514 514 0076 0097 0518 0482
9 q 6/15 6/15 0040 0068 0487 0513
10 not-q 6/16 6/186 0042 0055 0536 0464
1 q mr m? 0022 0039 0513 0487
12 q 8/18 818 0017 0028 0496 0504
13 not-q 819 8/19 0016 0022 0541 0459
14 g 9/20 9/20 0010 006 0527 0473
15 q 1021 1021 0007 00z 0516 0484
16 q 122 1nez2 0006 0009 0507 0493
17 q 12/23 12/23 0005 0007

On trial n, ConsP(M) ,.=P(M) y+3 (ConsP(M;),,_, — P(M),,); e = 0.01

Table 17.5 shows the predicted sequence of card selections for the high P(q)
condition in Oaksford etal. (1997). As Oaksford etal. (1997) found, there are more
not-q than g cards predicted in this condition. '
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Table 17.5 The seq of card selections predicted by the ODS model for the hijh P(q)
condition in Oaksford et al. (1997) when P(p) and P(q) are updated trial-by-trial in the RAST

Trial no. Card selected  P(p) P(a) P(M) ConsP(M)  SE[I{q)] SE[l(-a)]
5/6 5/6 05 05 0006 0994
1 not-q 517 57 0164 0332 0042 0956
2 not-q 5/8 5/8 0129 0231 015 0885
3 not-q 5/9 5/9 0103 0167 0.208 0792
4 not-q 510 5/10 0083 0125 0301 0699
5 not-q 5M1 5M 0067 0096 0384 0616
<] not-q 5M12 5M2 0055 0075 0457 0543
7 not-q 513 513 0045 0060 0517 0483
8 q 6/14 6/14 0025 0043 0485 0515
9 not-q 615 615 0025 0034 0538 0462
10 q e 716 04 0024 0515 0485
11 q 817 817 001 0018 0496 0504
12 not-q 8/18 8/18 0010 0014 0542 0458
13 q 919 8/19 0006 0mo 0530 0470
14 q 10/20 10/20 0005 0008

Ontrial n,ConsP(M),=P(M)+5 (ConsP(Mi),_, — P(M;),); e = 0.01

In summary, a revised ODS model that allows that during sequential sampling
participants are learning both about which hypothesis is true and about the
distribution of p and ¢ cards seems able to model the medium P(g) condition in the
RAST. ODS also captures the basic findings for the low and medium P(g) conditions
as well as predicting the response alternations Oaksford et al. (1997) noticed in
participants card selections. Importantly, ODS also embodies a rational stopping
rule which means that unlike the probability matching model, participants can
be interpreted as responding rationally to the sequence of evidence that they
experience.

Finally, if we allow revision of P(p) and P(q) and a low sample size in the RAST,
then how can we justify our argument that people neither assume a low sample size
nor revise their beliefs about P(p) and P(g) in the learning phase of Pollard and Evans’
(1983) experiments? There is no inconsistency because, as we have argued, in Pollard
and Evans’ learning phase participants are not trying to infer whether the rule is true
or false, they are trying to predict what is on the other side of the cards. It is only after
they have performed this task, which concentrates attention on P(g|p) and not on
P(p) and P(q), that they are unexpectedly confronted with an inference task. In
contrast, in the RAST learning and inference are integrated. Consequently,
participants are aware as they sample the cards that they are looking for information
to determine the truth or falsity of the rule. Although P(p) and P(q) are relevant to
this task, these probabilities are not relevant to the prediction task in Pollard and
Evans learning phase. As we noted above, Evans and Over could argue that people
may none the less learn P(p) and P(q) implicitly. However, this seems inconsistent
with Evans and Over (1996b) own view that relevance judgements are implicit
cognitive processes. If this is so then presumably if P(p) and P(q) are irrelevant to the
explicit task participants confront, then information about these probabilities will
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also be judged irrelevant at the implicit level. Therefore, it would seem inconsistent of
Evans and Over to argue that participants learn P(p) and P(g) implicitly.

Epistemic utilities

We_ have shown that on a disinterested model of inquiry (see Chater etal., chapter 20)
revising the base probabilities in line with experience leads to predictions that are
in line with actual performance in the RAST. In Oaksford et al. (1997) we suggested
tl'.lat these results may require the introduction of explicit utilities with respect to
different evidence types and that it was these utilities that were changing as a result of
scquf:ntial sampling. Our rationale for such an account, which we suggested may be
consistent with Evan and Over’s notion of ‘epistemic utility’, was as follows.

Oaksford etal. (1997) argued that according to ODS, in both the medium and high
P(q) conditions participants attention is initially directed towards the not-g card
stack. All the cards in this stack are not-p, not-q cards, i.e. although examining these
cards,_ will confirm the rule (i.e. P(Mp) rises), they provide participants with no
positive instances of the rule. This is like arguing that although you have never seen a
raven you are confident that all ravens are black because all the non-black things you
have examined were also not ravens. This is the raven’s paradox of classical
confirmation theory (see Goodman, 1954). As discussed by Oaksford and Chater
(19_96}, the raven’s paradox is eliminated by Oaksford and Chater’s (1994) default
rarity assumption (see also Horwich, 1982; Howsen and Urbach, 1989). In the low
fm(‘ﬂ condition participants attention is focused on the ¢ cards which are all p, ¢
instances, i.e. participants are looking for blue triangles (black ravens). However,
when rarity is not in force, i.e. in the medium and high P(g) conditions, participants
may want to see some blue triangles as well as red circles to confirm that the rule is not
just vacuously true. Consequently, although participants will initially be guided to the
not-q stack in the medium and high P(g) conditions by ODS they may at some time
decide to search for positive instances of the rule.

However, participants are more likely to look for positive instances in the medium
condition than in the high condition. SE[,(not—g)] is much higher in the high P(q)
condition than in the medium P(g) condition. Consequently, it will take more data to
overcome the attentional focus on the not-g card in the high P(g) condition than in the
medium P(q) condition. However, in the RAST the number of data points are limited
to a fixed number (in Oaksford etal.’s experiments 3 and 4 it is 10). Therefore the
point where attention is refocused is more likely to be met in the medium P(q)
condition than in the high P(g) condition.

Cgr_lvcrsely, in the low P(g) condition after initially focusing on the g cards
participants attention may be diverted towards the not-g cards. From our Bayesian
perspective both p, g and p, not-g cases may provide important classes of evidence.
After examining a certain number of p, ¢ cases attention may shift to looking for p,
not-q cases. This could explain the differences between Oaksford etal.’s experiments 1
and 3 in the low P(q) condition. In experiment 1 in the low P(g) condition there were
five g cards, whereas in experiment 3 there were 10. It is therefore more likely that
participants will exhaust this stack while their attention is still focused on p, g
instances in experiment 1 than in experiment 3. Because these instances are now
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exhausted participants declare the rule true and terminate the experiment.
Consequently, a far lower proportion of not-q cards should be selected in the low
P(g) condition in experiment 1 than in experiment 3 which is consistent with the
observed differences between these experiments.

Oaksford et al. (1997) suggested that current epistemic utility theory does not
address how these changes of attention come about. However, one proposal would be
to allow different utilities of evidence in a similar manner to Oaksford and Chater’s
(1994, pp. 621-5) maximum expected utility model of the deontic selection task.
Modelling changes of attention due to sequential sampling would involve making the
utilities for each evidence type some decreasing function of the number of instances of
that evidence type observed. If all evidence were equally weighted initially,
such a model would make the same predictions as ODS for initial card selec-
tions. However, after accumulating data, other evidence types will come to have
higher utility, as the utility of the evidence type initially recommended by ODS
falls off.

In retrospect and given the obvious success of the ODS model in explaining
sequential sampling in the RAST, we are no longer convinced that such an account is
either necessary or indeed conceptually coherent. Because Evans and Over (19964, b)
used the term epistemic wtility we have assumed that their intention is to introduce an
explicit utility function to explain people’s data selections in tasks like the selection
task. Taking this at face value led to the suggestion that people may be revising their
utilities for different evidence classes instead of the probabilities P(q) and P(p).
However, we no longer believe that this view is conceptually coherent as we now
argue.

The proposal is to introduce utilities with respect to evidence classes, i.e. when p, g;
p, not-g; not-p, g; and not-p, not-q instances are taken to bear on the truth or falsity of
the rule, and that the utilities of different instances can vary as a function of
encountering these instances. There seem to be two problems with this proposal.
First, in a standard utility function that relates the outcomes of actions to utilities, the
utility function defines a person’s goals. So, for example, if your goal is to detect
violators of the rule ifyouaredrinking beer youmustbeover 18 yearsofage, then you will
attach a high utility to p, not-g instances. In contrast, in disinterested inquiry the goal
is to determine whether a rule is true or false. As we have seen, which instances are
most relevant to this goal may vary depending on the probabilities P(Mj), P(q) and
P(p). However, fulfilling this goal seems totally independent of whatever utilities you
assign to these evidence classes. So for example, if you are a Bayesian you will be
interested in whatever evidence class affords the most discrimination between
the hypothesis under test (in ODS, the dependence model) and the foil (in ODS, the
independence model). And in a selection task you will be interested in looking at the
cards that are most likely to reveal these evidence classes. These decisions rely only on
the probabilities not on any assignment of utilities.

The second problem relates to allowing these utilities to change as a function of the
number of trials carried out. We can illustrate the problem more clearly by showing
the consequences of allowing this to happen in a context where assigning utilities is
appropriate. Let us suppose that you are enforcing the under age drinking rule
mentioned in the last paragraph. You therefore want to catch violators of the
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rule, i.e. people who are drinking beer but who are under 18 (p, not-q cases), and so
you attach a high utility to these cases. However, on the proposal made above, each
violator you detect will lead to a decrement in the utility associated with violators,
Consequently, the more successful you are at achieving your goal of detecting
violators, the more likely you are to spontaneously change your goals so that you stop
looking for violators. Although perhaps reflecting something of the perversity of
human nature, this behaviour is unlikely to impress your supervisor.

We have now argued that introducing utilities with respect to evidence classes and
allowing these to change over trials seems to lead to conceptual problems. How then
can we make sense of Evans and Over’s (19964, p. 363) assertion that an overarching
concept of ‘epistemic utility . . . underlie[s] all human hypothesis testing and
reasoning’. One way is to look at the actual measures that they have proposed as
measures of epistemic utility. In, for example, Evans and Over (19964, b) and Over
and Jessop (see Chapter 18) our own information gain measure and the log-likelihood
ratio are labelled as attempts to define a notion of epistemic utility. There are two
points to make. First, these measures are not in competition as Evans and Over
(19964, b) claim they are. As Over and Jessop (see Chapter 18) point out, there may be
more than one foil hypothesis, i.e. a hypothesis tester may be trying to discriminate
between more than just two hypotheses. However, the log-likelihood ratio is
restricted to just two hypotheses whereas the information gain measure used in the
ODS model generalizes to n hypotheses (see also Jessop, 1996). Consequently, the log-
likelihood ratio is not a serious theoretical competitor. Second, neither of these
measures makes any reference to an explicit utility function, they are both based
purely on probabilities. Therefore, although Evans and Over (19964, b) may choose
to refer to these measures as ‘epistemic wtilities’, this label has no descriptive or
theoretical content.

Finally, the reason for introducing utilities was not only to account for the medium
P(g) condition in Oaksford eral. (1997) but also to fulfil the reasonable requirement
that one should not believe rules just because there are no falsifying cases, some
positive instances are also required. Of course in the ODS model this problem is
resolved by the rarity assumption (P(p) and P(q) are low) which means that for
hypotheses made up of predicates describing real world properties people will always
begin sampling positive instances. Notice also that in sequential sampling, even if P(p)
or P(q) are high, a consequence of conservative revision is that people have enough
time before P(M;) =~ 0 or 1, eventually to sample some positive instances. Of course
these results for the high and medium P(g) conditions rely on the structure of the
particular samples used in the RAST. The obvious next step is to use differently
structured samples to see what different models predict and how the empirical results
come out.

In summary, proposing a changing utility function to model behaviour in the
RAST is (i) unnecessary to model the data, as we showed in the previous section, and
is (i) conceptually problematic along with Evans and Over’s (1996a, b) proposal that
people based their judgements on a measure they refer to as ‘epistemic utility’.
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Conclusions

In this chapter we have argued for a revised ODS model which allows exceptions and
when applied to sequential sampling employs conservative Bayesian revision. The
revised model straightforwardly meets the objections raised by Evans and Over (1996)
that the original model could not explain data from Kirby (1994) or from Pollard and
Evans (1983). Importantly, the revised model generalizes naturally to the context of
sequential sampling, explaining the apparently aberrant results of Oaksford et al.
(1997). These latter results bear on the important issue of the rationality of human
learning (Shanks, 1995, also see Chapter 15). They appear to show that various trial-
by-trial effects in learning about a rule may be susceptible to the same rational
analysis as Oaksford and Chater (1994) applied to the selection task. As Oaksford and
Chater (1994) observed, this leaves the exciting possibility of unified rational
explanations of selection task results, causal reasoning and instrumental learning (see
also, Glymour and Cheng, Chapter 14; Over and Jessop, Chapter 18).



Notes

Finally, we clear up two remaining points. First, Evans and Over argue that we
do not predict changes for the not-p card that Kirby (1994) observed. This is not
true. We do predict some of the movements observed for this card. Evans and
Over reach this conclusion because they do not scale their E(I,) values, as
Oaksford and Chater’s model specifies. Second, Evans and Over argue that we
should distinguish benefits from costs in modelling Kirby’s deontic experiment 4,
However, such additional factors need only be introduced if there are empirical
reasons to do so. Modelling Kirby’s data did not require a distinction between
costs avoided and benefits gained. This distinction may nonetheless be needed to
model other data sets.

These are not the same as Evans and Over’s calculated values of 0.298 (usually
true) and 0.062 (usually false). The discrepancy seems due to unimportant
differences in the fine detail of Evans and Over’s calculations. The important
point is that we agree with Evans and Over on the ball-park figures and hence
their arguments stand. Our model is implemented in Mathematica (Wolfram,
1991) which makes exploring its properties particularly easy. Anyone wishing to
obtain a copy of the model can do so by contacting Mike Oaksford (oaksford@
cardiff.ac.uk).

A further issue, which we will not make to much of, is that it seems impossible
for Evans and Over (1996a) to have used our model to calculate expected
information gains. Apparently they did not use values of P(p) and P(g) directly
in their calculation but rather used the likelihoods, i.e. the probabilities of the
data given the hypothesis (Evans and Over, personal communication). In Pollard
and Evans (1983) materials, the probability of ¢ given p (P(gl|p), is 0.875, which
Evans and Over apparently used to compute expected information gains. But if
people know that I(g|p) = 0.875, then they already know that the dependence
model cannot hold because in the original ODS dependence model P(g|p), i.e.
P(g|p, Mp), is always 1. Consequently, we do not know how Evans and Over
(1996a) could have calculated expected information gains using our original
model. Nevertheless, using P(p) and P(gq) in the calculations, as we did above,
leads to a similar conclusion which we must still address.

Knowledge of conditional probabilities without knowledge of absolute
probabilities is very common. For example, although you may know that the
conditional probability of thunder given lightening is very near 1, you may have
no idea how frequent either lightening or thunder are, other than, of course, that
they are pretty rare.

Another approach would be to allow P(Mj) to be a free parameter, and see what
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value of this parameter gives the best fit to the data. It would appear that much
better fits than we report here are obtainable when P(Mj) is low, i.e. when both
the low exception (‘believed true’) and high exception (‘believed false’) rules are
believed true. This clearly makes the strong prediction that people do indeed
divorce their judgements of belief from the number of exceptions per se.

In Oaksford and Chater (1994, 1995) the scaling factor was the average expected
information gain over the four cards. Moreover we added a fixed amount to all
E[L,()]s to reflect the presence of the rot-p card. Although E[I,(not—p)] =0, its
mere presence means that it might get selected and this should vary with the
likelihood of the other cards being selected. This procedure is unnecessary in the
standard RAST where only the ¢ and not-q cards are available.

More generally we can include a learning rate parameter, 7, that may vary from
participant to participant:

ConsP(Mj), = P(Mj), +n(ConsP(Mj),_, — P(M}),)
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