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There are currently two competing interpretations of hypothesis testing in
Wason’s (1960) 2-4-6 task: the positivity heuristic (Klayman & Ha, 1987;
1989) and the counterfactual strategy (Farris & Revlin, 1989a; 1989b). We
argue that an extension of the counterfactual strategy—the iferative counter-
factual strategy—should be preferred over the positive test heuristic because
it may resolve the paradox of why subjects succeed on this task while
apparently adopting an irrational strategy. We argue that an account of
hypothesis generation is required to explain these data and that only the
counterfactual strategy is of help here. We discuss the strategy and the 2-4-
6 task in the light of contemporary history and philosophy of science,
highlighting the rational basis of the strategy and some unrealities of the task.

INTRODUCTION

There are currently two competing interpretations of the hypothesis testing
behaviour observed in Wason’s (1960) 2-4-6 task. One is due to Klayman
and Ha (1987; 1989) and the other is due to Farris and Revlin (1989a;
1989b). Distinguishing experimentally between these accounts is difficult
because both theories make similar empirical predictions. In this paper,
we argue that Farris and Revlin’s (1989a; 1989b) counterfactual strategy
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- should be preferred over Klayman and Ha’s (1987; 1989) positive test
heuristic. This is because of the counterfactual strategy’s potential to
resolve the paradox of why subjects are so successful at the task. We argue
that both strategies, at least prima facie, only address the context of
justification (i.e. how hypotheses are tested) rather than the context of
discovery (i.e. how hypotheses are generated). However, success at the
2-4-6 task could only be explained by an account of the latter. We argue
that the positive test heuristic provides little information about how to
revise a hypothesis, and where it does it is likely to prove a hindrance
rather than a help.! We also argue that while there is a logical inconsistency
in Farris and Revlin’s account of the counterfactual strategy, repairing this
problem leads to a test strategy which may facilitate the discovery process.
On this basis, we suggest that an extension of the counterfactual strategy
is to be preferred over the positive test heuristic as an explanation of the
hypothesis testing behaviour observed in the 2-4-6 task.

We begin by outlining the 2-4-6 task. We observe that although prima
facie an irrational enumerative strategy is adopted in this task, success rates
are nonetheless very high.? Klayman and Ha (1987; 1989) and Farris and
Revlin (1989a; 1989b) both attempt to resolve this paradox by claiming
that despite superficial appearances, an eliminative procedure is being
used. We outline and criticise both the positive test heuristic and the
counterfactual strategy. We then present an extension of Farris and Rev-
lin—which we call the iterative counterfactual strategy—in the form of a
flow diagram. The diagram reveals that only the inputs to hypothesis
generation processes are identified by this strategy. The nature of these
processes, however, remains to be elucidated. We discuss the strategy in
terms of some contemporary history and philosophy of science and some
unrealities of the 2-4-6 task are highlighted. We conclude that while the
extension of the counterfactual strategy we propose may more adequately
explain the 2-4-6 task, it may not reflect general scientific practice.

THE 2-4-6 TASK

In the 2-4-6 task, a number theoretic rule that applies to various number
triples must be discovered. Subjects are told that the experimenter has a
simple rule in mind for generating triples of which an initial “‘seed” triple
(usually 2-4-6) is an instance. The task is to discover the experimenter’s
“target” rule by proposing number triples and receiving feedback as to
whether they are instances of the experimenter’s rule or not. Once the

'These points are also made by Klayman and Ha (1989).

*Especially in comparison to some other hypothesis testing paradigms, e.g. Wason’s (1966)
selection task where only 4% of subjects reach the correct solution (although, we should note
that the task demands are rather different).
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initial hypothesis is formed (e.g. ascending by twos), two kinds of test can
be performed. Either triples that conform to a hypothesis (e.g. 20-22-24)
can be proposed, or triples that do not conform to a hypothesis can be
proposed (e.g. 20-22-23). Subjects typically propose triples that conform
to the rule, that is, they enumerate potential instances of their hypothesis
rather than propose instances which could lead to its elimination. After a
series of such tests, subjects make a ‘‘rule announcement” indicating what
they believe the target rule to be. They are usually highly confident that
they have identified the target rule. |

In Wason’s (1960) original paper on the 2-4-6 task, he observed that
early success was associated with more eliminative behaviour. This inter-
pretation was questioned by Wetherick (1962),% who showed that subjects
were proposing instances which supported their hypotheses.* These
findings created a paradox that Klayman and Ha (1987; 1989) and Farris
and Revlin (1989a; 1989b) could potentially resolve. Enumerators propose
instances that confirm their hypotheses. However, while logically it is
possible to unequivocally eliminate a hypothesis, it is impossible to une-
quivocally confirm a hypothesis (Popper, 1959). Thus enumerative
behaviour would appear irrational. Yet paradoxically up to 75% of sub-
jects solve the 2-4-6. problem (Wason, 1960).° If they were using such a
maladaptive strategy, how is it that they are so successful? Both Klayman
and Ha (1987; 1989) and Farris and Revlin (1989a; 1989b) argue that
despite the apparently enumerative behaviour observed on this task, sub-
jects are actually adopting an eliminative strategy (Popper, 1959).

THE POSITIVE TEST HEURISTIC

Other than a perfect correspondence, there are four possible relationships
between the set of number triples defined by the target rule (T) and the
set of number triples defined by a subject’s hypothesis (H) about the target

The title of the present paper is borrowed from Wetherick’s (1962) “Eliminative and
enumerative behaviour in a conceptual task”.

“Wetherick pointed out that Wason’s procedure could not determine whether subjects were
enumerators or eliminators, as they were not asked whether the instances they proposed
conformed to their hypothesis or not. In Wetherick’s modification, subjects had to file a
proposed instance under the heading “Conforms” or “Does not conform”.

>Although we should be careful to distinguish between success at the first announcement
of the rule and subsequent success. In studies where more than one rule announcement is
allowed, success rates typically reach around 75% (Wason, 1960; 73.9%: Farris & Revlin,
1989a). However, when only one rule announcement is made, success rates are still between
21.4% (Wason, 1960) and 40.9% (Farris & Revlin, 1989a). Thus even when only one rule
announcement is made, performance on the 2-4-6 task compares favourably with perform-
ance on, for example, Wason’s other classical hypothesis testing task, the selection task
(Wason, 1966), where performance is typically as low as 4% correct.
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FIG. 1 Four possible relationships between hypothesis and target rule. U, universe of
possible number triples; H, the set of number triples identified by the hypothesis; T, the set
of number triples identified by the target rule. After Klayman and Ha (1989).

rule (see Fig. 1): H and T may overlap. H may be included in T (embed-
ded); T may be included in H (surrounding); or T and H may be disjoint.

Klayman and Ha (1987) observed that these four situations lead to
different outcomes depending on whether instances are being proposed
which conform to a hypothesis (what Klayman and Ha refer to as
+H-tests), or whether instances are being proposed which do not conform
to a hypothesis (what Klayman and Ha refer to as —H-tests). Their analysis
revealed that falsification is as likely with positive feedback as with
negative feedback. Crucially, it also revealed that falsification is as likely
with +H-tests (and “No” feedback) as with —H-tests (and “Yes” feed-
back). Moreover, on making two further assumptions, it was possible for
Klayman and Ha (1987) to show that +H-tests actually lead to a greater
probability of falsificatory feedback. These assumptions were an equipro-
babilty and a minority phenomenon assumption.

The equiprobability assumption involves two probabilities: the probabil-
ity that a triple is in the target set (in the 2-4-6 task this is usually given
by the target rule ‘“any ascending numbers’’), and the probability that a
triple is in the hypothesised set (e.g. even numbers). Little faith will be
put in a hypothesis that severely under- or over-estimates the target set.
Hence it is reasonable to assume that these two probabilities are roughly
equal. If it is also assumed that the probability of being in the target set is
less than not being in the target set—that is, a minority phenomenon
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assumption is made—then ‘“‘you are more likely to receive falsification
using +H-tests than —H-tests” (Klayman & Ha, 1987, p.217). Thus
despite superficial appearances, the behaviour observed on the 2-4-6 task
is rational because falsification is more likely. Klayman and Ha (1987),
therefore, resolve the paradox of why subjects are so successful while
employing a prima facie irrational strategy.

In empirically evaluating some predictions of their positive fest strategy,
Klayman and Ha (1989) observed an apparently maladaptive response. For
example (for others, see Klayman & Ha, 1989), let the target rule be even
numbers and assume that the hypothesis ascending numbers is generated.
This hypothesis overlaps the target rule. The confirmatory triple 3-5-7 is
then generated, which receives “No” feedback. Rather than wholly aban-
don the initial hypothesis, Klayman and Ha (1989) observed that subjects
would qualify it, e.g. they would generate the hypothesis ascending, even
numbers. Positive instances of this hypothesis will always receive “Yes”
feedback because the set of triples satisfying it is now embedded in the set
of triples satisfying the target rule. Klayman and Ha (1989) refer to this
situation as “embedded hypotheses™.

If the qualification response was invariably adopted on receiving nega-

tive feedback to a +H-test, then subjects would rarely succeed at this task.
The standard target rule is quite general, i.e. “any ascending numbers™.
Hypotheses, therefore, most frequently need to be expanded. However,
the qualification strategy can only lead to narrowing a hypothesis. Klayman
and Ha suggest that the qualification strategy emerges in response to
receiving ‘“No”” feedback to a +H-test. The positive test heuristic may,
therefore, often prove counter-productive. Klayman and Ha (1989, p. 601)
themselves observe that, ‘“‘even when the positive test strategy is effective
in showing that a hypothesis should be revised, it can produce one-sided
information about Aow it should be revised”.

The problem Klayman and Ha (1989) identify is ubiquitous: it militates
against any strategy which is concerned only with the context of justifica-
tion. In the philosophy of science, it has been generally accepted that there
is a distinction between the context of discovery (i.e. how hypotheses are
generated) and the context of justification (i.e. how hypotheses are tested)
(Popper, 1959). The quotation from Klayman and Ha (1989) implicitly
suggests a closer relationship, where the method of testing a hypothesis
may suggest how to discover a new hypothesis. We believe that this is a
constructive move.® It does, however, militate against the view that sub-
jects succeed at the 2-4-6 task because they adopt a strategy which leads
to a greater probability of falsification. Falsifying a hypothesis provides no

“It also concurs with much contemporary philosophy of science (Brown, 1989).
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useful information concerning plausible alternative hypotheses. Moreover,
as Klayman and Ha (1989) concede, the positive test strategy may actually
lead to a maladaptive selection of alternative hypotheses to test.

In summary, despite the excellence and ingenuity of Klayman and Ha’s
(1987; 1989) analysis, we still seem no closer to resolving the paradox of
why subjects are so successful on this task. Although success is associated
with eliminative behaviour, this could not be the cause of the success. As
Wetherick (1962) observed (see also Klayman & Ha, 1989), those subjects
who adopt an eliminative strategy also consider more alternative hypoth-
eses (roughly three times as many in Klayman & Ha, 1989). Prima facie,
the more hypotheses one tries, the higher the probability of success. So
perhaps eliminators succeed because this leads them to generate more
hypotheses. However, the space of possible hypotheses is extremely large
if not infinite. Therefore, there is only a vanishingly small difference in the
probability of being correct given you test, say, 10 rather than 2 hypo-
theses. We suggest that more emphasis will have to be placed on the
context of discovery if this paradox is to be resolved. What is required is
an account of how one strategy or another enables the discovery of ever
more relevant hypotheses. We now look at Farris and Revlin’s counterfac-
tual strategy. We argue that although there is a logical error in the analysis
of the counterfactual strategy, it nonetheless provides a fruitful source of
likely hypotheses.

A COUNTERFACTUAL STRATEGY

Farris and Revlin (1989a) argue that subjects may be adopting a counter-
factual strategy in the 2-4-6 task. On this strategy, a hypothesis is first
generated based on some property of the seed triple, e.g. even numbers.
The complement of this rule is then generated, i.e. odd numbers. This rule
is assumed to be true and subjected to a confirmatory test.” If “Yes”
feedback is received, then the original hypothesis, even numbers, is
incorrect, and its complement, odd numbers, may be correct.® Conversely,
if “No” feedback is received, then the original hypothesis may be correct

"Note that “complement” is being used imprecisely in this context. The set union of the
set of even natural numbers and the set of odd natural numbers yields the set of all natural
numbers (i.e. A U A’ = U). However, the set union of the set of even numbered triples and
the set of odd numbered triples does not yield the set of all number triples (i.e. A U
A’ # U). Hence, “complement” is not meant as logical or set theoretic complement in the
universe of number triples. In this context, “number theoretic opposite” may have been a
more precise term. _

®Thus the logic of the counterfactual strategy is given by reductio ad absurdum rather than
modus tollens, as in the falsification strategy.
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and the process is repeated. As Farris and Revlin (1989a) observe, this
strategy would generate a series of positive instances of any local hypo-
theses a triple is intended to test with the consequence that subjects would
appear to be confirming.

Farris and Revlin (1989a) contend that a ‘“Yes” response from the
experimenter will lead to the complement rule (e.g. odd numbers) being
regarded as plausible. However, this is logically inconsistent. Since prop-
erties of the seed triple are chosen for the initial hypothesis, the comple-
ment rule is invariably falsified “at birth”. By definition, the complement
rule will concern a property not shared with the seed triple, in which case
the complement rule could not be the target rule. For example, finding out
that the triple 3-5-7 is an instance of the target rule, indicates that the even
numbers rule is false, but since 2-4-6 is not an instance of the odd numbers
rule, the odd numbers rule must also be false.

More recently, Farris and Revlin (1989b; see also Gorman, 1991) have
argued for a revised model of the hypothesis testing process where the role
of the counterfactual strategy is delimited. Rather than being the single
strategy adopted by subjects, the counterfactual strategy is only invoked
when subjects are attempting to find falsifying instances. The assumption
is that because any hypothesis will be rare by definition, subjects attempt
to determine its boundaries, that is, they want to know what kind of
instances fall within and without T. One way to generate an instance that
may fall outside T is to generate an instance you currently think might
falsify your current hypothesis H about T, i.e. an instance of H’s comple-
ment H'. In response to “Yes” feedback, Farris and Revlin (1989b) now
propose that rather than regard H' as plausible, it should be rejected
“because the expanded set was not large enough”. Note that while
allowing that H' is rejected, this is not for the logically correct reason.
Moreover, within their modified strategy, H is apparently not rejected at
this stage, rather only ““a new counterfactual hypothesis is generated” (our
italics). Again this is logically inconsistent.

These inconsistencies in Farris and Revlin’s account may be due to a
confusion between set theoretic “‘complement” and the notion of an
“opposite” (see footnote 7). As we pointed out in footnote 7, the set union
of a set and its complement yields the universal set, e.g. the set union of
even and odd natural numbers yields all natural numbers. However, the
set union of the set of even natural number #riples and odd natural number
triples does not yield the set of all natural number triples, e.g. 2-5-7 falls
outside the union of these two sets. Thus it would be better to describe
“odd number triples” as the opposite of “‘even number triples” rather than
as its complement. .

Confounding these two concepts may be responsible for the suggestion
that on “Yes” feedback only a new counterfactual hypothesis need be
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generated. This is because there will be other “counterfactual” hypotheses
that while outside the scope of the original hypothesis are not included in
its opposite. So taking even numbers as the original hypothesis and odd
numbers as its opposite, on receiving “Yes” feedback for the triple 3-5-7,
a subject may generate the new “‘counterfactual” hypothesis ‘“‘alternating
even—-odd—even” and propose the triple 2-5-7. This seems consistent with
Farris and Revlin’s contention that on “Yes” feedback subjects generate
a new counterfactual hypothesis while making no mention of what happens
to the original hypothesis. However, while this is possible, it is illogical.
“Yes” feedback indicating that the opposite is in T, the target set, still
falsifies H, because the relationship between opposites and complements
is one of inclusion; that is, while it is not the case that all complements are
opposites, all opposites are complements. So if T includes an instance of
the opposite of a hypothesis H, H cannot be T.

The value of an opposite in this context is that they are derived from
familiar antonymic structures in language that suggest obvious triples to
try out as instances of what is not in H. Contrast, for example, generating
an instance of the complement of the hypothesis H1 : even numbers, and
the hypothesis H2 : that the number triples are derived from the Fibonacci
series. Only the former has an opposite defined by its complement in the
domain of natural numbers (rather than triples). This makes for ready
identification of an appropriate instance of the complement of the hypo-
thesis under test. So if you want an instance of a number that is not-even,
then an odd number is the best bet. Arriving at an instance of a number
that is not in the Fibonacci series is altogether more complicated (see
Oaksford & Stenning, 1992, for more on the proper interpretation of
negations).

The Proper Function of the Counterfactual
Strategy

While there are logical inconsistencies in the counterfactual strategy as
described by Farris and Revlin (1989a; 1989b), we argue that these may
be avoided, and that when this is done this strategy may have an important
role in hypothesis testing. We suggest that by concentrating on the inst-
ances thrown up by ‘“Yes” feedback in the counterfactual strategy, a means
of generating ever more appropriate H’s and their complements may be
specified [we will continue to use the term ‘“complement” because the
logical force of an opposite is the same as a complement (opposite C
complement)].

Take again the example of the hypothesis H' : odd numbers. The triple
3-5-7 has been proposed and “Yes” feedback received. The complement
rule H' and the original rule H are therefore eliminated. However, the
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instance used to test H' provides an additional source of constraint on
generating a new hypothesis to test. Having received “Yes” feedback, it
is now known that both 2-4-6 and 3-5-7 are instances of the target rule.
This process could be iterated to enumerate a set of partially incompatible
instances of the target rule.” The process began by selecting a property of
the seed triple, so now a property common to both triples is selected and
tested by the counterfactual strategy. Suppose that the property chosen is
ascending numbers. Its complement, descending numbers, is checked by
proposing 7-5-3 as an instance of the target rule. Given “Yes” feedback,
it is now known that neither ascending nor descending numbers is the target
rule. But it is also known that 2-4-6, 3-5-7 and 7-5-3 are instances of the
target rule. The next iteration selects a property common to all three
instances, e.g. separated by twos, and so on.

If there were an effective procedure for identifying common number
theoretic properties between number triples, this strategy could represent
a component of a discovery procedure for identifying the target rule. Its
termination conditions are two-fold. First, a “No”’, in which case announce
the current positive hypothesis as the target rule (if this is not the target
rule, then discount this triple and search for another common property of
the remaining instances and iterate). However, announcing the rule
immediately may be premature, since the seed triple could be the only
positive instance encountered. Some “novel predictions” of the hypothesis
may, therefore, be tested before announcing the new hypothesis. Hence,
proposing a limited number of positive instances at this stage prior to rule
announcement may be wise. Second, no common properties are left, in
which case announce “‘any three numbers” as the target rule. However, if
“Yes” feedback has been received, termination may occur before these
conditions are met, because among the many instances only one common
property can be perceived, i.e. there may be more in principle, but this is
getting beyond a hypothesis tester’s abilities for recognition in practice.
Thus a rule may confidently be announced, without any falsificatory
feedback having been received, because of the diverse range of partially
incompatible instances the rule covers. When the conditions for termina-
tion are met and whether the first “No” results in the announcement of
the correct target rule will depend on what initial property of the seed
triple is chosen. Thus individual differences in the number of trials
employed would be expected.

In the next section, we propose a flow diagram model of the processes
which may be involved in the 2-4-6 task based on the iferative counterfac-

*That is, incompatible along some dimension(s), e.g. ascending vs descending. The inst-
ances cannot be completely incompatible, since otherwise no target rule could subsume them
all (except in the limiting case where the target rule is simply any three numbers).
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tual strategy we have suggested. Flow diagram models are not currently in
favour. This is largely because of the recent development of lower-level
connectionist models, which appear more able to model the statistical
variation found in the empirical data. However, flow diagram models do
have an important role to play. They have the status of conceptual tools
for clarifying process issues independent of precise implementations.
Moreover, this is the role flow diagram models have in systems analysis
(Colin, 1980). They provide a program specification independent of (1)
the particular programming language in which a process is to be encoded
and (2) the particular machine on which the program is to run. Thus in
so far as they are a useful conceptual tool in systems analysis in computer
science, they will remain an important functional level tool for clarifying
process issues in cognitive psychology. An important role such models can
play is identifying those aspects of a process that need further theoretical
elaboration. By adhering to the conceptual rigour of specifying such a
model, it becomes clear which subprocesses can be specified algorithmi-
cally and which are currently vague.

AN ITERATIVE COUNTERFACTUAL STRATEGY

The iterative counterfactual strategy is summarised in the flow diagram in
Fig. 2. The strategy begins by adding the seed triple to the list L of
instances (1). A common property of the instances in L is then selected to
function as the hypothesis H (2). Initially, this will mean just selecting a
property of the seed triple. Box (2) is represented as a “cloud” (Colin,
1980), because this is where the crucial and currently unaccounted for
processes of hypothesis generation occur. The complement of H, H', is
then generated (3), followed by an instance I' of H' (4). I' is then proposed
as an instance of T, the target rule (5). If “Yes” feedback is received, then
both H and H' are rejected and I’ is added to L (6). Conversely, if “No”
feedback is received, H' is rejected (7). Before announcing H as T (12),
it may be prudent to generate a few positive instances, I;, of H (8) and
test whether they are instances of T (9) in what we have called the “positive
sub-loop”. If “No” feedback is received, then H is rejected and I not added
to L (13). Conversely, if “Yes” feedback is received and the number, i,
of positive instances, I;, is such that i is less than some criterion x (10),
then add I to L (11) and iterate and try another positive instance.
Conversely, if i = x, then announce H as T (12). If “Yes” feedback is
received, then the procedure has successfully terminated. Conversely, if
“No” feedback is received, then H is rejected and I' not added to L (13).
At this point, the lines from (5) converge on a check to ascertain whether
any common properties of the instances in L are perceivable (14). If they
are, then the procedure iterates. If no common properties are perceivable,
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FIG. 2 Flow chart representation of the iterative counterfactual strategy (see text for
explanation).
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then any three numbers is generated as H (15) and announced as T (16).
If “Yes” feedback is received, then the procedure has again successfully
terminated. If “No” feedback is received, then it must be assumed that
although not initially perceivable, there must be some further common
properties available. Alternatively, subjects may abandon the whole exer-
cise in exasperation.

This flow diagram reveals the central role played by the subprocesses
involved in hypothesis generation (2). In particular, in contrast to Farris
and Revlin (1989b), the iterative counterfactual strategy captures the
important role played by the actual instances that are thrown up by the
counterfactual strategy. These instances are available to constrain the
choice of a new H and hence H'. Whether the process iterates depends on
the ability to select a new hypothesis to test. Thus some explication of the
processes of hypothesis generation is crucial. The counterfactual strategy
does provide some clues about the inputs to the hypothesis generation
process. A diverse set of instances may constrain the choice of likely
hypotheses, delimiting the logically possible to the probable. However,
although the inputs are clearly delineated, the innards of box (2) remain
obscure. There is also an outstanding problem with the strategy as repre-
sented in Fig. 2 for which the qualification response outlined above may
provide a natural solution (see Discussion) but which in the case of the
2-4-6 problem proves maladaptive.

Narrowing a Hypothesis

Although the iterative counterfactual strategy may be a necessary compo-
nent of a discovery procedure, it is not sufficient. This can be seen from
considering how the strategy copes with the four possible relationships
between a hypothesis H and the target rule T, identified by Klayman and
Ha (1987; 1989) (we will reserve a discussion of the case of H and T
overlapping until later). Most trivially, H and T will never be disjoint, since
H is always generated either from the seed triple which is guaranteed to
be in T, or from the list of enumerated instances L, including the seed
triple, which are also guaranteed to be in T. The iterative counterfactual
strategy is best suited to the situation where H is included in T (i.e. an
embedded H), since the accumulation of partially incompatible instances
will ensure that the hypotheses generated will be of ever increasing
generality. However, this strategy is of no assistance when T is included
in H (i.e. a surrounding H). If H surrounds T, then on the iterative
counterfactual strategy, “No” feedback will always be received at (5),
indicating H is possible. This is because when H surrounds T, H' (the
complement of H) and T are necessarily disjoint. Thus whatever happens
in the positive sub-loop, the procedure will always iterate again. However,
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no instances will accumulate to suggest ways of narrowing H in the same
way that they accumulate to suggest ways of expanding H. Thus, whether
a narrower hypothesis is selected is left to the unexplicated procedures of
hypothesis generation in box (2).

However, the qualification response provides a natural way of narrowing
a hypothesis.'® This is especially so because ‘“No” feedback, either in the
positive sub-loop or on rule announcement, does not exclude H plus a
qualification from being a good contender for T [i.e. before box (13) in
Fig. 2, an option to add qualifications should be included]. The primary
risk involved, as we saw above, is that an embedded hypothesis (i.e. H
included in T) will result. However, if the iterative counterfactual strategy
is then adopted, a hypothesis tester may also be able to recover from this
situation. When subjects begin with overlapping hypotheses (as they most

- frequently do; Klayman & Ha, 1989), which of the situations Klayman and
Ha identify they move to next will depend on the particular hypothesis H
and the instances they choose to test. It may be that H' overlaps T to such
an extent that “Yes” feedback is highly likely, in which case H and H' will
be rejected quite rapidly. Alternatively, there may be little or no overlap
between H' and T, in which case H may be accepted as plausible. This
could lead to qualifications and an embedded hypothesis.

The qualification procedure is not depicted in Fig. 2. This is because the
additional complexity would defeat the diagram’s function to depict the
iterative counterfactual strategy clearly. The basis of the strategy is to
repeat the process of extracting common properties from L to be conjoined

-with H. It is then a matter of conjecture whether the counterfactual

strategy is rejoined or the positive sub-loop. If the latter, and an embedded
hypothesis has resulted, then it won’t be discovered until once again the
criterion x has been reached and the complex rule announced. If, however,
the counterfactual strategy is rejoined, then subjects confront the problem
of whether to look for a joint complement or just the complement of the
new property in order to construct H'. Nonetheless, they still have the
possibility of rejecting the new H, which they do not if they rejoin the
positive sub-loop.

The qualification response is, however, maladaptive in the 2-4-6 task
because T is usually a unitary feature of the seed triple, e.g. “ascending”.
Therefore, when narrowing, a unitary hypothesis needs to be selected

“Like Klayman and Ha (1989), Farris and Revlin (1989b) also suggest that hypotheses
must be narrowed. However, unlike Klayman and Ha, Farris and Revlin are not specific
about how this is to be achieved. The qualification response may, however, be what Farris
and Revlin (1989b) intend when they suggest that “slight alteration of the original hypothesis
is introduced” (but they provide no example of such an alteration, so it is difficult to tell).
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which is consonant with the seed triple and which applies to fewer number
triples in the domain of all triples than the previous hypothesis. To achieve
this, accurate estimates are required of the frequencies of the two hypoth-
eses in the domain of triples. This is equivalent to possessing knowledge
of the base rates of two unitary hypotheses in the population. And this is
information which subjects are unlikely to possess (Kahneman & Tversky,
1973; but see also Gigerenzer, Hell, & Blank, 1988).'! Thus a principled
way of discovering appropriate unitary hypotheses when T is included in
H may be beyond most subjects’ reach. Perhaps surprisingly, although
maladaptive in the 2-4-6 task, the qualification response, which would be
condemned as ad hoc by Popper (1959), is ubiquitous in the sciences, as
we shall discuss further below.

Summary

The iterative counterfactual strategy resolves the logical inconsistencies in
Farris and Revlin’s (1989a; 1989b) account. On receiving “Yes” feedback
to a complement instance, both H and H' are rejected. The counterfactual
strategy is attempted falsification, but via the argument form of reductio
ad absurdum rather than modus tollens as in the standard disconfirmation
strategy. It is this innovation that accounts for the predominance of
positive instances of hypotheses proposed in the 2-4-6 task, although
subjects are actually falsifying. On our analysis of the iterative counterfac-
tual strategy, it also provides a component of a discovery procedure for
arriving at new hypotheses to test. On the one hand, it provides a range
of inputs to the hypothesis generation process that enables a hypothesis to
be expanded. On the other hand, the qualification response provides a
natural mechanism for narrowing a hypothesis, although this is maladap-
tive in the 2-4-6 task. Thus an efficient eliminative procedure for discount-
ing hypotheses simultaneously allows the enumeration of instances to
constrain hypothesis generation. Taken together these factors offer some
resolution of the paradox of why subjects succeed on this task while on
the face of it adopting an irrational strategy.

The iterative counterfactual strategy makes several empirical predic-
tions. First, for subjects who adopt this strategy, a common observation
should be cases of “Yes” feedback being followed immediately by a change

"However, all that is required is relative base rate information, not absolute base rate
information. Thus, without knowledge of the absolute base rates of black things and ravens,
my knowledge of many black non-ravens provides good evidence that P(black thing) >
P(raven). However, even this much background knowledge is likely to be beyond most
subjects for the number theoretic domains involved in the 2-4-6 task.
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of hypothesis. This should show up in the next number triple being
incompatible with the triple that just elicited a ‘““Yes” response. Second,
on this strategy, “No” feedback indicates the plausibility of H which is
then tested in the positive sub-loop. This leads to the expectation that
“No” feedback should frequently be followed by a long string of “Yes”
responses (especially if H is included in T). Third, as also pointed out by
Farris and Revlin (1989a), on the counterfactual strategy, success should
not be dependent on “No” feedback. Therefore, we should not expect the
percentage of “No” feedback to distinguish between solvers and non-
solvers on this strategy. Further information could be obtained by adopting
the proposals made by Gorman (1991). If subjects were asked to indicate
their current best guess hypothesis at each trial, then the logical relations
between triple and hypothesis could be ascertained. On the counterfactual
strategy, there should be more frequent mismatches between the triples
proposed and the current best guess hypothesis. In testing the utility of
L—the list of partially incompatible instances of T—one would expect that
the best guess hypotheses should be compatible with all triples for which
“Yes” feedback was received. Distinguishing between strategies may also
be facilitated by the use of training studies where subjects are given explicit
instruction concerning which strategy to adopt (see also Gorman & Gor-
man, 1984).

The components of the iterative counterfactual strategy may not only be
reflected in the data, but may also be at work in actual scientific practice.
We discuss this possibility in the next section.

DISCUSSION

There are two main issues that require further discussion. First, we argue
that most of the processes we have introduced are well documented in the
history of science. Actual scientific practice provides our yardstick of
rationality (Brown, 1989). Thus if we show that the processes we propose
are regularly found in scientific practice, then we have good grounds for
assuming that they are rational. Second, we wish to highlight some of the
unrealities of the 2-4-6 problem. There are aspects of this task which may
not invoke strategies normally engaged by scientists or everyday hypoth-
esis testers. To the extent that this is so, the validity of the task as a
measure of people’s hypothesis testing abilities is called into question.

Rationality

We will look at three subprocesses in the iterative counterfactual strategy:
the qualification response, the positive sub-loop, and the enumerative
input to the processes of hypothesis generation. For each we will argue
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that there is a parallel in the history of science which indicates the
rationality of these procedures.

Qualifying a rule or a scientific law is equivalent to restricting its range
of application to particular contexts. Thus, the ascending even number rule
we discussed above can be interpreted as restricting the ascending number
rule to the domain or context provided by even numbers. Popper (1959)
argues that such ad hoc hypotheses are to be avoided; however, such
restrictions are found in many of science’s most successful and enduring
laws (Cartwright, 1983). In arguing that most scientific laws which can lay
claim to describing real causal processes are similarly context-sensitive,
Cartwright (1983) employs the example of Snell’s law. This is the familiar
optical law which states that the ratio of the angle of incidence and the
angle of refraction is a constant. However, Cartwright observes, this only
holds in isotropic mediums (in anisotropic mediums there are two refracted
rays). The precise meaning of “isotropic’’ need not concern us, the point
is that here is a law which is useful enough to be retained even when it is
known to be strictly false, because we know its appropriately restricted
domain of application. Many other examples abound—all swans native to
the northern hemisphere are white, all genetically normal ravens are black,
and so on. It seems that in the face of falsifying evidence, it is not always
rational to wholly abandon a hypothesis, since some minor adjustment in
our system of scientific beliefs may save it from outright refutation (Quine,
1953). In consequence, the qualification response is normally a rational
procedure.'? In the standard 2-4-6 task, rather than qualifying the old rule,
the seed triple requires re-classification (see Holland, Holyoak, Nisbett, &
Thagard, 1986) under a different atomic or unitary concept and thus the
qualification response proves maladaptive. However, there are versions of
the 2-4-6 task where the possibility of error is introduced and where rules
are employed that allow qualifications (Gorman, 1989). When this is done,
subjects naturally qualify their hypotheses even in abstract tasks.

The counterfactual strategy is based on the methodology of crucial
experiments or strong inference (Platt, 1964). That is, an experiment is
devised such that two mutually incompatible hypotheses make diverse
predictions concerning its outcome. However, the role of such experiments
in accepting a novel hypothesis may be minimal without a demonstration
of some successful novel predictions, as we have suggested in the positive

?However, as Oaksford and Chater (1991) discuss, rules with many qualifications—which
seems characteristic of the bulk of commonsense knowledge—cause problems of their own,
especially with regard to the tractability of the inferential processes which need to be
employed with such a knowledge base. For further discussion in the context of the processes
of scientific inquiry, see Oaksford and Chater (forthcoming).
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sub-loop in the flow diagram outlined above. The Michelson—Morley
experiment (see Hacking, 1983; Lakatos, 1970) is often cited as crucial in
deciding against the classical theory of the aether (the medium through
which light waves were hypothesised to travel) and for relativity theory.
However, this was largely a post hoc rationalisation. Many physicists
continued to adhere to the aether theory even after Einstein published his
theory of special relativity in 1905 (Lakatos, 1970). Indeed, this response
continued unabated at least until 1925 when a paper by Miller appeared
in Science supporting the aether theory via a critique of the Michelson—
Morley experiment (see Lakatos, 1970, p. 165). Only a long period of
sustained predictive success led to the adoption of relativity theory and the
rejection of the classical framework. The new theory was accepted because
of its remarkable propensity for making novel predictions, not as a result
of strong inference (although the simplicity and elegance of Einstein’s
theory also strongly influenced its adoption by the scientific community).
Thus making novel predictions in the positive sub-loop is indeed a rational
strategy.

We have suggested that the iterative counterfactual strategy provides a
range of data which serves to constrain possible hypotheses. We now
observe that constraining possible hypotheses by considering a range of
data is also the norm in the natural sciences. As an example domain we
return to physical optics. The development of optical theory has had to
deal with a whole range of empirical observations from diverse areas, €.g.
reflection, refraction, double refraction, interference and diffraction
effects, colour spectra, absorption spectra, and so on. Arriving at any
hypothesis capable of covering some of this data was a Herculean intellec-
tual task. Moreover, any hypothesis that could cover this data, albeit post
hoc, would be strongly favoured, simply in virtue of its coverage. It is
notable that in almost 500 years of research, only two hypotheses have
ever been serious contenders to explain these optical phenomena: the
corpuscular theory of Newton and the wave theory of Huyghens. Thus, as
we suggested above, subjects may, perhaps prematurely, announce a rule
without sufficient testing, simply because of the range of data it covers.
Moreover, the iterative counterfactual strategy generates a body of diverse
data constraining the hypotheses generated for its description.

Unrealities

In this section, we will look at four unrealities in the 2-4-6 task: the
plethora of possible hypotheses available, the lack of constraint provided
by a single seed triple, that fact that subjects know there is a law to be
discovered, and the implicit acceptance of the view that only true laws or
theories have any utility.
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The counterfactual strategy is based on the logic of crucial experiments
(see above). It is an eliminative strategy, like falsification, which relies on
the existence of a wealth of hypotheses to test and reject. However, such
a strategy is not prevalent in a mature science. As we have observed, there
is usually a dearth rather than an abundance of reasonable hypotheses in
mature scientific domains. Moreover, genuine crucial experiments are
either rare or a philosopher’s post hoc rationalisation. In contrast, the
plethora of number theoretic predicates (and their corresponding ‘““‘oppo-
sites’’) means that the counterfactual strategy is highly appropriate in the
2-4-6 task.

Theorists are normally confronted with an array of results that for some
reason require a unified explanation, for example the range of optical data
alluded to above. Existing computer programs, which discover general laws
(e.g. BACON: Langley, Simon, Bradshaw, & Zytkow, 1987), also assume
a data set and attempt to uncover general qualitative or quantitative laws
for its description. Such procedures would be insufficiently constrained by
a single instance, as in the 2-4-6 task. A virtue of the iterative counterfac-
tual strategy is that it effectively expands the data set to where reasonable
hypotheses may be generated. This may suggest that the 2-4-6 task is more
analogous to the experimental procedures that generate the scientist’s data
set in the first place. These procedures are indeed enumerative, very often
fortuitous and highly unlikely to be formalisable. Nonetheless, in the
highly constrained domain of reasonable number predicates and number
triples, subjects do appear to adopt a very sensible enumerative strategy.

A further unreality of the task is the fact that the subjects are told that
there is a law governing the generation of the seed triple for them to
discover. In inducing general laws, the scientist is again never in the
privileged position of knowing whether a law-like relation exists or not,
prior to trying to discover what it is. [However, recently, Gorman (1989)
has introduced procedures that may more closely mimic the scientist’s
normal situation in this respect.]

A final unreality of the task is that however close the announced rule
comes to covering the same domain of triples as T, it will always receive
“No” feedback unless it is correct. This underestimates the utility of good
as opposed to true theories. Theory or hypothesis construction begins by
covering easy cases and progressively attempts to bring more aspects of
the data under the explanatory umbrella of the theory. However, a theory
is not regarded as without utility even if it fails to cover some aspects of
the data. For example, as they acknowledged, Rescorla and Wagner’s
(1972) theory of Classical Conditioning failed to explain several well-
documented learning phenomena (see Dickinson, 1979, for a review).
Nonetheless, this theory was and remains crucially important in the
development of theories of conditioning.
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CONCLUSIONS

Only the counterfactual strategy of Farris and Revlin (1989a; 1989b) would
appear extendible to account for why subjects are so successful at the
2-4-6 task. This is because it naturally enumerates a set of inputs to the
processes of hypothesis generation in a way that the positive test heuristic
does not. Moreover, in combination with the qualification response, a
strategy that mirrors some of the patterns of reasoning involved in actual
scientific practice can be defined. The phases of the iterative counterfactual
strategy are consistent with Tukey’s (1986) observation that subjects do
not describe themselves as engaging in a single strategy. Rather, particular
triples may be proposed for different purposes. |

There are important aspects of the data on the 2-4-6 task that the
iterative counterfactual strategy fails to address. Most importantly, we
have not addressed any of the manipulations that facilitate an eliminative
strategy (e.g. Gorman, 1986; Gorman & Gorman, 1984; Tweney et al.,
1980; Wetherick, 1962), such as proposing that all triples fall into one of
two mutually exclusive classes, one named DAX the other named MED
(Tweney et al., 1980). While aware of the problem, we remain unable to
offer anything more than an unprincipled and ad hoc account of why such
a procedure should make a difference. It should be borne in mind,
however, that the unrealities of the 2-4-6 task may indicate that while
important to this laboratory task, this manipulation may have no analogue
in real scientific inquiry. Its efficacy is often discussed (Tweney et al., 1980)
“in terms of the role of crucial experiments and strong inference (Platt,
1964). Naming serves to identify the mutually exclusive hypotheses under
test. However, as we have pointed out, the history of science reveals that
such episodes are in fact rare and usually inconclusive. Unfortunately, of
course, this also suggests that the counterfactual strategy itself could not
be expected to be much in evidence in real scientific inquiry.

While the actual processes of hypothesis generation still remain to be
elucidated, it is certain that world knowledge will play a central role. No
strategy which subjects could adopt is ever guaranteed to find target rule
T. The space of possibilities is too large. The set of all number triples is
itself uncountably infinite, let alone the members of the power set of that
set, each of which would, in extension, define a property. Experimenter
and subject alike make massive assumptions about what is reasonable. The
principle assumption is that T is a rule describable using the number
theoretic predicates of which the normal, intelligent adult is likely to be
aware. These shared assumptions reveal the reliance which hypothesis
generation and test places on prior world knowledge. The choice of
predicates to incorporate in hypotheses and target rules has been con-
strained by the subject’s and experimenter’s respective world knowledge.
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An understanding of human reasoning and the 2-4-6 task in particular
will rely on the development of accounts of hypothesis generation that
integrate with theories of hypothesis testing (Fodor, 1983; Klayman & Ha,
1989). However, despite some notable progress (e.g. Holland et al., 1986;
Langley et al., 1987; Sternberg, 1988), it must be conceded that the
processes of hypothesis generation and thus of scientific creativity in
general remain profoundly obscure (Fodor, 1983). Given the central role
of these processes, it is tempting to recall Fodor’s pessimistic conclusion
in discussing this issue that, “In this respect, cognitive science hasn’t even
started. . .”” (Fodor, 1983, p. 129), and to reflect that little has changed in
the intervening years.
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