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Modelling probabilistic effects
in conditional inference: Validating 57
search or conditional probability?

Mike Oaksford” & Nick Chater™

RESUMO

Recentemente, W. Schroyens e W. Schaeken (2003) propuseram uma extensdo da teoria dos
modelos mentais denominada modelo de procura de validagdo. Aqueles autores argumentaram que
este modelo explica melhor os dados obtidos em tarefas de inferéncia condicional do que o modelo
da probabilidade condicional de M. Oaksford, N. Chater e J. Larkin (2000). Argumentaram,
igualmente, que o modelo de procura de validacdio pode explicar os efeitos probabilisticos na
inferéncia condicional. No presente artigo é avaliada a capacidade destes dois modelos para se
ajustarem aos dados obtidos nas experiéncias 1 e 2 de M. Oaksford et al (2000). Estas sdo as duas
dnicas experiéncias que manipulam explicitamente os pardmetros dos dois modelos. Mostra-se que
o modelo da probabilidade condicional se ajusta melhor aos dados do que o modelo de procura de
validagdo. Também sdo discutidas as consequéncias da adopcdo do modelo de procura de validagcao
para a racionalidade humana. Conclui-se que a teoria das probabilidades fornece uma abordagem

mais promissora para o raciocinio defectivel do dia a dia.

PaLavras-CHave: Inferéncia condicional; Modelo de procura de validacdo; Modelo da probabilidade
condicional; Teoria das probabilidades.

The conditional, if p then g, is central to any account of human reasoning. Con-
ditionals allow us to describe causal relations, to express rules, hypotheses, and
contingent relationships. Once formalised they provide the foundation of logical
systems that supply the criteria by which we judge each other’s reasoning. However,
there is continuing disagreement in the psychology of reasoning on how they are best
to be treated. The two main theoretical approaches, mental logic (e.g., Rips, 1994;
Braine & O’Brien, 1998) and mental models (e.g., Johnson-Laird & Byrne, 1991),
have adopted material implication as their computational level theory of the condi-
tional. That is, the conditional is treated as truth-functional: a conditional if p then g
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is true if and only if p is false or ¢ is true. Experimental work has concentrated on
the indicative or “straight” (Bennett, 1995) conditional, e.g., if Oswald didn’t shoot
Kennedy, then someone else did, or, if you turn the key the car starts. In the
philosophy of language and logic, “...the majority view [is] that straight conditionals
are a matter of subjective conditional probabilities” (Bennett, 1995, p. 332). One
consequence of this view is that people, “do not use “if” to express propositions,
evaluable in terms of truth” (Edgington, 1995, p. 280). And if conditionals do not
have truth conditions then they would not appear to be truth functional, as many psy-
chological theories assume (although this view has its detractors [Lewis, 1976]).
Thus, there is a tension in the study of conditionals between normative theory, which
treats indicative conditionals probabilistically, and psychological theory, which treats
indicative conditionals truth functionally.

However, in line with current normative theories, Oaksford, Chater and Larkin
(2000) recently proposed a model of human conditional reasoning based on sub-
jective conditional probability as an extension of their probabilistic treatment of con-
ditional hypotheses in data selection tasks (Oaksford & Chater, 1994, 1996, 1998, in
press-a; Oaksford & Wakefield, in press). This model has been shown to provide as
good fits to the data on the standard conditional inference task as mental models
theory (Oaksford & Chater, in press-b). This is important because the conditional
probability model makes no processing assumptions and so provides as a good a fit
using only the resources of normative probability theory. This is in contrast to mental
models theory, which has to invoke rationally unjustified processing assumptions in
addition to standard logic to provide comparable fits to the data. The conditional
probability model has also been extended to account for other effects in conditional
reasoning (Oaksford & Chater, in press-c), including suppression effects (Byrne,
1989) and order effects (e.g., Evans, Handley & Buck, 1998).

Recent criticisms of the conditional probability model (Schroyens & Schaeken,
2003; for a reply, see Oaksford & Chater, 2003) have argued that probabilistic effects
in conditional reasoning might be captured in mental models theory by postulating
the existence of a validating search process. This process operates after the standard
mental models processes have generated a possible conclusion. Participants then
search long term memory for a possible counterexample. The probability that a
counterexample is available will determine the probability with which an inference is
drawn. Schroyens, Schaeken, Fias, and d’Ydewalle (2000) suggest that set-size should
affect the availability of counterexamples, the larger the set the more available the
counterexample. These authors explored how the number of possibilities may
influence set-size. For example, for the rule if A then 2, there is only one possibility
in which the antecedent and the consequent are both true, i.e., an A, 2 case.
However, assuming only the numerals 0 — 9 are in use, there are 9 possible
counterexample, where the antecedent is true but the consequent is false, i.e., A
paired with any numeral other than 2. Frequency should also affect availability. It
may just happen that A, 2 cases simply occur far more frequently than these other
possibilities. Frequencies of counterexamples were explicitly manipulated by Oaksford
et al (2000). Consequently, in this paper we will explore how well the conditional
probability model and the validating search model fare in modelling Oaksford et al’s
(2000) data.



Modelling probabilistic effects in conditional inference:
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We begin by introducing the conditional inference task. We then introduce the
conditional probability model. We first show how a novel prediction of the model is
confirmed by Schroyens and Schaeken’s (in press) recent meta-analysis of the
conditional inference task. We then introduce Schroyens and Schaeken’s (in press)
validating search model. These two models are then fitted to the data from Oaksford
et al’s (2000) Experiments 1 and 2 and their comparative fits assessed.

The Conditional Inference Task

In the conditional inference task participants are presented with a conditional
sentence such as if a bird is a raven (p), then it is black (q) (the conditional pre-
mise), and various facts relating to the antecedent (p) or consequent (g) of the sen-
tence (the categorical premise). From these pairs of premises logic dictates that
various inferences should be made or withheld. So from this rule and the fact that
Tweety is a raven you should infer that Tweety is black (logically this is called modus
ponens, “MP”). Logic also says that from this rule and the fact that Tweety is not
black you should infer that Tweety is not a raven (logically this is called modus
tollens, “MT”). Logically you can not infer anything else. However, people are far
more willing to make the MP inference than the MT inference, even though there is
no logical reason to do so. Moreover, people are also willing to endorse logical
fallacies like inferring that Tweety is not black from the fact that Tweety is not a
raven (this is called the fallacy of denying the antecedent, “DA”) and that Tweety is a
raven from the fact that Tweety is black (this is called the fallacy of affirming the
consequent, “AC”). The fallacies are endorsed less often than both logical inferences
but logically they should not occur at all.

Oaksford et al’s (2000) experiments, which we model in this paper, were designed
to confirm the conditional probability model’s explanation of Evans’ negations para-
digm (e.g., Evans, 1977, 1993; Evans, Clibbens and Rood, 1995; Evans & Handley,
1999; Evans, Newstead & Byrne, 1993). Therefore, we now introduce this variant on
the task. The negations paradigm involves incorporating negations in the antecedents
and consequents of the rules. This creates four different task rules (A: Affirmative;
N: Negative): if p then q (AA), if p then not-q (AN), if not-p then g (NA), and if
not-p then not-g (NN), (Evans & Lynch, 1973). This manipulation means that half
the conclusions of any inference, MP, DA, AC, or MT will be affirmative and half of
them will be negative, i.e., the conclusion will contain a negation. Negative
conclusion bias is observed when participants endorse more inferences with a
negative conclusion than those with an affirmative conclusion. So, for example, in a
meta-analysis of the studies cited above, DA was endorsed by only 45.74% of
participants when the conclusion was positive, i.e., for AN and NN (a DA conclusion
negates the consequent which for these rules is not-g, and not-not-q is equivalent
to g). However, DA was endorsed by 69.83% of participants when the conclusion
was negative, i.e., for AA and NA. Oaksford et al (2000) showed how a probabilistic
model of conditional inference can explain negative conclsion bias. We now outline
this model and show how it explains these data.
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The Conditional Probability Model

According to the conditional probability model (Oaksford et al., 2000) people
will endorse the different inferences depending on their degree of belief in the con-
clusion given the premises and other background information. MP is straightforward.
The conditional degree of belief in the proposition that, for example, birds (B) fly (F)
is P(x flyslx is a bird) (P(FxIBx)). In an MP inference, a categorical premise that
affirms the antecedent, is also presented, e.g., Tweety is a bird, and participants must
indicate whether they think the conclusion, Tweety flys, can be drawn. So, parti-
cipants now know that P(Tweety is a bird) = 1, and they are asked what are the
chances that Tweety flies, i.e., what is the probability that Tweety flies given that
Tweety is a bird, P(FxIBx).That is, someone’s degree of belief that they can draw the
MP should reflect their degree of belief in the conditional:

P(MP) = P(Fx | Bx) (1)

For the remaining inferences Oaksford et al. (2000) assumed that people have
prior beliefs about, for example, the base rates of flying animals, P(Fx), and birds,
P(Bx). So in an AC inference, where P(Tweety flys) = 1, Bayes’ theorem can be used
to calculate the relevant conditional probability P(Bx | Fx), that Tweety is a bird given
that she can fly, i.e.,

P(AC) = P(ij)](i%;i)f’(Bx) ?)

Conditional probabilities for P(DA) and P(MT) can be calculated, from the fact

that the joint probability that something is not a bird and can not fly, P(—Fx A —Bx),
can also be defined in term of P(Fx), P(Bx) and P(Bx | Fx).

P(—Fx A —Bx) =1- P(Fx) — P(Bx)(1- P(Fx| Bx)) (3)

Therefore, the probability that an animal does not fly given it is not a bird
(DA) is:

1- P(Fx) — P(Bx)(1- P(Fx | Bx)) 4)

P(DA) =
e 1—-P(Bx)

and the probability that an animal is not a bird given that it does not fly is:

1— P(Fx) — P(Bx)(1— P(Fx | Bx))
1- P(Fx)

P(MT) = (5)

In sum, in Oaksford et al. (2000) people were assumed to combine their degree
of the belief in the conditional premise with prior beliefs about base rates to derive
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their degree of belief that the conclusion is true given the truth of the categorical
premise. Expressions for the appropriate conditional probabilities for all the infe-
rences can be derived from P(Fx), P(Bx) and P(Bx|Fx). More generally, with respect
to a conditional, if p then g, we label these probabilities, P(p), P(q), and P(q|p).
These are the free parameters of the conditional probability model that we fit to the
data on conditional reasoning. Although all the conditionals we are going to model
can be regarded as implicitly universally quantified, we continue to use the p, g nota-
tion standard in the psychological literature. Before turning to Oaksford et al’s (2000)
explanation of the negations paradigm we point out a further novel prediction of this
model.

Positive Correlations Between Inferences

One consequence of this model is that all the inferences should be positively
related. This can be seen by briefly introducing the suppression effect in conditional
inference (Byrne, 1989; Cummins, 1995). For example, if someone is told that birds
fly and that uninjured birds fly they are less willing to endorse the conclusion that
Tweety flys given the premise that Tweety is a bird because Tweety might be injured.
Thus this type of information, called an additional antecedent, can suppress MP and
MT inferences. According to Oaksford and Chater (in press-c) this information
reduces the perceived probability that birds fly or equivalently it raises the probability
that an animal does not fly even though it is a bird (P(not-g|p)). Similarly, if
someone is told that birds fly and that bats fly they are less willing to endorse the
conclusion that Tweety is a bird given the premise that Tweety flys because Tweety
might be a bat. Thus this type of information, called an alternative antecedent, can
suppress AC and DA inferences. According to Oaksford and Chater (in press-c) this
information increases the perceived probability that an animal does fly even though it
is not a bird (P(q | not-p).

According to other theories of the suppression effect, there is no relationship
between additional and alternative antecedents. In these theories (see section on the
Validating Search Model below) the ease of retrieving these cases from long term
memory determines whether they influence people’s reasoning. Yet no theorist has
proposed that the retrievability of additional and alternative antecedents are related.
However, according to the conditional probability model the associated probabilities,
P(not-g | p) for additional antecedents and P(q | not-p) for alternative antecedents, are
positively related. This can be seen by substituting P(not-g|p) for 1 - P(q|p), and
1 - P(q | not-p) for P(not-g | not-p) in equation (4) (the probability assessed for DA
is P(not-q | not-p) which is 1 - P(q | not-p)). This yields:

- P@-P(p)  _Pp)
I=F(p) 1=F(p)

P(g1—p) P(—ql p) (6)

That is, P(q | not-p) and P(not-q|p) are linearly related with P@)-P(p) ,q
1-P(p)
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the intercept and I_‘Ii;iz.)_i as the slope. Oaksford and Chater (in press-c) showed how
—I\p

this means that increases in P(not-g | p) can also affect DA and AC, i.e., increasing
the probability of additional antecedents should decrease endorsement of all inferen-
ces. Exactly this result was found by George (1997). This suggests that there should
be positive correlations not only between the probabilities of drawing the valid infe-
rence MP vs. MT and the fallacies DA vs. AC, but also between the valid inferences
and the fallacies. No other theory makes this prediction.

We tested this prediction in the meta-analysis of 65 standard conditional infe-
rence tasks presented by Schroyens and Schaeken (2003). The mean proportion
of each inference endorsed, with study as the unit of analysis, were MP: .97
(SD = .036); DA: .55 (SD = .17); AC: .63 (SD = .20); and MT: .72 (SD = .14).
The variance associated with the MP inference was very low. Consequently,
correlations with MP might be unlikely to show up. Nonetheless, MP and MT
were positively correlated, n(63) = .23, p < .05, as were DA and AC, r(63) = .82,
p < .0001. Moreover, significant positive correlations were also observed between MT
and AC, r(63) = .37, p < .0025, and between MT and DA, r(63) = .51, p < .0001.
Close to significant positive correlations were also observed between MP and AC,
r63) = .20, p = .061, and MP and DA, r(63) = .17, p < .084. These results seem to
confirm the prediction of the conditional probability model that the factors that
produce the suppression effect are positively related. Moreover, according to the
conditional probability account, these factors are always considered in conditional
inference regardless of whether additional or alternative antecedents are explicitly
introduced, as in our birds fly example and in Byrne (1989). Cummins, Lubarts,
Alksnis and Rist (1991) and Cummins (1995) reached similar conclusions when they
found similar suppression effects without explicitly introducing additional or alter-
native antecedents. Moreover, we will see later on that recent extensions of the men-
tal models approach (see section on the Validating Search Model below) also make
this assumption.

Probabilities and Negations

Oaksford et al’s explanation of the negations paradigm relies on Oaksford and
Stenning’s (1992) account in which identifying contrast sets is one important function
of negations. For example, the interpretation of “Johnny didn’t serve coffee” (where
“coffee” is the focus) is that he served a drink other than coffee. The superordinate
category “drinks” provides the universe of discourse and the contrast set is defined by
the operation of set difference, i.e., it is the set of drinks Johnny could serve, less
coffee. This account is called the “otherness” theory of negation which goes back to
Plato (see also, Apostel, 1972; Horn, 1989; Ryle, 1929). The set of drinks less coffee
is likely to be much larger than the set of coffee drinks. Consequently Oaksford and
Chater (1994) suggested that negated categories are treated as high probability
contrast sets (higher at least than their un-negated counterparts). The following
equivalences were therefore suggested for the rules in the conditional inference task:
if p, then ¢ & LL; if p, then not-q < LH; if not-p, then ¢ & HL; if not-p, then
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not-q < HH (where H = high and L = low and the pair, e.g., HL, is ordered to
indicate a high P(p) and low P(g) rule). These equivalences allow polarity biases to
be re-interpreted. Negative conclusion bias can be regarded as a preference for high
probability conclusions and affirmative premise bias can be regarded as a preference
for low probability (categorical) premises. Oaksford et al (2000) showed that high
probability conclusions are also associated with higher values of the relevant
conditional probabilities. So, for example, for the DA inference on if p then g, the
probability of not-q given not-p i.e., P(not-q | not-p), is higher when the probability
of not-g, P(not-q), is high. Consequently, high probability conclusions, lead to high
probabilities that an inference should be endorsed.

Oaksford et al (2000) varied probabilities in the conditional inference task
instead of negations and observed a high probability conclusion effect directly
analogous to negative conclusion bias. It is the data from the three experiments in
Oaksford et al (2000) to which we fit the different models of conditional inference.
We now introduce the validating search model (Schroyens & Schaeken, 2003;
Schroyens, et al, 2000).

The Validating Search Model

Schroyens and Schaeken (2003, see also, Schroyens, et al, 2000; Schroyens,
Schaeken, & d’Ydewalle, 2001) proposed a validating search model that they regard
as a supplement to Johnson-Laird and Byrne’s (1991) mental models theory. In
mental models theory people interpret conditionals in terms of the cases that make
the rule true. People initially represent the conditional, if p then g, in working
memory either as 7(a) or as 7(b), where 7(a) is the representation for the standard
conditional and 7(b) is that for the bi-conditional. For the bi-conditional, not only is
it true that if p then g but it is also true that if g then p.

(a) [p] q (b) ] [q] (7

The ellipsis indicates that there might be other conditions that can “flesh out”
this representation and the square brackets indicate that p (or ¢) is exhausted and can
not be paired with anything else. Each line in a mental model is like the lines of a
truth table. Given the premise p, the representation in 7(a) indicates that the
conclusion g is licensed because 7(a) says that all (given by [ ]) the objects that are p
are also g. Consequently, people are happy to draw the MP inference. However,
nothing can be inferred given the premise —g as it does not match anything in
working memory. In contrast, in 7(b) the premise g will also suggest the g can only
be paired with p, so people will draw the AC inference. MT can be drawn when 7(a)
or 7(b) is “fleshed out” with the remaining combinations that make the rule true:

(a) (7] q (b) - 7] (4] (8)
P g P
» 9
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From 8(a) or 8(b), it can be seen that —g can only be paired with —p, so the
MT inference can be made. Moreover, from 8(b) it can be seen that —p can only be
paired with —g, so the DA inference can be made.

Schroyens and Schaeken (2003, see also, Schroyens, et al, 2000; Schroyens,
Schaeken, & d”Ydewalle, 2001) propose that after people have constructed a mental
model of the conditional rule and perhaps fleshed it out, they then perform a
validating search of long term memory for potential counterexamples. So for
example, their initial model may suggest that they can make the MP inference to the
conclusion that the car starts, from the premises, if you turn the key the car starts,
and you turn the key. But rather than just go with this conclusion they then search
long term memory for a possible counterexample where the car failed to start even
though the key was turned (p, —gq). If they find one then either they don’t make the
inference or they make it with less confidence. Thus, the validating search process
supplements the construction and manipulation of mental models.

Schroyens and Schaeken (2003) have parameterised this account and fitted it to
their meta-analysis of conditional inference tasks we mentioned above (see section
Positive Correlations Between Inferences). They provided the following equations for
each inference:

P(MP) = 1 - CE,, P(DA) = W, (1 - CE,) )
P(AC) = 1 - CE,, POMT) = W, (1 - CE,)

where CE_, is the probability of finding a p, —¢g counterexample, ie., P(p, —q), CE,
is the probability of finding a —p, g counterexample, ie., P(—p, ¢), and W__ is the
probability of finding a —p, —q instance, i.e., P(—p, —q),. CE, . is the probability of
finding an additional antecedent (see section Positive Correlations Between Inferences),
i.e., the probability of finding a bird that does not fly, e.g., an ostrich or an injured
bird. CE,_ is the probability of finding an alternative antecedent, i.e., the probability
of finding an animal that is not a bird but that does fly, e.g., a bat. Thus, the vali-
dating search model may also provide an alternative account of suppression effects.

It is also worth noting that apart from the MT inference, the validating search
model is formally equivalent to a processing tree (Batchelder & Riefer, 1999)
implementation of mental models theory (Oaksford & Chater, in press-a, in press-b).
Such a model results in the following equations for each inference:

P(MP) =1 - P, P(DA)=P,(1-P) (10)
P(AC) = 1-P, P(MT) = P,

Where P, is the probability of adopting the conditional interpretation (7a) and
P, is the probability of fleshing out (8). P, is an error parameter, because according
to the mental model account the MP inference should always be drawn. However, it
would be unreasonable not to allow for random error (Oaksford & Chater, in press-a).
As Oaksford and Chater (in press-b) observed, this means that the models in (9) and
(10) are formally equivalent, except for MT, under the following translation rules:
CE, =P, CE_, = P, W, = P,. Consequently, although according to each model,
people are engaging in very different activities their ability to fit the data must be

very similar.
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Schroyens and Schaeken (2003) have fitted the validating search model (9)
directly to conditional inference data, even though it was initially introduced as a
supplement to mental models theory (Schroyens, et al, 2000; Schroyens, Schaeken, &
d"Ydewalle, 2001). Consequently, we will also fit this model directly to the conditio-
nal inference data from Oaksford et al (2000). There are two other reasons to do this.

First, as we have just seen, it would appear that the mental models component
may be redundant. Second, the dependent variables in Oaksford et al’s (2000) experi-
ments were inference ratings, which can be interpreted as people’s degree of belief
that the inference goes through. The validating search model can be interpreted in
two ways. Either the probabilities are population parameters or they are individual
parameters. On the first interpretation, they represent the proportion of people endor-
sing an inference. According to this interpretation, whenever people consider an infe-
rence, if they find a counterexample, they don’t endorse it, otherwise they do endorse
it. On the second interpretation, the parameters are individuals’ subjective probabilities
that a counterexample is available. To turn this into a turn/don’t turn decision would
require specifying a decision criterion. On the second interpretation, the model should
make predictions for the inference ratings in Oaksford et al (2000). Moreover, if this
interpretation is ruled out then there may be no mental models account of these data.
Alternatively, it could be argued that according to the mental models account people
should endorse or fail to endorse each inference maximally. However, in for example,
Oaksford et al’s (2000) Experiment 1, only one participant failed to use any interme-
diate values and on average 57% of each participants’ ratings were not at the extreme
ends of the scale. In sum, in order to explain these data the parameters of the
validating search model must be interpretable as individual parameters. Consequently,
this model should be able to fit these data.

We now turn to the model fitting exercise. We fitted each model to the data
from Oaksford et al’s (2000) Experiments 1 and 2.

Model Comparison

Oaksford et al’'s (2000) Experiments 1 and 2 involved explicitly manipulating
the probabilities that are supposed to be involved in both the conditional probability
model and the validating search model. That is, both experiments provided
information about P(p, q), P(p, —q), P(—p, q), and P(—p, —g), from which parti-
cipants could infer P(p), P(q), and P(q|p). Schroyens et al (2000) originally articula-
ted the validating search model in the context of the negations paradigm. They poin-
ted out that experiments using alphanumeric material should show set size effects
determined by the negations. Let us assume that the only numbers in play are the
numerals 0 to 9. Take, for example, the rule if there is an A then there is a 2. For
this rule there is only one possible p, g case, i.e., A2, there are 1 X 9 p, —g cases,
i.e., A paired with any numeral other than 2, there are 25 X 1 —p, g cases, i.e., 2
paired with any letter other than A, and there are 25 X 9 —p, —q cases, i.e., any letter
other than A paired with any number other than 2.

There are two points to make. First, if the antecedent were negated, then for
example, the case corresponding to the true antecedent and false consequent would be
—p, —q rather than p, —q. Consequently, rather than 9 possible counterexamples there
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would now be 225. So negations systematically alter the number possibilities that can
act as counterexamples to a rule. Schroyens et al (2000) therefore concluded that the
set size of cases is related to the ease of coming up with a counterexample and so to
the likelihood that an inference is endorsed. This means that probability or set size
manipulations should affect people’s reasoning performance.

Second, Schroyens et al (2000) define set size with respect to the number of
distinct possibilities that are defined. However, although there is only one possibility
for the p, g case for the if there is an A then there is a 2 rule, these may nonetheless
be far more frequent than all other possible letter-number pairings. It only makes
sense to allow the number of distinct possibilities to determine the relevant probabi-
lities when participants have no further knowledge of the actual frequencies with
which these possibilities occur, as in the standard task version. When these frequen-
cies are known, as they are in Oaksford at al’s (2000) Experiments 1 and 2, then the
actual frequencies of occurrence determine the probabilities of counterexamples.
Consequently, Oaksford et al’s manipulations should affect people’s inferential perfor-
mance according to both the conditional probability model and the validating search
model.

Another feature of Oaksford et al’s (2000) experiments is that they provide
more data points to constrain the parameters of the models we will investigate. Both
the conditional probability model and the validating search model have three para-
meters although there are only four data points in the standard conditional inference
task without negations. However, in Oaksford et al’s experiments, which did not
include negations, there are 16 data points for the standard inferences (as in the
negations paradigm) plus a further 16 data points for the converse inferences. The
converse inferences are the standard inferences with the opposite conclusion, e.g., if p
then g, p, therefore, not-q. This is the converse of MP, labelled MP’. Thus for each
rule participants received eight inferences to perform. The conditional probability
model predicts that the probability of endorsing the converse inference, e.g., P(MP’),
is 1 minus the probability of endorsing the standard inference, i.e., 1 - P(MP). Logi-
cally, the converse inferences should never be endorsed. Consequently, the standard
mental models theory would have to predict that the probability of endorsing these
inferences is always 0. Supplementing mental models with a validating search proce-
dure means that the converse inferences might be endorsed because the search for
counterexamples raises the possibility of the opposite conclusion. Consequently, we
let the validating search model make the same prediction for the converse inferences
as the conditional probability model.

We now compare how well the conditional probability model and the validating
search model can explain the data from Oaksford et al’s (2000) Experiments 1 and 2.

Fitting the models to Oaksford et al’s Experiment I

In the experiments in Oaksford et al (2000) the probabilities of the antecedents
and consequents of the condtional rules were systematically varied to produce four
rules. Each rule corresponded to one of the four rules in the negations paradigm
under the contrast class interpretation (see section Probabilities and Negations). There
was a low probability antecedent and a low probability consequent rule (LL), a low
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probability antecedent and a high probability consequent rule (LH), a high probability
antecedent and a low probability consequent rule (HL), and a high probability antece-
dent and a high probability consequent rule (HH). In Experiments 1 and 2 the proba-
bility manipulation was achieved by telling participants about the distribution of cards
being printed by a machine. In Experiment 1 participants were told that the machine
is printing coloured shapes onto cards and sorting them into bins depending on the
colour or the shape printed on them. The mean probability ratings for this experiment
are shown in the Appendix, Table Al. The details can be obtained from Oaksford et
al (2000). What we require are the values of the relevant probabilities that were set in
these experiments.

Table 1 — The values of the parameters of the validating search and conditional probability models
defined by the probability manipulation in Oaksford et al’s (2000) Experiment 1.

Validating Search Conditional Probability
Rule  P(p,g)  Pp-g  P(op.g) P(-p,~q) P(4lp) P(p) P(g)
LL 167 0 167 667 1.0 167 333
LH 167 0 .500 333 1.0 167 667
HL .200 467 0 333 3 .667 .200
HH .667 0 167 167 1 .667 .833

The values of all the probabilities relevant to the validating search model and
the conditional probability model in Experiment 1 are shown in Table 1. The only
problematic case is the HL rule, which is problematic because it would appear to be
definitely false. That is, most cases are p, not-q¢ counterexamples. Oaksford et al’s
(2000) probability manipulation was designed to produce an HL rule, which it has
achieved (see, P(p) and P(gq) values in Table 1). Moreover, in this model comparison
exercise we are more concerned with the how well the models fit the data, rather
than the relationship with the given probabilities. The given probabilities are related
to the best-fit values of the probabilities in these experiments rather like the pi-function
in prospect theory (Kahneman & Tversky, 1979). Low probabilities are overestimated
and high probabilities are underestimated (see also, Hattori, 2002; Oaksford & Wake-
field, in press).

Table 2 — The predicted probabilities of drawing each inference defined by the probability
manipulation in Oaksford et al’s (2000) Experiment 1 (values for the conditional probability
model are in parentheses).

Inferences
Rule MP DA AC MT
L. 1.0(1.0) .56(.80) .83(.50) .67(1.0)
LH 1.0(1.0) .17(.40) .50(.25) 33(1.0)
HL .53(.30) .33(1.0) 1.0(1.0) .18(.42)

HH 1.0(1.0) .14(.50) .83(.80) .17(1.0)

227




228

Qaksford, M. & Chater, N.

Table 2 shows the predicted probability of drawing each inference in the condi-
tional inference task in Oaksford et al’s Experiment 1 (predictions for the converse
inferences can be calculated as 1 minus these values). As Table 2 shows, the condi-
tional probability model makes quite extreme predictions because in the probability
manipulation there were never any exceptions specified. However, in this experiment
participants were told that the rules described faults. That is, they did not describe the
normal operation of the machine. This manipulation was designed to get participants
to consider the possibility of exceptions. So in the actual results Oaksford et al
(2000) predicted less extreme results. Table 2 also shows that in general both models
predict the high probability conclusion effect. The values that are in bold correspond
to conclusions with high probabilities.

We fitted the model to the data by looking for the parameter values that mini-
mised the sum of squared differences between the observed probabilities of inferences
endorsed and the predicted probabilities. We fit the models to each participants data
individually. The ratings in the experiment ranged from 1 (definitely do not endorse)
to 7 (definitely endorse). To fit the model these ratings were converted to the 0 — 1
probability interval by subtracting 1 and dividing by 6. To estimate best fitting
parameter values we minimised-the sum of squared differences using a steepest des-
cent search implemented in Mathematica’s (Wolfram, 1991) MultiStartMin function
(Loehle, 2000). This function supplements the Newton-Raphson method with a grid
search procedure to ensure a global minimum. We report the fits for the conditional
probability model first.

The Conditional Probdbility Model

According to both models, most of the relevant probabilities should vary for
each rule. Consequently, for each rule we defined separate P(p) and P(q) parameters.
However, the task only involved a single manipulation of P(glp) indicating that there
may be exceptions (except for the HL rule), i.e., participants were told that the task
rules described faults. It was therefore felt appropriate to only allow a single value
for P(qlp) for all four rules. Consequently there were nine parameters overall and 32
data points per participant. As indexes of goodness-of-fit, we cite R? the proportion
of variance accounted for, and RMSD, the root mean squared deviation. There are
problems with these measures as indices of goodness-of-fit but we reserve discussion
of these problems until the Discussion section.

When modelling individual participants data, one can expect some participants’
complete data set to be just noise. This may be due to inattention to the task, bore-
dom or the desire simply to get the experiment over with as quickly as possible. We
therefore examined participants goodness-of-fit measures. Three participants data
could be classified as extreme outliers and their data was excluded from further
analysis. Exactly the same three participants were classified as outliers when fitting
the validating search model. Consequently, these exclusions do not bias the results in
anyway. The average R? was .76 (SD = .20; Median = .81), i.e., the average
proportion of variance account for in the 32 data points per participant was 76%. The
average RMSD was .16 (SD = .09; Median = .15). These are not spectacularly good -
fits and are worse than the fits reported by Oaksford et al (2000) when modelling
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just the standard inferences rather than both the standard and converse inferences.
However, the purpose of this exercise was comparative, to see which of the validating
search model and the conditional probability model provides the better fits to these
data.

Table 3 — The predicted probabilities of drawing each inference for each rule in Oaksford et al’s
(2000) Experiment 1 for the conditional probability model calculated from the average best fit
parameter values (SDs in parentheses).

Inference Parameter
Rule MP DA AC MT P(qlp) P(p) P(q)
LL .90 .64 .66 .90 .90(.12) 43(.24) 59(.21)
LH .90 51 .59 .87 .90(.12) 44(.25) .67(.28)
HL .90 .66 .76 .84 90(.12) 55(.25) 65(.18)
HH .90 .67 .84 78 90(.12) .65(.23) 70(.24)

The predicted probabilities of drawing each inference for each rule are shown
in Table 3. Table 3 also shows the average best-fit parameter values from which these
probabilities were calculated. The observed probabilities of drawing each inference
are shown in Table Al in the Appendix.

Validating Search Model

As for the conditional probability model, because there was only a single general
manipulation of exceptions, we used only a single value for the probability of a true
antecedent and false consequent, i.e., P(p, =¢) or CE_ . This also had the consequence
that both the conditional probability model and the validating search model had
exactly the same number of free parameters, i.e., 9. The model was fitted to the data
in exactly the same way as for the conditional probability model. The same three
participants were classified as outliers as for the conditional probability model. The
average R? was .71 (SD = .20; Median = .76). The average RMSD was .19 (SD = .09;
Median = .16). The average predicted probabilities of drawing each inference for each
rule are shown in Table 4. Table 4 also shows the average best-fit parameter values.

Table 4 — The predicted probabilities of drawing each inference for each rule in Oaksford et al’s
(2000) Experiment 1 for the validating search model calculated from the average best fit parameter
values (SDs in parentheses).

Inference Parameter
Rule MP DA AC MT P(p,~q) P(-p,q) P(=p, ~q)
LL 91 .60 .64 .85 09(.11) 36(.15) 93(.11)
LH 91 Sl .58 .80 .09(.11) A42(.22) .88(.19)
HL 91 .61 72 7 .09(.11) .28(.15) 85(.17)

HH 91 62 76 74 .09(.11) 24(.15) 81(.21)
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To compare the two models we first performed a paired r-test on the RMSD
values for each participant for each model. The RMSD values were significantly
lower for the conditional probability model, #26) = 3.85, p < .0005, indicating that
this model provided significantly closer fits to the data than the validating search
model. Moreover, the RMSD values were lower for the conditional probability model
than for the validating search model for 21 of 27 participants, p < .005 (Binomial
test). That is, the conditional probability model provided better fits for significantly
more participants than the validating search model.

Looking at Table 4 it is clear that the best-fit parameter values for the valida-
ting search model violate the axioms of probability theory. In Oaksford et al’s (2000)
experiments, participants were given information about the parameters of Schroyens
and Schaeken’s (2003) model in terms of explicit frequencies. This means that CE,,
= P(p, ~q), CE_, = P(—p,q) and W, = P(—p,—q) (see also, Oaksford & Chater, in
press-b, 2003). Now P(p,q) + P(p,—~q) + P(—p,q) + P(—p,—q) = 1. However, the
means of the best-fit parameter values in Table 4 all sum to greater than one for each
rule. This means that for each rule P(p,q) < 0, which violates the axioms of
probability theory. Such subadditivity in people’s probability judgements is well
documented (see, for example, Tversky & Koehler, 1994). However, in this case it
seems due not to any irrationality on the part of the participants but due to Schroyens
and Schaeken’s (2003) particular theoretical formulation, i.e., their parameter values
were not constrained to conform to probability theory. Consequently, the validating
search model only provides the level of fit it does because it attributes participants in
this task with inconsistent beliefs about the availability of the various cases in
Oaksford et al’s (2000) experimental set up.

If we refit the validating search model to the data under the constraint that the
parameters must sum to less than or equal to 1 for each rule, then the comparative
model fit is even worse. The RMSD values were significantly lower for the condi-
tional probability model, #(26) = 7.25, p < .0001 and they were lower for the condi-
tional probability model than for the validating search model for all 27 participants.
As Oaksford and Chater (2003) argued, the conditional probability model only relies
on the resources of probability theory. That is, the equations of the model are
constrained by the rules of probability theory and so the conditional probability
model provides a normative computational level theory of the conditional inference
task. The validating search model, on the other hand, relies on processing assump-
tions concerning the availability of counterexamples. In Schroyens et al (2000) it was
possible to argue that the probability of accessing counter-examples was not constrai-
ned by the frequency of the various truth table cases. However, in Oaksford et al’s
(2000) experiments this was exactly the information they were given and so accessi-
bility should have been rationally constrained by frequency of occurrence, which in
these experiments had to respect the axioms of probability theory.

In sum, for Oaksford et al’s (2000) Experiment 1, the conditional probability
model provided better fits to the data than the validating search model. In the rest of
this main modelling section, we compare the conditional probability model and the
validating search model for the two conditions in Oaksford et al’s (2000) Experiment
2. In this experiment, the relevant frequencies of the truth table cases were again
explicitly manipulated.
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Fitting the Models to Oaksford et al’s Experiment 2

In Oaksford et al’s Experiment 2 participants were told that the machine was
printing letters and number on either side of some cards. Again the details can be
obtained from Oaksford et al (2000). The mean probability ratings for this experiment
are shown in the Appendix, Table A2.

Table 5 — The values of the parameters of the validating search and conditional probability models
defined by the probability manipulation in Oaksford et al’s (2000) Experiment 2.

Validating Search Conditional Probability
Rule P(p,g)  Pp.~q) P(-p,q) P(=p,~q) P(qlp) P(p) P(q)
LL .01 0 .01 .98 1.0 .01 02
LH 01 0 .98 .01 1.0 .01 .99
HL .99 0 .001 .009 1.0 .99 991
HH .99 0 .009 .001 1:0 .99 999

The values of all the probabilities relevant to the validating search model and
the conditional probability model in Experiment 2 are shown in Table 5. In this
experiment there was no attempt to introduce an HL rule, because it was shown in
Experiment 1 that people seemed to regard P(g) as higher than P(p) for this, as for
the other rules. Oaksford et al (2000) therefore introduced a manipulation predicted
by the conditional probability model to lead to the high probability conclusion effect
for DA and AC. This can be seen in Table 5 where the small change in P(-p,q) and
P(=p, ~g) leads to the difference in the predicted probability of endorsing these two
inferences between the HL and HH rules. These predicted differences can be seen in
Table 6, which shows the predicted probability of drawing each inference in Oaksford
et al’s Experiment 2. Again, predictions for the converse inferences can be calculated
as 1 minus these values.

Table 6 — The predicted probabilities of drawing each inference defined by the probability
manipulation in Oaksford et al’s (2000) Experiment 1 (values for the conditional probability
model are in parentheses).

Inferences
Rule MP DA AC MT
LL 1.0(1.0) .97(.80) 99(.50) .98(1.0)
LH 1.0(1.0) .0002(.01) .02(.01) .01(1.0)
HL 1.0(1.0) .009(.90) .999(1.0) .009(1.0)
HH 1.0(1.0) .001(.10) .991(.99) .001(1.0)
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As Table 6 shows, both models makes quite extreme predictions because in the
probability manipulation there were never any exceptions specified. Moreover, in this
experiment, participants were not told that the rules described faults. Consequently,
Oaksford et al (2000) argued that participants might consider P(glp) to be higher in
this experiment. Two conditions were used in this experiment, with all participants
performing the task in both conditions. The first condition was called the “explicit”
condition, because the inferences were presented in standard form, e.g., if A then 2,
not-2, therefore not-A (MP), with the negations explicitly presented. In an “implicit”
condition, this same inference would be presented as if A then 2, 7, therefore K.
Participants were also informed that the materials were binary. This manipulation was
predicted to make it easier for participants to make MT inferences. Consequently,
Oaksford et al argued that the implicit condition should lead to similar rates of
endorsement for MP and MT. Table 6 again shows that in general both models
predict the high probability conclusion effect. The values that are in bold . correspond
to conclusions with high probabilities.

We fittéd the model in the same way as for Oaksford et al’s Experiment 1. The
ratings in this experiment ranged from -5 (definitely do not endorse) to 5 (definitely
endorse). To fit the model these ratings were converted to the 0 — 1 probability
interval by adding 5 and dividing by 10. As before, we report the fits for the condi-
tional probability model first.

The Conditional Probability Model

For the explicit group, two participants data could be classified as extreme
outliers and their data was excluded from further analysis. Exactly the same two
participants were classified as outliers when fitting the validating search model.
The average R? was .71 (SD = .22; Median = .75). The average RMSD was .19
(SD = .09; Median = .19). The predicted probabilities of drawing each inference for
each rule are shown in Table 7. Table 7 also shows the average best-fit parameter
values from which these probabilities were calculated. The observed probabilities of
drawing each inference are shown in Table A2 in the Appendix.

Table 7 — The predicted probabilities of drawing each inference for each rule in Oaksford et al’s
(2000). Experiment 2, Explicit Condition, for the conditional probability model calculated from the
average best fit parameter values (SDs in parentheses).

Inference Parameter
Rule MP DA AC MT P(qlp) P(p) P(q)
LI .94 78 .66 .97 94(.12) 31(.19) 44(.21)
LH .94 42 46 93 .94(.12) .34(.25) .70(.20)
HL .94 .65 74 91 .94(.12) S51(:22) .65(.20)

HH .94 53 .69 .88 94(.12) 253(.21) 72(.18)
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Table 8 — The predicted probabilities of drawing each inference for each rule in Oaksford et al’s
(2000) Experiment 2, Implicit Condition, for the conditional probability model calculated from the
average best fit parameter values (SDs in parentheses).

Inference Parameter
Rule MP DA AC MT P(qlp) P(p) P(q)
LE .94 .65 .70 93 94(.10) 46(.23) 62(.21)
LH .94 47 .56 91 94(.10) 42(.25) T1(.24)
HL .94 .66 77 .90 .94(.10) 55(.24) 07621)
HH .94 .50 .70 .87 .94(.10) .55(.21) 74(.20)

For the implicit group, one participants data could be classified as an extreme
outlier and their data was excluded from further analysis. Exactly the same partici-
pant was classified as an outlier when fitting the validating search model. The ave-
rage R> was .74 (SD = .18; Median = .76). The average RMSD was .19 (SD = .08;
Median = .18). The predicted probabilities of drawing each inference for each rule
are shown in Table 8. Table 8 also shows the average best-fit parameter values from
which these probabilities were calculated. The observed probabilities of drawing each
inference are shown in Table A3 in the Appendix.

Validating Search Model

To maintain comparability with the conditional probability model we again used
only a single value for the probability of a true antecedent and false consequent, i.e.,
P(p, =g) or CE,,. For the explicit condition, the same two participants were classified
as outliers as for the conditional probability model. The average R* was .68 (SD = .21:
Median = .73). The average RMSD was .21 (SD = .08; Median = .20). The average
predicted and observed probabilities of drawing each inference for each rule are
shown in Table 9. Table 9 also shows the average best-fit parameter values.

Table 9 — The predicted probabilities of drawing each inference for each rule in Oaksford et al’s
(2000) Experiment 2, Explicit Condition, for the validating search model calculated from the
average best fit parameter values (SDs in parentheses).

Inference Parameter
Rule MP DA AC MT P(p,~q) P(=p.q) P(=p, ~q)
LI .94 .65 .68 .89 .06(.12) 32(.13) .95(.08)
LH .94 40 46 .82 .06(.12) 54(.21) 87(.21)
HL .94 .62 70 .84 06(.12) .30(.16) .89(.16)

HH 94 52 61 81 06(.12) 39(.17) 86(.16)
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Table 10 — The predicted probabilities of drawing each inference for each rule in Oaksford et al’s
(2000) Experiment 2, Implicit Condition, for the validating search model calculated from the
average best fit parameter values (SDs in parentheses).

Inference Parameter
Rule MP DA AC MT P(p,~q) P(-p.,q) P(=p, ~q)
234 L 94 61 67 .86 .06(.09) 33(.17) 91(.14)
LH 94 48 55 83 .06(.09) 45(.26) .88(.18)
HL .94 71 o .86 .06(.09) 23(.17) 92(.11)
HH 94 54 63 .81 .06(.09) 37(.17) .86(.18)

To compare the two models we first performed a paired t-test on the RMSD
values for each participant for each model. The RMSD values were significantly
lower for the conditional probability model, #(22) = 3.86, p < .0005, indicating that
this model provided significantly closer fits to the data than the validating search
model. Moreover, the RMSD values were lower for the conditional probability model
than for the validating search model for 19 of 23 participants, p < .0001 (Binomial
test). That is, for the explicit condition in Oaksford et al’s (2000) Experiment 2, the
conditional probability model provided better fits for significantly more participants
than the validating search model.

When we refit the validating search model to the data under the constraint that
the sum of the parameters must be less than or equal to 1 for each rule, the comparative
model fit is even worse. The RMSD values were significantly lower for the condi-
tional probability model, #(22) = 6.81, p < .0001 and they were lower for the condi-
tional probability model than for the validating search model for 22 of 23 parti-
cipants, p < .0001 (Binomial test).

We also fitted the validating search model to the implicit condition in Oaksford
et al’'s (2000) Experiment 2. The same participant was classified as an outlier as for
the conditional probability model. The average R? was .71 (SD = .18; Median = .74).
The average RMSD was .20 (SD = .07; Median = .19). The average predicted and
observed probabilities of drawing each inference for each rule are shown in Table 10.
Table 10 also shows the average best-fit parameter values.

To compare the two models we first performed a paired #-test on the RMSD
values for each participant for each model. The RMSD values were significantly
lower for the conditional probability model, #23) = 4.05, p < .0005, indicating that
this model provided significantly closer fits to the data than the validating search
model. Moreover, the RMSD values were lower for the conditional probability model
than for the validating search model for 20 of 24 participants, p < .0001 (Binomial
test). That is, for the implicit condition in Oaksford et al’s (2000) Experiment 2, the
conditional probability model provided better fits for significantly more participants
than the validating search model.

When we refit the validating search model to the data under the constraint that
the sum of the parameters must be less than or equal to 1 for each rule, the comparative
model fit is even worse. The RMSD values were significantly lower for the conditio-
nal probability model, #23) = 8.13, p < .0001 and they were lower for the conditio-
nal probability model than for the validating search model for all 24 participants.
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In sum, the results of the model comparison exercise for Oaksford et al’s (2000)
Experiment 2 replicated the results found for their Experiment 1. Participants’ perfor-
mance in Oaksford et al’s experiments seems to be modelled more closely by the
conditional probability model rather than the validating search model.

Discussion

In this paper, we have addressed the question of how best to explain the effects
of quantitative probabilistic manipulations in the conditional inference task. Both the
validating search model and the conditional inference model should be capable of
explaining these effects because the procedure used by Oaksford et al (2000)
explicitly varied the parameters of both models. However, as we have just seen the
conditional probability model provided better overall fits, especially when the parameters
of the validating search model were rationally constrained such that the probabilities
of the different logical possibilities had to sum to 1. In this section, we discuss some
possible problems for the model comparison exercise before discussing these results
in the context of other recent findings. We close by considering how these results
bear on the rationality debate.

We used two indicators of goodness of fit in this paper, the proportion of
variance accounted for and the root mean squared deviation. The former provides an
indication of how well the model accounts for the overall trend in the data, the latter
provides an indication of the average fit to the exact location of each data point.
However, as indexes of goodness of fit, these measures do not penalise models for
complexity. Complex models may look like they are fitting the data better although
they are not doing a better job at capturing the underlying cognitive processes. This
is because complex models are able to fit the noise in the data, i.e., they are “over-
fitting.” Model complexity has two features. First, the more parameters a model has
the more complex it is. However, in the model comparison exercise we have just
reported both models had exactly the same number of parameters. The second feature
of model complexity is functional form (Pitt, Myung, & Zhang, 2002). That is, the
form of the equations ((1) to (5) for the conditional probability model and (9) for the
validating search model) can influence how prone a model may be to overfitting.
There are complex statistical procedures (Pitt et al, 2002) that can be used to
establish a more level playing field. However, in the current case, there are some
other relevant considerations.

First, in contrast to the validating search model, there is no alternative for the
functional form of the conditional probability model. Once it is decided that people
may be responding in terms of conditional probability then the equations (1) to (5)
are set by normative probability theory. On the other hand, the validating search
model is implemented as a processing tree model (Schroyens, et al, 2001). The
number and order of processes is in the hands of the modeller. This introduces a
degree of freedom not open to the conditional probability model. Although, these
choices will be reflected in the number of parameters and a processing tree
implementation will set a bound on functional complexity. Second, the probabilities
in the validating search model attach to the arcs between processes and indicate how
likely a process is to be enacted. The resulting formulae (9) do not reflect anything
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of the complexity of the enacted process. For example, how are we to quantify the
complexity of inferring a counterexample from a mental model of the premises? This
is an essential part of the validating search model but this additional level of
complexity is not reflected in the equations (9). Third, unless rationally constrained,
as when we imposed the constraint that the parameters must sum to 1, the parameters
of the validating search model are not transparent to experimental manipulation. It is
logically impossible to present a frequency manipulation of the parameters of this
model, as in Oaksford et al (2000), that would correspond to the best fitting para-
meter values. The only alternative would appear to be to regard these parameters as
arbitrary processing parameters, which are not open to experimental manipulation.
This is the same as the probability that a participant will flesh out their initial mental
model, which similarly can not be manipulated experimentally.

In sum, if the conditional probability model has a complexity advantage, the
validating search model has many other advantages. First, it can be more readily
tailored to fit the data. Second, the full complexity of the model is not captured by
the equations that are used to fit the data. Finally, if its parameters are not rationally
constrained, then they do not have to be transparent to experimental manipulation.
These advantages seem to outweigh any that might accrue to the conditional proba-
bility model by virtue of functional form.

The results of this model comparison exercise are consistent with recent fin-
dings that people are more sensitive to conditional probability manipulations than to
the kind of manipulations predicted to effect conditional reasoning by the validating
search model (Evans, Handley, & Over, in press). The validating search model
suggests that the probability of endorsing the MP inference is 1 minus the probability
of an exception. This is consistent with the material conditional of standard logic in
which false antecedent cases are true instances of the conditional. So for example, an
animal that is not a bird and flys, e.g., a bat, and an animal that is not a bird and
does not fly, e.g., a rat, are true instances of the claim that birds fly. So according to
this account the MP inference should be endorsed in proportion to the probability of
true instances.

Evans et al (in press) tested this prediction using a deceptively simple mani-
pulation. According to the conditional probability model, the only cases relevant to
whether MP will be endorsed are where the antecedent is true, e.g., the proportion of
birds that fly. Now if you know that there are 100 animals, and 10 are birds and 5
fly and 5 don’t fly, then according to the conditional probability model, MP will have
a .5 probability of being endorsed. However, according to the validating search model
(or material implication) it will have a .95 probability of being endorsed. Now if
everything remains the same, but there are now only 20 animals in total, the condi-
tional probability will remain unchanged but according to the validating search model
MP will now have a .75 probability of being endorsed. Systematically manipulating
these probabilities in this way, Evans et al found that people were sensitive to condi-
tional probability but not to the predictions of material implication.

The results of our model comparison exercise are consistent with these results.
They show that a conditional probability interpretation can be extended to the other
inferences and provide a better explanation of Oaksford et al’s (2000) data than the
validating search model which is based on material conditional interpretation. Notice
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that this interpretation extends beyond MP, because of course AC in the validating
search model is just MP on the converse conditional, if g then p, e.g., all flying
animals are birds.

Although the equations provided by the validating search model for MP and AC
are consistent with material implication and material equivalance (bi-conditional), the
model overall is not consistent with standard logic. This is for the simple reason that
if participants are interpreting the task logically and so they assume that the rule is
true then according to standard logic there can not be any counterexamples. Conse-
quently, there can be no point in conducting a validating search. The only alternative
is that the standard of reasoning that people are attempting to approximate is not
given by standard logic but rather by some other normative theory. This means that
the addition of the validating search stage marks a move to a different standard of
rationality. In standard mental model theory, logically pristine performance is always
possible once all the models are fleshed out. However, in this new theory people are
not even trying to reason according to this logical standard. This raises two questions:
are people reasoning to any normative standard and does it matter?

Oaksford and Chater (2003) argued that the problem whereby the best fit model
parameters sum to greater than 1, suggests that people are not trying to reason
according to a probabilistic standard in the validating search model. Our model
comparison exercise revealed the same behaviour for Oaksford et al’s (2000) data.
This suggests that some other rational standard may need to be invoked. Alternatively,
it may suggest that psychology does not need to concern itself with normative
standards. We think this would be a mistake (Chater, Oaksford, Nakisa, & Redington,
in press). Showing that people’s behaviour conforms to a normative standard explains
why people behave as they do. It also explains why in general their behaviour is
successful. To successfully guide our actions in the real world we need to avoid
contradictions and avoid making bets that we are bound to lose, which are guaranteed
by logic and probability theory respectively. Of course logically speaking we might
have weaker and more tractable goals, which may map onto some weaker non-
-standard logic, like avoiding contradictions in context but not across contexts. This
would suggest that perhaps the psychological processes in the validating search model
might approximate a non-standard logical system. One perhaps that allows
defeasibility, where conclusions may be defeated or suppressed like the conclusion
that Tweety flies is defeated by learning (or retrieving from long term memory) the
fact that Tweety is an Ostrich.

We have addressed the prospects for defeasible logical systems, either as stan-
dards of rationality or as actual psychological mechanisms, many times over the last
decade or so (Chater & Oaksford, 1990; Oaksford & Chater, 1991, 1993, 1995,
1998). We have observed that such systems are required to explain many aspects of
human reasoning and in particular might be thought to account for suppression
effects (for a recent proposal along these lines see, Van Lambalgen & Stenning,
2002). However, as we have also pointed out several times, most of these systems fail
to capture many straightforward everyday inferences. For example, suppose you know
that Academics are prone to heart disease but that Runners are not, what do you infer
when you encounter an Academic runner? Most of us would unequivocally draw the
inference that she is unlikely to get heart disease. However, according to defeasible
logical systems all that can be inferred is that either she does or she does not get
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heart disease, i.e., an uninformative tautology. Notice that the reason we unequi-
vocally make the right inference depends on nothing less than our understanding of
way the world works. Thus the move to providing a standard of reasoning not based
on standard logic or probability theory, is a profound challenge. Without it, it is
mmpossible to say whether the validating search model is capable of explaining why
people’s reasoning is generally successful.

In conclusion, there are many important consequences of introducing a valida-
ting search stage to mental models theory. It makes explicit, what we have argued
many times before (e.g., Oaksford & Chater, 1993, 1995, 1998): mental models
theory requires an account of how counterexamples are retrieved from memory and a
specification of the defeasible logical system that it approximates. These are non-
trivial issues. In our opinion, this is the wrong route to go down. Probability theory
provides a better account of the relevant data, as we have shown in this paper and
elsewhere (Oaksford & Chater, 2003). Moreover, probability theory is compatible
with both neural network and Bayesian network representations (Pearl, 1988, 2000)
of world knowledge. Although, we do not pretend that this is an easier road to travel
we think that we have again shown that it is the one most likely to lead to the
desired destination.
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Appendix

Table Al - The average observed probabilities (SD in parentheses) of drawing each inference for
each rule in Oaksford et al’s (2000) Experiment 1.

Standard Inferences Converse Inferences

Rule MP DA AC MT MP’ DA’ ALY MT’

LL  91(19) .63(.28) .57(32) .88(.19) .16(.27) .35(.30) .38(.31) .16(.23)
LH 94(12) .41(31) .63(.34) .85(.28) .08(.22) .48(.35) .42(.30) .10(.19)
HL  .85(29) .59(.29) .72(.28) .75(.30) .15(.27) .33(.29) .29(.25) .21(.25)
HH  93(11) .50(.38) .83(.20) .80(.30) .12(.27) .44(31) .15(.15) .20(.28)

Table A2 — The average observed probabilities (SD in parentheses) of drawing each inference for
each rule in Oaksford et al’s (2000) Experiment 2, Explicit Condition.

Standard Inferences Converse Inferences

Rule MP DA AC MT MP’ DA’ AC’ MT’

LL  91(24) .73(29) .53(36) .87(.23) .07(.22) .24(.21) .34(.27) .09(.22)
LH .93(20) .41(.34) .40(.34) .76(.34) .07(.18) .55(.32) .54(37) .16(.28)
HL .97(.06) .59(.33) .73(.31) .78(.34) .09(.23) .36(.30) .28(.24) .05(.13)
HH 93(.12) .44(37) .67(33) .75(.39) .02(.05) .48(.31) .37(.26) .06(.13)

Table A3 — The average observed probabilities (SD in parentheses) of drawing each inference for
each rule in Oaksford et al’s (2000) Experiment 2, Implicit Condition.

Standard Inferences Converse Inferences

Rule MP DA AC MT MP’ DA’ AC’ MT’

LL .93(.19) .53(.37) .56(.31) .91(.24) .11(.22) .30(.25) .24(.25) .14(.29)
LH 92(20) .45(40) .45(36) .83(.31) .07(21) .50(31) .35(.33) .14(.30)
HL 97(.06) .68(.31) .75(.29) .91(.19) .07(.13) .24(.24) .20(.19) .13(.30)
HH 97(.05) .38(.32) .61(.35) .89(.22) .09(.23) .45(.32) .25(.26) .15(.31)
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RESUME

W. Schroyens et W. Schaeken (2003) ont proposé récemment une extension de la théorie de
modeles mentaux, dénommée modeéle de recherche de validation. Ils soutiennent que ce modéle
offre une compréhension des données obtenues avec la tiche d’inférence conditionnelle supérieure a
celle qu'on peut obtenir avec le modéle de la probabilité conditionnelle de M. Oaksford, N. Chater et
J. Larkin (2000). IlIs soutiennent aussi bien que le modele de recherche de validation permet de
comprendre des effets probabilistiques dans I'inférence conditionnelle. Dans cet article, on compare
I'aptitude de chacun de ces modeéles pour s’accommoder aux données obtenues par M. Oaksford et
al (2000). Les expériences 1 et 2 sont 1’objet de cet évaluation, car elles sont le seules qui ont
explicitement manipulé les paramétres des deux modéles. On montrent que le modeéle de la
probabilité¢ conditionnelle s’accommode mieux aux données empiriques que le modéle de recherche
de validation. Les conséquences de 1’adoption du modeéle de recherche de validation pour la ratio-
nalité humaine sont aussi discutées. On arrive a conclure que la théorie des probabilités offre une
approche plus adéquate pour I'entreprise de comprendre le raisonnement défectible de tous les jours.

Mors-cLE: Inférence conditionnelle; Probabilité conditionnelle; Modeles mentaux; Théorie des pro-
babilités.

ABSTRACT

Recently W. Schroyens and W. Schaeken (2003) proposed an extension to mental models
theory called the validating search model. They argued that this model explains the data on the
conditional inference task better than the conditional probability model of M. Oaksford, N. Chater
and J. Larkin (2000). They also argued that the validating search model can explain probabilistic
effects in conditional inference. In this paper, the ability of these two models to fit the data from
M. Oaksford et al’s (2000) Experiments 1 and 2 is assessed. These are the only experiments that
explicitly manipulate the parameters of both models. It is shown that the conditional probability
model provides better fits to the data than the validating search model. The consequences of
adopting the validating search model for human rationality are also discussed. It is concluded that
probability theory provides a more promising approach to everyday defeasible reasoning.

Key-worps: Conditional inference; Conditional probability; Mental models; Probability theory.
Key-Worps: Conditional inference; Validating search model; Conditional probability model.
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