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Rational models of cognition attempt to explain the
function or purpose of cognitive processes.

CONSTRAINTS ON MODELS OF
COGNITION

A scientific explanation of psychological, bio-
logical, or social phenomena can take one of two
complementary forms. The first is mechanistic:
phenomena are explained by analysing their in-
ternal causal structures. The second is purposive:
phenomena are explained in terms of their pur-
pose, what problems they solve.

In biology, purposive explanation concerns the
function of biological structures and processes (e.g.
the function of the heart is to pump blood). The
same style of explanation is applied to animal
behavior (e.g. the function of building nests is to
provide a safe shelter for eggs). In the social sci-
ences, ‘rational choice’ explanation views people as
having the purpose of maximizing their ‘utility’,
given the constraints imposed by their environ-
ment. Moreover, in everyday life, we explain each
other’s behavior by giving reasons for why this
behavior ‘makes sense’, given our desires and our
beliefs.

In cognitive science, however, mechanistic ex-
planation has been predominant. Computational
models, whether symbolic or connectionist, have
focused on specifying architectures and algorithms
for cognition; and experimental work has been
oriented towards mechanistic questions, such as
the limits of human memory, or the number of,
and interconnections between, memory stores.
The picture of the cognitive system that emerges
from this focus on mechanistic explanation is as an
assortment of apparently arbitrary mechanisms,
subject to equally arbitrary limitations, with no
apparent rationale or purpose.

By downplaying purposive explanation of cogni-
tion, cognitive science may have been missing an

essential source of constraints on cognitive models:
namely, that in many domains, cogntion appears to
be extremely well adapted to the challenges that it
faces. In perception, motor control, language pro-
cessing, common-sense reasoning and decision-
making, the cognitive system reliably (though not
infallibly) handles perceptual and cognitive prob-
lems of great complexity, typically under condi-
tions of uncertainty. The cognitive system can
learn to deal with a remarkably broad range of

challenges, both natural and artificial, from uni-

cycling to backgammon to musical composition.
And the cognitive system acquires, stores and re-
trieves a rich understanding of the everyday world.
It seems plausible that, as for other biological struc-
tures, this success is not accidental. It seems more
likely that the cognitive system is superbly adapted
to serve practical and computational ends. Thus,
cognitive models should, ideally, not just fit the
empirical data, but also, where possible, make
sense as solutions to adaptive problems that the
cognitive system faces.

CHARACTERIZING RATIONALITY IN
HUMAN COGNITION

Rational models of human cognition aim to
explain the function or purpose of human be-
havior or the cognitive processes underlying it.
An idealized methodology for providing such
explanation is given in Anderson’s (1990) notion
of ‘rational analysis’. This methodology has six
steps:

1. Goals. Specify precisely the goals of the cognitive
system.

2. Environment. Develop a formal model of the environ-
ment to which the system is adapted.

3. Computational limitations. Make minimal assumptions
about computational limitations.

4. Optimization. Derive the optimal behavior function.
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5. Data. Examine the empirical evidence to see whether
the predictions of the behavior function are confirmed.
6. Iteration. Repeat, iteratively refining the theory.

The idea is that a rational model explains behavior
as an optimal (or nearly optimal) attempt (step 4) to
achieve certain goals (step 1), in the context of a
particular environment (step 2), and with possibly
limited computational resources (step 3). The pro-
ject is empirical, in two senses. First, the goals,
environment, and computational limitations can
only be determined empirically. Second, the goal
of a rational analysis is to explain patterns of em-
pirical data. So, an optimal system for some aspect
of categorization or reasoning is only of interest if it
captures empirical data on how people do categor-
ize or reason. As with any empirical scientific pro-
ject, there may be a continuous adjustment of all the
elements of the explanation, in order to obtain the
most compelling relationship between theory and
data (step 6).

How can this ‘rational’ style of explanation relate
to, and potentially constrain, a mechanistic cognit-
ive model? The answer is that the mechanistic cog-
nitive model can implement the computations
specified by the rational model (or, at least, some
approximation to them). Thus, building a rational
model complements, rather than displaces, tradi-
tional mechanistic modeling in cognitive science.

Rational models have been developed, more or
less independently, in a number of contexts. One
tradition, mentioned above, is ‘rational choice” ex-
planation, which, in its classical form, assumes that
individuals make decisions in order to maximize
their expected utility (or, in some biological
contexts, to maximize their number of viable off-
spring). Rational choice explanation is the founda-
tion of modern economics, and has applications in
animal behavior, sociology, and political science. In
cognitive science, rational models have been de-
veloped for specific cognitive processes in percep-
tion, categorization, reasoning, problem solving,
memory, and language processing, rather than for
the whole individual. We will discuss work in this
tradition below; related approaches have also been
developed independently in the study of vision
(e.g. likelihood and simplicity models in perceptual
organization, ideal observer models, and the
computational level of explanation (Marr, 1982;
Pomerantz and Kubovy, 1986) ).

Many rational models, including those described
below, use a particular theorem of probability,
Bayes’ theorem. Given two states A and B, the
joint probability P(A&B) is the probability
that both A and B are true; and the conditional

probability of A given B, written P(A|B), is the
proportion of the probability associated with B
that is also associated with A. So by definition,
P(A|B) = P(A&B)/P(B) and P(B|A) = P(A&B)/
P{A). Putting these together, and rearranging, we
obtain Bayes’ theorem:

PAIB)P(B) N
P(A) g
This simple theorem has considerable application,

not only in building rational models of cognition,
but also in statistics and the philosophy of science.

P(B|A) =

BAYESIAN MODELS OF
CATEGORIZATION

Formulating a rational model of categorization re-
quires specifying a goal or purpose which categor-
ization is presumed to serve. Anderson (1991)
makes the natural assumption that the goal of cat-
egorization (step 1) is to predict unknown features
of objects from known features. He assumes, fur-
ther, that the environment consists of classes char-
acterized by a probabilistic relationship with a set
of features (step 2). Specifically, given a class C;, the
assumption is that for each feature Fj, there is a
probability P(F;|C;) that a item of category C;
has the feature F;; and, crucially, that this prob-
ability is conditonally independent of the other
features that item hasﬂ (formally, this means that

P(F1&... & F,|C:) = [1 P(F;|Ci)). Here, we shall
ju=d

assume that step 3 is null: no specific computa-
tional constraints are needed. Given these assump-
tions, what is the optimal way of predicting
unknown features from known features (step 4)?
Rather than follow Anderson's precise formula-
tion, for clarity we follow a simpler analysis.
Suppose we know that an item possesses a set
of features Fy,...F,, and want to know
P(Ci|F1&...&F,) for each category C; That is,
we want to know the probability that the item
belongs to category C;. Bayes’ theorem gives:

P(Fi& ... &F, |C)P(Cy)

PG| Fyesss P(F1 & ... &Fy)

&F,) =

2

P(C}) 1:[l P(F;|Ci)

@)

“P(F1&k ... &Fy)

where the simplification follows because of
Anderson’s crucial assumption that features are
conditionally independent. Finally, suppose we
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want to predict an unknown feature F, . If
we knew that the item belonged to category C;
then the probability of F,.; would simply be P
(Fr+1|C;). But we know Fy,...F,, rather than the
category, so we must predict F, ; by summing
these conditional probabilities, weighted by the
probability of each C; given the known features
Fy, ... F,. Thus,

P(FrilF1&.. . &Fy)
=Y P(Ci|Fi & ... &F,)P(Fy41/C) (4)
i

Bayesian models of categorization, of various
forms, have been used to capture empirical data
on categorization (rational analysis step 5) (Ander-
son, 1991), as well being widely applied in artificial
intelligence and machine leaming,

BAYESIAN MODELS OF BELIEF
REVISION

Bayesian models are also widely used in under-
standing reasoning and belief revision. In artificial
intelligence, there has been a substantial shift from
logical to Bayesian views of how beliefs should be
revised in the light of new knowledge. According
to the logical viewpoint, knowledge is encoded as a
set of axioms and their deductive consequences.
New knowledge (for example, derived from per-
ception or language) is encoded in new axioms;
and the new knowledge state consists of the larger
set of axioms and their deductive consequences.
This approach runs into difficulties where new
and old knowledge appear inconsistent, because,
in most logical systems, all propositions (and their
negations) follow from a contradiction, leading to
potential inferential chaos. There have been numer-
ous ingenious attempts to combat this difficulty.
But the Bayesian approach aims to avoid it entirely,
by assuming that ‘knowledge’ is only probabilistic
- or more accurately, by modeling belief revision in
terms of probability theory. In the probabilistic
framework, outright contradictions need not occur
(what was previously probable simply becomes
much less probakble). Pearl (1988) and others have
shown how to build parallel distributed computa-
tional mechanisms for probabilistic reasoning for
belief revision. These models depend, crucially, on
making independence assumptions between pieces
of information, in just the way that we assumed
above that features were conditionally independ-
ent given the relevant category. For example,
effects are typically viewed as conditionally inde-
pendent given their causes.

A similar shift from logic to probability theory

has been advocated in the psychology of reasoning, -
It has been argued that various apparent experi.

mental demonstrations of irrationality can be
reinterpreted. For example, Oaksford and Chater
(1994) have argued that searching instances which
confirm a conditional rule ‘if A then B’ is rational
from a probabilistic perspective, because a con-
firming instance can substantially raise the prob-
ability that the statement is true. Yet on g,
traditional viewpoint in the psychology of
reasoning, searching for confirmatory evidence is
misguided, because general statements cannot be
logically derived from their instances — the next
observation could always be a refutation. Thus,
the human tendency to seek confirming evidence
may appear irrational from a logical perspective,
but entirely rational according to a Bayesian ra-
tional analysis. (See Reasoning)

EMPIRICAL EVIDENCE FOR AND
AGAINST RATIONALITY

The case noted above highlights the difficulty of
tionality: the interpretation depends on the theor-
etical perspective adopted. But it might seem that
rational models of cognition do not usefully con-
tribute to the debate on whether people are ra-
tional, because they seem to assume the idea of
the rationality of cognition from the outset. The
approach seems to presuppose rationality, regard-
less of any empirical evidence that might be
collected. The picture is, however, not so straight-
forward.

First, the dictates of a rational cognitive model
will typically only be implemented approximately.
These approximations will result in irrational be-
haviour. For example, Chater and Oaksford have
given a Bayesian rational model of how people
reason with syllogisms (e.g., ‘all X are Y, all Y are
Z, therefore, all X are Z'). Where there is a prob-
abilistically valid conclusion for a syllogism, the
heuristics generally generate it successfully; but
they also generate other conclusions, giving ‘ir-
rational” answers for syllogisms where no conclu-
sion follows.

Second, there is an important distinction be-
tween the rationality of specific cognitive processes
and the rationality of the whole person, which is
comprised of the interaction of innumerable cog-
nitive processes. For example, the tendency of the
cognitive system to pay attention to relative rather
than absolute magnitudes may be highly adaptive
in encoding information about the external world
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(because many aspects of the world are ‘scale-
invariant’ (Chater and Brown, 1999)). But this
may give rise to irrationality in risky decision-
making, where, for example, the difference
between prizes of $0 and $10 may be viewed as
far less significant than the difference between
prizes of $90 and $100 (Kahneman et al., 1982) -
even though the differences are objectively the
same. In general, we might conjecture that special-
ized cognitive processes might exhibit greater “ra-
tionality” than the whole individual. This is because
specialized processes need only be adapted to some
relatively narrow class of tasks (e.g. interpreting
stereoscopic disparities between the two eyes, seg-
menting the visual field) which has been encoun-
tered throughout an individual’s life, and perhaps
also through millions of years of evolutionary his-
tory. The whole person, on the other hand, must
cope with an endless variety of tasks (e.g. making
financial decisions), for which neither experience
nor evolution may provide much guidance. If this
is the case, then rational choice explanation, as
described above, may seek support from human
rationality just where it is weakest — a disturbing
reflection from the point of view of the foundations
of economics.

Third, the attempt to apply rational models of
cognition can be viewed as a way of measuring
the degree of rationality of the cognitive system.
The rationality of thought and behavior can only
be assessed against a standard of ‘correct’ perform-
ance. But to choose an appropriate standard of
correct performance, we need to have decided
what computational function the cognitive system
is attempting to perform — and this is the goal of
rational analysis. We cannot merely stipulate the
standards against which cognition should be meas-
ured. If we do so, we run the risk of, for example,
condemning people as irrational because they fail
to reason logically, when they are reasoning quite
rationally according to the dictates of probability,
as noted above. Thus, far from presupposing
human rationality, the project of building rational

models of cognition should provide a test for when
and to what degree people are rational.
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