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3 Rationality, rational analysis,
and human reasoning

Nick Chater and Mike Oalksford

The idea of rationality is central to the explanation of human behaviour.
Only on the assumption that people are at least typically rational can we
attribute beliefs, motives, and desires to people — the assumption of rational-
ity provides the “glue” that holds disparate beliefs, desires, and actions
together in a coherent system. Imagine explaining a routine event, such a
motorist slowing down when approaching a pedestrian crossing. The motor-
ist, we might suggest, noticed that some people were near the crossing,
believed that they were about to cross, wanted to avoid colliding with them,
believed that collision might occur if the car continued at its current speed,
and so on. The goal of such explanation is to provide a rationale for a per-
son’s behaviour, explaining how they understood and acted upon the world,
from their point of view. But constructing a rationale for a piece of behaviour
will only provide an explanation for it if we assume that people are sensitive
to such rationales; that is, unless people exhibit rationality.

This style of explanation is, of course, ubiquitous in our everyday explan-
ation of the thoughts and behaviour of ourselves and others — and it is
embodied not merely in everyday discourse, but is also fundamental to
explanation in the humanities and in literature. In attempting to interpret and
understand other people’s decisions and utterances, we are attempting to pro-
vide rationales for those decisions and utterances. The historian explaining
the actions of a military general, the scholar interpreting a Biblical text, and
the novelist conjuring up a compelling character all rely, fundamentally, on
the assumption that people are, by and large, rational (Davidson, 1984;
Quine, 1960).

The rationales that we provide for each other’s behaviour are typically
extremely subtle and elaborate, but at the same time incomplete and
unsystematic. For example, in explaining why the general made a particular
military decision, the historian may spell out some of the general’s relevant
beliefs and desires, e.g., beliefs concerning the location of enemy forces, the
desire to be viewed as a hero by future generations. But the explanation will
inevitably be partial. The historian will leave out beliefs such as the back-
ground assumptions that future generations will admire victory more than
defeat, that to weaken enemy forces, shelling should be directed at them
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rather than at the surrounding countryside, that shells travel in the direction
of fire and explode on impact, that explosions are injurious to those nearby,
that people fight less well when deprived of supplies, and so on..To
reconstruct a rationale for the general’s actions in full detail would appear to
be an intractable task. This is because explaining the basis for any aspect of
the general’s thought appears to draw on still further beliefs and desires.
Thus, the general’s beliefs about the motion of shells will depend on endless
beliefs about naive physics, about the approximate weight and size of a shell
(e.g., that shells are denser than balloons), about how shells are fired and so
on. Understanding how shells are fired leads on to understanding the proper-
ties of the gun, the properties of gunpowder, and so on indefinitely. The
historian need not, of course, bother to enunciate this apparently endless
store of knowledge in order to communicate with the reader — because this
indefinitely large store of knowledge can be assumed to be common know-
ledge between historian and reader. But the fact that we can and do rely on
common knowledge to underpin everyday explanation of human behaviour
can obscure just how partial and incomplete everyday explanations are.

In this informal, and somewhat ill-defined everyday sense, most of us, most
of the time, are remarkably rational. In daily life, of course, we tend to focus
on occasions when reasoning or decision making breaks down. But our fail-
ures of reasoning are only salient because they occur against the background
of rational thought and behaviour that is achieved with such little apparent
effort that we are inclined to take it for granted. Rather than thinking of our
patterns of everyday thought and action as exhibiting rationality, we tend to
think of them as just plain common sense — with the implicit assumption that
common sense must be a simple thing indeed. People may not think of them-
selves as exhibiting high levels of rationality — instead, we think of each other
as “intelligent”, performing “appropriate” actions, being “reasonable”, or
making “sensible” decisions. But these labels refer to human abilities to make
the right decisions, or to say or think the right thing in complex, real-world
situations — in short, they are labels for everyday rationality.

Indeed, so much do we tend to take the rationality of commonsense
thought for granted, that realizing that commonsense reasoning is immensely
difficult, and hence our everyday rationality is thereby immensely impressive,
has been a surprising discovery, and a discovery made only in the latter part
of the twentieth century. The discovery emerged from the project of attempt-
ing to formalize everyday knowledge and reasoning in artificial intelligence,
where initially high hopes that commonsense knowledge could readily be
formalized were replaced by increasing desperation at the impossible dif-
ficulty of the project. The nest of difficulties referred to under the “frame
problem™ (see, e.g., Pylyshyn, 1987), and the problem that each aspect of
knowledge appears inextricably entangled with the rest (e.g., Fodor, 1983) so
that commonsense does not seem to break down into manageable “packets”
(whether schemas, scripts, or frames, Minsky, 1977, Schank & Abelson,
1977), and the deep problems of defeasible, or non-monotonic reasoning
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(e.2., McDermott, 1987), brought the project of formalizing commonsense
effectively to a standstill. So the discovery is now made — it is now clear that
everyday, commonsense reasoning is remarkably, but mysteriously, successful
in dealing with an immensely complex and changeable world and that no
existing artificial computational system begins to approach the level of human
performance.

Let us contrast this informal, everyday sense of rationality concerning
people’s ability to think and act in the real world, with a concept of rational-
ity originating not from human behaviour, but from mathematical theories
of good reasoning. These mathematical theories represent one of the most
important achievements of modern thought: Logical calculi formalize
aspects of deductive reasoning; axiomatic probability formalizes probabil-
istic reasoning; a variety of statistical principles, from sampling theory
(Fisher, 1922, 1925/1970) to Neyman-Pearson statistics (Neyman, 1950), to
Bayesian statistics (Keynes, 1921; Lindley, 1971), aim to formalize the pro-
cess of relating hypotheses to data; utility and decision theory attempt to
characterize rational preferences and rational choice between actions under
uncertainty; game theory and its variants (e.g., Harsanyi & Selten, 1988; von
Neumann & Morgenstern, 1944) aim to provide a precise framework for
determining the rational course of action in situations in which the reason-
ing of other agents must be taken into account. According to these calculi,
rationality is defined, in the first instance, in terms of conformity with spe-
cific formal principles, rather than in terms of successful behaviour in the
everyday world.

How are the general principles of formal rationality related to specific
examples of rational thought and action described by everyday rationality?
This question, in various guises, has been widely discussed — in this chapter
we shall outline a particular conception of the relation between these two
notions, focusing on a particular style of explanation in the behavioural sci-
ences, rational analysis (Anderson, 1990). We will argue that rational analysis
provides an attractive account of the relationship between everyday and for-
mal rationality, which has implications for both. Moreover, this view of
rationality leads to a re-evaluation of the implications of data from psycho-
logical experiments which appear to undermine human rationality. A wide
range of empirical results in the psychology of reasoning have been taken to
cast doubt on human rationality, because people appear to persistently make
elementary logical blunders. We show that, when the tasks people are given
are viewed in terms of probability, rather than logic, people’s responses can
be seen as rational.

The discussion falls into four main parts. First, we discuss formal and
everyday rationality, and various possible relationships between them.
Second, we describe the programme of rational analysis as a mode of
explanation of mind and behaviour, which views everyday rationality as
underpinned by formal rationality. Third, we apply rational analysis to
re-evaluating experimental data in the psychology of reasoning, from a
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probabilistic standpoint. Finally, we consider implications, problems, and
prospects for project of building a more adequate psychology of reasoning.

RELATIONS BETWEEN FORMAL AND EVERYDAY
RATIONALITY

Formal rationality concerns formal principles of good reasoning — the math-
ematical laws of logic, probability, or decision theory. At an intuitive level,
these principles seem distant from the domain of everyday rationality — how
people think and act in daily life. Rarely, in daily life, do we accuse one
another of violating the laws of logic or probability theory, or praise each
other for obeving them. Moreover, when people are given reasoning problems
that explicitly require use of these formal principles, their performance
appears to be remarkably poor, a point we touched on above. People appear
to persistently fall for logical blunders (Evans, Newstead, & Byrne, 1993) and
probabilistic fallacies (e.g., Tversky & Kahneman, 1974), and to make incon-
sistent decisions (Kahneman, Slovic, & Tversky, 1982; Tversky & Kahneman,
1986). Indeed, the concepts of logic, probability, and the like do not appear to
mesh naturally with our everyday reasoning strategies: these notions took
centuries of intense intellectual effort to construct, and present a tough
challenge for each generation of students.

‘We therefore face a stark contrast: the astonishing fluency and success of
everyday reasoning and decision making, exhibiting remarkable levels of
everyday rationality; and our faltering and confused grasp of the principles
of formal rationality. What are we to conclude from this contrast? Let us
briefly consider, in caricature, some of the most important possibilities, which
have been influential in the literature in philosophy, psychology, and the
behavioural sciences.

The primacy of everyday rationality

This viewpoint takes everyday rationality as fundamental, and dismisses the
apparent mismatch between human reasoning and the formal principles of
logic and probability theory as so much the worse for these formal theories.

This standpoint appears to gain credence from historical considerations —
formal rational theories such as probability and logic emerged as attempts to
systematize human rational intuitions, rooted in everyday contexts. But the
resulting theories appear to go beyond, and even clash with, human rational
intuitions — at least if empirical data that appear to reveal blunders in human
reasoning are taken at face value.

To the extent that such clashes occur, the advocates of the primacy of
everyday rationality argue that the formal theories should be rejected as
inadequate systematizations of human rational intuitions, rather than con-
demning the intuitions under study as incoherent. It might, of course, be
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granted that a certain measure of tension may be allowed between the goal of
constructing a satisfyingly concise formalization of intuitions and the goal
of capturing every last intuition successfully, rather as, in linguistic theory,
complex centre-embedded constructions are held to be grammatical (e.g.,
“the fish the man the dog bit ate swam™), even though most people would
reject them as ill-formed gibberish. But the dissonance between formal
rationality and everyday reasoning appears to be much more profound than
this. As we have argued, fluent and effective reasoning in everyday situations
runs alongside halting and flawed performance on the most elementary
formal reasoning problems.

The primacy of everyday rationality is implicit in an important challenge
to decision theory by the mathematician Allais (1953). Allais outlines his
famous “paradox”, which shows a sharp divergence between people’s
rational intuitions and the dictates of decision theory. One version of the
paradox is as follows. Consider the following pair of lotteries, each involving
100 tickets. Which would you prefer to play?

Al B.

10 tickets worth £1,000,000 1 ticket worth £5,000,000
90 tickets worth £0 8 tickets worth £1,000,000
91 tickets worth £0

Now consider which you would prefer to play of lotteries C and D:
C. D.

100 tickets worth £1,000,000 1 ticket worth £5,000,000
98 tickets worth £1,000,000
1 ticket worth £0

Most of us prefer lottery B to lottery A — the slight reduction in the prob-
ability of becoming a millionaire is offset by the possibility of the really large
prize. But most of us also prefer lottery C to lottery D — we don’t think it is
worth losing what would otherwise be a certain £1,000,000, just for the possi-
bility of winning £5,000,000. This combination of responses, although intui-
tively appealing, is inconsistent with decision theory, as we shall see. Decision
theory assumes that people should choose whichever alternative has the
maximum expected utility. Denote the utility associated with a sum of £X by
U(£X). Then the preference for lottery B over A means that:

10/100.U(£1,000,000) + 90/100.U(£0) < 1/00.U(£5,000,000) +
8/100.U(£1,000,000) + 91/100.U(£0) (1)

and, subtracting 90/100.U(£0) from each side:
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10/100.U(£1,000,000) < 1/100.U(£5,000,000) + 8/100.U(£1,000,000) +
1/100.U(£0) (2)

But the preference for lottery C over D means that:

100.U(£1,000,000) > 1/100.U(£5,000,000) + 98/100.U(£1,000,000) +
1/100.U(£0) (3)

and, subtracting 90/100.U(£1 ,000,000) from each side:

10.U(£1,000,000) > 1/100.U(£5,000,000) + 8/100.U(£1,000,000) +
1/100.U(£0) (4)

But (2) and (4) are in contradiction.

Allais’s paradox is very powerful - the appeal of the choices that decision
theory rules out is considerable. Indeed, rather than condemning people’s
intuitions as incorrect, Allais argues that the paradox undermines the norma-
Five status of decision theory — that is, Allais argues that everyday rational
intuitions take precedence over the dictates of a formal calculus.

Another example arises in Cohen’s (1981) discussion of the psychology of
reasoning literature. Following similar arguments of Goodman (1954),
Cohen argues that a normative or formal theory is “acceptable . . . only so far
as it accords, at crucial points with the evidence of untutored intuition,”
(Cohen, 1981, p. 317). That is, a formal theory of reasoning is acceptable only
in so far as it accords with everyday reasoning. Cohen uses the following
example to demonstrate the primacy of everyday inference. According to
standard propositional logic the inference from (5) to (6) is valid:

If John’s automobile is a Mini, John is poor, and (5
if John’s automobile is a Rolls, John is rich

Either, if John’s automobile is a Mini, John is rich, or (6)
if John’s automobile is a Rolls, John is poor

Clearly, however, this violates intuition. Most people would agree with (5) as
at least highly plausible; but would reject (6) as absurd. 4 Jortiori, they would
not accept that (5) implies (6) — otherwise they would have to judge (6) to be at
least as plausible as (5). Consequently, Cohen argues that standard logic
simply does not apply to the reasoning that is in evidence in people’s in-
tuitions about (5) and (6). Like Allais, Cohen argues that rather than condemn
people’s intuitions as irrational, this mismatch reveals the inadequacy of
prg)positional logic as a rational standard. That is, everyday intuitions have
primacy over formal theories.

But this viewpoint is not without problems. For example, how can rational-
ity be assessed? If formal rationality is viewed as basic, then the degree to
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which people behave rationally can be evaluated by comparing performance
against the canons of the relevant normative theory. But if everyday rational-
ity is viewed as basic, assessing rationality appears to be down to intuition.
There is a danger here of losing any normative force to the notion of rational-
ity — if rationality is merely conformity with each other’s predominant in-
tuitions, then being rational is like a musician being in tune. On this view,
rationality has no absolute significance; all that matters is that we reason
harmoniously with our fellows. But there is a strong intuition that rationality
is not like this at all — that there is some absolute sense in which some reason-
ing or decision making is good, and other reasoning and decision making is
bad. So, by rejecting a formal theory of rationality, there is the danger that
the normative aspect of rationality is left unexplained.

One way to re-introduce the normative element is to define a procedure
that derives normative principles from human intuitions. Cohen appealed to
the notion of reflective equilibrium (Goodman, 1954; Rawls, 1971) where
inferential principles and actual inferential judgements are iteratively bought
into a “best fit” until further judgements do not lead to any further changes
of principle (narrow reflective equilibrium). Alternatively, background knowl-
edge may also figure in the process, such that not only actual judgements but
also the way they relate to other beliefs are taken into account (wide reflective
equilibrium). These approaches have, however, been subject to much criticism
(e.g., Stich & Nisbett, 1980; Thagard, 1988). For example, there is no guaran-
tee that an individual (or indeed a set of experts) in equilibrium will have
accepted a set of rational principles, by any independent standard of rational-
ity. For example, the equilibrium point could leave the individual content in
the idea that the Gambler’s Fallacy is a sound principle of reasoning.

Thagard (1988) proposes that instead of reflective equilibrium, developing
inferential principles involves progress towards an optimal system. This
involves proposing principles based on practical judgements and background
theories, and measuring these against criteria for optimality. The criteria
Thagard specifies are (i) robustness: principles should be empirically
adequate; (ii) accommodation: given relevant background knowledge, devi-
ations from these principles can be explained; and (iii) efficacy: given relevant
background knowledge, inferential goals are satisfied. Thagard’s (1988)
concerns were very general: to account for the development of scientific
inference. From our current focus on the relationship between everyday and
formal rationality, however, Thagard’s proposals seem to fall down because
the criteria he specifies still seem to leave open the possibility of inconsis-
tency, i.e., it seems possible that a system could fulfil (i) to (iii) but contain
mutually contradictory principles. The point about formalization is of course
that it provides a way of ruling out this possibility and hence is why a tight
relationship between formality and normativity has been assumed since
Aristotle. From the perspective of this chapter, accounts like reflective equi-
librium and Thagard’s account, which attempts to drive a wedge between
formality and normativity, may not be required. We argue that many of the
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mismatches observed between human inferential performance and formal
theories are a product of using the wrong formal theory to guide expectations
about how people should behave.

An alternative normative grounding for rationality seems intuitively
appealing: good everyday reasoning and decision making should lead to suc-
cessful action; for example, from an evolutionary perspective, we might define
success as inclusive fitness, and argue that behaviour is rational to the degree
that it tends to increase inclusive fitness. But now the notion of rationality
appears to collapse into a more general notion of adaptiveness. There seems
to be no particular difference in status between cognitive strategies that lead
to successful behaviour, and digestive processes that lead to successful meta-
bolic activity. Both increase inclusive fitness; but intuitively we want to say
that the first is concerned with rationality, which the second is not. More
generally, defining rationality in terms of outcomes runs the risk of blurring
what appears to be a crucial distinction — between minds, which may be more
or less rational, and stomachs, which are not in the business of rationality at
all.

The primacy of formal rationality

Arguments for the primacy of formal rationality take a different starting
point. This viewpoint is standard within mathematics, statistics, operations
research, and the “decision sciences” (e.g., Kleindorfer, Kunreuther, &
Schoemaker, 1993). The idea is that everyday reasoning is fallible, and that
it must be corrected by following the dictates of formal theories of rationality.

The immediate problem for advocates of the primacy of formal rationality
concerns the justification of formal calculi of reasoning: Why should the
principles of some calculus be viewed as principles of good reasoning, so that
they may even be allowed to overturn our intuitions about what is rational?
Such justifications typically assume some general, and apparently incontro-
vertible, cognitive goal; or seemingly undeniable axioms about how thought
or behaviour should proceed. They then use these apparently innocuous
assumptions and aim to argue that thought or decision making must obey
specific mathematical principles.

Consider, for example, the “Dutch book™ argument for the rationality of
the probability calculus as a theory of uncertain reasoning (de Finetti, 1937;
Ramsey, 1931; Skyrms, 1977). Suppose that we assume that people will accept
a “fair” bet: that is, a bet where the expected financial gain is 0, according to
their assessment of the probabilities of the various outcomes. Thus, for
example, if a person believes that there is a probability of 1/3 that it will rain
tomorrow, then they will be happy to accept a bet according to which they
win two dollars if it does rain tomorrow, but they lose one dollar if it does
not. Now, it is possible to prove that, if a person’s assignment of probabilities
to different possible outcomes violates the laws of probability theory in any
way whatever, then the following curious state of affairs holds. It is possible
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to offer the person a combination of different bets, such that they will happily
accept each individual bet as fair, in the above sense. But, despite being happy
that each of the bets is fair, it turns out that whatever the outcome the person
will lose money. Such a combination of bets — where one side is certain to lose
—is known as a Dutch book; and it is seems incontrovertible that accepting a
bet that you are certain to lose must violate rationality. Thus, if violating the
laws of probability theory leads to accepting Dutch books, which seems
clearly irrational, then obeying the laws of probability theory seems to be a
condition of rationality.

The Dutch book theorem might appear to have a fundamental weakness —
that it requires that a person willingly accepts arbitrary fair bets. But in reality
of course this might not be so — many people will, in such circumstances, be
risk aversive, and choose not to accept such bets. But the same argument
applies even if the person does not bet at all. Now the inconsistency concerns
a hypothetical — the person believes that if the bet were accepted, it would be
fair (so that a win, as well as a loss, is possible). But in reality the bet is
guaranteed to result in a loss — the person’s belief that the bet is fair is
guaranteed to be wrong. Thus, even if we never actually bet, but simply aim
to avoid endorsing statements that are guaranteed to be false, we should
follow the laws of probability.

We have considered the Dutch book justification of probability theory in
some detail to make it clear that justifications of formal theories of rational-
ity can have considerable force. Rather than attempting to simultaneously
satisfy as well as possible a myriad of uncertain intuitions about good and
bad reasoning, formal theories of reasoning can be viewed, instead, as
founded on simple and intuitively clear-cut principles, such as that accepting
bets that you are certain to lose is irrational. Similar justifications can be
given for the rationality of the axioms of utility theory and decision theory
(Cox, 1961; von Neumann & Morgenstern, 1944; Savage, 1954). Moreover,
the same general approach can be used as a justification for logic, if avoiding
inconsistency is taken as axiomatic. Thus, there may be good reasons for
accepting formal theories of rationality, even if, much of the time, human
intuitions and behaviour strongly violate their recommendations.

If formal rationality is primary, what are we to make of the fact that, in
explicit tests at least, people seem to be such poor probabilists and logicians?
One line would be to accept that human reasoning is badly flawed. Thus, the
heuristics and biases programme (Kahneman & Tversky, 1973; Kahneman et
al., 1982), which charted systematic errors in human probabilistic reasoning
and decision making under uncertainty, can be viewed as exemplifying this
position (see Gigerenzer & Goldstein, 1996), as can Evans’ (1982, 1989) heur-
istic approach to reasoning. Another line follows the spirit of Chomsky’s
(1965) distinction between linguistic competence and performance — the idea
is that people’s reasoning competence accords with formal principles, but in
practice, performance limitations (e.g., limitations of time or memory) lead to
persistently imperfect performance when people are given a reasoning task.
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Reliance on a competence/performance distinction, whether implicitly or ex-
plicitly, has been very influential in the psychology of reasoning: for example,
mental logic (Braine, 1978; Rips, 1994) and mental models (Johnson-Laird,
1983; Johnson-Laird & Byrne, 1991) theories of human reasoning assume
that classical logic provides the appropriate competence theory for deductive
reasoning; and flaws in actual reasoning behaviour are explained in terms of
“performance” factors.

Mental logic assumes that human reasoning algorithms correspond to
proof-theoretic operations (specifically, in the framework of natural deduc-
tion, e.g., Rips, 1994). This viewpoint is also embodied in the vast programme
of research in artificial intelligence, especially in the 1970s and 1980s, which
attempted to axiomatize aspects of human knowledge and view reasoning as
a logical inference (e.g., McCarthy, 1980; McDermott, 1982; McDermott &
Doyle, 1980; Reiter, 1980, 1985). Moreover, in the philosophy of cognitive
science, it has been controversially suggested that this viewpoint is basic to
the computational approach to mind: the fundamental claim of cognitive
science, according to this viewpoint, is that “cognition is proof theory”
(Fodor & Pylyshyn, 1988, pp. 29-30; see also Chater & Oaksford, 1990).

Mental models concurs that logical inference provides the computational-
level theory for reasoning, but provides an alternative method of proof.
Instead of standard proof theoretic rules, this view uses a “semantic” method
of proof. Such methods involve searching for models (in the logical sense) — a
semantic proof that A does not imply B might involve finding a model in
which A and B both hold. Mental models theory uses a similar idea, although
the notion of model in play is rather different from the logical notion. How
can this approach show that A does imply B? The mental models account
assumes that the cognitive system attempts to construct a model in which A is
true and B is false; if this attempt fails, then it is assumed that no counter-
example exists, and that the inference is valid (this is similar to “negation as
failure” in logical programming; Clark, 1978).

Mental logic and mental models assume that formal principles of rational-
ity — specifically classical logic — (at least partly) define the standards of good
reasoning. They explain the nonlogical nature of people’s actual reasoning

. behaviour in terms of performance factors, such as memory and processing
limitations.

Nonetheless, despite its popularity, the view that formal rationality has
priority in defining what good reasoning is, and that actual reasoning is
systematically flawed with respect to this formal standard, suffers a funda-
mental difficulty. If formal rationality is the key to everyday rationality, and if
people are manifestly poor at following the principles of formal rationality
(whatever their “competence™ with respect to these rules), even in simplified
reasoning tasks, then the spectacular success of everyday reasoning in the
face of an immensely complex world seems entirely baffling.
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Everyday and formal rationality are completely separate

Recently, a number of theorists have suggested what is effectively a hybrid of
the two approaches outlined above. They argue that formal rationality and
everyday rationality are entirely separate enterprises. For example, Evans and
Over (1996a, 1997) distinguish between two notions of rationality (1997,

p-2):

Rationality,: Thinking, speaking, reasoning, making a decision, or

: 3 : S :
acting in a way that is generally reliable and efficient for achieving one’s
goals.

Rationality,: Thinking, speaking, reasoning, making a decision, or acting
when one has a reason for what one does sanctioned by a normative
theory.

They argue that “people are largely rational in the sense of achieving their
goals (rationality,) but have only a limited ability to reason or act for good
reasons sanctioned by a normative theory (rationality,)” (Evans & Over,
1997, p. 1). If this is right, then one’s goals can be achieved without following
a formal normative theory, i.e., without there being a justification for the
actions, decisions, or thoughts that led to success: rationality, does not
require rationality,. That is, Evans and Over are committed to _thc ‘view that
thoughts, actions, or decisions that cannot be normatively justified can,
nonetheless, consistently lead to practical success.

But this hybrid view does not tackle the fundamental problem we outlined
for the first view sketched above. It does not answer the question: why do the
cognitive processes underlying everyday rationality consistently wprk? It
everyday rationality is somehow based on formal rationality, then this ques-
tion can be answered, at least in general terms. The principles of formal
rationality are provably principles of good inference and decision making;
and the cognitive system is rational in everyday contexts to the degree that it
approximates the dictates of these principles. But if everyday and ﬂ.)rmal
rationality are assumed to be unrelated, then this explanation is not available.
Unless some alternative explanation of the basis of everyday rationality can
be provided, the success of the cognitive system is again left entirely
unexplained.

Everyday rationality is based on formal rationality: An
empirical approach

We seem to be at an impasse. The success of everyday rationality in guiding
our thoughts and actions must somehow be explained; and it seems that there
are no obvious alternative explanations, aside from arguing that everyday
rationality is somehow based on formal reasoning principles, for which good
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justifications can be given. But the experimental evidence appears to show
that people do not follow the principles of formal rationality.

There is, however, a way out of this impasse. Essentially, the idea is to reject
the notion that rationality is a monolithic notion that can be defined a priori,
and compared with human performance. Instead, we treat the problem of
explaining everyday rationality as an empirical problem of explaining why
people’s cognitive processes are successful in achieving their goals, given the
constraints imposed by their environment. Formal rational theories are used
in the development of these empirical explanations for the success of cogni-
tive processes — however, which formal principles are appropriate, and how
they should be applied, is not decided a priori but in the light of the empir-
ical success of the explanation of the adaptive success of the cognitive
process under consideration.

According to this viewpoint, the apparent mismatch between normative
theories and reasoning behaviour suggests that the wrong normative theories
may have been chosen; or the normative theories may have been misapplied.
Instead, the empirical approach to the grounding of rationality aims to “do
the best” for human everyday reasoning strategies — by searching for a
rational characterization of how people actually reason. There is an analogy
here with rationality assumptions in language interpretation (Davidson,
1984; Quine, 1960). We aim to interpret people’s language so that it makes
sense; similarly, the empirical approach to rationality aims to interpret
people’s reasoning behaviour so that their reasoning makes sense.

Crucially, then, the formal standards of rationality appropriate for explain-
ing some particular cognitive processes or aspect of behaviour are not prior
to, but are rather developed as part of, the explanation of empirical data. Of
course, this is not to say that, in some sense, formal rationality may be prior
to, and separate from, empirical data. The development of formal principles
of logic, probability theory, decision theory, and the like may proceed
independently of attempting to explain people’s reasoning behaviour. But
which element of this portfolio of rational principles should be used to define
a normative standard for particular cognitive processes or tasks, and how the
relevant principles should be applied, is constrained by the empirical human
reasoning data to be explained.

It might seem that this approach is flawed from the outset. Surely, any
behaviour can be viewed as rational from some point of view. That is, by
cooking up a suitably bizarre set of assumptions about the problem that
people think they are solving, surely their rationality can always be
respected; and this suggests the complete vacuity of the approach. But this
objection ignores the fact that the goal of empirical rational explanation is to
provide an empirical account of data on human reasoning. Hence, such
explanations must not be merely possible, but also simple, consistent with
other knowledge, independently plausible, and so on. In short, such explan-
ations are to be judged in the light of the normal canons of scientific reason-
ing (Howson & Urbach, 1989). Thus, rational explanations of cognition and
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behaviour can be treated as on a par with other scientific explanations of
empirical phenomena. -

This empirical view of the explanation of rationality is attractive, to the
extent that it builds in an explanation of the success of everyday rationality.
It does this by attempting to recruit formal rational principles to explain
why cognitive processes are successful. But how can this empirical approach
to rational explanation be conducted in practice? And can plausible rational
explanations of human behaviour be found? The next two sections of the
chapter aim to answer these questions. First, we outline a methodology for
the rational explanation of empirical data — rational analysis. We also illus-
trate a range of ways in which this approach is used, in psychology, and the
social and biological sciences. We then use rational analysis to re-evaluate
the psychological data that have appeared to show human reasoning per-
formance to be hopelessly flawed, and argue that, when appropriate rational
theories are applied, reasoning performance may, on the contrary, be
rational.

RATIONAL ANALYSIS

As with all good ideas, rational analysis has a long history. The roots of
rational analysis derive from the earliest attempts to build theories of
rational thought or choice. For example, probability theory was originally
developed as a theory of how sensible people reason about uncertainty (Gig-
erenzer, Swijtnik, Porter, Daston, Beatty & Kriiger, 1989). Thus, the early
literature on probability theory treated the subject both as a description of
human psychology and as a set of norms for how people ought to reason
when dealing with uncertainty. Similarly, the earliest formalisations of logic
(Boole, 1951/1854) viewed the principles as describing the laws governing
thought, as well providing a calculus for good reasoning. This early work in
probability theory and logic is a precursor of rational analysis, because it
aims both to describe how the mind works, and to explain why the mind is
rational. \

The twentieth century, however, saw a move away from this “psycholo-
gism” (Frege, 1879; Hilbert, 1925) and now mathematicians, philosophers,
and psychologists sharply distinguish between normative theories, such as a
probability theory and logic, which are about how people should reason, and
descriptive theories of the psychological mechanisms by which people actu-
ally do reason. Moreover, a major finding in psychology has been that the
rules by which people should and do reason are not merely conceptually
distinct; but they appear to be empirically very different (Kahneman &
Tversky, 1973; Kahneman et al., 1982; Wason, 1966; Wason & Johnson-
Laird, 1972). Whereas very early research on probability theory and logic
took their project as codifying how people think, the psychology of reason-
ing has suggested that probability theory and logic are profoundly at
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variance with how people think. If this viewpoint is correct, then the whole
idea of rational models of cognition is misguided: cognition simply is not
rational.

Rational analysis suggests a return to the earlier view of the relationship
between descriptive and normative theory, i.e., that a single theory can,
and should, do both jobs. A rational model of cognition can therefore
explain both how the mind works and why it is successful. But why is
rational analysis not just a return to the conceptual confusion of the past?
It represents a psychological proposal for explaining cognition that recog-
nizes the conceptual distinction between normative and descriptive theor-
ies, but explicitly suggests that in explaining cognitive performance a single
account that has both functions is required. Moreover, contemporary
rational analyses are explicit scientific hypotheses framed in terms of the
computer metaphor, which can be tested against experimental data. Con-
sequently a rational model of cognition is an empirical hypothesis about
the nature of the human cognitive system and not merely an a priori
assumption.

The computational metaphor is important because it suggests that
rational analyses should be described in terms of a scheme for computa-
tional explanation. The most well-known scheme for computational explan-
ation was provided by Marr (1982). At Marr’s highest level of explanation,
the computational level the function that is being computed in the perform-
ance of some task is outlined. This level corresponds to a rational analysis
of the cognitive task. The emphasis on computational explanation makes
two points explicit. First, that in providing a computational explanation of
the task that a particular device performs there is an issue about whether
the computational-level theory is correct. Second, there is a range of pos-
sible computational-level theories that may apply to a given task perform-
ance, and which one is correct must be discovered and cannot be assumed a
priori.

Let us consider an example. Suppose you find an unknown device and
wonder what its function might be. Perhaps, observing its behaviour, you
hypothesize that it may be performing arithmetical calculations. To make this
conjecture is to propose a particular rational model of its performance. That
is, this is a theory about what the device should do. In this case, the device
should provide answers to arithmetical problems that conform to the laws of
arithmetic, i.e., arithmetic (or some portion of it) provides the hypothesized
rational model. On this assumption, you might give the device certain inputs,
which you interpret as framing arithmetical problems. It may turn out, of
course, that the outputs that you receive do not appear to be interpretable as
solutions to these arithmetical problems. This may indicate that your rational
model is inappropriate. You may therefore search for an alternative rational
model — perhaps the device is not doing arithmetic, but is solving differential
equations. Similarly, in rational analysis, theorists cannot derive appropriate
computational-level theories by reflecting on normative considerations alone,
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but only by attempting to use those theories to describe human performance.
For example, it is not controversial that arithmetic is a good normative
account of how numbers should be manipulated — the question is: does this
device do arithmetic?

This leads to the second difference between the modern programme of
rational analysis and early developments of logic and probability: that the
goal is not merely to capture people’s intuitions, but rather to model detailed
experimental data on cognitive function. Rational models aim to capture
experimental data on the rate at which information is forgotten; on the way
people generalize from old to new instances; on performance on hypothesis-
testing tasks; on search problems; and so on. Rational analysis as a pro-
gramme in cognitive science is primarily aimed at capturing these kinds of
empirical phenomena, while explaining how the cognitive system is success-
ful. Nonetheless, rational analysis shares with early views the assumption that
accounts of the mind must be both normatively justified and descriptively
adequate.

So far, we have considered rationality in the abstract — as consisting of
reasoning according to sound principles. But the goals of an agent
attempting to survive and prosper in its ecological niche are more concrete
_ it must decide how to act in order to achieve its goals. So a crucial issue
is how normative principles can be combined with analysis of the structure
of the environment in order to provide rational explanations of successful
cognitive performance. Recent research indicates that many aspects of cog-
nition can be viewed as optimized (to some approximation) to the struc-
ture of the environment. For example, the rate of forgetting an item in
memory seems to be optimized to the likelihood of encountering that item
in the world (Anderson & Milson, 1989; Anderson & Schooler, 1991;
Schooler, 1998); categorization may be viewed as optimizing the ability to
predict the properties of a category member (Anderson, 1991b, 1998);
searching computer menus (Young, 1998), parsing (Chater, Crocker, &
Pickering, 1998), and selecting evidence in reasoning (Oaksford & Chater,
1994, 1996, 1998a; Over & Jessop, 1998) may all be viewed as optimizing
the amount of information gained. This style of explanation is similar to
optimality-based explanations that have been influential in other discip-
lines. In the study of animal behaviour (Stephens & Krebs, 1986), foraging,
diet selection, mate selection and so on, have all been viewed as problems,
which animals solve more or less optimally. In economics, people and firms
are viewed as more or less optimally making decisions in order to maxi-
mize utility or profit.

Models based on optimizing, whether in psychology, animal behaviour, or
economics, need not, and typically do not, assume that agents are able to find
the perfectly optimized solutions to the problems that they face. Quite often,
perfect optimization is impossible even in principle, because the calculations
involved in finding a perfect optimum are frequently computationally intract-
able (Simon, 1955, 1956), and, moreover, much crucial information is
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typically not available. The agent must still act, even in the absence of the
ability to derive the optimal solution (Chater & Oaksford, 1996; Gigerenzer
& Goldstein, 1996; Oaksford & Chater, 1991; Simon, 1956). Thus, there may
be a tension between the theoretical goal of the rational analysis and the
practical need for the agent to be able to decide how to act in real time, given
the partial information available. This leads directly into the area of what
Simon (1955, 1956) calls bounded rationality. We believe that rational analysis
can be reconciled with the boundedness of cognitive systems in a number of
ways.

First, the cognitive system may, in general, approximate, perhaps very
coarsely, the optimal solution. Thus, the algorithms that the cognitive system
uses may be fast and frugal heuristics (Gigerenzer & Goldstein, 1996) which
generally approximate the optimal in the environments that an agent nor-
mally encounters. In this context, the optimal solutions will provide a great
deal of insight into why the agent behaves as it does. However, an account of
the algorithms that the agent uses will be required to provide a full explan-
ation of the agent’s behaviour — including those aspects that depart from the
predictions from a rational analysis (Anderson, 1990, 1994).

Second, even where a general cognitive goal is intractable, a more specific
cognitive goal, relevant to achieving the general goal, may be tractable. For
example, the general goal of moving a piece in chess is to maximize the
chance of winning, but this optimization problem is known to be completely
intractable because the search space is so large. But optimizing local goals,
such as controlling the middle of the board, weakening the opponent’s king,
and so on, may be tractable. Indeed, most examples of optimality-based
explanation, whether in psychology, animal behaviour, or economics, are
defined over a local goal, which is assumed to be relevant to some more
global aims of the agent. For example, evolutionary theory suggests that
animal behaviour should be adapted to increase an animal’s inclusive
fitness, but specific explanations of animals’ foraging behaviour assume more
local goals. Thus, an animal may be assumed to forage to maximize food
intake, on the assumption that this local goal is generally relevant to the
global goal of maximizing inclusive fitness. Similarly, explanations concern-
ing cognitive processes may concern local cognitive goals such as maximizing
the amount of useful information remembered, maximizing predictive accur-
acy, or acting to gain as much information as possible. All of these local
goals are assumed to be relevant to more general goals, such as maximizing
expected utility (from an economic perspective) or maximizing inclusive fit-
ness (from a biological perspective). At any level, it is possible that optimiza-
tion is intractable; but it is also possible that by focusing on more limited
goals, evolution or learning may have provided the cognitive system with
mechanisms that can optimize or nearly optimize some more local, but
relevant, quantity.

The importance that the local goals be relevant to the larger aims of the
cognitive system raises another important question about providing rational
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models of cognition. The fact that a model involves optimizing something
does not mean that the model is a rational model. Optimality is not the same
as rationality. It is crucial that the local goal that is optimized must be rele-
vant to some larger goal of the agent. Thus, it seems reasonable that animals
may attempt to optimize the amount of food they obtain, or that the categor-
ies used by the cognitive system are optimized to lead to the best predictions.
This is because, for example, optimizing the amount of food obtained is likely
to enhance inclusive fitness, in a way that, for example, maximizing the
amount of energy consumed in the search process would not. Determining
whether some behaviour is rational or not therefore depends on more than
just being able to provide an account in terms of optimization. Therefore
rationality requires not just optimizing something but optimizing something
reasonable. As a definition of rationality, this is clearly circular. But by view-
ing rationality in terms of optimization, general conceptions of what are
reasonable cognitive goals can be turned into specific and detailed models of
cognition. Thus, the programme of rational analysis, while not answering the
ultimate question of what rationality is, nonetheless provides the basis for a
concrete and potentially fruitful line of empirical research.

This flexibility of what may be viewed as rational, in building a rational
model, may appear to raise a fundamental problem for the entire rational
analysis programme. It seems that the notion of rationality may be so flexible
that, whatever people do, it is possible that it may seem rational under some
description. So, for example, it may be that our stomachs are well adapted to
digesting the food in our environmental niche, indeed they may even prove to
be optimally efficient in this respect. However, we would not therefore
describe the human stomach as rational, because stomachs presumably can-
not usefully be viewed as information processing devices. Stomachs may be
well or poorly adapted to their function (digestion), but they have no beliefs,
desires, or knowledge, and hence the question of their rationality does not
arise.

Optimality approaches in biology, economics, and psychology assume that
the agent is well adapted to its normal environment. However, almost all
psychological data are gained in a very unnatural setting, where a person
performs a very artificial task in the laboratory. Any laboratory task will
recruit some set of cognitive mechanisms that determine the participants’
behaviour. But it is not obvious what problem these mechanisms are adapted
to solving. Clearly, this adaptive problem is not likely to be directly related to
the problem given to the participant by the experimenter, precisely because
adaptation is to the natural world, not to laboratory tasks. In particular, this
means that participants may fail with respect to the task that the experi-
menter thinks they have set. But this may be because this task is unnatural
with respect to the participant’s normal environment. Consequently partici-
pants may assimilate the task that they are given to a more natural task,
recruiting adaptively appropriate mechanisms which solve this, more natural,
task successfully.
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This issue is most pressing in reasoning tasks where human performance
has been condemned as irrational. For example, hypothesis-testing tasks,
where people do not adopt the supposedly “logical” strategy of falsification,
have been taken to demonstrate the irrationality of human reasoning (Stich,
1985, 1990; Sutherland, 1992). However, recently a number of theorists have
suggested that human reasoning should be judged against probabilistic
standards, as opposed the norms of logic (e.g., Evans & Over, 1997; Fis-
chhoff & Beyth-Marom, 1983; Kirby, 1994; Oaksford & Chater, 1994,
1998c; Over & Jessop, 1998). One powerful argument for this position is that
the complex and uncertain character of the everyday world implies that real-
world everyday reasoning is inevitably uncertain (Chater & Oaksford, 1996;
Oaksford & Chater, 1998c), and hence better modelled by probability, the
calculus of uncertain reasoning, than by logic, the calculus of certain rea-
soning. From this point of view, people’s behaviour in laboratory reasoning
tasks is (to an approximation at least) rational, even though it violates the
standards set by the experimenter — but this can only be appreciated once
the standard of correct performance is reconceptualized in probabilistic
terms.

RE-EVALUATING HUMAN REASONING: A PROBABILISTIC
APPROACH

This section focuses on our recent attempts to develop a probabilistic analysis
of laboratory reasoning tasks (Chater & Oaksford, 1999a, 1999b, 1999¢,
2000; Oaksford & Chater, 1994, 1995a, 1995b, 1996, 1998a, 1998b, 1998c;
Oaksford, Chater, & Grainger, 1999; Oaksford, Chater, Grainger & Larkin,
1997; Oaksford, Chater, & Larkin, 2000). But to appreciate what is distinctive
about the probabilistic approach, we must first begin by considering logic-
based theories in the psychology of reasoning, which have been dominant
since the inception of the field. Logic-based theories of reasoning fall into
two types.

According to the mental models view (Johnson-Laird, 1983; Johnson-Laird
& Byrne, 1991), people construct one or more concrete models of the situ-
ation that is described by the premises with which they are presented, and
derive conclusions from “reading off” conclusions that follow in one or more
of these models. There are procedures for building, checking, and reading
from models that should allow the reasoner, if all goes well, to conform with
the dictates of deductive logic. According to the mental logic view, people
reason by directly performing calculations in a particular logical system —
typically assumed to be some kind of natural deduction system (Braine, 1978;
Rips, 1983, 1994).

According to these viewpoints, people are rational in principle but err in
practice — that is, we have sound procedures for deductive reasoning but the
algorithms that we use can fail to produce the right answers because of
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cognitive limitations such as working memory capacity. Such an approach
seems hard to reconcile with two facts. First, these faulty algorithms can lead
to error rates as high as 96% (in Wason’s selection task) compared to the
standard provided by formal logic. Second, our everyday rationality in guid-
ing our thoughts and actions seems in general to be highly successful. How is
this success to be understood if the reasoning system people use is prone to so
much error?

As we discussed above, we attempt to resolve this problem by arguing
that people’s everyday reasoning can be understood from the perspective
of probability theory and that people make errors in so-called deductive
tasks because they generalize their everyday strategies to these laboratory
tasks. The psychology of deductive reasoning involves giving people prob-
lems that the experimenters conceive of as requiring logical inference. But
people consistently respond in a non-logical way, thus calling human
rationality into question (Stein, 1996; Stich, 1985, 1990). In our view,
everyday rationality is founded on uncertain rather than certain reasoning
(Oaksford & Chater, 1991, 1998¢c) and so probability provides a better
starting point for an account of human reasoning than logic. It also
resolves the problem of explaining the success of everyday reasoning: it is
successful to the extent that it approximates a probabilistic theory of the
task. Second, we suggest that a probabilistic analysis of classic “deductive”
reasoning tasks provides an excellent empirical fit with observed perform-
ance. The upshot is that much of the experimental research in the “psych-
ology of deductive reasoning” does not engage people in deductive reason-
ing at all but rather engages strategies suitable for probabilistic reasoning.
According to this viewpoint, the field of research appears to be crucially
misnamed!

We illustrate our probabilistic approach in the three main tasks that have
been the focus of research into human reasoning: conditional inference,
Wason’s selection task, and syllogistic inference.

Conditional inference

Conditional inference is perhaps the simplest inference form investigated in
the psychology of reasoning. It involves presenting participants with a con-
ditional premise, if p then ¢, and then one of four categorical premises, p, not-
p. q, or not-g. Logically, given the categorical premise p participants should
draw the conclusion ¢ and given the categorical premise not-¢ they should
draw the conclusion not-p. These are the logically valid inferences of modus
ponens (“MP”) and modus tollens (“MT?") respectively. Moreover, given the
categorical premise not-p participants should not draw the conclusion not-gq
and given the categorical premise ¢ they should not draw the conclusion
p. These are the logical fallacies of denying the antecedent (“DA™) and
affirming the consequent (“AC”) respectively. So, logically, participants
should endorse MP and MT in equal proportion and they should refuse to
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endorse DA or AC. However, they endorse MP significantly more than MT
and they endorse DA and AC at levels significantly above zero.

Following a range of other researchers (Anderson, 1995; Chan & Chua,
1994, George, 1997; Liu, Lo, & Wu, 1996; Stevenson & Over, 1995), Oaks-
ford, Chater, and Larkin (2000) proposed a model of conditional reasoning
based on conditional probability. The greater the conditional probability of
an inference the more it should be endorsed. On their account the meaning of
a conditional statement can be defined using a 2 by 2 contingency table as in
Table 3.1 (see Oaksford & Chater, 1998c).

Table 3.1 Contingency table for a conditional rule

q noi-q
p af(l-¢) ae
not-p b-a(l-¢g) (1-b)—ac

This table represents a conditional rule, if p then ¢, where there is a
dependency between the p and ¢ that may admit exceptions (¢) and where a is
the probability of the antecedent, P(p), b is the probability of the consequent,
P(g), and ¢ is the probability of exceptions, i.e., the probability that ¢ does not
occur even though p has, P(not-g|p). It is straightforward to then derive con-
ditional probabilities for each inference. For example, the conditional prob-
ability associated with MP, i.e., P(¢g|p) = 1 — ¢, only depends on the probability
of exceptions. If there are few exceptions the probability of drawing the MP
inference will be high. However, the conditional probability associated with
MT, ie.,

1-b-
P(not-p|not-q) = — bas

depends on the probability of the antecedent, P(p), and the probability of the
consequent, P(g), as well the probability of exceptions. As long as there are
exceptions (¢ > 0) and the probability of the antecedent is greater than the
probability of the consequent not occurring (P(p) = 1 — P(g)), then the prob-
ability of MT is less than MP (P(not-p|not-q) < P(q|p)). For example, if P(p) =
.5, P(q) = .8 and ¢ = .1, then P(glp) = .9 and P(not-p|not-q) = .75. This
behaviour of the model accounts for the preference for MP over MT in the
empirical data. In the model conditional probabilities associated with DA
and AC also depend on these parameters, which means that they can be non-
zero. Consequently the model also predicts that the fallacies should be
endorsed to some degree.
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Oaksford et al. (2000) argue that this simple model can also account for
other effects in conditional inference. For example, using Evans® Negations
Paradigm in the conditional inference task leads to a bias towards negated
conclusions. Oaksford and Stenning (1992; see also Oaksford & Chater,
1994) proposed that negations define higher-probability categories than their
affirmative counterparts, e.g., the probability that an animal is not a frog is
much higher than the probability that it is. Oaksford et al. (2000) show that
according to their model the conditional probability of an inference
increases with the probability of the conclusion. Consequently the observed
bias towards negated conclusions may actually be a rational preference for
high-probability conclusions. If this is right then, when given rules contain-
ing high- and low-probability categories, people should show a preference to
draw conclusions that have a high probability analogous to negative conclu-
sion bias, a prediction later confirmed experimentally (Oaksford et al.,
2000).

Wason’s selection task

The probabilistic approach was originally applied to Wason’s selection task,
which we introduced above (Oaksford & Chater, 1994, 1995b, 1996, 1998a,
1998¢; Oaksford et al., 1999; Oaksford et al., 1997). According to Oaksford
and Chater’s (1994) optimal data selection model people select evidence (ie.,
turn cards) to determine whether ¢ depends on p, as in Table 3.1, or whether p
and ¢ are statistically independent (i.e., the cell values would simply be the
products of the marginal probabilities, rather than as in Table 3.1). What
participants are looking for in the selection task is evidence that gives the
greatest probability of discriminating between these two possibilities. Initially
participants are assumed to be maximally uncertain about which possibility is
true, i.e., a prior probability of .5 is assigned to both the possibility of a
dependency (the dependence hypothesis, Hp) and to the possibility of
independence (the independence hypothesis, H;). The participants’ goal is to
select evidence (turn cards) that would be expected to produce the greatest
reduction in this uncertainty. This involves calculating the posterior prob-
abilities of the hypotheses, Hy, or Hy, being true given some evidence. These
probabilities are calculated using Bayes” theorem, which requires information
about prior probabilities (P(Hp) = P(H,) = .5) and the likelihoods of evidence
given a hypothesis, e.g., the probability of finding an A when turning the 2
card assuming Hy, (P(A[2, Hp)). These likelihoods can be calculated directly
from the contingency tables for each hypothesis: for Hp, Table 3.1, and for Hy,
the independence model. With these values it is possible to calculate the
reduction in uncertainty that can be expected by turning any of the four cards
in the selection task. Oaksford and Chater (1994) observed that assuming
that the marginal probabilities P(p) and P(q) were small (their “rarity
assumption”), the p and the g cards would be expected to provide the greatest
reduction in uncertainty about which hypothesis was true. Consequently, the
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selection of cards that has been argued to demonstrate human irrationality
may actually reflect a highly rational data selection strategy. Indeed this strat-
egy may be optimal in an environment where most properties are rare, e.g.,
most things are not black, not ravens, and not apples (but see Klauer, 1999,
and Chater & Oaksford, 1999b, for a reply).

Oaksford and Chater (1994) argued that this model can account for
most of the evidence on the selection task, and Oaksford and Chater
(1996) defended the model against a variety of objections. For example,
Evans and Over (1996b) criticized the notion of information used in the
optimal data selection model and proposed their own probabilistic model.
This model made some predictions that diverged from Oaksford and Chat-
er’'s model and these have been experimentally tested by Oaksford et al.
(1999). Although the results seem to support the optimal data selection
model, there is still much room for further experimental work in this area.
Manktelow and Over have been exploring probabilistic effects in deontic
selection tasks (Manktelow, Sutherland, & Over, 1995). Moreover, Green
and Over have also been exploring the probabilistic approach to the stand-
ard selection task (Green, Over, & Pyne, 1997; see also Oaksford, 1998:
Green & Over, 1998). They have also extended this approach to what they
refer to as “causal selection tasks” (Green & Over, 1997, 2000; Over &
Green, 2001). This is important because their work develops the link
between research on causal estimation (e.g., Anderson & Sheu, 1995;
Cheng, 1997) and research on the selection task suggested by Oaksford
and Chater (1994).

Syllogistic reasoning

Chater and Oaksford (1999c) have further extended the probabilistic
approach to the more complex inferences involved in syllogistic reasoning,
which we discussed in looking at mental models. In their probability heur-
istics model (PHM), they extend their probabilistic interpretation of con-
ditionals to quantified claims, such as, All, Some, None, and Some . . . not. In
Table 3.1, if there are no exceptions, then the probability of the consequent
given the antecedent, (P(g[p)), is 1. The conditional and the universal quanti-
fier “All” have the same underlying logical form: ¥x(P(x) = O(x). Con-
sequently Chater and Oaksford interpreted universal claims such as All Ps
are Qs as asserting that the probability of the predicate term (Q) given the
subject term (P) is 1, i.e.,, P(Q|P) = 1. Probabilistic meanings for the other
quantifiers are then easily defined: None, P(Q|P) = 0; Some, P(Q|P) > 0;
Some . .. not, P(Q|P) < 1. Given these probabilistic interpretations it is pos-
sible to show which conclusions follow probabilistically for all 64 syllogisms
(i-e., which syllogisms are “p-valid”). Moreover, given these interpretations
and again making the rarity assumption (see above on the selection task), the
quantifiers can be ordered in terms of how informative they are: All > Some >
None > Some . . . not. It turns out that a simple set of heuristics defined over
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the informativeness of the premises can successfully predict the p-valid con-
clusion, if there is one. The most important of these heuristics is the min-
heuristic, which states that the conclusion will have the form of the least
informative premise. So for example, a p-valid syllogism such as, All B are A,
Some B are not C, yields the conclusion Some A are not C. Note that the
conclusion has the same form as the least informative premise. This simple
heuristic captures the form of the conclusion for most p-valid syllogisms.
Moreover, if overgeneralized to the invalid syllogisms, the conclusions it sug-
gests match the empirical data very well. Other heuristics determine the con-
fidence that people have in their conclusions and the order of terms in the
conclusion.

Perhaps the most important feature of PHM is that it can generalise to
syllogisms containing quantifiers such as Most and Few that have no logical
interpretation. In terms of Table 3.1 the suggestion is that these terms are
used instead of All when there are some (Most) or many (Few) exceptions. So
the meaning of Most is: 1 — A < P(Q|P) < 1, and the meaning of Few is: 0 <
P(QO|P) < A, where A is small. These interpretations lead to the following
order of informativeness: All > Most > Few > Some > None > Some . . .
not. Consequently, PHM uniquely makes predictions for the 144 syllogisms
that are produced when Most and Few are combined with the standard
logical quantifiers. Chater and Oaksford (1999c) (i) show that their heuristics
pick out the p-valid conclusions for these new syllogisms, and (ii) they report
experiments confirming the predictions of PHM when Most and Few are
used in syllogistic arguments.

There has already been some work on syllogistic reasoning consistent with
PHM. Newstead, Handley, and Buck (1999) found that the conclusions
participants drew in their experiments were mainly as predicted by the
min-heuristic, although they found little evidence of the search for counter-
examples predicted by mental models theory for multiple model syllogisms.
Evans, Handley, Harper, and Johnson-Laird (1999) also found evidence con-
sistent with PHM, indeed they found that an important novel distinction they
discovered between strong and weak possible conclusions could be captured
as well by the min-heuristic as by mental models theory. A conclusion is
necessarily true if it is true in all models of the premises, a conclusion is
possibly true if it is true in at least one model of the premises, and a conclu-
sion is impossible if it is not true in any model of the premises. Evans et al.
(1999) found that some possible conclusions were endorsed by as many parti-
cipants as necessary conclusions and that some were endorsed by as few
participants as impossible conclusions. According to mental models theory
this happens because strong possible conclusions are those that are true in the
initial model constructed but not in subsequent models, and weak possible
conclusions are those that are only true in non-initial models. Possible strong
conclusions all conform to the min-heuristic, i.e., they either match the min-
premise or are less informative than the min-premise. Possible weak conclu-
sions all violate the min-heuristic (bar one), i.e., they have conclusions that are
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more informative than the min-premise. In sum, PHM would appear to be
gaining some empirical support.

WHERE NEXT FOR THE PSYCHOLOGY OF REASONING?

Despite the intensive research effort over the last 40 years, human reasoning
remains largely mysterious. While there is increased understanding of some
aspects of laboratory performance, deep puzzles over the nature of everyday
human reasoning processes remain. We suggest that three key issues may
usefully frame the agenda for future research: (1) establishing the relation
between reasoning and other cognitive processes; (2) developing formal
theories that capture the full richness of everyday reasoning; (3) explaining
how such theories can be implemented in real-time in the brain.

Reasoning and cognition

From an abstract perspective, almost every aspect of cognition can be viewed
as involving inference. Perception involves inferring the structure of the
environment from perceptual input; motor control involves inferring
appropriate motor commands from proprioceptive and perceptual input,
together with demands of the motor task to be performed; learning from
experience, in any domain, involves inferring general principles from specific
examples; understanding a text or utterance typically requires inferences
relating the linguistic input to an almost unlimited amount of general back-
ground knowledge. Is there a separate cognitive system for reasoning, or are
the processes studied by reasoning researchers simply continuous with the
whole of cognition? A key sub-question concerns the modularity of the cog-
nitive system. If the cognitive system is non-modular, then reasoning would
seem, of necessity, to be difficult to differentiate from other aspects of cog-
nition. If the cognitive system is highly modular, then different principles may
apply in different cognitive domains. Nonetheless, it might still turn out that,
even if modules are informationally sealed off from each other (e.g., Fodor,
1983), the inferential principles that they use might be the same; the same
underlying principles and mechanisms might simply be reused in different
domains. Even if the mind is modular, it seems unlikely that there could be a
module for reasoning in anything like the sense studied in psychology. This is
because everyday reasoning (in contrast to some artificial laboratory tasks)
requires engaging arbitrary world knowledge. Consequently, understanding
reasoning would appear to be part of the broader project of understanding
central cognitive processes and the knowledge they embody in full generality.

This is an alarming prospect for reasoning researchers because current
formal research is unable to provide adequate tools for capturing even limited
amounts of general knowledge, let alone reasoning with it effectively and in
real-time, as we shall discuss below. Reasoning researchers often attempt to
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seal off their theoretical accounts from the deep waters of general knowledge,
by assuming that these problems are solved by other processes — e.g., pro-
cesses constraining how mental models are “fleshed out” (Johnson-Laird &
Byrne, 1991) or when particular premises can be used in inference (Politzer
& Braine, 1991), what information is relevant (Evans, 1989; Sperber, Cara, &
Girotto, 1995) or how certain probabilities are determined (Oaksford &
Chater, 1994). Whether or not this strategy is methodologically appropriate
in the short term, substantial progress in understanding everyday reasoning
will require theories that address, rather than avoid, these crucial issues, i.e.,
theories that explicate, rather than presupposing, our judgements concerning
what is plausible, probable, or relevant. Moreover, as we have seen, recent
empirical work seems to strongly suggest that progress in understanding
human reasoning even in the laboratory requires the issue of general knowl-
edge to be tackled.

Formal theories of everyday reasoning

Explaining the cognitive processes involved in everyday reasoning requires
developing a formal theory that can capture everyday inferences.
Unfortunately, however, this is far from straightforward, because everyday
inferences are global: whether a conclusion follows typically depends not just
on a few circumscribed “premises” but on arbitrarily large amounts of gen-
eral world knowledge (see, e.g., Fodor, 1983; Oaksford & Chater, 1991,
1998c). From a statement such as While John was away, Peter changed all the
locks in the house, we can provisionally infer, e.g., that Peter did not want
John to be able to enter the house; that John possesses a key; that Peter and
John have had a disagreement, and so on. But such inferences draw on back-
ground information, such as that the old key will not open the new lock, that
locks secure doors, that houses can usually only be entered through doors,
and a host of more information about the function of houses, and the nature
of human relationships, and the law concerning breaking and entering.
Moreover, deploying each piece of information requires an inference that is
just as complex as the original one. Thus, even to infer that John’s key will not
open the new lock requires background information concerning the way in
which locks and keys are paired together, the convention that when locks are
replaced, they will not fit the old key, that John’s key will not itself be
changed when the locks are changed, that the match between lock and key is
stable over time, and so on. This is what we call the “fractal” character of
commonsense reasoning (Oaksford & Chater, 1998¢) — just as, in geometry,
each part of a fractal is as complex as the whole, each part of an everyday
inference is as complex as the whole piece of reasoning.

How can such inferences be captured formally? Deductive logic is
inappropriate, because everyday arguments are not deductively valid, but can
be overturned when more information is learned. The essential problem is
that these methods fail to capture the global character of everyday inference
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successfully (Oaksford & Chater, 1991, 1992, 1993, 1998c¢). In artificial intelli-
gence, this has led to a switch to using probability theory, the calculus of
uncertain reasoning, to capture patterns of everyday inference (e.g., Pearl,
1988). This is an important advance, but only a beginning. Probabilistic infer-
ence can only be used effectively if it is possible to separate knowledge into
discrete chunks — with a relatively sparse network of probabilistic dependen-
cies between the chunks. Unfortunately, this just does not seem to be possible
for everyday knowledge. The large variety of labels for the current impasse —
the “frame” problem (McCarthy & Hayes, 1969; Pylyshyn, 1987), the “world
knowledge” problem or the problem of knowledge representation (Ginsberg,
1987), the problem of non-monotonic reasoning (Paris, 1994), the criterion
of completeness (Oaksford & Chater, 1991, 1998¢c) — is testimony to its
fundamental importance and profound difficulty. The problem of providing a
formal calculus of everyday inference presents a huge intellectual challenge,
not just in psychology, but in the study of logic, probability theory, artificial
intelligence, and philosophy.

Everyday reasoning and real-time neural computation

Suppose that a calculus which captured everyday knowledge and inference
could be developed. If this calculus underlies thought, then it must be
implemented (probably to an approximation) in real-time in the human
brain. Current calculi for reasoning, including standard and non-standard
logics, probability theory, decision theory, and game theory, are compu-
tationally intractable (Garey & Johnson, 1979; Paris, 1994). That is, as the
amount of information that they have to deal with increases, the amount
of computational resources (in memory and time) required to derive con-
clusions explodes very rapidly (or, in some cases, inferences are not com-
putable at all, even given limitless time and memory). Typically, attempts to
extend standard calculi to mimic everyday reasoning more effectively make
problems of tractability worse (e.g., this is true of “non-monotonic logics”
developed in artificial intelligence). Somehow, a formal calculus of every-
day reasoning must be developed that, instead, eases problems of
tractability.

This piles difficulty upon difficulty for the problem of explaining human
reasoning computationally. Nonetheless, there are interesting directions to
explore. For example, modern “graphical” approaches to probabilistic infer-
ence in artificial intelligence and statistics (e.g., Pearl, 1988) are very directly
related to connectionist computation; and more generally, connectionist net-
works can be viewed as probabilistic inference machines (Chater, 1995;
MacKay, 1992; McClelland, 1998). To the extent that the parallel, distributed
style of computation in connectionist networks can be related to the
parallel, distributed computation in the brain, this suggests that the brain
may be understood, in some sense, as directly implementing rational calcula-
tions. Nonetheless, there is currently little conception either of how such
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probabilistic models can capture the “global” quality of everyday reasoning,
or of how these probabilistic calculations can be carried out in real-time to
support fluent and rapid inference, drawing on large amounts of general
knowledge, in a brain consisting of notoriously slow and noisy neural
components (Feldman & Ballard, 1982).

Where do we stand?

This chapter has focused on the relationship between mathematical theories
of good reasoning and the everyday rational explanations of thought and
behaviour, We have argued for a particular relationship between the informal
and formal rationality — that patterns of informal reasoning can be explained
as approximating the dictates of formal, rational theories. Rational analysis
of a particular pattern of inference can serve both a descriptive and a norma-
tive role. It can describe the broad patterns of human reasoning performance;
but at the same time explain why these patterns of reasoning are adaptively
successful in the real world. We have also given a range of concrete examples
of how this approach can be applied, showing that many aspects of human
laboratory reasoning that appear to be unsystematic and irrational when
viewed from the perspective of deductive logic, appear systematic and
rational when re-conceptualized in terms of probability theory. But we have
cautioned that the project of building a more adequate and general psych-
ology of reasoning faces, nonetheless, enormous difficulties — most funda-
mentally because the performance of human everyday reasoning radically
exceeds the performance of any current formal theories of reasoning. Thus,
we believe that the project of understanding human reasoning requires the
construction of richer normative theories of good reasoning. Hence, the
apparently narrow project of the psychology of reasoning is, in fact, a joint
project for disciplines that have fundamentally normative concerns (phil-
osophy, probability theory, decision theory, artificial intelligence) in concert
with the experimental, descriptive, study of human thought that has been the
traditional territory of the psychologist.
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4 The psychology of conditionals

David Over

The use of conditionals is central to human reasoning, and any psychological
theory of reasoning worthy of the name must have an adequate account of
conditionals in natural language. Yet even taking the first steps towards
a theory of the ordinary indicative conditional immediately entangles the
psychologist in formidable logical and philosophical, as well as psycho-
logical, problems. It is a good test of any psychological theory of reasoning to
go straight to its account of ordinary indicative conditionals. The theory is in
serious trouble if it does not have an adequate account of this conditional,
and it is very easy to fail this test, as I will try to show in what follows. Further
challenges are presented by counterfactual and deontic conditionals.

Present psychological theories of all these conditionals suffer from what
has been called logicism (Evans, 2002; Oaksford & Chater, 1998). One way to
characterize logicism is that it is the attempt to account for a significant
aspect of human reasoning by using logic alone. Logicism restricts itsell
to the study of logical inference from assumptions, i.e., premises that are
supposed to be taken, in effect, as certain. But inference in the real world is
usually from premises that people rightly think of as uncertain to some
degree. Effective reasoning from premises, whether scientific or everyday,
essentially depends on judgements of probability, and sometimes of utility,
even when it partly consists of logically valid inferences. Conditional
premises are prominent in both scientific and everyday inference, and con-
sequently psychological theories of reasoning should include an acceptable
account of the subjective probability of conditionals. More generally, the
psychological study of conditional reasoning (as well as of other types of
reasoning) should be fully integrated with research on probability, utility,
and decision making (Evans & Over, 1996; Evans & Over, 2004). Psycho-
logical theories of the ordinary conditional will be severely limited until this
fact is fully appreciated.



