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Chapter 2

Reasoning theories and bounded
rationality

M. Oaksford and N. Chater

INTRODUCTION

In this chapter we will argue that considerations of bounded rationality
may fundamentally alter our present conception of the adequacy of
psychological theories of reasoning. Since its inception cognitive science
has been concerned with the limitations on the cognitive system which
inhere in virtue of the organization of human memory and the need to act
rapidly in real time (Simon, 1969; Kahneman et al., 1982). Simon (quoted
in Baars, 1986: 363—4), for example, says that: ‘cognitive limitations have
been a central theme in almost all of the theorizing I've done. . . . They
are . . . very important limitations on human rationality, particularly if
the rationality has to be exercised in a face-to-face real-time context’.
Cognitive limitations mean that people may be incapable of living up to
normative but computationally expensive accounts of their inferential
behaviour,' i.e. human rationality is bounded.

The two most important limitative findings of cognitive science both
affect human memory. The constraints imposed by people’s limited short-
term memory capacity have been mapped out in some detail (Miller, 1956;
Baddeley, 1986) and have been appealed to in order to explain certain
biases in reasoning experiments (Evans, 1983a; Johnson-Laird, 1983).
Perhaps a less-well-known limitative finding applies to retrieval from long-
term memory.

In artificial intelligence this limitation has been labelled the frame
problem (McCarthy and Hayes, 1969; see Pylyshyn, 1987 for overviews).
This term tends to be used generically to describe a cluster of related
problems, which as Glymour observes, are all of the following form:
‘Given an enormous amount of stuff, and some task to be done using some
of the stuff, what is the relevant stuff for the task?’ (Glymour, 1987: 65).
Some variant of the frame problem may arise for any task requiring the
deployment of prior world knowledge. In this chapter we will trace out the
consequences of the frame problem for theories of reasoning. We will
argue that a bounded-rationality assumption may have to be made in
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deductive-reasoning research, just as in research into risky decision making
(Kahneman et al., 1982).

We begin by outlining the range of contemporary theoretical approaches
to reasoning based on the taxonomy provided by Evans (1991) and
suggest that bounded rationality provides an additional criterion of theory
preference. We then introduce an important and implicit assumption which
motivates interest in these theories. This we have called the generalization
assumption (Oaksford and Chater, 1992). It states that theories of reason-
ing developed to account for explicit inference in laboratory reasoning
tasks should generalize to provide accounts of other inferential processes.
We will also offer a general characterization of these inferential processes.
We then outline more precisely how the limitations of the cognitive system
may militate against certain process accounts by briefly introducing
computational complexity theory. We will then show how complexity issues
have raised problems for theories of perception and risky decision making
and for theories of knowledge representation in artificial intelligence (AI).
We then argue that contemporary reasoning theories are all likely to fall
foul of the same problems. We therefore conclude that these theories are
unlikely to be psychologically real.

An important corollary to this argument is that because our reasoning
abilities are bounded, empirically observed deviations from optimal
rationality need raise few questions over our rationality in practice. The
interesting questions are how rational the system needs to be to qualify as
a cognitive system (Cherniak, 1986), and what kind of mechanism needs
to be postulated to implement it (see, for example, Levesque, 1988). To
end on a positive note, therefore, we will suggest that, following
Rumelhart ef al. (1986) and Rumelhart (1989), recent advances in neural
computation may suggest mechanisms which more adequately address the
issues we raise in this chapter. We will also suggest some ways in which
reasoning research may develop profitably in the future to identify the kind
of rational mechanism (Fodor, 1987) people actually are.

THEORIES OF REASONING

Evans (1991) offers a four-way classification of reasoning theories and a
three-way characterization of the questions they must try to answer. The
questions which need to be addressed are: the competence question — the
fact that human subjects often successfully solve deductive-reasoning
problems; the bias question — the fact that subjects also make many
systematic errors; the content-and-context question — the fact that the
content and context of a problem can radically alter subjects’ responses.
Evans (1991) argues that the four theories of reasoning tend to concentrate
upon one question or the other, but none provide a fully integrated account
of all three. The first two theories address the competence question.
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The mental-logic approach argues for the existence of formal inference
rules in the cognitive system (Inhelder and Piaget, 1958; Henle, 1962;
Braine, 1978; Johnson-Laird, 1975; Osherson, 1975; Rips, 1983). These
rules, for example, modus ponens, i.e. ‘given if p, then q and p you can
infer q’, rely on the syntactic form of the sentences encoding the premises.
Thus, whatever sentences are substituted for p and q the same inferences
apply. Mental-models theory suggests that the semantic content of the
sentences encoding a hypothesis is directly represented in the cognitive
system (Johnson-Laird, 1983; Johnson-Laird and Byrne, 1991). It is these
contents which are subsequently manipulated in reasoning. Hence the
actual meaning of p and q may be important to the reasoning process.

Two further theories are directed at explaining content affects and the
errors and biases which infect people’s normal reasoning performance.
Pragmatic-reasoning schema theory proposes inference rules which are
specific to particular domains to account for content effects. Cheng and
Holyoak (1985), for example, invoke a permission schema to account for
the facilitatory effects of thematic content. In these tasks contentful rules
about permission relations were employed, for example, ‘If you are
drinking alcohol, you must be over 18 years of age’. Last, the heuristic
approach proposes that a variety of systematic errors and biases in human
reasoning may be explained by the cognitive system employing a variety
of short-cut processing strategies (Evans, 1983a, 1984, 1989).

Evans (1991) was concerned to get reasoning theorists to agree some
common ground rules concerning the adequacy of their theories. He does
so by providing criteria of theory preference — completeness, coherence,
falsifiability and parsimony — by which to judge reasoning theories and
seems to view mental models as scoring most highly on these criteria. We
will argue that along with these general criteria — common to all scientific
domains — limitations on long-term memory retrieval may also provide a
valuable criterion by which to assess reasoning theories.

Cognitive limitations have been appealed to in order to account for the
biases which occur in people’s reasoning. For example, limitations on
short-term memory capacity have been appealed to in order to motivate
the heuristic approach (Evans, 1983b, 1989) and to explain error profiles
in syllogistic reasoning (Johnson-Laird, 1983). Given the prominence of
the frame problem in AI, why has it not also been taken as a potential
source of constraint on theories of reasoning? We believe there are two
reasons. First, no analysis has been provided of these process theories
which might indicate that they are profligate with computational resources.
Second, when accounting for laboratory tasks the demands of a generaliz-
able theory of inference can be ignored. We now suggest that con-
temporary reasoning theories are intended to generalize appropriately to
other inferential modes.
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THE GENERALIZATION ASSUMPTION

Why has the psychology of deductive reasoning been so prominent within
cognitive psychology/science? The main reason appears to be the assump-
tion that the principles of human inference discovered in the empirical
investigation of explicit inference will generalize to provide accounts of
most inferential processes. We call this the generalization assumption. The
generalization assumption is, for example, implicit in the sub-title to
Johnson-Laird’s (1983) book Mental Models: Towards a Cognitive Science
of Language, Inference and Consciousness. Little overt human activity
involves deductive inference. Therefore, without the generalization assump-
tion the study of deductive reasoning would warrant little more interest
than, say, the psychology of playing Monopoly.

Within artificial-intelligence knowledge representation a similar general-
ization assumption encountered the problem of scaling up. Quite often
programs which worked well in toy domains, i.e. small well-behaved
databases rather like the abstract domains employed in laboratory reason-
ing tasks, failed when scaled up to deal with larger more realistic
databases. This was because the inference regimes in these AI programs
were generally computationally intractable but this was only apparent
when they were scaled up to deal with more complex, real-world
inferential problems. While a prominent issue in Al research (for example,
Levesque, 1985, 1988; McDermott, 1986), scaling up has not been an issue
in the psychology of reasoning.

Defeasible inference

What is the nature of the inferential processes to which we expect a
generalizable theory of inference to generalize? As we have suggested,
little overt human activity may involve deduction. However, these overt
activities may be supported by implicit inferential processes which are
deductive in nature. According to. modern cognitivist accounts activities
such as text comprehension, classification, categorization, and perception
all rely on inferential processes. The inferences which are required in these
areas all share a common characteristic: they are defeasible. That is,
putative conclusions can be defeated by subsequent information.

For example, text comprehension relies on implicit inferences from prior
world knowledge to elaborate the information given in the text (Bransford
and Johnson, 1972, 1973; Bransford et al., 1972; Bransford and McCarrell,
1975; Clark, 1977; Minsky, 1975; Stenning and Oaksford, 1989). These
inferences can be defeated by subsequent sentences that contradict
earlier conclusions. Theories of concepts designed to capture the family
resemblance or prototype structure of human categorization implicitly
recognize the defeasibility of semantic knowledge. So, although not all
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birds can fly, the prototypical bird is represented as flying, the majority of
exemplar birds fly, the probability that a bird flies is high, etc., depending
on the theory that one considers (Rosch, 1973, 1975; Medin and Schaffer,
1978; Nosofsky, 1986). Constructivist theories of perception take much of
perceptual processing to involve inference to the best explanation about
the state of the environment, given perceptual evidence. The possibility of
perceptual illusion and error provides evidence for the defeasibility of such
inference (Gregory, 1977; Fodor and Pylyshyn, 1981; MacArthur, 1982).
Later on we will also see that defeasibility is observed in reasoning
experiments (Byrne, 1989; Cummins ef al., 1991) and that the ability to
account for these phenomena has been appealed to as arguing in favour
of a particular theory of reasoning (Johnson-Laird and Byrne, 1991).

At least prima facie, the defeasibility of the inferential modes observed
in these cognitive domains rules out a deductive approach. It has often
been argued that the single most defining characteristic of a deductive
system is that a valid inference cannot be defeated by subsequent
information (e.g. Curry, 1956). That is, deductive validity is monotonic.
However, many non-standard but equally logical accounts of connectives
result in non-monotonic systems, for example, the Lewis-Stalnaker
(Stalnaker, 1968; Lewis, 1973) semantics for the counterfactual conditional
provides such a system (Glymour and Thomason, 1984). Hence, just
because the inferences to be characterized are defeasible does not of itself
exclude a formal, logical approach.

We now introduce a precise analysis of how a particular process theory
may transcend the limitations of the cognitive system. This will involve a
discussion of computational complexity theory (see, for example,
Garey and Johnson, 1979; Horowitz and Sahni, 1978) which provides a
characterization of the resources a computational process consumes.

BOUNDED RATIONALITY AND COMPUTATIONAL COMPLEXITY
THEORY

How do we know whether or not a process theory transcends the
limitations on the cognitive system? For short-term memory capacity, an
answer can usually be provided at an intuitive level. Without ‘chunking’ if
a particular process model requires more than 7+2 items to be stored, then
short-term memory capacity will be exceeded. However, more implicit
cognitive processes, proceeding outside of conscious awareness, are not
usually considered to be bounded by short-term memory capacity. How
can it be estimated whether a process postulated at this level transcends
the abilities of the cognitive system? On the assumption that cognitive
processes are computational processes computational complexity theory
provides an answer.

Some computational processes are more complex than others requiring
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more computational resources in terms of memory capacity and operations
performed. There are two approaches to computational complexity: a
priori analysis and a posteriori analysis (Garey and Johnson, 1979;
Horowitz and Sahni, 1978). A posteriori analysis involves the observation
of the run-time performance of an actual implementation of an algorithm,
as the size of the input, n, is systematically varied. Such empirical
observations can generate approximate values for best-, worst- and typical-
case run-times. A more theoretically rigorous approach is to attempt to
derive an expression which captures the rate at which the algorithm
consumes computational resources, as a function of the size of n. The
crucial aspect of this function is what is known in complexity theory as its
order of magnitude, which reflects the rate at which resource demands
increase with n. For present purposes, the relevant resource is the number
of times the basic computational operations of the algorithm must be
invoked. Orders of magnitude are expressed using the ‘O’ notation:

O(1) < O(logn) < O(n) < O(nlogn) < O(n?) < O(n) . . . < O(n’)
L..<0@2. ..

For example, O(1) indicates that the number of times the basic operations
are executed does not exceed some constant regardless of the length of the
input. O(n%) < O(n?) . . . < O(n) indicate that the number of times the
basic operations are executed is some polynomial function of the input
length, such algorithms are polynomial-time computable (strictly speaking
this class includes all algorithms of order lower than some polynomial
function, such as O(logn), and O(nlogn)).

Within complexity theory an important distinction is drawn between
polynomial-time computable algorithms (O(n’) for some n), and algorithms
which require exponential time (for example, O(2") or worse). As n
increases, exponential-time algorithms consume vastly greater resources
than polynomial-time algorithms. This distinction is usually taken to mark
the difference between tractable algorithms (polynomial time) and intract-
able (exponential time) algorithms. Applying these distinctions to problems,
a problem is said to be polynomial-time computable if it can be solved by
a polynomial-time algorithm. If all algorithms which solve the problem are
exponential time, then the problem itself is labelled ‘exponential-time
computable’.

An important class of problems whose status is unclear relative to this
distinction is the class of NP-complete problems. ‘NP’ stands for non-
deterministic polynomial-time algorithms. Problems which only possess
polynomial-time algorithms that are non-deterministic are said to be ‘in
NP’. NP-complete problems form a subclass of NP-hard problems. A
problem is NP-hard if satisfiability reduces to it (Cook, 1971).2 A problem
is NP-complete if it is NP-hard and is in NP. There are problems which
are NP-hard but are not in NP. For example, the halting problem is
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undecidable, hence there is no algorithm (of any complexity) which can
solve it. However, satisfiability reduces to the halting problem which thus
provides an instance of a problem that is NP-hard but not NP-complete.
The class of NP-complete problems includes such classic families of
problems as the travelling-salesman problems - the prototypical example
of which is the task of determining the shortest round-trip that a salesman
can take in visiting a number of cities. It is not known whether any NP-
complete problem is polynomial-time computable, but it is known that if
any NP-complete problem is polynomial-time computable, then they
all are (Cook, 1971). All known deterministic algorithms for NP-complete
problems are exponential-time, and it is widely believed that no
polynomial-time algorithms exist. In practice, the discovery that a problem
is NP-complete is taken to rule out the possibility of a real-time tractable
implementation. In practical terms this may mean that for some n an
algorithm which is NP-complete may not provide an answer in our lifetimes
if at all.

Examples

Issues of computational complexity have arisen quite frequently in the
history of cognitive psychology and artificial intelligence, perhaps most
notably in vision research and risky decision making. Early work on
bottom-up object recognition of blocks worlds resulted in the notorious
combinatorial explosion (see McArthur (1982) for a review, and Tsotsos
(1990) for a more recent discussion of complexity issues in vision research).
In research into risky decision making, it was realized very early that
complexity issues were relevant. Bayesian inference makes exponentially
increasing demands on computational resources even for problems
involving very moderate amounts of information. A salutary example is
provided by the discussion of an application of Bayesian inference to
medical-diagnosis problems involving multiple symptoms in Charniak
and McDermott’s (1985) introduction to artificial intelligence. Diagnoses
involving just two symptoms, together with some reasonable assumptions
concerning the numbers of diseases and symptoms a physician may know
about, require upwards of 10° numbers to be stored in memory. Since
typical diagnoses may work on upwards of 30 symptoms, even if every
connection in the human brain were encoding a digit, its capacity would
none the less be exceeded. Such complexity considerations render it highly
unlikely that human decision makers are generally employing Bayesian
decision theory in their risky decision making. Such results were primarily
responsible for the emergence of the heuristics-and-biases approach in
the psychology of human decision making (Tversky and Kahneman,
1974). '

For our present purposes, the most telling example where complexity
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issues have suggested the infeasibility of an approach is in artificial-
intelligence knowledge representation (McDermott, 1986). Most Al
programs require knowledge to be represented and accessed. Knowledge
is represented in logical form and accessing it treated as a logical inference.
A problem AI researchers encountered was that world knowledge is
invariably defeasible. The standard example is ‘All birds can fly’. From this
rule and the knowledge that “Tweety is a bird’ you may infer that ‘Tweety
can fly’. However, this rule is defeasible. If you subsequently learn that
‘Tweety is an ostrich’, then the conclusion that ‘Tweety can fly’ is defeated.
Note that strictly speaking that ostriches can’t fly is a counterexample to
the original generalization. That is, the generalization is false, and hence
no valid conclusions can be drawn from it. This may suggest that
only exceptionless generalizations should form the contents of world
knowledge. However, as we have already indicated, at least at the level of
people’s common-sense classification of the world, such exceptionless
generalizations would not appear to be available to characterize their
everyday world knowledge.

The standard approach (e.g. Reiter, 1980, 1985) has been to argue that
a closed world assumption should be made. That is, inferences are drawn
based on what is in the knowledge base now. Informally, when it is learnt
that “Tweety is a bird’, as long as a counterexample can not be generated
from the current contents of the database, i.e. “Tweety can not fly’ cannot
be established, then it is reasonable to infer that “Tweety can fly’. This
means that every time a conclusion is drawn from a default rule the
whole of the database must be exhaustively searched to ensure no
counterexample is available. This is equivalent to checking the consistency
of the database. But consistency checking reduces to the satisfiability
problem and is therefore NP-complete. In consequence an NP-complete
problem has to be solved every time a default rule is invoked. Since in the
human case the database may consist of the whole of world knowledge,
this logical account looks unpromising.

Of course this is a variant of the frame problem. It would be a great
advantage if, rather than exhaustively searching the whole of world
knowledge, only some relevant subset needed to be checked. The problem
is then how to achieve this in a non-arbitrary way. As we will see below,
two reasoning theories — pragmatic reasoning schema theory and the
heuristic approach — potentially address this problem. However, we
will argue that they provide inadequate responses to the problem of
intractability.

Summary

Let us sum up the argument so far. We have suggested that considerations
of bounded rationality may serve to provide criteria by which to judge

Reasoning theories and bounded rationality 39

current theories of reasoning. The reason why such considerations have
not been taken into account is a failure to address the generalization issue.
That is, theories of laboratory tasks must be able to generalize to more
realistic inferential contexts. This is analogous to the problem of ‘scaling
up’ in Al knowledge representation: many inference theories are suitable
only to ‘toy’, or alternatively, ‘un-ecologically’ valid, domains. The
majority of real human inference is defeasible or non-monotonic.
However, standard approaches to defeasible inference would appear to
be computationally intractable because of their reliance on exhaustive
searches for counterexamples. In the following section, we will discuss
the four theories of reasoning introduced above in the light of these
considerations. As we said above, we will argue that all these theories of
reasoning either make unreasonable demands on cognitive resources or
provide inadequate responses to the problem of cognitive limitations.

THEORIES OF REASONING AND BOUNDED RATIONALITY

We will deal with the four theories of reasoning in the order they were
introduced: mental logics, mental models, pragmatic reasoning schemas,
and the heuristic approach.

Mental logics

The contemporary mental-logic view explains explicit reasoning perform-
ance by appeal to various natural deduction systems (Gentzen, 1934)
with (Braine, 1978), or without (Rips, 1983) some specific assumptions
concerning the processes which animate the inference rules.?> From the
perspective of computational complexity, mental-logic accounts appear
particularly unpromising. Even for standard monotonic logics, the general
problem of deciding whether a given finite set of premises logically implies
a particular conclusion is NP-complete (Cook, 1971).* Moreover, the
a priori complexity results discussed above were derived from logical
attempts to account for default reasoning in AI knowledge representation.
In consequence, it seems unlikely that the mental-logic approach is going
to satisfy the generalization assumption. There would appear to be only
two possible lines of retreat to avoid the conclusion that most inferential
performance is beyond the scope of the mental-logic approach.

First, despite a priori arguments that most human reasoning is
defeasible, people may employ a standard logic in much everyday
reasoning. However, over the last 30 years or so it has been the failure
to observe reasoning performance that accords well with standard,
monotonic logic which has led to questions over human rationality. When
as little as 4 per cent of subjects’ behaviour accords with standard logic in
tasks where it is appropriate, it seems odd to generalize such an account
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to situations where it is not. Nevertheless, it must be conceded that this is
an empirical issue. People may treat everyday defeasible claims as
exceptionless generalizations. This possibility is, however, sufficiently
remote for us to consider it no further.

Second, the generality of mental logics may be restricted to explicit
reasoning and it may be denied that they are intended to cover implicit
inferential processes involved in common-sense reasoning. Intractability is
therefore not an issue because of the small premise sets involved. This
proposal of course explicitly denies that mental logics can satisfy the
generalization assumption. It, moreover, may not save the mental-logic
account from intractability problems. Above we suggested that it is highly
unlikely that standard monotonic inference is generalized to everyday
defeasible inference. We now argue that the converse is far more plausible,
i.e. that explicit reasoning may be influenced by defeasible inferential
processes. If this is the case then explanations of human inferential
behaviour, even on explicit reasoning tasks, will have to address the
tractability problems we have raised.

The proposal that explicit reasoning may be influenced by defeasible
inferential processes derives from recent empirical work on conditional
reasoning. It would appear that even in laboratory tasks conditional
sentences may be interpreted as default rules (Oaksford er al., 1990).
Byrne (1989) and Cummins et al. (1991) have shown that background
information derived from stored world knowledge can affect inferential
performance (see also Markovits, 1984, 1985). Specifically they have
shown that the inferences which are permitted by a conditional statement
are influenced by additional antecedents. For example:

1 If the key is turned the car starts.
(a) Additional antecedent: the points are welded.

(1) could be used to predict that the car will start if the key is turned. This
is an inference by modus ponens. However, this inference can be defeated
when information about an additional antecedent (a) is explicitly provided
(Byrne, 1989). Moreover, confidence in this inference is reduced for rules
which possess many alternative antecedents even when this information is
left implicit (Cummins et al., 1991). In these studies additional antecedents
were also found to affect inferences by modus tollens. If the car does not
start, it could be inferred that the key was not turned, unless, of course,
the points were welded. Modus tollens is defeated when information
about an alternative antecedent is explicitly provided (Byrne, 1989) and
confidence in it is reduced for rules which possess many alternative
antecedents even when this information is left implicit (Cummins et al.,
1991).

The rules employed in these laboratory tasks are being treated as default
rules. Other evidence indicates that even abstract rules may be treated
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in this way. In conditional inference tasks (Taplin, 1971; Taplin and
Staudenmayer, 1973) and Wason'’s (1966) selection-task subjects typically
refrain from either drawing inferences that accord with modus tollens or
adopting the strategy of falsification that is sanctioned by modus tollens.
This can be at least partially explained if it were a general default
assumption that all rules are default rules. If this were the case, then modus
tollens may be suppressed because the rules are treated as defeasible, just
as in Byrne (1989) and Cummins et al. (1991).°

In sum, it seems likely that conditionals employed in explicit reasoning
tasks are treated as default rules. Restricting the applicability of mental-
logic approaches to explicit reasoning does not, therefore, avoid the
problems of computational intractability.

The influence of default rules on people’s reasoning would appear to
have been dismissed by mental logicians as interfering pragmatic or
performance factors (Rumain et al., 1983; Braine et al., 1984). This is in
marked contrast to the reaction of logicians and AI researchers. These
researchers have almost uniformly abandoned restrictions on what is
deducible to the monotonic case and have been exploring non-monotonic
logics to capture just the phenomenon their mental counterparts dismiss
(see, for example, the collection edited by Ginsberg, 1987). The intuition
behind this reaction seems to be that unless logical methods can be applied
to these cases then most interesting inferences may be beyond the scope
of logical inquiry. Logical enquiry may proceed divorced from the require-
ment to provide computationally tractable inference regimes. Most Al
applications and the cognitive science of human reasoning cannot,
however, avoid these problems.

In conclusion, providing a viable theory of human inference must resolve
the issue of intractability. Unfortunately a solution does not appear to
be forthcoming from within the formal, logical approach. This is not
incompatible with continued logical enquiry into systems which can handle
default reasoning. Further, the possibility can not be dismissed that
some formal notation may be devised which allows for more tractable
implementations. However, the lack of practical success in devising a
tractable logic for default inference suggests that this may be what Lakatos
(1970) referred to as a degenerative research programme (Oaksford and
Chater, 1991). In consequence, it seems unlikely that the mental-logic
approach will satisfy the generalization assumption.

Mental models

The apparent failure of logical accounts to generalize appropriately to
everyday common-sense inference appears to add further weight to the
mental modeller’s claim that ‘there is no mental logic’. On the mental-
models view, the syntactic formalisms adopted by the mental logician



42 Rationality

should be abandoned in favour of semantic methods of proof (e.g.
Johnson-Laird, 1983; Johnson-Laird and Byrne, 1991). Such methods do
not possess formal, syntactic rules of inference like modus ponens or
modus tollens. Rather, the semantic contents of premises are directly
manipulated in order to assess whether they validly imply a conclusion.

In this section we will introduce two interpretations of mental models.
One we refer to as ‘logical mental models’, the other as ‘memory-based
mental models’.

Logical mental models

In recent accounts of mental models the claim that ‘there is no mental
logic’ has been tempered. For example, ‘the [mental] model theory is in
no way incompatible with logic: it merely gives up the formal approach
(rules of inference) for a semantic approach (search for counterexamples)’
(Johnson-Laird and Byrne, 1991: 212). So the dispute is not about whether
there is a mental logic, but about how it is implemented. On this
interpretation logical mental models may be seen as an attempt to provide
the notation, to which we alluded above, that will allow a tractable
implementation of logic.

Mental models contrast with some semantic approaches to searching for
counterexamples but share similarities with others. Truth tables and
semantic tableaux (e.g. Hodges, 1975), which are unquestionably logical,®
contrast with mental models because they are defined over standard
propositional representations. In this respect mental models are more
related to graphical proof methods such as Euler circles and Venn
diagrams. In these semantic-proof procedures the operations which cor-
respond to the steps of a sound logical derivation are defined over
graphical representations of the domains of the quantifiers.

As Evans (1991) observes, both the mental-logic approach and mental
models are attempting to account for human deductive competence. In
assessing the mental-models approach, it would be helpful, therefore, if
answers could be found to the same metatheoretical questions concerning
computational tractability that we asked of the mental-logic approach.
Certainly on the logical mental-models interpretation, answers to these
questions should be possible. However, none as yet would appear to be
available. This makes it difficult to assess mental models by the same
standards we have applied to mental logics. This is a general problem.
While mental models are supposed to do the same job as a mental logic,
there are no metatheoretical proofs that this is the case. None the less, in
the absence of the appropriate proofs, we can speculate about how the
answers to these questions may turn out.

The first tractability question we looked at with mental logics was the
standard case of monotonic inference where we found that the general
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problem of deciding validity was NP-complete. While this is generally the
case, the situation is even worse with standard ‘semantic approache[es]’.
At this point we must head off a possible confusion. The semantic methods
we mentioned above — truth tables and semantic tableaux — are formal
proof methods (Hintikka, 1985). In contrast, the intention behind the
‘semantic approach’ of mental models is to use model theory as a basis for
inference. As Hintikka (1985) observes, model theory per se provides no
inferential mechanisms. However, the models could be exhaustively
checked. For example, the sentence ‘Gordon is in his room’ (indexed to a
particular space-time location, say now) will be true if and only if Gordon
is in his room now, i.e. Gordon actually being in his room now provides
a model for this sentence. Of course, this is a contingent claim and
therefore there are many models in which it is false. Nevertheless you
could check this sentence is true by looking at the arrangement of objects
about which the claim is made. Could you check the validity of a putative
logical truth in a similar way? Logical validity is defined relative to all
models, which are potentially infinite in number. Moreover, many of them
will be infinite in size. Attempting to prove the logical validity of a
statement in this way would be impossible, at least for the finite minds of
human beings. In sum, basing a psychological theory of inference on model
theory looks even less promising than using formal syntactic methods.

Mental-models theorists are well aware of this problem (Johnson-Laird,
1983) and argue explicitly that mental models may provide a way in which
model theory may be developed in to a tractable proof procedure. Mental
models only deal with small sets of objects which represent arbitrary
exemplars of the domains described in the premises. This is analogous to
Bishop Berkeley’s claim that reasoning regarding, say triangles, proceeds
with an arbitrary exemplar of a triangle, rather than the, in his view,
obscure Lockean notion of an abstract general idea. Providing no
assumptions are introduced which depend on the properties of this
particular triangle, for example, that it is scalene rather than equilateral,
then general conclusions concerning all triangles may be arrived at.

The introduction of arbitrary exemplars highlights the lack of an
appropriate metatheory for mental models. There is no exposition of the
rules which guarantees that no illegitimate assumptions are introduced in
a proof. This does not mean that any particular derivation using mental
models has made such assumptions. None the less, guaranteeing the
validity of an argument depends on ensuring that in a particular derivation
one could not make such assumptions. Hence explicit procedures to
prevent this happening need to be provided. In their absence there is no
guarantee (i.e. no proof) that the procedures for manipulating mental
models preserve validity. That is, it is not known whether, relative to the
standard interpretation of predicate logic, mental models provides a sound
logical system.”
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While soundness is unresolved, there are strong reasons to suppose that
mental models theory is not complete with respect to standard logic, i.e.
while all inferences licensed by mental models may be licensed by standard
logic (soundness) the converse is not the case. Other graphical methods
are restricied in their expressiveness due to physical limitations on the
notation. Venn diagrams, for example, can only be used to represent
arguments employing four or less monadic predicates, i.e. predicates of
only one variable (Quine, 1959).® They therefore only capture a small
subset of logic. While mental models have been used to represent
relations, i.e. predicates of more than one variable, there is no reason to
suppose that mental models will not be subject to analogous limitations. If
so, then mental models will not provide a general implementation of logic.’

The employment of arbitrary exemplars is central to providing a
tractable model-based proof procedure. However, there are no complexity
results for the algorithms which manipulate mental models. Such
demonstrations may be felt unnecessary, if, as with the mental-logic
approach, mental-models theory were restricted to the explicit inferences
involved in laboratory tasks. However, mental-models theory has been
generalized to other inferential modes, including implicit inference in text
comprehension (Johnson-Laird, 1983). As we mentioned above, these
inferences are defeasible (see p. 34), as are most everyday inferences
people make.!” Further, in many laboratory reasoning tasks, conditional
sentences would appear to be interpreted as default rules (see above). So
in order to provide a general theory of inference, mental models must
account for defeasibility.

Proposals for incorporating default reasoning into mental models
(Johnson-Laird and Byrne, 1991) rely on incorporating default assumption
into the initial mental model of a set of premises. These assumptions will
be recruited from prior world knowledge and may be undone in the process
of changing mental models. The problem of consistency checking can
be avoided because no search for counterexamples to these default
assumptions need be initiated. This proposal does not resolve the problem
of default inference. A generalizable theory of reasoning must address the
problem of which default assumption(s) to incorporate in an initial
representation. For example, suppose you are told “Tweety is a bird’, you
may incorporate the default assumption that ‘Tweety can fly’ in your
mental model because most birds can fly. However, it would be perverse
to incorporate this assumption if you also knew that ‘Tweety is an ostrich’.
To rule out perverse or irrelevant default assumptions requires checking
the whole of world knowledge to ensure that any default assumption is
consistent with what you already know (or some reievant subset of what
you already know). This will involve an exhaustive search over the whoie
of world knowledge for a counterexample to a default assumption.

It could be argued that the problem of searching for counterexamples
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for default assumptions is part of the theory of memory retrieval which
mental models, as a theory of inference, is not obliged to provide. Three
arguments seem to vitiate this suggestion. First, as we have seen, in Al at
least, these memory-retrieval processes are treated as inferential processes
and therefore need to be explained by a theory of inference. Second, the
memory-retrieval processes involve the search for counterexamples. This
indicates that in its own terms they are exactly the kind of inferential
processes for which mental-models theory should provide an account.
Third, such an argument could only succeed if mental-models theory itself
didn’t already rely heavily on such processes to explain the results of
reasoning tasks.

In recent accounts (e.g. Johnson-Laird and Byrne, 1991) the explanation
of various phenomena depend on the way in which an initial mental model
of the premises is ‘fleshed-out’. Fleshing-out, for example, determines: (1)
whether a disjunction is interpreted as exclusive or inclusive, or (Johnson-
Laird and Byrne, 1991: 45) (ii) whether a conditional is interpreted as
material implication or equivalence (Johnson-Laird and Byrne, 1991:
48-50), which in turn determines whether inferences by modus tollens will
be performed; (iii) whether non-standard interpretations of the conditional
are adopted (Johnson-Laird and Byre, 1991: 67), including content
effects whereby the relation between antecedent and consequent affects
the interpretation (Johnson-Laird and Byrne, 1991: 72-3); (iv) confirma-
tion bias in Wason’s selection task (Johnson-Laird and Byrne, 1991; 80)
and (v) the search for counterexamples in syllogistic reasoning (Johnson-
Laird and Byrne, 1991: 119). Fleshing out depends on accessing world
knowledge. Moreover, the explanatory burden placed on fleshing out
demands that mental-models theory accounts for the processes involved.
In consequence it is reasonable to expect mental-models theory to provide
an account of how relevant defaults are also retrieved from world
knowledge. Since this issue is not addressed it seems unlikely that logical
mental models can satisfy the generalization assumption.

However, the processes of fleshing out may suggest another interpreta-
tion. of mental models which we briefly present before closing this
section.

Memory-based mental models

The explanatory burden placed on fleshing out suggests that the memory-
retrieval processes involved may be primarily responsible for mental-
fnodel construction and manipulation. The representations that appear
in, for example, Johnson-Laird and Byrne (1991) may be better regarded
as the products of processes in which those representations are not
explicitly involved. In other words they are the ‘appearance(s) before the
footlights of consciousness’ (James, 1950/1890) of processes which are not
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defined over those representations themselves. This contrasts with logical
mental models where the processes that transform one model into
another are defined over the representations that appear on the pages
of, for example, Johnson-Laird and Byrne (1991).

Memory-based mental models appear to accord with an earlier thread
in mental models theory:

Like most everyday problems that call for reasoning, the explicit
premises leave most of the relevant information unstated. Indeed, the
real business of reasoning in these cases is to determine the relevant
factors and possibilities, and it therefore depends on knowledge of the
specific domain. Hence the construction of putative counterexamples
calls for an active exercise of memory and interpretation rather than
formal derivation of one expression from others.

(Johnson-Laird, 1986: 45, our emphasis)

On a memory-based mental-models position the ‘active exercise of
memory and interpretation’ would represent the heart of all inferential
processes. Moreover, existing accounts of mental models could be inter-
preted as specifying the intended outputs of these processes given certain
inputs. In this respect mental-models theory could therefore be expected
to provide a valuable source of constraint on a future memory-based
theory of reasoning. We will return to this interpretation of mental models
later on.

Summary

Recent accounts of mental-models theory appear to favour an interpretation
in terms of a graphical semantic-proof procedure. On this interpretation,
mental models provides an alternative notation for implementing logic in
the mind. This invites a variety of metatheoretic questions which need to
be answered to assess the adequacy of logical mental models as a general,
tractable, implementation of logic. Unfortunately, answers to these
questions are unavailable. Further, existing proposals for handling default
inference are inadequate. Taken together these considerations argue for a
Scots verdict of ‘not proven’ on logical mental models. However, the
processes of fleshing out indicate that memory-based mental models, while
less articulated, may act as a valuable source of constraint on a memory-
based theory of inference.

Pragmatic-reasoning schema theory

Pragmatic-reasoning schema theory emphasizes the role of domain-specific
knowledge in reasoning tasks (Cheng and Holyoak, 1985; Cosmides,
1989). Cheng and Holyoak (1985) suggested that people possess pragmatic

Reasoning theories and bounded rationality 47

reasoning schemas, which embody rules specific to various domains such
as permissions, causation, and so on. Permission schema are invoked in
explaining the results from some thematic versions of Wason’s selection
task where the rule determines whether or not some action may be taken.
Cheng and Holyoak (1985) argue that the rules embodied in a permission
schema match the inferences licensed by standard logic, thus explaining
the facilitatory effect of these materials. Similarly, Cosmides (1989)
appeals to domain-specific knowledge of ‘social contracts’ to explain the
same data (but see Cheng and Holyoak, 1989, for a critique). While
Cosmides” work on social contracts is important, it is only the postulation
of data structures specific to particular domains which will concern us.

We have frequently remarked that if the domains over which the
search for counterexamples takes place were suitably constrained, then
exhaustive searches may be feasible. However, there are two reasons for
suspecting that schema-theoretic or domain-specific approaches in general
will not prove adequate.

First, default reasoning is about how beliefs are appropriately updated
in response to new information (Harman, 1986). Within philosophy the
processes involved have typically been discussed under the heading of
confirmation theory (Fodor, 1983). In arguing that confirmation, and
hence default reasoning, is subject to the frame problem, Fodor observes
that confirmation is characteristically isotropic:

By saying that confirmation is isotropic, I mean that the facts relevant
to the confirmation of a scientific hypothesis may be drawn from
anywhere in the field of previously established empirical (or, of course,
demonstrative) truths. Crudely: everything that the scientist knows is,
in principle, relevant to determining what else he ought to believe.
(Fodor, 1983: 105)

Domain specificity can assist with intractability only if isotropy is
abandoned. If default reasoning is isotropic, then placing rigorous
boundaries on relevant information would be a move in exactly the wrong
direction. A knowledge organization which excluded the possibility of
isotropy would be hopelessly inflexible. Although cross-referencing
schemata is a possibility, as Fodor (1983: 117) points out: ‘an issue in the
logic of confirmation ... [becomes] ... an issue in the theory of
executive control (a change which there is, by the way, no reason to
assume is for the better)’.

A second reason to suspect that domain-specific approaches are
inadequate concerns the lack of any general principles concerning how an
appropriate compartmentalization of knowledge is to be achieved. Such
general principles are required since otherwise how knowledge is organized
into discrete compartments from the flux of information that an organism
receives in interacting with its environment remains opaque (Oaksford
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and Chater, 1991). While it may be legitimate to appeal to compart-
mentalization, once appealed to, an account of how it is achieved must be
supplied. Pragmatic-reasoning schema theory does not explicitly address
this issue. In consequence it is unlikely that this theory can satisfy the
generalization assumption.

Heuristic approaches

The heuristic approach (Evans, 1983b, 1984, 1989) is that most concerned
with the issue of cognitive limitations (Evans, 1983a). In computer science
the use of heuristics may render a computationally intractable problem
manageable. Tractable, approximate solutions may be found for many
problem instances by employing the generally intractable algorithm with
a heuristic (Horowitz and Sahni, 1978). Accuracy is traded for speed. In
this section we will observe that the current heuristic approach does not
address the intractability problems we have raised: the heuristics proposed
are more often motivated by appeal to pragmatic rather than processing
factors. We will suggest, however, that with some minor reinterpretation,
one heuristic proposed by Evans (1983b) may address the intractability
issue. None the less, we will conclude that supplementing generally
intractable algorithms with heuristics is unlikely to provide a general
solution to the problem of intractability.

The not-heuristic (Evans, 1983b, 1984, 1989) is motivated by Wason's
(1965) proposal that negations are typically used to deny presuppositions.
For example, ‘I did not go for a walk’ denies the presupposition that you
went for a walk. The topic of this sentence — what the sentence is about —
is walking and not any of the things I could have done while not walking.
On the basis of this example it was proposed that the language understand-
ing mechanism embodies a not-heuristic (Evans, 1983b). This heuristic
treats information about, for example, what you did while not walking as
irrelevant. Attention is therefore focused only on the named values. More
recently, this heuristic has been regarded as a manifestation of a general
bias towards positive information, i.e. information about what something
is rather than what it is not (Evans, 1989; see also Oaksford and Stenning,
1992).

Such a general preference for positive information may be better
motivated by processing rather than pragmatic considerations. A general
positivity bias may be one aspect of providing a tractable knowledge base
(Oaksford and Chater, forthcoming). The frame problem was first noticed
in reasoning about change. In a dynamic representation, the consequences
of something changing has to include all the things that did not change.
For example, along with the information that ‘If your coffee cup is knocked
over your carpet gets wet’, all the information about what did not happen
when your coffee cup is knocked over needed to be encoded. For example,
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that the window does not open, the lights do not switch off and so on.
There is a potentially infinite list of things which do not happen as a
consequence of knocking your coffee cup to the floor, each of which would
have to be explicitly represented. However, the negation-as-failure
procedure obviates the need to represent all this information (Hogger,
1984).'" If, from the current contents of the database, it cannot be proved
that the window opens, then it is assumed that the window does not open.
The upshot is that in a logic program no negative information is stored
(Hogger, 1984). This represents a prime case of positivity bias in the
service of tractability.

So at least one aspect of the current heuristic approach could address
the tractability issues we have discussed. However, as Evans (1991) says,
the heuristic approach is not an approach to human reasoning in its own
right. It needs to be married to a particular theory of competence. Such
an approach is unlikely to prove adequate, however. The problem is that:

The use of heuristics in an existing algorithm may enable it to quickly
solve a large instance of a problem provided the heuristic ‘works’ on
that instance. ... A heuristic, however, does not ‘work’ equally
effectively on all problem instances. Exponential time algorithms, even
coupled with heuristics will still show exponential behaviour on some
sets of inputs.

(Horowitz and Sahni, 1978)

There has been no attempt to articulate the sets of heuristics which would
be needed to provide generally tractable inference regimes either within
the heuristic approach or in Al knowledge representation. Hence, Evans
(1991) may well be right that one way to proceed is to marry the heuristic
approach to one or other of the theories which explicitly address the
competence issue. However, it seems doubtful that an appropriate set of
heuristics wili be forthcoming to supplement these theories (Oaksford and
Chater, 1991).

Default reasoning in particular presents new problems for the heuristic
approach. Existing accounts of defauit reasoning fail to arrive at intuitively
acceptable conclusions (McDermott, 1986). Quite often the only con-
clusion available is of the form p v not-p, i.e. a logical truth (Oaksford and
Chater, 1991). This is particularly uninformative. It has been suggested
that one way to resoive this problem is by appeal to various heuristics.
These heuristics may also assist with tractability by cutting down the
number of possibilities which need to be considered. The disjunction above
is all that can often be concluded because each default rule may lead to a
different possible conclusion. Logically, the only conclusion that can be
drawn therefore is their disjunction. However, if one default rule can be
given preference, then all these possibilities need not be computed (see
Oaksford and Chater, 1991).'2 Again, however, it is not at all clear that
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any of the heuristics proposed resolve this issue appropriately for all
instances of a problem (Loui, 1987). In sum, it seems unlikely that an
appropriate set of heuristics will be forthcoming to solve_: t.he problem (?f
computational intractability. In consequence, the heuristic approach is
unlikely to satisfy the generalization assumption.

Summary

In this section we have surveyed existing theories of reasoning with respect
to their ability to generalize appropriately to everyday common-sense
reasoning. The mental-logic approach was perhaps the ]ea:st promising in
this respect. This is largely because it is sufficiently well articulated for the
relevant metatheoretic results to be available. This was in contrast to the
logical mental-models approach. Although there is a possib‘ility that
arbitrary exemplars may provide for a tractable model-based mfere‘nc.e
regime, the absence of the relevant metatheoretic results means .that it is
impossible to decide one way or the other. However, when it comes
to default reasoning the mental-models approach is demonstrgbly in-
adequate: the real problem is avoided. The possibiti‘ty remains that
memory-based mental models may none the less be expl.al.n'cd as emergent
properties of a theory of memory retrieval (this possibility is d1§cusscd
further below). The two theories perhaps most suited to addressmg.th.e
tractability issue — pragmatic-reasoning schema theory and the heuristic
approach — were equally unpromising. Without an account of how
compartmentalization is achieved, schema theoretic approaches pre-
suppose a solution, they do not provide one. It moreover seems unlikely
that an appropriate set of heuristics can be specified to resolve the
intractability problem.

DISCUSSION

There are two broad areas which require further discussion in the light of
the above arguments. Both concern the issue of rationality. First, we will
discuss philosophical implications for human rationality. Second, we will
discuss the implications for psychological theories concerned to build
rational mechanisms (Fodor, 1987).

Rationality

In this section we will discuss two issues, the implications of reasoning data
for human rationality, and the possible charge that abandoning rule-based

theories leads to relativism. ‘
The intractability results we have reported indicate that a bounded-

rationality assumption should be made. This has the consequence that the
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empirically observed deviations from normative theories could not bring
human rationality into question. The complexity results we have discussed
indicate that people could not generally be using the normative strategy.
Itis only possible to condemn people as irrational for not using a particular
strategy if they could use it. To think otherwise, would be like condem ning
us because we can not breathe under water even though we do not possess
gills. It could be argued, however, that for laboratory tasks involving just
a few premises complexity issues are not a concern. We have partly replied
to this response above where we observed that if just one rule is
interpreted as a default rule, a feasible real-time inference is doubtful, It
also seems highly unlikely that people have been endowed with all the
logical machinery spontaneously to solve just those tasks small enough not
to tax their limited resources. If nothing else this is because the empirical
data appear to indicate that they just happen not to use that machinery!
It seems far more parsimonious to suggest that the strategy which is used
in everyday reasoning contexts is generalized to laboratory tasks.

It would be irrational to demand that people employ strategies which
they are incapable of using. However, one attractive feature of rule-based
theories is that they come with their own warrant of rationality, as it were.
Brown argues that ‘[on] our classical conception of rationality . . . the
rationality of any conclusion is determined by whether it conforms to
the appropriate rules’ (Brown, 1988: 17). If rule-based theories are
abandoned, there may be no guarantee that the strategies which replace
them are rational: since they will not be rule-based, they will not carry
their own warrant of rationality. This, moreover, may be seen as the first
step on the slippery slope towards relativism, i.e. the view that there are
no universal principles of rationality.

Johnson-Laird and Byrne (1991) consider the same problem and
conclude that rather than conformity to rules, the search for counter-
examples provides a universal principle of rationality. However, this
provides neither a necessary nor a sufficient condition for rational judge-
ment. It is not necessary because it is not a principle universally adhered
to in scientific practice which provides our paradigm case of rational
activity (Brown, 1988). Within periods of normal science (Kuhn, 1962)
scientists explicitly refuse to allow core theoretical principles to be subject
to refutation. The search for counterexamples is also not a sufficient
criterion for rational judgement. Continuing to search for counterexamples
indefinitely is not rational when trying to reach a decision in real time.

However, the idea that the search for counterexamples provides a
universal criterion of rationality need not be wholly abandoned. It will,
however, need to be supplemented by a theory of judgement: ‘Judgement
is the ability to evaluate a situation, assess evidence, and come to a
reasonable decision without following rules’ (Brown, 1988: 137). It is a
matter of judgement, for example, when and if counterexamples are
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allowed to falsify a core theoretical principle, or when the search for
counterexamples has been sufficiently exha.ustive. Quite frequeptly we
appeal to experts, who have a wealth of experience and know]efige in order
to make these judgements. A good example is the peer review system.
There is no algorithm for determining whether an experimenter has r.nadc
sufficient attempts to dismiss alternative explanations of a hypothesis. In
consequence, it is left to a researcher’s peers to decide whether she/he ha}s
adequately dealt with the relevant possibilities. A further example is
provided by the legal concept of precedent. In certain. cases a defe_nce
lawyer will seek to find a case in which the facts are as similar as Posmhle
and where a not-guilty verdict was returned. Equally, the prosecution may
seek a similar case where a guilty verdict was returned. Both defence and
prosecution are searching for counterexamples to each other’s arguments
that on the basis of the evidence the defendant should (or should not) be
convicted. Judgement enters in to the decision process, in two ways. .Flrstt,
the judge of the present case must decide whether the cases are 51rn.1lar in
the relevant respects. Second, the whole concept of precedent relies on
allowing previous judgements to influence subsequent judgemenFs.

In sum, the claim that we could not employ rule-based theories could
lead to relativism. The search for counterexamples per se is an inadequate
response to this charge. The examples we adduced indicate that .the search
for counterexamples must be supplemented by a theory of judgement
before anything like a universal principle is available.

Rational mechanisms

Rule-based systems operating over formal symbolic representations have
the advantage that they possess a transparent semantics wl}ich. allows us tF)
see how mental representations can be causally efficacious in virtue of their
meaning (Fodor, 1987). If we abandon rule-based theories, do we also
abandon the ability to provide causal, mechanistic explanations of the way
representational mental states mediate behaviour? Part of an answer to
this question has already been provided. If the concept of what itis to be
rational changes, then the form that a theory of rational mech.fimsm must
take may also change. We now consider what kinds of mechanism may be
consistent with our developing conception of rationality. We will first draw
on an analogy with Kahneman and Tversky’s work on risky decisi'on
making, and then propose that connectionist systems may provide
alternative rational mechanisms. _

In response to similar complexity results for Bayesian inference, Tversgy
and Kahneman (1974) proposed a qualitatively different theory to t.:xpla!n
risky decison making in which the normative theory was not retamfﬂ.d in
any form. The problem of deriving probability estimates was radlcall_y
reconceived largely in terms of the processes of memory retrieval. Their
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heuristic approach can be contrasted with the heuristic approach in theories
of reasoning. As we mentioned above, within reasoning theory, heuristics
are regarded as supplements to a theory of competence (Evans, 1991).
However, in Kahneman and Tversky’s approach various memory-based
heuristics are regarded as wholesale replacements for the competence
theory. We suggest that confronted with similar intractability problems
reasoning theorists should adopt the same response.

What could represent an analogous reconceptualization of reasoning
mechanisms? Levesque (1988) has suggested that connectionism may
represent one strategy in the attempt to develop plausible cognitive
mechanisms for inference. Rumelhart et al. (1986) and Rumelhart (1989)
have also suggested that a predictive neural network may form the
basis of people’s reasoning abilities. What kind of reconceptualization of
reasoning does this involve? 2

Inference is the dynamics of cognition. In classical approaches (Fodor
and Pylyshyn, 1988; Chater and Oaksford, 1990) inference takes static
symbolic representations and turns them to useful work, predicting the
environment, explaining an experiment, drawing up a plan of action and
so on. Formal inference over language-like representations has seemed the
only way in which meaning and mechanism could combine (Fodor, 1987).
Connectionism may offer a very different picture of how to achieve the
marriage between mechanism and meaning. Logic provides a dynamics for
representations of a particular type: atomic symbolic representations
usually map one to one onto our common-sense classification of the world.
Connectionism postulates distributed representations of a very different
kind in which stable patterns of features represent items in that classifica-
tion. The dynamics of the system, moreover, is defined at the featural level
and owes more to statistical mechanics than to logic. Nevertheless it may
be that these representations and the dynamics which transforms one such
representation into another can form the basis of a theory of inference.

Let us consider the problem at a higher level of abstraction. Inference
leads us from one interpreted mental state to another. The heart of the
problem is how to get mental states to systematically track states of the
world or, in other words, how to get the dynamics of cognition to ‘hook
up’ to the dynamics of the world (Churchland and Churchland, 1983). We
see no reason, a priori, why connectionist systems cannot also perform this
function. .

While there are serious problems for a connectionist theory of inference,
there may also be advantages. It may be compatible, for example, with the
second interpretation of mental models we offered above (Rumelhart,
1989). Given a set of inputs a network settles on an interpretation which
least violates the constraints embodied in its weighted connections between
units. These weighted connections embody the network’s knowledge of a
domain. One way of characterizing such a relaxation search, is that prior
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to input clamping all the knowledge that is embodied in the network is
potentially relevant to interpreting the input. However, as the net relaxes
into an interpretation only those items most relevant will remain on. The
stable state arrived at can be regarded as the initial ‘mental model’ of the
input. This model may embody default assumptions. For example, in the
‘on-line’ schema model (Rumelhart et al., 1986), a constraint satisfaction
network embodied information about prototypical rooms. If the bath unit
was clamped on then units like toilet, toothbrush, and so on would come
on as default values. In the search for counterexamples, intermediate
mental models may be generated by selectively clamping off units
and allowing the net to settle into a new stable state (Rumelhart,
1989).

Further, this mode of operation seems to capture something of what it
means to make a judgement. As we said above, determining whether
relevant counterexamples have been exhausted is a matter of judgement
based upon what you know. In a simple connectionist system all that it
knows (all its synaptic weights) contribute to determining what is relevant
to interpreting current inputs. The example of precedent also indicates that
counterexamples to novel situations may be sought by reference to similar
situations. The partial pattern-matching capabilities of networks make
them good candidates for implementing the processes responsible.’

The burden of complexity may also be located in the right place. Within
connectionist systems learning is the computationally expensive process.
Once learnt, however, an inference over the representations embodied in
the network is effortless. In contrast, in classical systems inference is
computationally expensive while learning is an issue rarely addressed. This
may seem like just trading one complexity problem for another. However,
the connectionist system at least mirrors the difficulty people actually
appear to encounter with learning and inference.

There are serious problems, however. Current network dynamics are
insufficiently articulated to provide an account of the productivity of
language and thinking (Fodor and Pylyshyn, 1988). In particular, thinking
is not a purely predictive process which is triggered by external events.
Indeed in thinking people appear able to ‘un-hook’ the dynamics of
cognition from the dynamics of the world, enabling them to step out of
real time. This will require networks to have their own intrinsic dynamics
to allow thoughts to chain together in the absence of provoking stimuli.
While posing a serious problem there is, none the less, a great deal
of work going on in this area (Chater, 1989; Elman, 1988; Jordan,
1986; Rohwer, 1990). We see no reason to be pessimistic about its
outcome and the consequent prospects for a connectionist theory of
inference.
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CONCLUSIONS

We have argued that an adequate theory of reasoning must be able to
‘scale up’ to deal with everyday defeasible inferences in real time. We
observed that no contemporary theory of reasoning provided a tractable
account of everyday inference and that in consequence none of these
theories were likely to be psychologically real. Concentration on limited
laboratory tasks would appear to have led to the development of theories
of dubious ecological validity. Further, it would appear more likely that
people ‘scale down’ their everyday strategies to deal with laboratory tasks
and that this is the source of the systematic biases observed in human
reasoning. While these arguments do not bring human rationality
into question, they do demand a reconceptualization of appropriate
mechanisms for inference. We suggested that connectionist systems may
be appropriate which appeared consistent with memory-based mental
models and the requirements of a theory of judgement.

In conclusion, empirical research into human reasoning may need to be
more ecologically valid. The boundaries of real inference need to be
mapped out: how do people deal with defeasible knowledge, how do
they make relevance judgements, and how does background information
(Byrne, 1989; Cummins et al., 1991) interact with reasoning processes?
Answers to these questions could be pursued on two fronts. First the
complexification of the laboratory situation. Most reasoning tasks are
still pencil-and-paper exercises (although, see Mynatt et al., 1977, for
example). In contrast the computer game may offer the prospect of
engaging subjects in novel dynamic environments over which the
experimenter has control. In such environments, context-sensitive rules,
varying difficulties of obtaining information, and differing utilities for
correct inference can be arranged and their consequences for behaviour
mapped out. Second, more direct analyses of real inferential settings such
as the court room and science itself need to be conducted (e.g. Tukey,
1986; Tweney, 1985). Explaining the inferential processes that obtain in
such real-world settings must be the ultimate goal of a psychological theory
of reasoning.
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NOTES

1 It is important to be clear about whose inferential behaviour reasoning theorists
are attempting to explain. Throughout this chapter it is assumed to be



56 Rationality

the spontaneous, unassisted, inferential performance of logically untutored
subjects. By ‘spontaneous and unassisted” we mean that the subjects are not
allowed to use aids such as pencil, paper or computer to make calculations nor
are they able to consult with friends or experts. By ‘logically untutored’ we
mean that subjects should have no explicit formal logical training. In other
words reasoning theorists are attempting to explain the reasoning abilities which
people possess solely in virtue of genetic endowment and general education.

2 The satisfiability problem is to determine whether a formula is true for some
assignment of truth values to the variables. ‘Reduces’ is a technical term of
complexity theory (see Horowitz and Sahni, 1978: 511).

3 Natural deduction systems contain no axioms and all inferences are drawn by
the application of various inference-rule schemata, e.g. p OR q, not-p [ q
(where ‘E’ can be informally glossed as ‘therefore’).

4 This applies equally well to semantic-proof procedures, such as truth tables and
semantic tableaux, as to syntactic procedures such as axioms or natural
deduction systems.

5 This would appear to predict that inferences by modus ponens should also be
suppressed in these tasks, which is not the case. We examine this issue in more
detail elsewhere (Oaksford and Chater, forthcoming).

6 We should also note that under standard interpretations, the search for
counterexamples does not distinguish syntactic from semantic approaches. All
proof procedures are regarded as ‘abortive counter-model constructions’ (Beth,
1955; Hintikka, 1955; see also Hintikka, 1985).

7 There are logical systems which eliminate quantifiers, for example, combinatory
logic (see Curry’s and Feys' (1958) and Fine’s (1985) theory of arbitrary objects.
Perhaps a translation between these systems and mental models may provide
the desired results.

8 This is simply due to the inability to draw more than four overlapping two-
dimensional shapes such that all possible relationships between them are
represented.

9 This is far less important than soundness. However, if mental-models theory is
to avoid the charge of ad hoc extension to deal with new phenomena, then
some account of expressiveness must be provided. Otherwise there can be little
confidence that the notation is sufficiently well understood to perform the
functions demanded of it.

10 At the beginning of Johnson-Laird and Byrne (1991) the example of a classic
piece of default reasoning by Sherlock Holmes is provided which eloquently
illustrates this point.

11 The cost is that logical negation is not fully implemented in such a database.

12 These possibilities are known as different extensions of a default theory. A
default theory is simply a collection of axioms, including at least one default
rule, which describes the behaviour of a particular domain.

13 It also suggests that sensible reasoning in novel domains does not demand an
abstract inferential competence sensitive to the logical form of arguments. Just
as with precedent, old judgements are brought to bear on new problems.
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