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Over the last few years, we have been developing a
probabilistic approach to deductive reasoning (for over-
views, see Chater & Oaksford, 2000, 2001; Eysenck &
Keane, 2000; Manktelow, 1999; Oaksford & Chater,
2001). We recently have extended this approach to syllo-
gisms (Chater & Oaksford, 1999)—that is, to inferences
that combine two quantified (all, some, some. . .not, or
none) premises to form inferences such as, All Y are X,
Some Y are Z, therefore, Some X are Z. Oaksford and
Chater (1994, 1996, 1998) argued that people make er-
rors on logical reasoning tasks because they generalize
their everyday probabilistic reasoning strategies to the
laboratory. Substantiating this claim involved showing
that the probabilistic account could apply to an unques-
tionably logical task. Although syllogisms arguably play
only a minor role in everyday reasoning, they do fit this
bill. They have also been used as the major testing ground
for theories of reasoning (e.g., Bucciarelli & Johnson-
Laird, 1999; Evans, Handley, Harper, & Johnson-Laird,
1999; Guyote & Sternberg, 1981; Johnson-Laird, 1983;
Newstead, Handley, & Buck, 1999; Polk & Newell, 1995;
Rips, 1994).

Chater and Oaksford’s (1999) probability heuristics
model (PHM) explains the standard pattern of inferences
using the logical quantifiers. Importantly, they also showed
that it generalizes to syllogistic reasoning involving the

generalized quantifiers most and few (Barwise & Cooper,
1981). Other theories of reasoning have not been applied
to these quantifiers (although see Johnson-Laird, 1983,
1994, for discussion of how they might be represented in
mental models theory). We would argue that explaining
syllogistic reasoning with generalized quantifiers is the
main testing ground for distinguishing between theories
in this area. The variety of quantifiers that figure in nat-
ural language goes far beyond the logical quantifiers
(e.g., Moxey & Sanford, 1993), and people seem to find
reasoning with them natural (Chater & Oaksford, 1999).
Therefore constraining theories to just the four logical
quantifiers seems overly restrictive from a psychological
point of view.

Some of Chater and Oaksford’s (1999) results, how-
ever, were unexpected and questioned a core assumption
of PHM concerning the ordering in the informativeness
of the quantifiers (see below). Problems arose mainly for
few. The goal of the work reported here is to show that
these results can be explained by the pragmatics of this
quantifier. Importantly, PHM can incorporate these prag-
matic phenomena, and this leads to a change in the in-
formativeness order. This change allows PHM to explain
Chater and Oaksford’s (1999) anomalous results. In this
paper we report experiments testing this explanation.

The Probability Heuristics Model
In PHM (Chater & Oaksford, 1999), participants rea-

son syllogistically by applying various heuristics. How
they are applied depends on an informativeness ordering
over the quantifiers. For example, it is more informative
to know that All the customers are vegetarians than that
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Three experiments tested a possible resolution of the probability heuristics model (PHM) of syllo-
gistic reasoning proposed by Chater and Oaksford (1999), with their experimental results apparently
showing that the generalized quantifier few was not as informative as suggested theoretically. Modifying
the interpretation of few to take into account the distinction between positive and negative quantifiers
(Moxey & Sanford, 1993) indicated two orderings over the quantifiers all, most, few, some, none, and
some. . .not that are more consistent with the results. Experiments 1–3 tested these orderings empiri-
cally by having participants rank whether a quantifier applied to a particular probabilistic state of affairs.
Experiments 1 and 2 showed that participants agreed on when a quantifier applied and that the empiri-
cally derived informativeness orderings were consistent with the proposed modifications of the order.
Experiment 3 showed that this finding was robust even when response competition was eliminated.
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Some of the customers are not vegetarians. This is be-
cause the all statement is much less likely to be true. The
overall ordering in informativeness exploited in PHM
was all . most . few . some . none . some. . .not.

The heuristics operate over a representation of the
premises to generate a representation of the putative con-
clusion. Take the example just given, All Y are X, Some
Y are Z, therefore, Some X are Z. (X refers to the end
term of the first premise and Z to the end term of the sec-
ond premise. Y is the middle term that connects the two
premises.) The most important heuristic is the “min-
heuristic,” which advises selecting the form of the least
informative premise as the form of the conclusion: Some
_ are _, where underscores (“_”) act as placeholders for
the end terms (X or Z ). Other heuristics determine the
order of end terms in the conclusion, and confidence that
the conclusion is valid.

The min-heuristic and the other heuristics depend on
the informativeness ordering that Chater and Oaksford
(1999) derived theoretically. Two experiments combin-
ing the generalized quantifiers most and few with the
logical quantifiers were generally supportive of PHM.
However, there were some anomalies. For example, ac-
cording to the informativeness order, for syllogisms in
which the two premises are few and some. . .not, the min-
heuristic predicts a some. . .not conclusion. However, in
Chater and Oaksford’s (1999) Experiment 1, there was
no significant difference in the frequency of endorsing
few and some. . .not, although they were both endorsed
significantly more often than the other possible response
options. Moreover, for syllogisms in which the two prem-
ises are few and some, the min-heuristic predicts a some
conclusion. However, in Chater and Oaksford’s (1999)
Experiment 2 there was no significant difference in the
frequency of endorsing few and some, although the trend
was for more endorsements of few. Both were endorsed
significantly more often than the other possible response
options.

These results suggest that in Chater and Oaksford’s
(1999) Experiment 1, few was regarded as being only as
informative as some. . .not, whereas in their Experi-
ment 2, few was regarded as being as informative as, or
perhaps less informative than, some.

Some Pragmatic Properties of the Quantifiers
Why should this happen? We think two factors are in-

volved. The first is an ambiguity in the interpretation of
few. The second suggests that one interpretation of few
was adopted in one experiment but the other interpreta-
tion was adopted in the other experiment.

There is a pragmatic distinction between positive and
negative quantifiers (Moxey & Sanford, 1987, 1993; Pa-
terson, Sanford, Moxey, & Dawydiak, 1998; Sanford,
Moxey, & Paterson, 1994, 1996). A positive quantifier
implies that the corresponding all statement is false. So,
for example, Some staff attended the meeting suggests
that it is false that All staff attended the meeting, al-

though this does not follow logically. This implicature
can be suspended using the phrase “if not all” (Horn,
1989; Moxey & Sanford, 1993): Some staff attended the
meeting, if not all. Some is a positive quantifier, as is
most (as a similar check readily demonstrates). A nega-
tive quantifier implicates the falsity of the corresponding
none statement. For example, Some staff did not attend
the meeting, if not all, means that it is possible that All
staff did not attend, which is synonymous with None of
the staff attended. That is, the implicature of some. . .not
is that not none of the staff attended the meeting. There-
fore, Some X are not Y is a negative quantifier.

Distinguishing positive from negative quantifiers re-
veals an epistemological ambiguity in their interpreta-
tion. For example, someone may assert that Some staff
attended the meeting because all of the staff they know
about attended, but they do not know if the other staff
members attended. Here some allows the possibility that
All X are Y. However, someone may assert this because
some of the staff members they know about attended and
some did not attend. Here some implicates the falsity of
All X are Y. Resolving this ambiguity requires more in-
formation from one’s interlocuter, information that is not
available in a laboratory reasoning task. Therefore, it is
reasonable to assume that many participants interpret
some and some. . .not as allowing the possibility of all
and none, respectively.

This interpretation is captured in Chater and Oaks-
ford’s (1999) probabilistic semantics, where the mean-
ing of a quantified statement, having subject term X and
predicate term Y, is given by the conditional probability
of Y given X (P(Y |X )). On this account, all means that
P(Y |X ) 5 1, none means that P(Y |X ) 5 0, some means
that P(Y |X ) . 0, and some. . .not means that P(Y |X) , 1.
That is, the probability interval for some includes that for
all and the probability interval for some. . .not includes
that for none. Because most is a positive quantifier,
Chater and Oaksford (1999) should have allowed the
possibility of all. This is achieved by letting most mean
that P(Y |X ) . 1 2 D (where D is small) rather than 1 .
P(Y |X ) . 1 2 D.

Whether few is a positive or negative quantifier may
be crucial to explaining the apparent inferential changes
between Chater and Oaksford’s (1999) experiments. In-
terpreting this quantifier may be ambiguous because al-
though few is a negative quantifier, a few is a positive quan-
tifier. According to Chater and Oaksford’s (1999) original
semantics, the meaning of few is that 0 , P(Y |X ) , D.
By analogy with most, changing this semantics to in-
clude none simply means changing this definition to
P(Y |X ) , D. We will refer to this quantifier as few2.

How should we cope probabilistically with a few? A
few can apply to the same region that we initially as-
signed to few. Someone may assert that Few staff (X) at-
tended the meeting (Y), if not none because all of the,
perhaps large, sample of staff (say, 90 out of a total of
100) they know about did not. Therefore, P(Y |X ) could
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be as low as 0 but only as high as .1. Consistent with the
sample, however, confidence should be biased toward
the low end of this range (i.e., toward none). In contrast,
someone may assert that A few staff attended the meet-
ing, if not all because all of the, very small, sample of
staff (say, 2) they know about did attend. Therefore P(Y |X )
could be as high as 1 but as low as .02. Consistent with
their sample, however, confidence should be biased to-
ward the high end of this range—that is, toward most and
all. This seems consistent with the acceptability of the
other quantifiers as suspenders of implicature:

A few staff attended the meeting, if not all.
A few staff attended the meeting, if not most.

*A few staff attended the meeting, if not none.
*A few staff attended the meeting, if not some.
*A few staff attended the meeting, if all did.

(* indicates pragmatic infelicity)

(The final example is an attempt to make more sense of
. . ., if not some did not. It is not the case that someone
did not attend is equivalent to everyone attended.) Con-
sequently, A few X are Y must allow the possibility that
All X are Y and that Most X are Y, but not any of the other
possibilities described by the remaining quantifiers. We
therefore interpret A few X are Y to mean that the proba-
bility of Y given X can take on values between 0 and D
and between 1 2 D and 1. We will refer to a few inter-
preted in this way as few1. Of course the expression a
few was not used in Chater and Oaksford’s (1999) ex-
periments. However, we argue that when interpreting the
decontextualized statements of a syllogistic reasoning
experiment (e.g., Few artists are beekeepers), both pos-
sible interpretations may be considered.

The second factor that may explain the anomalies in
Chater and Oaksford’s (1999) experiments concerns why

these different interpretations have been adopted in each
experiment. The appropriateness of a quantifier may de-
pend on the other quantifiers available (Brownell &
Caramazza, 1978; Moxey & Sanford, 1993). For exam-
ple, suppose that 10 out of 100 squares are white. One
might choose to describe this state of affairs as Few
squares are white. But if few was unavailable, then Some
squares are white may do perfectly well. In Chater and
Oaksford (1999), only the quantifiers all, most, few, and
some. . .not were used in Experiment 1, and only the
quantifiers most, few, some, and none were used in Ex-
periment 2. This was to keep the total number of syllo-
gisms in a single experiment at manageable levels. In
Chater and Oaksford’s (1999) experiments, we suspect
that the change in the quantifiers used has led partici-
pants to interpret “few” as few2 in Experiment 1 and as
few1 in Experiment 2. This is because in Experiment 1,
using all, most, few, and some. . .not, few is not needed to
express the possibility of all or most because these quan-
tifiers are available. Consequently “few” was interpreted
as few2—that is, as applying only to the bottom end of
the probability scale. The reverse was true for Experi-
ment 2, which used most, few, some, and none. Here few
is not needed to express none as this quantifier is avail-
able. Consequently, “few” was interpreted as few1—that
is, as applying to the top end of the probability scale.

Constructing an Informativeness Order
There are several ways in which we could investigate

this explanation of Chater and Oaksford’s (1999) results.
In these experiments we investigated directly whether
this interpretational change for few could explain the
changes in its place in the informativeness order. If it
can, then these results may be consistent with the min-
heuristic, the core of the PHM model. To see whether
this is the case, we need to outline how an informative-
ness order is constructed.

In Chater and Oaksford (1999), informativeness was
calculated with respect to the probability density func-
tion shown in Figure 1. This shows the frequency of true
statements as a function of P(Y |X). Taking any two terms
at random, Chater and Oaksford (1999) argued that the
highest density of true statements will correspond to
P(Y |X ) values of zero. For example, the probability that
a table is a toupee is zero, and so the only true statement
that can be made using these two terms is that No toupees
are tables. These will be most frequent because of the
rarity assumption (Oaksford & Chater, 1994, 1996):
Most terms apply only to a small number of objects and
hence rarely cross-classify them. The large arrow at
P(Y |X ) 5 0 (marked E) indicates that, for randomly se-
lected terms, none statements are very frequently true—
that is, more than half (.5) of the time. The area A corre-
sponds to the probability that a true statement is made
using all. In Chater and Oaksford’s (1999) original ac-
count, the areas marked M and F corresponded to the
probability that a true statement is made using most

Figure 1. Schematic diagram of the frequency of true state-
ments as a function of P(Y | X ). The frequency of none (E) state-
ments (which is over half of all statements) is represented by the
filled arrow. The frequency of all (A) statements is represented by
the small square filled box. The frequencies of the few (F) and
most (M) statements are given by the areas marked in white. The
remaining shaded area, Z, does not correspond directly to any
particular quantifier.
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[lower bound at P(Y |X ) 5 1 2 D] and few [upper bound
at P(Y |X ) 5 D], respectively. The probabilities that true
statements are made using some or some. . .not are sums
over the other areas, some 5 F 1 Z 1 M 1 A, some. . .
not 5 E 1 F 1 Z 1 M. To calculate informativeness, the
probability of making a true statement is converted to
bits of information using Shannon’s (Shannon & Weaver,
1949) surprisal formula. So the informativeness of a quan-
tified statement Q is equal to log2[1/P(Q is true)]. Con-
sequently, the lower the probability of making a true
statement, the more informative it is. The probability
densities in Figure 1 led to the informativeness order de-
scribed earlier.

The regions of the probability density function in Fig-
ure 1 can also illustrate how our new interpretations for
the quantifiers affect the informativeness ordering. The
changes affect most and few. Most is straightforward:
Rather than just M, most now corresponds to the region
M 1 A. Few1 corresponds to the area F 1 M 1 A. This
means that the probabilities for few1 and some (F 1 Z 1
M 1 A) move much closer together. Moreover, as D in-
creases toward .5, the area Z tends toward zero, at which
point few1 and some would be equally informative,
which was what Chater and Oaksford (1999) found in
their Experiment 2. However, few2 corresponds to the
area E 1 F. This means that although the probabilities
for few2 and some. . .not (E 1 F 1 Z 1 M) move much
closer together with increases in D (to a maximum of .5),
this factor alone could not account for Chater and Oaks-
ford’s (1999) finding that few2 and some. . .not seemed to
be treated as equally informative in their Experiment 1.

There are two unrealistic assumptions built in to these
calculations of informativeness. First, D is the same for
few and most, but there is no reason why this should be
the case. Second, a quantifier (e.g., few) is as likely to be
used to describe a state of affairs in one part of the in-
terval it covers as another. So, for example, Few squares
are white is as likely to be used to describe the situation
where 1 out of a 100 squares is white as where 20 out of a
100 squares are white. This again seems unrealistic. Both
of these assumptions are consequences of the interval-
based semantics assigned to the quantifiers; that is, the
meaning of each quantifier is given a (possibly overlap-
ping) interval on the P(Y |X ) scale. It is probably more
realistic to take a distributional approach. That is, a
quantifier will display a certain probability of being used
that varies with P(Y |X ); D is then no longer a fixed point
but is defined as the value of P(Y |X ), for which the
probability of using few is negligible.

What is required is a function relating P(Y |X ) to the
probability of using each quantifier. This provides a
“membership” function for each quantifier. There has
been much work deriving these functions for a variety of
quantified terms (e.g., Rapoport, Wallsten, & Cox, 1987;
Wallsten, Budescu, Rapoport, Zwick, & Forsyth, 1986).
These can then be combined with the probability density
function in Figure 1 to obtain informativeness orderings.

That is, rather than assuming that the probability that a
quantifier will be used in its interval is 1, we allow this
probability to be determined by the membership func-
tion. This means that a term is more informative when it
is unlikely to be used, and this seems intuitively correct.
When a politician asserts that “most people voted ‘for’
in the referendum,” when only 52% did so, this is very
informative about the politician’s attitudes.

There have been many criticisms of the membership
function approach to the meaning of the quantif iers
(Moxey & Sanford, 1993). However, a probabilistic ac-
count does not have to provide the meaning of these
terms. Rather, it can be regarded as providing their core
meanings, which are used to reason syllogistically. Even
if our account of quantifier meaning is incomplete, it is
an empirical question whether we have captured enough
of the meaning to explain syllogistic reasoning.

One criticism of membership functions is that they are
context sensitive (Moxey & Sanford, 1993). We have al-
ready appealed to one context effect: Whether a term is
used to describe a state of affairs depends on the other
terms available. In syllogistic reasoning experiments, the
possible options are always restricted to the quantifiers
used as premises. Chater and Oaksford’s (1999) theory
has been applied only to the logical quantifiers and most
and few. Consequently, to see if our account can explain
Chater and Oaksford’s (1999) results, membership func-
tions are required for the case where only these quanti-
fiers are available. However, no existing experiments de-
rived these functions for just these quantifiers. We
therefore derived membership functions for these quan-
tifiers to test our account of Chater and Oaksford’s (1999)
results.

We made three predictions regarding when these
membership functions are combined with the probabil-
ity density function in Figure 1 to derive informativeness
orders. First, there should be significant differences in
the informativeness of the quantifiers according to our
theoretical ordering. Second, when “few” is interpreted
as few1, there will be either no differences in informa-
tiveness between few and some, or some will be more in-
formative than few. Third, when “few” is interpreted as
few2, there will be no differences in informativeness be-
tween few and some. . .not. In these experiments we are
predicting the absence of an effect. Consequently, fol-
lowing other researchers who have tested similar predic-
tions (e.g., Kintsch, 1974, chap. 11; Manktelow & Evans,
1979), we conducted a sequence of experiments, each of
which derived membership functions in a different way.

EXPERIMENT 1

In this experiment, one group of participants was pre-
sented with verbal descriptions such as There are 50
squares of which 10 are white and another group with vi-
sual arrays displaying the same information. The state-
ments and the arrays were varied in steps of .1 from 0 to
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1 along the probability scale. Participants were then
given all possible quantified descriptions of the de-
scribed state of affairs (e.g., All the squares are white,
Most of the squares are white . . ., etc.). They were then
asked to select which quantifiers they thought applied to
the state of affairs, rank-ordering them when they
thought that more than one could apply. A visual pre-
sentation condition was included to determine whether
membership functions were stable across different
modes of presentation. It could also be argued that peo-
ple are more familiar with assigning quantifiers to per-
ceived or imagined states of affairs rather than to verbal
descriptions. So the predicted null effects may arise in
the verbal condition because of inaccuracies increasing
the variance in the data.

Previous research on membership functions sought to
derive maximally discriminatory psychometric scales,
and consequently each participant was asked to judge the
applicability of the quantifiers many times (e.g., Rapo-
port et al., 1987; Wallsten et al., 1986). In contrast we
asked participants for only one judgment at each value
for P(Y |X ). This was primarily to reduce the time on
task. We also used the ranking procedure just described,
although in subsequent experiments we changed this
procedure to see whether this would alter our results. This
procedure was used because, as we have discussed, the
context of the other quantifiers influences this judgment.
We felt it would be easier to make the comparative judg-
ment of whether one quantifier applied more than an-
other using a ranking procedure rather than asking the
participants to assign, say, a number between 1 and 100
to each quantifier. To compute the informativeness order,
these ranks were converted to probabilities (see the Ap-
pendix).

In past research, different participants sometimes pro-
vided different membership functions, which may have
masked the effects we were looking for. Alternatively,
they may only be present in the aggregate data, although
two (or more) subsets of participants are doing some-
thing rather different. Individual differences in strategy
have been observed in syllogistic reasoning (Bucciarelli
& Johnson-Laird, 1999; Ford, 1994). However, we know
of no reports of systematic differences between partici-
pants in interpretation. Nonetheless, in these experi-
ments we checked that participants substantially agreed
on which quantifiers applied at each level of P(Y |X ).

Method
Participants . Eighty-one undergraduate psychology students at

Cardiff University participated in return for course credit, 45 in the
verbal presentation condition and 36 in the visual presentation con-
dition.

Materials . Each participant received a booklet containing a set
of 11 scenarios, in different random orders. In each booklet, general
instructions were given on the first page and an example on the sec-
ond page. In the verbal condition, each state of affairs consisted of
a statement such as In a room of 100 people , there are 50 artists of
whom 15 are beekeepers . In the visual condition, participants
viewed a 5 3 10 array of black-and-white squares. The proportion

of black squares was varied to achieve the probability manipula-
tion. P(Y |X ) was varied throughout the experiment by varying the
numbers of objects that fell into the relevant classes (0–50 at inter-
vals of 5). There were always 50 people (squares) who could be de-
scribed by the subject term (e.g., verbal condition: artists; visual
condition: squares). The proportion that could also be described by
the predicate term (e.g., verbal condition: beekeepers; visual con-
dition: black) was varied. The lexical categories of the 11 state-
ments in the verbal condition were different for each value of
P(Y |X ). The response options involved the quantif iers all, most,
some, some. . .not, few, and none, and the additional option “none of
the above.”

Procedure. Participants were tested individually. On entering
the experimental room they were assigned randomly to either the
verbal or visual condition. They were then seated in individual ex-
perimental cubicles where the materials were laid out face down on
a table. When the booklet was turned over, the first page revealed
the following instructions (in the visual condition, the text in italic
was replaced with the text in parentheses):

During the course of this experiment, you will be given a set of state-
ments to read (presented with a series of illustrations). A list of options
will then be given describing the situation illustrated in the previous
set of statements (that describe the situation presented in the illustra-
tions). We would like you to select the phrase that you think best de-
scribes the situation. If you decide to choose more than one option then
please indicate your preference by using numbers, giving your first
choice a value of 1, second choice a value of 2, and so on. An example
is given on the following page.

After reading the instructions, participants were presented with
each of the 11 scenarios in random order. They were told that there
was no time limit (typically, they completed the task in under
15 min). For each scenario they were presented with the following
statements (visual condition in parentheses):

All of the artists (squares) are beekeepers (black)
Most of the artists (squares) are beekeepers (black)
Some of the artists (squares) are beekeepers (black)
Some of the artists (squares) are not beekeepers (black)
Few of the artists (squares) are beekeepers (black)
None of the artists (squares) are beekeepers (black)
None of the above

When a participant had finished the booklet, they were thanked for
their participation and were debriefed concerning the purpose of
the experiment.

Results and Discussion
Figure 2 shows the membership functions for the ver-

bal and visual conditions, respectively. The inclusion rat-
ings have been rescaled to the 0–1 interval (by inverting
and dividing by 6). Each point shows the mean rating for
each quantifier. Each function is only shown within the
limits where it was used to describe the probabilistic re-
lation between X and Y. Outside these limits, the chance
of being used was not significantly greater than 0 in one-
sample t tests. So, for example, from Figure 2, it can be
seen that F was used only in the interval .1 # P(Y |X ) # .4.

Within these limits, we tested for any differences be-
tween the verbal and visual conditions using two-way
mixed analyses of variance (ANOVAs) with condition as
the between-subjects factor and P(Y |X ) as the within-
subjects factor. All and none were excluded because, in
both conditions, they were used only when P(Y |X ) was
1 or 0, respectively. For few there was no main effect of
condition and no interaction. For most there was no main
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effect of condition but there was a significant interaction
[F(5,395) 5 4.78, MSe 5 2.82, p , .0005]. Differences
were found only in the mid-range when P(Y |X) 5 .4 or
.5. At these values most was ranked more highly in the
visual condition than in the verbal condition. Around the
midrange it seems harder to make the perceptual dis-
crimination that there are more black than white squares.
For some a main effect of condition was modified by a
significant interaction [F(8,632) 5 2.16, MSe 5 3.31,
p , .05]. Some was ranked more highly in the verbal
than in the visual condition, but primarily in the midrange
from P(Y |X ) 5 .4 to .7. Here the use of some seems to
fall off much more steeply as P(Y |X ) increases in the vi-

sual condition than in the verbal condition. A main effect
was found for some. . .not [F(1,79) 5 4.47, MSe 5 23.80,
p , .05], but with no interaction. Some. . .not was ranked
more highly in the verbal than in the visual condition.
These are interesting differences that deserve investiga-
tion in their own right. However, we offer no explanation
for them here. The critical question is, despite these dif-
ferences between conditions, do participants largely
agree on which quantifiers apply at each level of P(Y |X )?

Participants ranked which quantifiers applied at each
value of P(Y |X ). Consequently we calculated agreement
at each of the 11 values of P(Y |X ) using Kendall’s coeffi-
cient of concordance (Siegal & Castellan, 1988, pp. 262–

Figure 2. Membership functions for the verbal and visual conditions in Ex-
periment 1, showing mean probability of inclusion as a function of P(Y | X ) for
the quantifiers all, most, some (filled markers) and few, none, and some. . .not
(unfilled markers). The top panel shows the verbal condition and the bottom
panel shows the visual condition.



144 OAKSFORD, ROBERTS, AND CHATER

272). Across conditions, the mean coefficient of con-
cordance, W(N 5 6, k 5 81), was .72 (SD 5 .12). At
every value of P(Y |X ), this coefficient was greater than
.53, indicating that there was significantly greater agree-
ment among the participants than would be expected by
chance: All values of W(N 5 6, k 5 81) were significant
at least at the .0001 level (assessed against the c2 distri-
bution; see Siegel & Castellan, 1988, p. 269). Conse-
quently, in this experiment participants seemed to agree
on the order in which these six quantifiers apply to a
probabilistically defined state of affairs whether it was
presented visually or described verbally.

Informally, informativeness was calculated using the
probability that a quantifier is used to make a true state-
ment (see the Appendix for the formal derivation). The
lower this probability, the more informative the state-
ment. This probability is calculated by multiplying the
probability with which a quantifier is used at a given
value of P(Y |X ) (given by the membership function) by
the probability that it is true at that value (given by Fig-
ure 1). This resulted in an informativeness order for each
participant, allowing statistical testing of our predic-
tions. We collapsed across conditions because partici-
pants agreed on when a quantifier applied. Moreover,
because we predicted no differences, the increased sta-
tistical power provided a stronger test of our hypothesis.
For each of the experiments reported here, Table 1 shows
the mean informativeness in bits of each quantifier once
their negative or positive status is taken into account, as
outlined in the introduction. For all three experiments,
we conducted two one-way ANOVAs, one with “few” in-
terpreted as few– and one with “few” interpreted as few1.
We then conducted pairwise comparisons by using either
Scheffé tests or t tests. The Scheffé tests were to confirm
that differences were present when they were predicted
to be (so maximum protection against conducting multi-
ple tests is required), and the t tests were used to confirm
that effects did not exist when they were predicted not
to. When interpreting “few” as few2, although all other
pairwise comparisons were significant, there was no sig-
nificant difference in informativeness between few2 and
some. . .not. When interpreting “few” as few1, although
all other pairwise comparisons were significant, there
was no significant difference in informativeness be-
tween few1 and some.

These results confirm the predictions outlined in the
introduction. The apparent changes in the position of

“few” in the informativeness order between Chater and
Oaksford’s (1999) two experiments may be because
“few” can be interpreted as either a positive or a negative
quantifier.

EXPERIMENT 2

Because of the possibility of individual differences, it
is important to the validity of these experiments that par-
ticipants substantially agree on the quantifiers that apply
in each probabilistic state of affairs. The ranking proce-
dure we used in Experiment 1 tends to lead to many ties.
This is because most participants only rank one or two
quantifiers as applying to a given state of affairs and so
the rest are ranked 0. In computing Kendall’s coefficient
of concordance, a correction is applied to deal with ties
(Siegal & Castellan, 1988, pp. 266-269). This correction
increases the coefficient of concordance. If there are
many ties, as in these experiments, the correction can in-
flate the value of W. In Experiment 2, we therefore had
participants rank all the quantifiers, so that a unique rank
was assigned to each quantifier, thus avoiding the need
to apply a correction. Given that at many values of
P(Y |X ) most quantifiers were assigned the same rank
(i.e., 0, in Experiment 1), this procedure may increase
the chances of disagreement. If these quantifiers are re-
garded as unlikely to apply with equal probability, then
their rank may be assigned randomly in this experiment.

One consequence of this procedure was to force par-
ticipants to provide rankings for all and none at P(Y |X )
values between 0 and 1. However, in Experiment 1, par-
ticipants never used these quantifiers at these intermedi-
ate values. Calculating informativeness would be con-
siderably distorted if we included the intermediate
rankings for all and none. Consequently, in calculating
informativeness, all and none were treated as applying
only when P(Y |X ) 5 1 or 0, respectively, and no other
quantifier was treated as applying at these values.

Method
Particip ants. Forty undergraduate psychology students at

Cardiff University received course credit for participating in this
experiment.

Materials . The booklets were the same as those used in Experi-
ment 1 (verbal condition) except that the participants in this exper-
iment were asked to rank-order all six quantif iers.

Procedure. The procedure was identical to that in Experiment 1,
except for the necessary adjustments to the instructions. The third

Table 1
Mean Informativeness and Standard Deviations in Bits of the Quantifiers all, most, few2, few1, some, none, 

and some. . .not in Experiments 1 (N = 81), 2 (N = 40), and 3 (N = 50), Calculated as in the Appendix

Quantifiers

all most few2 few1 some none some. . .not

Experiment m
_

SD m
_

SD m
_

SD m
_

SD m
_

SD m
_

SD m
_

SD

1 6.09 .35 4.18 .60 .65 .24 2.61 .53 2.60 .57 .96 .45 .63 .24
2 6.15 .05 3.61 .18 .58 .02 2.48 .10 2.92 .12 .81 .00 .59 .03
3 6.59 .94 4.53 .62 .79 .41 2.50 .58 2.76 .35 1.27 .69 .62 .28
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and fourth sentences were replaced with the following: “We would
like you to rank these options in terms of how appropriate you think
they are for describing the situation. Please indicate your prefer-
ence by using numbers, giving your first choice a value of 1, sec-
ond choice a value of 2, and so on.”

Results and Discussion
Figure 3 shows the membership functions for Experi-

ment 2. At every value of P(Y |X ), there was signifi-
cantly greater agreement among the 40 participants than
would be expected by chance: All values of W(N 5 6,
k 5 40) were greater than .79, which meant that all were
significant at least at the .0001 level. The mean was .84
(SD 5 .04). Unexpectedly, even without a correction for
ties, agreement on which quantifiers applied increased
considerably. Consequently, the excellent agreement
found in Experiment 1 was not the product of correcting
for the large number of ties.

The coefficient of concordance is an index of lack of
variation in participants’ responses; thus the higher this
coefficient, the lower the variance. In computing the in-
formativeness of each quantifier, the only variation is
provided by the membership functions because the con-
version to bits (see the Appendix) involves exactly the
same transformation for each participant’s data. There-
fore the increases in agreement we observed should
translate into much lower variances in the informative-
ness of each quantifier. Table 1 shows that this was the
case: The standard deviations were all a lot lower than in
Experiment 1. Despite this reduction in the variance, for
interpretations of “few” as few2, although all other pair-
wise comparisons were significant, there was no signif-
icant difference in informativeness between few2 and
some. . .not. However, for interpretations of “few” as
few1, all other pairwise comparisons were significant

and a significant difference in informativeness between
few1 and some was observed. This finding is consistent
with Chater and Oaksford’s (1999) results of a close to
significant trend such that few was selected more than
some. This in turn is consistent with the min-heuristic if
some is interpreted as more informative than few, as in
Chater and Oaksford’s (1999) Experiment 2.

EXPERIMENT 3

There were two reasons for conducting Experiment 3.
First, we wanted to determine how robust these findings
were. In particular we wondered whether the informa-
tiveness order would stand up when the quantifiers were
not in direct response competition. Thus, in this experi-
ment we removed the competitive element by having
participants give a binary response as to whether a quan-
tifier, presented on its own, applied to a probabilistic
state of affairs. This also allowed us to plot the probabil-
ity that a quantifier can be used at a given value of
P(Y |X ). Our hunch was that in these circumstances,
which remove the context effects discussed in the intro-
duction, people would endorse a quantifier across its
whole range of applicability.

Second, in Experiments 1 and 2, we only checked for
agreement between participants at each value of P(Y |X )
because participants ranked the six quantifiers at each of
these values. However, participants did not rank each
value for a particular quantifier, so we could not test
agreement for each quantifier. Could we have used the
rankings we did obtain to calculate this? This was not
feasible because the large number of ties (11 categories
but only a maximum of 6 ranks) can lead to the correc-
tion term dominating the calculation of W. With binary

Figure 3. Membership functions in Experiment 2, showing mean inclusion
ratings as a function of P(Y|X) for the quantifiers all, most, some (filled mark-
ers) and few, none, and some...not (unfilled markers).
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data we used the average chi-square as an index of agree-
ment. For each quantifier, at each value of P(Y |X ), if par-
ticipants select a quantif ier at random, then half will
select it and half will not. Significant deviation from this
distribution shows significantly above-chance agreement.

Method
Participants. Fifty undergraduate  psychology students at

Cardiff University received course credit for participating in this
experiment.

Design . In this experiment participants were presented with
the same verbally presented situations as in Experiments 1 and 2,
but now with only one quantifier on each trial, making 66 trials
overall. The materials were the same as those used in Experi-
ment 1.

Procedure. This experiment was presented on computer using
the PsyScope software (Cohen, MacWhinney, Flatt, & Provost,
1993) to control the presentation of stimuli and to record responses.
The instructions were similar to those in Experiments 1 and 2. Par-
ticipants pressed a “yes” (“Z”) button if they thought the statement
was a good description and a “no” (“M”) button if they did not think
that the statement was a good description.

Results and Discussion
Figure 4 shows the membership functions for Experi-

ment 3; we assessed differences from 0 using one-sample
sign tests. For each quantifier, we tested whether there
were more participants agreeing on whether it applied
than would be expected by chance at each level of P(Y |X )
using the c2 test. For all, the average c2(1) was 46.18
(SD 5 4.46), and at every value of P(Y |X ), c2(1) was
significant (. 38.72, p , .0001). For most, the average

c 2(1) was 36.41 (SD 5 13.02), and at all values of
P(Y |X ), c2(1) was significant (. 23.12, p , .0001) ex-
cept for P(Y |X ) 5 1. For few, the average c2(1) was 33.86
(SD 5 14.46), and at all values of P(Y |X ), c2(1) was sig-
nificant (. 18, p , .0001) except for P(Y |X ) 5 .4. For
some, the average c2(1) was 30.69 (SD 5 11.95), and at
all values of P(Y |X ), c2(1) was significant (. 5.12, p ,
.05). For none, the average c2(1) was 47.01 (SD 5 6.28),
and at all values of P(Y |X), c2(1) was significant (. 28.88,
p , .0001). For some. . .not, the average c2(1) was 34.07
(SD 5 11.41), and at all values of P(Y |X ), c2(1) was sig-
nificant (. 8, p , .005). Agreement failed to get above-
chance levels for only 2 out of the 66 comparisons: for
few when P(Y |X ) 5 .4 and for most when P(Y |X ) 5 1.
Consequently, participants substantially agreed on
whether a quantifier could be used to describe a partic-
ular probabilistic state of affairs.

The informativeness order data in Table 1 were analyzed
in the same way as in Experiment 1. When interpreting
“few” as few2, although all other pairwise comparisons
were significant, there was no significant difference in
informativeness between few2 and some. . .not. For in-
terpretations of “few” as few1, although all other pair-
wise comparisons were significant, there was no signif-
icant difference in informativeness between few1 and
some. Thus in Experiment 3, where participants made in-
dependent judgments of applicability, uninfluenced by
the other quantifiers, they nonetheless showed the same
behavior as in Experiments 1 and 2. This would appear
to indicate that although context effects may explain why

Figure 4. Membership functions in Experiment 3, showing the proportion of
participants endorsing a quantifier as a function of P(Y |X ) for the quantifiers
all, most, some (filled markers) and the quantifiers few, none, and some...not
(unfilled markers). There are many values of P(Y |X ) for which some quanti-
fiers take on the same values. When this happens, the unfilled marker is in the
foreground. This happens for some and some...not between .2 and .5 (some...not
was not endorsed at 1.0 and some was not endorsed at 0), and for most and few
at .5 (most was not endorsed below .5).
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different interpretations of “few” were adopted in Chater
and Oaksford’s (1999) experiments, people’s assessment
of informativeness once these interpretations are adopted
is independent of context.

GENERAL DISCUSSION

The purpose of these experiments was to test whether
people’s assessment of when all, most, some, few, none,
and some. . .not apply to a probabilistic state of affairs
could explain the anomalous results found by Chater and
Oaksford (1999). We argued that the pragmatic distinc-
tion between positive and negative quantifiers (e.g.,
Moxey & Sanford, 1993) suggested a possible ambigu-
ity in the interpretation of few that may explain why it
was treated as having the same informativeness as some
in one of Chater and Oaksford’s (1999) experiments, but
as having the same informativeness as some. . .not in the
other. When this distinction was incorporated into their
probabilistic interpretation of the quantifiers, the theo-
retical informativeness ordering came closer to that ap-
parently revealed by Chater and Oaksford’s (1999) anom-
alous results. However, to test this explanation meant
adopting a distributional- rather than an interval-based
approach to the meaning of the quantifiers. The nature of
these distributions was derived empirically in Experi-
ments 1–3 by constructing membership functions.

In Experiment 1, participants ranked the quantifiers
for whether they applied to a range of verbally or visu-
ally presented probabilistic states of affairs. Consistent
with our explanation of Chater and Oaksford’s (1999) re-
sults, there were no differences in informativeness be-
tween few1 and some, nor between few – and some. . .not.
Because individual differences have been observed in
membership functions, it was important to demonstrate
that participants agreed on which quantifier applied. In
Experiment 2, to avoid a possible criticism concerning
the computation of Kendall’s coefficient of concordance,
we had participants provide a unique ranking for each
quantifier. Agreement was even higher than in Experi-
ment 1. This radically reduced the variance, making a
very strong test. Experiment 2 replicated the lack of an
effect for few2 and some. . .not but not for few1 and
some. However, the direction of the effect—some was
more informative than few1—was consistent with the
trend in Chater and Oaksford’s (1999) results and with
the min-heuristic. Experiment 3 tested the robustness of
the informativeness order when the context provided by
the other quantifiers is absent. The results replicated
those from Experiment 1 and 2, suggesting that such a
context does not generally affect people’s assessment of
informativeness.

In three experiments deriving informativeness order-
ings for the quantifiers used in Chater and Oaksford’s
(1999) experiments, we found no differences in infor-
mativeness between few1 and some (with the exception
of Experiment 2), or between few2 and some. . .not.
These findings therefore confirm our explanation of the

apparent anomalies found in Chater and Oaksford’s
(1999) results. 

It could be argued that these experiments question the
viability of PHM because we have derived informative-
ness orders empirically rather than formally. This might
be thought to have the following consequences. First, it
would appear to threaten our claim that people are ratio-
nal because we derive our predictions from a purely for-
mal model (Chater & Oaksford, 2000). Second, it threat-
ens the testability of the model because there is no prior
index of informativeness. However, our probabilistic
models are rational because they show that people’s in-
ferential behavior may be well adapted to the environ-
ment. For example, calculating the ordering theoretically
(see Chater & Oaksford, 1999, Appendix A) involved
making a rarity assumption; that is, the subject (X ) and
predicate (Y ) terms describe rarely occurring properties
in the world (see also Oaksford & Chater, 1994). An ex-
periment where rarity was manipulated would be ex-
pected to alter the informativeness ordering in pre-
dictable ways. Similarly, we assumed an interval-based
semantics in those calculations. Here we adopted a dis-
tributional approach and set those distributions empiri-
cally via the membership functions. The goal of any se-
mantic theory, formal or otherwise, is to capture how
people use their language, and this can only be deter-
mined empirically.

Testability is also not in doubt. To predict the infor-
mativeness order, we need to know the range of quanti-
fiers in play and their contextual effects based on a well-
specified pragmatic theory. The work of Moxey and
Sanford (1993) is beginning to provide just this. We have
been able to incorporate some of their pragmatic dis-
tinctions into our probabilistic model, allowing us to for-
mally derive their consequences for the informational or-
dering. Then a prior index of informativeness can be
derived from experiments like those reported here.
Moreover, in testing theories, this is no different from
any other area of science. Even in physics the funda-
mental constants of the theory (e.g., Planck’s constant)
have to be determined empirically before the theory can
support any predictions.

The results of these experiments may appear narrowly
focused on resolving just one anomaly for just one par-
ticular theory of syllogistic reasoning, with no further
ramifications for which theory of syllogistic reasoning is
correct. However, we think clear conclusions can be
drawn from this work. Most obviously, if we had left this
anomaly unexplained, other theoreticians would have
correctly identified it as a problem that counts against
the PHM. Therefore, to the extent that these experiments
succeed in plugging that hole, they are supportive of
PHM over other theories.

More generally, this work raises the issue of when
quantifiers, especially generalized quantifiers, can be
used to describe a state of affairs. This may raise a prob-
lem for our account because it appears to rely on the idea
that quantifiers identify well-def ined regions of the
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probability scale, an idea thoroughly discredited by
Moxey and Sanford (1993). They observed that for many
generalized quantifiers there is no discrimination along
the probability scale; that is, there are large areas of over-
lap. Any discrimination, they argued, is due to participants
making comparative judgments (as in Experiments 1 and
2). In experiments using independent judgments (as in
Experiment 3), many quantif iers cannot be discrimi-
nated. Consequently the reason for their use on particu-
lar occasions cannot be because they identify a particu-
lar range of probability values. However, consistent with
Moxey and Sanford’s observations, PHM already allows
a great deal of overlap between the quantifiers. The or-
dering over which our heuristics are defined depends on
informativeness, not on the probability scale. And infor-
mativeness is calculated across the whole probability
scale for each quantifier.

Moxey and Sanford’s (1993) point, however, that
quantifier selection must depend on more than the prob-
ability scale, is well taken. In our account of syllogistic
reasoning, the min-heuristic selects the conclusion quan-
tifier from those in the premises, and this seems to agree
with the empirical evidence. However, the multiplicity
of quantifiers that can apply to a given state of affairs
may provide problems for theories, like mental models,
that rely on mentally representing such states of affairs
and “reading off ” appropriate conclusions. The problem
is that just having a representation of the probabilistic re-
lation between the end terms does not tell you which
conclusion to draw. For example, the following mental
model for Some X are Y, Some Y are Z:

X X X X
Y Y Y Y

Z Z Z Z Z

is consistent with the conclusions Few X are Z, Few Z are
X, Some X are Z, and Some Z are not X (or Some X are
not Z ). One might argue that some of these conclusions
will be ruled out in the search for counter models. How-
ever, the recent evidence is that people only construct a
single mental model (e.g., Evans et al., 1999; Newstead
et al., 1999). Thus it is important for mental models that
the most frequently occurring response is true in this
model. However, the most frequent response to the Some
X are Y, Some Y are Z syllogism is Some X are Z (60%
in Chater & Oaksford’s, 1999, Experiment 2). This con-
clusion is true in the illustrated mental model, which
makes it the best candidate for the single model of these
premises that people initially construct. In which case, it
is unclear why the Some X are Z response dominates over
the other possible responses. Until mental models are ex-
tended to syllogistic reasoning with generalized quanti-
fiers, it is unclear what principles will be invoked to re-
solve this ambiguity. In contrast, the min-heuristic
unambiguously predicts a some conclusion, which is the
probabilistically valid conclusion endorsed by most par-
ticipants (Chater & Oaksford, 1999).

In conclusion, closer consideration of the pragmatics
of quantified claims has allowed us to offer more de-
tailed accounts of the data on syllogistic reasoning with
generalized quantifiers. Some of Chater and Oaksford’s
(1999) results that seemed at odds with their theoretical
informativeness order are consistent with the orderings
suggested by the distinction between positive and nega-
tive quantifiers. Consequently, understanding syllogistic
reasoning performance will require close attention to the
pragmatics of these statements. The main advantage of
the probabilistic approach is that some of these prag-
matic distinctions can be captured by a probabilistic se-
mantics. It can therefore be shown directly how these
pragmatic distinctions should alter people’s reasoning
performance.
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APPENDIX

(Manuscript received October 6, 2000;
revision accepted for publication August 23, 2001.)

Here we show how information from a membership function
is combined with the distribution in Figure 1 to derive the over-
all informativeness of each quantifier for each participant. In
these experiments we had participants rank the quantifiers for
whether they apply at different values of P(Y |X ), varying from
0 to 1 in steps of .1. At each value of P(Y |X ), we calculated the
probability that a particular quantifier j applied (P(Qj) by con-
verting the ranks into probabilities according to equation (A1),

(A1)

where r is the ranking assigned to a quantifier, i ranges over the
six quantifiers, and a is a small constant (1029) to prevent di-
vision by zero. To derive the probability that a given relation
P(Y |X ) is true at any level, we derived a discrete version of the
probability density function in Figure 1. By case this function
is as follows:

(A2)

where a is a normalizing constant such that 

In our subsequent analyses we assumed that k 5 3, and so a 5
1.547. For each value of P (Y |X ) used in the experiment, we esti-
mated the probability that it is true, (P(T)) by finding the area under
this curve at .05 intervals on either side. So, for example, when 

P (Y |X ) 5 0, P(T ) 5 .5 1 , 

when

P (Y |X ) 5 .1, P(T ) 5 ,

and so on. Assuming independence, at a particular value of
P(Y |X ), the probability that a particular quantifier, j, is used to
make a true statement is P(T )P(Qj) and the overall probability
that a particular quantifier, j, is used to make a true statement is 

, (A3)

where i ranges over the values of P(Y |X ) from 0 to 1 in steps
of .1. The informativeness of each quantifier for each partici-
pant was then calculated using A3 in Shannon’s surprisal for-
mula (Shannon & Weaver, 1949).
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