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Abstract A recent trend within cognitive psychology has been the move away
from the depiction of human reasoning as errorful and prone to bias and towards
more appropriate probabilistic models of the behavioural data. This paper
reviews this trend in three areas - probabilistic reasoning, causal reasoning and
hypothesis testing - and discusses some possible implications for user modelling
in man-machine communication.
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1 Introduction

Until recently the psychological study of reasoning has been interpreted to reveal
that untutored human reasoners fall far short of the standards of rationality
provided by normative theories. In laboratory tasks normal adults appear to
reveal a variety of apparently irrational and systematic biases from the
prescriptions of logic and mathematics (see, Evans, 1989, or Evans, Newstead &
Byrne, 1993, for overviews). Theoretical responses to these findings have
included appeal to short cut processing strategies, i.e., heuristics, and the use of
special representational formats, i.e., mental models. Over the last few years,
however, it has become clear that many of the tasks taken to reveal biases are
susceptible to more rational interpretations. It seems that the wrong logico-
mathematical frameworks may have been taken to define rational behaviour in
these tasks and that subjects may use probabilistic strategies that are wholly
consistent with mathematical probability theory.

An awareness of these developments may be important to user modelling in
man-machine communication. According to Norman and Draper (1986), in
designing profitable human-computer interactions it is important that a task be
“presented so that it matches human skills.” The skills to be matched invariably
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involve some element of reasoning. Hence in constructing methodologies for
interacting with computers a minimal requirement may be an understanding of
how people reason. Moreover, on briefly scanning the contents of some recent
edited collections in this area we were struck by how many made appeal to the
theoretical constructs - such as heuristics and mental models - that have become
popular as a result of work on biases in human reasoning. To the extent that the
invocation of such constructs is being re-thought in the cognitive psychology of
reasoning, a similar re-evaluation may be necessary in the area of man-machine
communication.

In this chapter we discuss three areas where a probabilistic re-
interpretation has been successful: probabilistic reasoning, causal reasoning, and
hypothesis testing. We first introduce each area, outlining the principle tasks
used. We then discuss the new probabilistic accounts of these data due, in the
case of probabilistic reasoning, to Birnbaum (1983) and Gigerenzer and Murray
(1987), in the case of causal reasoning, to Cheng and Novick (1990), and in the
case of hypothesis testing, to Oaksford and Chater (Oaksford & Chater, 1993).

2 Biases in Human Reasoning
2.1 Probabilistic Reasoning and Base Rate Neglect

Perhaps one of the most well known examples of bias in the reasoning literature
concerns Kahneman and Tversky’s (1972) demonstration that subjects tend to
ignore base rate information. We illustrate this using Tversky and Kahneman’s
(1980) cabs problem. Subjects were provided with the following information:

A cab was involved in a hit-and-run accident at night. Two cab companies, the
Green and the Blue, operate in the city. You are give the following data:

(i) 85% of the cabs in the city are Green and 15% are Blue

(ii) A witness identified the cab as a Blue cab. The court tested his ability to
identify cabs under appropriate visibility conditions. When presented with a
sample of cabs (half of which were Blue and half of which were Green) the
witness made correct identifications in 80% of the cases and erred in 20% of the

cases. ) :
Question: What is the probability that the cab involved in the accident was

Blue rather than Green.
In terms of Bayes’ theorem the probability of the cab being blue given the

witnesses testimony (P(Bluel"Blue")) is,

P(" Blue"| Blue) P(Blue)
P(" Blue")

P(Bluel" Blue") =

That is the likelihood that the witness correctly identifies the cab
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(P("Blue"|Blue)) times the ratio of the base rates of Blue cabs in the city and the
witness giving the evidence “Blue.” The probability P("Blue") can be calculated
by conditioning on the probabilities of the cab being Green or Blue (since these
are exhaustive and mutually exclusive events), so,

P(" Blue") = P(" Blue"| Blue)P(Blue) + P(" Blue"|Green) P(Green)

The Cabs problem therefore provides all the information needed to deploy Bayes’
theorem to calculate the probability that it was indeed a Blue cab that was
involved in the hit-and-run accident:

P(Bluel" Blue") = 0.80 x0.15 =0.41
0.80x0.15+0.20x0.85

However, most undergraduate student subjects report the probability of the cab
being Blue as around 0.80 (this was the median response and the most frequent
response). This concurs with the likelihood that the witness correctly identifies
the cab, i.e., 0.80. Tversky and Kahneman therefore concluded that their subjects
neglect base rate information in calculating posterior probabilities.

2.2 Bias in Causal Attributions

Another area where bias has been commonly observed is causal attribution in
social psychology. We illustrate these biases by reference to Kelley's (1967)
ANOVA model which represents the attribution process as relying on the
principle of co-variation embodied in the analysis of variance. The analysis of
variance is of course typically regarded as a normative inductive procedure.

The co-variation principle states that for an event C to be viewed as the
cause of event E, E must occur when C does and when C does not occur neither
should E. Kelley proposed three dimensions in the attribution of the cause of an
event. The cause could be due to persons (P), stimuli (S) or times (T). Three
informational variables contribute to “who, what or when” gets the blame, these
are:

Consensus between P's response to S and other’s response to S at T.
Distinctiveness of P's response to S from P’s response to other stimuli at T.
Consistency of P's response to S at T with P’s responses to S at other Ts.

Only distinctiveness is directly proportional to covariation. So high
distinctiveness corresponds to a high covariation between S and the response, i.e.,
high distinctiveness means the response rarely occurs in the absence of S. This
contrasts with, for example, consensus information, where high consensus
corresponds to a low covariation between P and the response, i.e., lots of other
people also make this response. It is then a trivial corollary of the model that the
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Figure 1: The four cards in the abstract version of Wason'’s selection task.

following patterns of high or low consensus, distinctiveness or consistency
information (in that order) should lead to the indicated attributions: LLH =
Person, HHH = Stimulus, HLL = Time. However, while there has been some
good general agreement between model and data, some systematic biases have
also been observed.

I concentrate on two of these biases. First, it has been found that
consensus information is underused particularly in determining person (P)
attributions. Recall that low consensus means that there is a high covariation
between that person and the response, i.e., the response is rarely observed
without this person being involved. Consensus information should therefore be
important in determining person attributions. However, McArthur (1972) found
that consensus information accounts for only 6% of the variance in person
attributions and only 3% of the total variance in causal attributions. Second,
there would appear to be a strong bias towards person attributions as opposed to
stimulus or time attributions. In McArthur’s (1972) results (noted by Jaspars et
al., 1983), 82% of subjects made person attributions when P covaried with the
response, as opposed to 62% who made stimulus attributions when S covaried
with the response, and 33% who made time attributions when T covaried with the

response.

2.3 Hypothesis Testing

Perhaps the most notorious area where biases have emerged in the reasoning
literature concerns human hypothesis testing and in particular work carried out
using Wason's (1966, 1968) selection task. Wason’s task, which is probably the
most replicated task in cognitive psychology, requires subjects to assess whether
some evidence is relevant to the truth or falsity of a conditional rule of the form if
p then g, where by convention “p” stands for the antecedent clause of the
conditional and “g” for the consequent clause. Subjects are presented with four
cards each having a number on one side and a letter on the other (see Figure 1).
The subjects are also given a rule, e.g., if there is a vowel on one side (p), then
there is an even number on the other side (q). The four cards show an “A”(p
card), a “K”(not-p card), a “2"(gq card) and a “7"(not-q card). By convention
these are labelled the p card, the not-p card, the g card, and the not-g card
respectively. Subjects have to select those cards they must turn over to determine
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whether the rule is true or false. Typical results were: p and g cards (46%); p
card only (33%), p, g and not-q cards (7%), p and not-gq cards (4%) (Johnson-
Laird & Wason, 1970).

The normative theory of the selection task was derived from standard
logic and Popper’s (1959) account of falsification. Popper argued that a scientific
law can not be shown to be true because it is always possible that the next
instance of the law observed will be falsifying. However, one can be logically
certain that a law is false by uncovering a single counter-example. Furthermore,
this means that scientific reasoning is fundamentally deductive in character -
what must be established is a logical contradiction between putative laws and
observation. Hence looking for false (p and nor-g) instances should be the goal
of scientific inquiry. However, in the selection task subjects typically select cards
that could confirm the rule, i.e., the p and q cards.

Confirmation bias, however, does not adequately account for the data on
the selection task. Evans and Lynch (1973) showed that when negations are
varied between antecedent and consequent of a rule subjects reveal a bias
towards selecting those cards that are named in the rules, ignoring the negations.
For example, take the rule “if there is not an A on one side, then there is not a 2
on the other side”, and the four cards showing an “A”, a “K”, a “2” and a “7".
The matching response would be to select the A and the 2 cards. In contrast
according to confirmation the K and the 7 card should be selected and for
falsification the K and the 2 card should be selected. Evans and Lynch (1973)
refer to this phenomenon as matching bias. Matching could also account for the
data from the standard affirmative selection task (see above) where no negations
are employed in the task rules. This is because the matching and confirmation
strategies coincide on the selections they predict for the affirmative rule, i.e., the
A and the 2 cards. Thus subjects behaviour on the selection task may not reveal
any hypothesis testing strategy at all!

3 Interlude

Having summarised three areas where biases have typically been observed in
human reasoning we now turn to how these “biases™ are being reconciled with
normative theory by the adoption of more appropriate normative models based
largely on probability theory. It is interesting to first note that there were always
three possible reactions to the observation of biases (Thagard, 1988, p. 123):

1. People are dumb. They simply fail to follow the normatively appropriate
inferential rules.

2. Psychologists are dumb . They have failed to take into account all the variables
affecting human inferences, and once all the factors are taken in to account it
should be possible to show that people are in fact following appropriate rules.

3. Logicians [Mathematicians, my insertion ] are dumb. They are assessin g the
inferential behaviour of human thinkers against the wrong set of normative
standards.
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Figure 2: Signal detection theory. (i) Area in “Blue” distribution to the right of B = P(hit);
area in the “Green” distribution to the right of p = P(false alarm). (ii) The Receiver
Operating Curve (ROC)

Psychologists seem to have largely opted for 1 and explained why in terms of
cognitive limitations. Our preference is go after 2 and 3 However, our target in
this paper is mainly 3 and we will only briefly touch on work pursuing 2 when
we discuss Cheng and Novick’s account of biases in causal attribution. (For work
pursuing 2, see, e.g., Beyth-Marom, 1982; Gigerenzer, Hell & Blank, 1988;
Oaksford & Stenning, 1992.)}

4 The Probabilistic Retreat from Biases
4.1 Probabilistic Reasoning and Base Rate Neglect

Birnbaum (1983) has shown that the cabs problem of Tversky and Kahneman
(1980) can be recast in the language of Signal Detection Theory (SDT) which is
based on Neyman and Pearson’s statistics. He shows that when this is done the
resulting model concurs with Tversky and Kahneman’s (1980) data.

SDT represents the discrimination problem in terms of two partially
overlapping normal distributions along which a decision boundary or criterion
(B) may be specified (see Figure 2(i)). The. discriminability of the two
distributions is determined by the separation between their mean (peak) values,
this is d” which is measured in z-score units. In the case of the cabs problem one
of the distributions corresponds to Green and the other to Blue. The eye
witnesses testimony defines a hit rate (80%) and a false alarm rl ate (20%) from
which d”can be calculated. In this case it equals 1.68. Given one point, a whole
ROC curve is defined which corresponds to a plot of pairs of false alarm rates
and hit rates for a single d” as the criterion f is varied (see Figure 2(ii)). The

11t is worth noting that logicians/mathematicians do not always see their work as directly

nmnlinakla #a thaca data in tha sae that mecoshalasicte wanld wiieh Wanncra aftan it in

T
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standard psychophysical procedure for plotting an ROC curve is to vary the base
rates of the distributions (Green and Blue) thereby moving the criterion to obtain
another false alarm rate/hit rate pair. The critical observation in accounting for
the cabs problem is that the base rates in the court’s test (50%-50%) were
different from the night when the witness saw the accident (85%-15%). Hence
the witnesses criterion will have been set differently on the night of the accident
in comparison to when the test was conducted. However, the lighting conditions
were carefully mimicked in the test so it can be assumed that d” remains the
same.

What is the effect of altering the base rates? The problem is that SDT
does not specify where the criterion is to be placed when the base rates change.
However, Birnbaum assumes that witnesses set their criterion to minimise
incorrect testimony in the knowledge that there are 15% Blue cabs. This leads to
a hit rate of 0.302 and a false alarm rate of 0.698. If these values are then
translated back in to likelihoods and used in Bayes’ theorem, a value of 0.82 is
returned for the posterior probability that the cab was indeed blue given the
witnesses testimony. This is remarkably close to the 0.80 actually observed in
Tversky and Kahneman (1980).

As Gigerenzer and Murray (1987) point out this analysis depends on
attending to bases rates not neglecting them. They also observe that just by
taking Tversky and Kahneman's own proposals seriously with respect to which
base rates should be used can lead to the observed data. Subjects may regard the
base rates in the city as irrelevant seeking instead base rates of cabs in accidents.
In the absence of relevant information to the contrary, they may assume that the
Green and Blue cabs are equally likely to be involved in an accident, i.e., the
relevant base rates are 50%-50%. Assuming these base rates, the posterior
probability that the cab was indeed blue given the witnesses testimony is 0.80! In
sum, it seems that the conclusion of a bias towards base rate neglect may have
been premature.

This account of the cabs problem has probably not been influential
because (i) of its isolation in a sea of data apparently supporting the existence of
biases and (ii) the corresponding lack of promising normative analyses of these
data. However, such analyses are now increasing in number as the next two more
recent examples demonstrate.

4.2 Bias in Causal Attributions

Cheng and Novick (1990) argue that the problem of causal attribution can be
framed in terms of their normative probabilistic contrast model. They show that
their model predicts the detailed pattern of results on causal attribution when
subjects are provided with complete information.

Cheng and Novick (1990) note that only incomplete information is
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Figure 3. Kelley’'s ANOVA cube for persons (P), stimuli (S) and times (T), showing the
eight regions of information.

these informational sources can be treated as specifying information about
specific regions of the cube (see Figure 3). .

Figure 3 shows the eight regions of the cube. Consensus information
provides information about the agreement between person 1's response to
stimulus 1 at time 1, i.e., it provides information about region 1 of the cube
(distinctiveness provides information about region 2 and consistency about
region 3). Consensus does not provide information about the agreement between
person 1's response and others’ responses to the other stimuli Sy - S at other
times Ty - Ty, i.e., it fails to provide information about regions 4 and 5 of the
cube. Cheng and Novick (1990) note that the ANOVA uses information in all
regions to determine main effects and interactions. Hence biases in causal
attribution may be due to incomplete information. They therefore used materials
that provide the missing information. For example, the following materials were
used for an LLH problem (see above).

Jane had fun washing the dishes on this occasion.
1. In fact, Jane always has fun doing all chores.
2. But nobody else ever has fun doing any chores.

The first sentence provides information about region 0, i.e., there is a positive
relationship between this person (Jane) on this occasion for this stimulus
(washing the dishes) and having fun (the response). Clause 2 provides
information about regions 2, 3 and 5 (+ relationship) and clause 2 provides
information about regions 1, 4, 6 and 7 (- relationship).

Cheng and Novick (1990) derive predictions for the detailed patterns of
attributions (including interactions) using their probabilistic contrast model (for
details of this approach, see, Cheng & Novick, 1990). They show that their model
predicts the detailed pattern of results on causal attribution when cqmplete
information is specified (like the ANOVA complete information is required for
their model). Moreover, their data reveal that with complete information all signs
of bias evaporate. Taking the bias against using consensus information, Cheng
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and Novick (1990) found that consensus accounted for 31% of the variance in
their data, distinctiveness 33%, and consistency 24%, i.e., no indication of bias
was observed. Similarly, for the bias towards person attributions they found that
for the problems where only persons (LLH), stimuli (HHH), or times (HLL)
covaried with the response the proportion of subjects making the appropriate
attribution were 75%, 80% and 85%, i.e., no indication of bias was observed.

Again conclusions of bias have proved to be premature, when complete
information is provided subjects show no bias against using consensus
information or towards making person attributions. Moreover, their behaviour is
predicted by a normative probabilistic model.2

4.3 Hypothesis Testing

Oaksford and Chater (1993) show that Wason’s selection task can be recast as a
problem of optimal data selection that is susceptible to a Bayesian analysis.
When this is done they show that all the main results on the selection task can be
derived from their normative model.

Any problem of deciding what experiment to perform next, or which
observation is worth making, is a problem of optimal data selection. Consider
assessing the truth of a mundane regularity, such as that eating tripe makes
people feel sick: to collect evidence should we ask people who complain that
they feel sick, or perhaps those who do not feel sick, whether they have eaten
tripe; should we investigate people who are known tripe eaters or tripe avoiders.
This case is analogous to the selection task: the rule if tripe then feeling sick is of
the form if p then g, and the various populations which may be investigated
correspond to the various visible card options, p, not-p, g and not-q. The subject
must judge which of these people should be questioned concerning either how
they feel or what they have eaten.

Oaksford and Chater (1993) suggest that those data points expected to
provide the greatest information gain should be selected. The information gain
given some data is the difference between the uncertainty before receiving the
data and the uncertainty affer receiving the data. Uncertainty is measured using
the Shannon-Wiener information measure and hence the information gain of a
data point D may be defined as follows:

I.(D)= —Z",P(H,.)mgz P(H )+ 2 P(HD)log,P(HID)  (3)

21t could be argued that Cheng and Novick’s probabilistic contrast model is redundant if it
makes the same predictions as the ANOVA. However, (i) their model also accounts for
other areas of causal reasoning where bias had been observed, (ii) the computations
involved in their model are far simpler and therefore more psychologically plausible, (iii)
a direct indication of facilitatory or inhibitory causation is provided.
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That is the difference between the information contained in the prior probability
of a hypothesis (H) and the information contained in the posterior probabi]ityhof
that hypothesis given some data D. In calculating the posterior probability
Oaksford and Chater assume that the hypothesis under test, which indicates a
dependence between p and g, is compared to an alternative hypothesis which
indicates that p and g are independent (the principle of indifference between
these hypotheses is assumed, so they are both taken to be equally probable, i.e.,
the priors for both are 0.5).

In the selection task, however, when choosing which data point to
examine further (that is, which card to turn), the subject does not know what that
data point will be (that is, what will be the value of the hidden face). However,
what can be calculated is the expected information gain. If we assume that there
are two possible data points that might be observed (in the case of the not-g card,
for example, corresponding to the hidden face being, say, p or not-p), then the
expected information gain of the not-g card is:

E(l,(~) =Y, P(H)P(p)—q. H)I,(p,~q) (4
it

Oaksford and Chater then show that arriving at appropriate probability models
for the dependence and independence hypotheses only involves specifying the
frequency in the population of the properties described by p and g. They label
these parameters a and b respectively. With a and b specified all the values
needed to compute (4) for each card are available.

In accounting for the selection task Oaksford and Chater (1993) carried
out an extensive meta-analysis of the data which revealed that over some 34
studies involving almost 900 subjects the frequency of card selections was
ordered such that p > g > not-g > not-p. To model this data they calculated the
expected information gain of each card with a = b =0.1. That is, they assumed
that the properties described in p and g are rare in the population. A similar
assumption was made by Klayman and Ha (1987) in accounting for related data
on Wason’s (1960) 2-4-6 task. On this assumption the order in expected
information gain is: :

E(I1,(p)) > E(1,(¢)) > E(I (not - q)) > E(I,(not = p))

That is, if subjects base their card selections on the expected information gain of
the cards then the observed order in the frequency of card selections is exactly as
Oaksford and Chater’s (1993) model of optimal data selection predicts. Oaksford
and Chater (1993) also show how their model generalises to all the main patterns
of results in the selection task, including the manipulation described above of
introducing negations into the task rules.
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In sum, if the selection task is regarded as a problem of probabilistic optimal data
selection then the putative biases observed in this task disappear.

5 Conclusions and Some Possible Implications for
Man-Machine Communication

5.1 Summary

‘We began this chapter by claiming that much of the bias literature needs to be re-
interpreted in the light of the growing number of normative probabilistic re-
analyses of the data upon which claims of bias have been based. These analyses,
as the first example of Birnbaum (1983) reveals, were often contemporaneous
with the heyday of the “heuristic and biases” tradition. However, these analyses
were largely set aside in the rush to explain these biases in process terms. Of
course these accounts simply ignored the fact that they were now assigning
apparently irrational functions to the processes they invoked. Recently, however,
there has been a re-emergence of concern with rationality and rational analysis
(see, e.g., Anderson, 1991; and the collection edited by Manktelow & Over,
1993) and with it we suspect that we are witnessing a degenerative problem shift
(Lakatos, 1970) for work in the area of heuristics and biases. Lopes (1991) has
observed that the rhetorical emphasis of the heuristics and biases tradition was on
Thagard’s 1 above, i.e., on human dumbness. She points out that this de-
emphasised the importance of rationality in cognitive explanation. In witnessing
a problem shift back towards rational function we should be wary that the
psychological insights of the heuristics and biases account are not similarly
abandoned. As Gigerenzer and Murray (1987, see also, Gigerenzer, Hoffrage &
Kleinbélting, 1991) observe there has always been an essential subjective,
psychological aspect to probability theory. As we have seen assumptions about
which priors to employ or their effects on the decision criterion, for example, are
not decideable within probability theory. In arriving at psychological theories of
reasoning in any domain there will be a need for essentially psychological
accounts of how these values are arrived at and how people tractably implement
their probabilistic competence.® Nevertheless, following Marr (1982), first
identifying the rational functions that the human cognitive system needs to
compute is again being seen as a feasible and necessary first step in specifying an
adequate cognitive theory.

3 For further discsussion of the computational tractability of reasoning theories, see Chater
& Oaksford, 1990, 1993; Oaksford, 1993; Oaksford & Chater, 1991, 1992, 1993;
QOaksford, Chater & Stenning, 1990, 1992.
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5.2 Man Machine Communication

We now outline an area where these considerations may be relevant to man-
machine communication: the apparent success of graphics interfaces like the
highly usable Macintosh interface. We make the assumption that all interfaces
are deterministic systems. That is, the actual rules that determine what happens
given user input are deterministic, i.e., as long as the system is functioning
normally, a given input, key press sequence, mouse click in a menu location etc.,
yields a single specific action with probability 1. Now at some metaphysical level
of description the world may be a deterministic system. Certainly classical
mechanics which for the bulk of our everyday macroscopic needs is all we need
to predict the physical world, regards the world deterministically. However, this
does not mean that in acquiring knowledge of the macroscopic world human
beings model it deterministically. Irremediable ignorance of the disposition of a
complex system whose next state we wish to predict often precludes
deterministic prediction. Instead scientists must settle for probabilistic theories in
order to make adequate predictions. Similarly, when confronted with a complex
user interface novice users may model the system not deterministically but
probabilistically.

This provides a possible explanation for the success of interfaces like
the Macintosh. Deterministic command line interfaces are all or nothing affairs,
either you know the appropriate command or you don’t. The organisation of
access is also very flat in that if you don’t know the specific command there are
no higher level exploratory actions you can perform in order to find out. This
kind of organisation is only suited to rote learning of the appropriate command
language and rules. This contrasts with the Macintosh interface, where there are
often many ways of performing the same action. Moreover, there are a set of high
level actions, like pulling down menus, clicking on labelled buttons, scrolling etc.
that enable the user to interact with the computer in an exploratory manner. This
is analogous to our normal inductive interactions with the world. In acquiring
practical skills the ability to manipulate and explore bits of our world permits us
to learn much faster. It seems possible, therefore, that these interfaces succeed
because they exploit the same abilities that allow us to learn so effectively about
the world in order to inductively explore the interface. In sum, novices may
model their interactions probabilistically in accordance with their natural
competences; the very competences that are now being revealed in the
probabilistic retreat from bias.
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