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Following Marr (1982), any computational account of cognition must satisfy
constraints at three explanatory levels: computational, algorithmic, and im-
plementational. This paper focuses on the first two levels and argues that current
theories of reasoning cannot provide explanations of everyday defeasible
reasoning, at either level. At the algorithmic level, current theories are not
computationally tractable: they do not “scale-up” to everyday defeasible
inference. In addition, at the computational level, they cannot specify why people
behave as they do both on laboratory reasoning tasks and in everyday life
(Anderson, 1990). In current theories, logic provides the computational-level
theory, where such a theory is evident at all. But logic is not a descriptively
adequate computational-level theory for many reasoning tasks. It is argued that
better computational-level theories can be developed using a probabilistic
framework. This approach is illustrated using Oaksford and Chater’s (1994)
probabilistic account of Wason'’s selection task.

INTRODUCTION

In this paper, we argue that current theories of reasoning are unable to provide
computational explanations of everyday human reasoning. As in other areas of
cognitive psychology, computational ideas feature prominently in reasoning
research. Current reasoning theories, for example, use ideas from heuristic
search (Evans, 1984, 1989; Newell & Simon, 1972), theorem proving (Newell &
Simon, 1972; Rips, 1983, 1994), and frame system theory (Cheng & Holyoak,
1985; Minsky, 1975; Rumelhart, 1980) to explain reasoning performance.
Further, Johnson-Laird (1983) has argued that cognitive theories should be
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sufficiently precise to implement in a computer program. In short, reasoning
theorists have adopted the view that reasoning can be explained in
computational terms.

What is it to give a computational explanation? The most influential account
of computational explanation in cognitive science is due to Marr (1982; and see
Anderson, 1990: pp.4-5, for a summary of other accounts). Marr defined three
levels of computational explanation. At the computational level (Marr, 1982,
p.24) “the performance of the device is characterised as a mapping from one
kind of information to another, the abstract properties of this mapping are
defined precisely, and its appropriateness and adequacy for the task at hand are
demonstrated”. Marr uses the example of a cash register. The theory of
arithmetic provides the computational-level analysis of this device.
Demonstrating its appropriateness involves showing that our intuitive
constraints on the operation of a cash register map directly onto this
mathematical theory (Marr, 1982, p.22). Anderson (1990) refers to the
computational level as the “rational” level—providing a computational-level
analysis of some task performance amounts to specifying the rational function of
the observed behaviour on that task. Marr (1982, p.27) viewed “the
computational level . . . [as] critically important from an information processing
point of view”. For Marr, trying to understand a computational process without
this level of analysis is like trying to understand bird flight without a theory of
aerodynamics. Thus Marr took the computational level to be the logically prior
starting point for providing computational explanations.

The algorithmic level describes how to compute the function specified at the
computational level. This level also involves specifying the representations that
the algorithm manipulates in computing the function. Thus in the case of the
cash register, using Arabic numerals as the representational notation involves
(Marr, 1982, p.22) using the standard rules “about adding the least significant
digits first and ‘carrying’ the sum if it exceeds 9” as an algorithm. Although the
choice of representation constrains the choice of algorithm, it is not uniquely
constrained—there may be several ways of computing a certain function using
the same representation. An important constraint on the choice of algorithm is
its computational efficiency (Marr, 1982, p.24): “which [algorithm] is chosen
will usually depend on any particularly desirable or undesirable characteristics
that the algorithm may have; for example, one algorithm may be much more
efficient than another.” We argue later on that a major problem for current
reasoning theories is that they attempt to apply demonstrably inefficient
algorithms to modes of reasoning that people appear to perform very efficiently.

The implementational level outlines the physical realisation of the algorithm.
This level involves the detailed physical structure—the computer architecture—
that implements the algorithm. We will have little to say about this level in this
paper. It is worth noting, however, that this level also constrains the choice of
algorithm. For example, as we have observed elsewhere (Chater & Oaksford,
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1990), classical symbolic algorithms are. unlikely to run efficiently on
connectionist hardware. We shall use Marr’s levels of computational ex-
planation to re-evaluate current theories in the psychology of reasoning.

We evaluate these theories for their ability to account for everyday human
inference. We observe later that a crucial difference between everyday inference
and deductive reasoning is that everyday inference is defeasible: conclusions
only follow tentatively, rather than certainly, from premises. Furthermore, we
suggest that everyday inference involves large numbers of premises embodying
world knowledge, rather than the very small number of premises generally used
in laboratory reasoning experiments. We argue that these features of everyday
inference raise difficult problems for current reasoning theories at both the
algorithmic and computational levels. We suggest that problems at the prior
computational level can be alleviated by using probability theory rather than
logic to model uncertain reasoning. Problems at the algorithmic level remain a
difficult, but little acknowledged, challenge to all theories of reasoning.

We have organised this paper as follows. We first introduce the four main
theories of reasoning, and discuss whether they generalise to everyday
reasoning. To generalise successfully, these theories must be adequate at both
the algorithmic and computational levels. We then consider each of these levels
in turn. In The Algorithmic Level, we outline computational complexity theory
and show how it applies to theories of everyday reasoning in artificial
intelligence. We then show that no current theory of reasoning can provide an
efficient or “tractable” algorithm for defeasible reasoning. In The Computational
Level, we discuss why a computational-level theory must be both normatively
justified and descriptively adequate. We then show that logic-based accounts of
everyday, defeasible inference are descriptively inadequate. We further argue
that because logic provides the only computational theory used in reasoning
research, current reasoning theories are unable to generalise to everyday
inference. We deal with several attempts to defend logic-based approaches,
which deny that everyday inference is invariably defeasible, arguing that none of
these attempts is successful. Finally, we suggest that because everyday
reasoning is uncertain, we should seek appropriate computational-level theories
using the mathematical calculus of uncertainty—probability theory. We
illustrate this approach using our recent probabilistic computational-level theory
of Wason'’s selection task (Oaksford & Chater, 1994).

THEORIES OF REASONING AND THEIR GENERALITY

Evans (1991) offers a four-way classification of deductive reasoning theories
and a three-way characterisation of the questions they must try to answer. The
questions that a reasoning theory must address are: the competence question—
how do subjects often solve reasoning problems?; the bias question—why do
subjects also make many systematic errors?; and the content and context



124 OAKSFORD AND CHATER

question—why is it that the content and context of a problem influence
inferential performance?. Evans (1991) argues that the four theories of reasoning
concentrate on one question or the other, but none provides an account of all
three.

Evans notes that two theories concentrate on the competence question. The
mental logic approach argues that people reason using formal inference rules
such as modus ponens (given if p, then q and p you can infer g) that rely only on
the syntactic form of the premises (Braine, 1978; Henle, 1962; Inhelder &
Piaget, 1958; Johnson-Laird, 1975; Osherson, 1975; Rips, 1983). Mental models
theory argues that people base their reasoning on semantic principles (Johnson-
Laird, 1983; Johnson-Laird & Byme, 1991). Johnson-Laird and Byrne (1991),
for example, argue that the complexity of inference in mental models matches
the inferential difficulty subjects experience in laboratory tasks. We argue that
these two theories are the only current reasoning theories that specify a
computational-level theory—this theory is formal logic.

Evans notes that two further theories concentrate on content effects and errors
and biases in reasoning. Pragmatic reasoning schema theory proposes inference
rules specific to particular domains to account for content effects. Cheng and
Holyoak (1985), for example, invoke a permission schema to account for the
facilitatory effects of thematic content. These tasks use contentful rules about
permission relations, e.g. if you are drinking alcohol, you must be over 18 years
of age. Lastly the heuristic approach explains systematic errors and biases by
people using various short-cut processing strategies (Evans, 1983, 1984, 1989).
We argue that these two theories do not use formal logic as their computational-
level theory. Pragmatic reasoning schemas are grounded in intuitively plausible
rules rather than in a formal, computational-level theory.! The heuristic
approach by definition can only supplement a computational-level theory.

All four theories of deductive reasoning account for performance on a
relatively narrow range of laboratory reasoning tasks. Do these accounts
generalise to inferential processes in everyday reasoning? If not, then the
psychology of deductive reasoning would be of no more general interest than the
psychology of crossword puzzles. But clearly psychologists of reasoning intend
their theories to generalise to everyday inference. Rips (1994) is explicit on this,
in his exploration of what he calls the deduction system hypothesis—that logic is
central to cognition because it underlies many other cognitive abilities. Johnson-
Laird and Byme (1991, pp.2-3) focus on deduction:

. . . because of its intrinsic importance: it plays a crucial role in many tasks. You
need to make deductions in order to formulate plans and to evaluate actions; to

'Within pragmatic reasoning schema theory, there are proposals to use ideas from jurisprudence to
provide computational-levels accounts of certain kinds of reasoning contracts (Holyoak & Cheng, in
press).
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determine the consequences of assumptions and hypotheses; to interpret and
formulate instructions, rules and general principles; to pursue arguments and
negotiations; to weigh evidence and to assess data; to decide between competing
theories; and to solve problems.

How could we find out whether deductive reasoning really does underlie
performance across this wide range of everyday tasks? It is extremely difficult to
imagine how you might empirically test such a claim. However, because we are
working on the assumption that reasoning is a computational process, it should
be possible to construct computational models of such processes, based on
logical inference. Fortunately, this is not merely an interesting possible line of
future inquiry—the attempt to model diverse areas of cognition using logical
‘methods has been the central goal of artificial intelligence (AI) since its
inception. We shall, therefore, draw conclusions from attempts in Al to model
everyday tasks using logical methods.

In Al, cases where the human cognitive system far outstrips the capacities of
computational memory systems (Oaksford, Chater, & Stenning, 1990) have been
of particular interest. Al programs suffer from a well-documented limitation on
retrieval from long-term memory. McCarthy and Hayes (1969) called this
limitative finding the “frame problem” (see Pylyshyn, 1987 for overviews).
Glymour (1987, p.65) characterises the frame problem as follows: “Given an
enormous amount of stuff, and some task to be done using some of the stuff,
what is the relevant stuff for the task?”. The frame problem may arise for any
task requiring the deployment of prior world knowledge.

In order to generalise to everyday inference, theories of deductive reasoning
must confront the frame problem. We now argue that everyday inference is
defeasible or non-monotonic: that is, the addition of further premises can defeat
previous conclusions. The problems of non-monotonic reasoning give rise to the
frame problem. Current theories of reasoning typically do not directly attempt to
capture non-monotonic reasoning, and hence do not appear even to attempt to
generalise to everyday inference.

The problems of non-monotonic reasoning arise at both the computational and
algorithmic levels of explanation. At the computational level, we require an
account of what inferences people draw; and at the algorithmic level, we require
an account of how they draw those inferences. Current reasoning theories have
concentrated on developing algorithmic-level accounts, and either provide no
formal computational-level theory or use logic in this role. In the next section,
The Algorithmic Level, we argue that these algorithmic theories cannot
generalise to everyday reasoning because they are computationally intractable,
and that these intractability problems are especially acute if generalised to
everyday reasoning. In the following section, The Computational Level, we
suggest that some of these problems may derive from using inappropriate
computational-level theories of everyday inference. We argue that probability
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theory may provide more appropriate computational-level theories, although it
does not resolve problems at the algorithmic level.

THE ALGORITHMIC LEVEL

This section has three parts. First, we outline computational complexity theory,
which characterises the time and space requirements of algorithms for solving
particular problems, independent (within very wide limits) of the computational
device used. Second, we consider how this theory applies to everyday inference,
and show that approaches to everyday inference are computationally infeasible.
Third, we argue that these problems apply to each of the four contemporary
approaches to reasoning, when generalised to everyday inference.

Computational Complexity Theory

Psychologists have always been concerned with real-time processing. Indeed, in
many areas of psychology reaction times have been the primary source of
constraint (e.g. Posner, 1978). Modelling precise real-time characteristics of
inference has been of less concern to psychologists of reasoning. Nonetheless, it
is uncontroversial that any psychologically plausible algorithmic account of
human reasoning must be consistent with human inference happening in real
time. However, when generalised to handle common-sense inference, the
predictions of reasoning theories regarding the time course of inference may be
unacceptable. Specifically, these theories may have to predict that people cannot
complete the simplest everyday inference within a human life-time, let alone
within the time available for real human inference.

How can we make predictions about real-time performance of an algorithm
running on the computational machinery of the human brain? Prima facie, this
appears to require a detailed knowledge of how to implement cognitive
algorithms in the brain, information that is simply not available. However,
computer science has shown that the broad pattern of real-time performance,
although not its detailed time-course, is predictable without knowledge of the
underlying computational hardware, or of how to implement the algorithm in
that hardware. Computational complexity theory (see for example, Garey &
Johnson, 1979; Horowitz & Sahni, 1978) classifies algorithms depending on
how their time and space requirements increase with the length of the input. For
human reasoning the length of the input corresponds to the number of premises
in an argument or facts in a knowledge-base.

We only need a few of the results from computational complexity theory to
allow us to show in the next section how theories of everyday reasoning must
confront the frame problem. Computational complexity theory divides problems
into two main classes—those that have a tractable algorithm for their solution
and those that do not. An intractable algorithm is one where the time and space
requirements grow as an exponential function of the length of the input (number
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of premises). Computer scientists generally regard algorithms for which this
function is a polynomial (or less) as tractable. There is some uncertainty as to
which algorithms fall into the intractable class. For one class of problems (called
NP-complete, see Appendix 1) all known algorithms are exponential and hence
intractable. Cook (1971) has shown how to characterise all these problems in the
same way—they are all problems of logical consistency checking. Cook’s
theorem states that if one of these problems has a polynomial time algorithm
then they all have. However, because—as a matter of fact—no one has managed
to devise a polynomial time algorithm for any of these problems, computer
scientists have assumed that they are generally intractable (this is usually stated
as the conjecture that NP # P). (See Appendix 1 for relevant technical details).

Everyday Inference

In this section, we observe how computational complexity poses problems for
theories of everyday inference. Although the psychology of reasoning has rarely
considered computational complexity, it has been a central concern in other
areas of cognitive science. For example, early work on bottom-up object
recognition of block worlds resulted in the notorious combinatorial explosion
(see, McArthur, 1982 for a review, and Tsotsos, 1990 for a more recent
discussion of complexity issues in vision research). Furthermore, researchers
into risky decision making realised very early on that complexity issues were
relevant. Probabilistic inference makes exponentially increasing demands on
computational resources even for problems involving very moderate amounts of
information (Charniak & McDermott, 1985).

Although the psychology of reasoning focuses on deduction, according to
which conclusions follow with certainty if the premises are true, most human
inference is uncertain. For example, activities such as text comprehension,
classification, categorisation, and perception all rely on inferential processes,
which are defeasible—subsequent information may defeat earlier conclusions
(Oaksford & Chater, 1991, 1992, 1993). For example, on learning that Tweety is
a bird you may elaboratively infer that Tweety can fly. However, the common
sense generalisation—all birds can fly—that licenses this inference is defeasible.
When you subsequently learn that Tweety is an ostrich this defeats the
conclusion that Tweety can fly.

Using this example, we can now illustrate how complexity issues arise for
logic-based AI approaches to everyday, defeasible reasoning (McDermott,
1987). The standard logical approach (e.g. Reiter, 1980, 1985) is to propose a
“closed world” assumption—an Al program bases its inferences on the “closed
world” consisting of the current contents of its data-base, where the contents of
the data-base provide additional premises. Reiter would treat our example rule,
“all birds can fly” as meaning that If x is a bird, and there is no reason to
suppose otherwise, then x can fly. So when you learn that Tweety is a bird, and
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you cannot generate a counter-example from your current data-base, 1.e. you can
not generate a reason to suppose that Tweety cannot fly, then it is reasonable for
you to infer that Tweety can fly. This means that every time a reasoner draws a
conclusion from a default rule they must exhaustively search the whole of their
data-base to ensure that no counter-example is available. This is equivalent to
checking the consistency of the data-base, which, as we noted earlier means that
it is computationally intractable.

These considerations imply that logic-based approaches to defeasible
reasoning can only apply to small data-bases, i.e. to small sets of premises,
before complexity bites. For psychologists of reasoning, this may not appear to
be a problem (Garnham, 1993; see Chater & Oaksford, 1993). In most explicit
reasoning tasks, the premise sets are extremely small, usually consisting of two
or three premises. And in such inference tasks, it is true that increases in the
explicit premises beyond this number produces catastrophic performance
breakdown (Johnson-Laird, 1983). At this point, the contrast between
laboratory-based explicit reasoning tasks, and real-time everyday inference
becomes critical. For in everyday inference, the subject does not reason over a
handful of premises specified by the experimenter, but rather must make the best
inference possible given their pre-existing data-base consisting of large amounts
of world knowledge.

From the point of view of complexity constraints, the crucial question is how
many premises are involved in typical everyday defeasible inference.
Considerations from AI and psychology are relevant here. In Al, the
formalisation of the tiniest fragment of world knowledge in logical terms
involves enormous numbers of premises (e.g. Hayes, 1978, 1984a, 1984b).
Furthermore, the interconnected character of world knowledge indicates that
knowledge about some specific domain cannot be perfectly isolated from
knowledge from other domains (Fodor, 1983). It is for this reason that schema
theorists no longer assume that they can isolate schemas from one another, as
independent data-bases, but rather they propose that schemata must be richly
interconnected (Rumelhart, 1980; Schank, 1982). Thus, attempts to formalise
knowledge within AI suggest that the number of premises in the data-base
relevant to a defeasible inference is very large, and indeed, probably includes the
whole of world knowledge. Furthermore, the psychological evidence points in
the same direction. For example, the rapidly drawn elaborative inferences
(which are uncontroversially defeasible) involved in understanding the simplest
of texts draw on large amounts of world knowledge (Clark, 1977; Garrod &
Sanford, 1977; Kintsch & van Dijk, 1978; O’Brien, Shank, Myers, & Rayner,
1988). So, although computational complexity constraints may not bite for
explicit laboratory reasoning tasks, they do for accounts of everyday reasoning.

Thus, if psychologists of reasoning intend their accounts of laboratory
reasoning tasks to generalise to everyday reasoning, they face a paradox:
although they can account for people’s poor performance on explicit reasoning
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tasks, it appears that they cannot account for how everyday reasoning is possible
at all. In the next section we confirm this concern, considering each of the four
classes of reasoning theory in turn.

Theories of Reasoning and Computational Complexity

We deal with the four theories of reasoning in the order in which we introduced
them: mental logic, mental models, pragmatic reasoning schemas, and the
heuristic approach.

Mental Logic. The contemporary mental logic view explains explicit
reasoning performance by appeal to various natural deduction systems (Gentzen
1934) with (Rips 1983) or without (Braine 1978) an account of the control
processes that animate the inference rules. From- a complexity-theoretic
standpoint, mental logic seems unpromising. Even for standard monotonic logic,
the general problem of deciding whether a given finite set-of premises logically
implies a particular conclusion is computationally intractable (Cook, 1971).2
Moreover, the complexity results we discussed earlier derived from logical
attempts to account for default reasoning in Al knowledge representation.
Consequently a mental logic is unlikely to generalise to everyday defeasible
reasoning. '

Mental Models. Logic’s failure to generalise to everyday inference appears
to add further weight to the mental modeller’s claim that “there is no mental
logic”. On the mental models view, semantic methods of proof should replace
the syntactic formalisms of the mental logician (e.g. Johnson-Laird 1983;
Johnson-Laird & Byme, 1991). However, recently, mental modellers have
tempered their claim that “there is no mental logic”. For example (Johnson-
Laird & Byrne, 1991, p.212): “...the [mental] model theory is in no way
incompatible with logic: it merely gives up the formal approach (rules of
inference) for a semantic approach (search for counter-examples)”. So the
dispute is not about whether there is a mental logic, but about ~ow to implement
it in the mind. Note also that the problem of searching for counter-examples,
which is the engine of the mental models approach, is no more or less than the
problem of consistency checking. Specifically, the problem of finding a counter-
example is the problem of finding a case where the premises are true and the
conclusion is false; this will be possible if and only if the negation of the
conclusion is. consistent with the premises (Enderton, 1972). Thus, searching for
counter-examples just is consistency checking. This identity appears to refute
immediately the possibility that mental models offers a tractable approach to
everyday inference.

’This applies equally to semantic proof procedures, such as truth tables and semantic tableaux, as
to syntactic procedures such as axioms or natural deduction systems.
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Mental models theorists are not unaware of this problem and argue that using
arbitrary exemplars may allow mental models theory to develop a tractable
proof procedure (Johnson-Laird, 1983). However, there are no complexity
results for the algorithms that manipulate mental models. In the absence of such
results there is no evidence that mental models could fare any better than mental
logic in providing computationally tractable algorithms for everyday inference.

Pragmatic Reasoning Schema Theory. Pragmatic reasoning schema theory
emphasises the role of domain-specific knowledge in reasoning tasks (Cheng &
Holyoak 1985; Cosmides 1989). Cheng and Holyoak (1985) suggested that
people possess pragmatic reasoning schemas, which embody rules specific to
various domains such as permissions, causation, and so on. They invoke
permission schemas to explain the results from some thematic versions of
Wason'’s selection task where the rule determines whether an agent may perform
a particular action. Cheng and Holyoak (1985) argue that the rules embodied in
a permission schema match the inferences licensed by standard logic, thus
explaining the facilitatory effect of these materials. Similarly, Cosmides (1989)
appeals to domain-specific knowledge of “social contracts” to explain the same
data (but see Cheng & Holyoak, 1989, for a critique).

If the domains over which the search for counter-examples were suitably
constrained, then exhaustive searches may be feasible. However, as we noted
earlier, Al researchers have made extensive use of schema theories and have
found that they run directly into the frame problem (Fodor, 1983; Pylyshyn,
1987). Indeed Hayes (1979) has shown that early schema theories are equivalent
to logical formalisms; and Reiter (1985) has re-characterised the way schema
theories handle defaults using non-monotonic logic. Although schema theories
may prove useful in describing performance in laboratory experiments, Al
researchers have tried, tested, and abandoned them as computationally tractable
accounts of everyday defeasible inference.

Heuristic Approaches. Only the heuristic approach (Evans, 1983, 1984,
1989) explicitly addresses the issue of cognitive limitations. In computer science
the use of heuristics may render a computationally intractable problem
manageable. Using a generally intractable algorithm with a heuristic can provide
tractable, approximate solutions for many problem instances (Horowitz & Sahni,
1978). You trade accuracy for speed. In this section we observe that the heuristic
approach does not address the issue of intractability.

Evans (1991) notes that the heuristic approach is not an approach to human
reasoning in its own right—it can only supplement a theory of competence such
as mental logic or mental models. Thus the viability of the heuristic approach
depends in this context on whether there are heuristics that can allow reasonably
reliable consistency checking over data-bases of a cognitively realistic size.
Although this remains a possibility, it has so far eluded researchers in' Al and
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computer science. Hence there are currently no grounds to believe that a
heuristic approach is viable in general, and certainly there are no specific
heuristics proposed within the psychology of reasoning that could resolve the
problem of computational intractability.

More recently Evans (in press) has proposed that relevance is crucial to
human reasoning. He suggests that the heuristics he has proposed serve to
retrieve relevant information from memory. As we noted earlier (see quote from
Glymour, 1987), retrieving relevant information from memory is just the frame
problem. So relevance approaches (see also, Sperber, Cara, & Girotto, in press),
although implicitly conceding that reasoning theories must confront the frame
problem (which is a step forward), can do nothing to resolve this problem
(Oaksford & Chater, 1991).

These algorithmic level problems are most pressing for theories of reasoning
based on logic; but they are equally serious for the probabilistic approach that
we shall advocate later. Hence, although we hope to have established that
complexity considerations should be of serious concern for psychological
theories of reasoning, we do not take them to militate decisively against current
theories of reasoning. The more fundamental difficulties for current theories of
reasoning come at the computational level; and it is here that the probabilistic
approach is most promising.

THE COMPUTATIONAL LEVEL

In this section we first discuss what is required of a computational-level theory.
We then argue that only two theories—mental logic and mental models—
embody a computational-level theory, and that in both cases logic provides this
theory. We then show that logic provides a completely inappropriate framework
for modelling everyday defeasible inference, which suggests that mental logics
and mental models can not generalise to deal with everyday inference. We then
consider possible responses to this line of argument from advocates of each
approach, and argue that these responses are inadequate. We will then argue that
an appropriate computational-level theory that captures the uncertain character
of everyday inference should be provided not by logic but by the calculus of
uncertain reasoning—probability theory. We illustrate this approach using our
probabilistic computational-level theory of Wason’s selection task (Oaksford &
Chater, 1994).

Computational level theories

As we outlined in the introduction, according to Marr (1982) a computational-
level theory specifies what is computed and why in the performance of some
task. Marr uses the example of a cash register where the theory of addition
provides the computational-level theory—this is what the cash register
computes. Demonstrating why this is what the cash register computes involves
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showing that our intuitive constraints on the cash register's operation map onto
this computational-level theory. Note that for Marr the computational-level
theory is a precise mathematical account of the function that the device
computes. It is Marr's account of the computational level that we adopt here.

Why should a computational-level theory be defined in precise formal terms?
Without a formal theory we must rely on incomplete or poorly specified
intuitions that are not likely to result in a consistent computational-level theory.
An inconsistent theory is, of course, valueless, because, from an inconsistency
anything follows. Furthermore, appeal to mere intuition is ultimately circular, as
the goal of a computational-level theory of reasoning is to explain our intuitions,
and thus cannot simply take them for granted. Providing a consistent formal
account of our intuitions in any domain is a difficult, but unavoidable,
challenge.’

In the psychology of reasoning, demonstrating the appropriateness of
computational-level theories has not been a prime concern. The standard
approach has been to borrow normative theories, about what one should or
should not do on a reasoning task, from logic and mathematics. However, the
last 30 years of reasoning research has been notable, largely because of the
mismatch observed between these normative accounts and subjects' behaviour.
This indicates that these normative accounts can not provide appropriate
computational-level theories of the tasks investigated by reasoning researchers.
Normative theories and computational-level theories play different roles. Only
the latter must be descriptively adequate to subjects' task performance. Although
a normative theory may play an important role in inspiring the development of a
reasoning task, it still remains an empirical question whether it provides a
descriptively adequate computational-level theory.

To illustrate the difference between normative and computational-level
accounts, let us consider an example. Suppose that you find some unknown
device and wonder what its function might be. Perhaps, observing its behaviour,
you suppose that it may be performing arithmetical calculations. To make this
conjecture is to make a specific hypothesis about the computational-level theory
appropriate for describing the device. On this assumption, you might give the
device certain inputs, which you interpret as framing arithmetical problems. It
may turn out, of course, that the outputs you receive do not appear to be
interpretable as solutions to these, or perhaps any other, arithmetical problems.
This may indicate that your computational-level theory is inappropriate,
particularly if you cannot interpret most of the outputs as correct answers. You

’The problem of providing a consistent formalisation of intuitions in any domain is extremely
difficult. Even providing a computational-level theory for a calculator has proved to be an enormous
intellectual challenge. For example, Frege’s (1950) formalisation of arithmetic succumbed to an
unexpected paradox, due to Russell, which demonstrated the inconsistency of what appeared to be
intuitively consistent intuitions (see Haack, 1978 for discussion).
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may therefore search for an alternative computational-level explanation—
perhaps the device is not doing arithmetic, but is solving differential equations.
Thus, a computational-level theory must not only be normatively justified, it
must also be descriptively adequate in a way that merely normative theories
need not be. There is no doubt that arithmetic is a normative theory; what is in
doubt is whether arithmetic is the appropriate normative theory to describe the
behaviour of this device.

Similarly, in the psychology of reasoning, theorists cannot derive appropriate
computational-level theories by reflecting on normative considerations alone,
but only by attempting to use those theories to describe human inference. It is
not controversial that logic provides a good normative theory of deductive
inference—the question is: do people perform deductive inferences?.

The same point applies to tasks. In the case of the device, we may mistakenly
interpret a set of inputs as posing an arithmetical problem, when the device
consistently interprets these inputs as posing problems in solving differential
equations. The experimenter cannot legislate concerning the nature of the task.
Similarly, we may mistakenly interpret a psychological task as posing a
deductive reasoning problem, when subjects consistently interpret the task as
posing some other kind of well-defined problem. We suggest later on that
Wason's selection task, for example, poses a problem of probabilistic optimal
data selection, rather than a problem of logical inference, as is frequently
assumed.

Only two of the four theories of reasoning that we discussed earlier—mental
logics and mental models theory—embody a computational-level theory, in the
sense that we have just described. The heuristic approach, as we mentioned
earlier, does not by definition attempt to account for people's general inferential
performance, but must supplement some theory that does provide such an
account. Moreover, pragmatic reasoning schemas do not constitute a formal
theory of reasoning. The schemata for deontic reasoning, for example, simply
embody intuitions about appropriate deontic rules for use in specific situations.
They do not have the goal of providing a computational-level theory of deontic
or any other kind of reasoning.*

In contrast, mental logics and mental models embody logic as a
computational-level theory. This is self-evident for the mental logic approach.
But it also follows immediately for the mental models approach, given that the
goal of mental models theory is to provide a mechanism for conducting logically
valid deductive inference, as we observed earlier. Johnson-Laird and Byrme
(1991) note that logic does not exhaust the computational-level of theory on the
mental models account. Specifically, they outline three intuitive constraints on

‘Proponents of pragmatic schemas are, however, concerned with computational-level issues. For
example, Holyoak and Cheng (in press) describe considerations from jurisprudence which may
serve as a starting point for a computational-level theory of aspects of deontic reasoning.
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the kinds of deductive inferences that people actually draw. These constraints
restrict human deductive inference to a subset of logically valid deductive
inferences. But, we shall argue, logic is an inappropriate computational-level
theory, not because it admits too many inferences, but because it admits too few:
specifically, everyday defeasible inferences are not logically valid. Thus, in this
context, we need not discuss Johnson-Laird and Byme's (1991) additional
computational-level constraints further.

Is Logic an Appropriate Computational-level
Theory of Everyday Inference?

We saw earlier that applying logic to everyday defeasible reasoning requires a
non-monotonic logic (e.g. Clark, 1978, McCarthy, 1980, McDermott & Doyle,
1980, Reiter, 1980, 1985, see also collection edited by Ginsberg, 1987) and that
using such logics is computationally intractable. We now consider the prior
question (see our Introduction) of whether non-monotonic logics can serve as
adequate computational-level theories of human inference. Unfortunately non-
monotonic logics also prove to be inadequate at this level of explanation
(Harman, 1986; Israel, 1980; McDermott, 1987; Oaksford & Chater, 1991,
1992, 1993; Rips, 1994).

A crucial and ubiquitous problem for all these accounts arises when there is
conflict between the conclusions drawn by different default rules. For example,
suppose you are considering the following two default rules:

(1) If x is an academic & there is no reason to suppose otherwise, then x is unfit.
(2) If x is a runner & there is no reason to suppose otherwise, then x is fit.

and the fact that:

(3) Fred is both an academic and a runner.

Is Fred fit or unfit? The conclusion seems to depend on the order in which you
apply the rules (see Oaksford & Chater, 1991, for a more formal example).
Taking rule (1) first, because Fred is an academic and there is no reason to
suppose otherwise—because, crucially, you have not yet considered rule (2)—
you may infer that he is unfit—hence rule (2) is not now applicable. Taking rule
(2) first, because Fred is a runner and there is no reason to suppose otherwise—
because, crucially, you have not yet considered rule (1)—you may infer that he
is fit—hence rule (1) is not now applicable. Because conclusions should be
order-independent, the only possible conclusion is the wholly uninformative one
that Fred is either fit or unfit. However, the intuitively obvious conclusion from
this information is that Fred is fit—academics are typically unfit because they do
not exercise, which does not apply to academic runners who clearly do exercise.
The problem of conflicting defaults is widely recognised in Al as a central and
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unsolved problem in knowledge representation (McDermott, 1987). Examples
such as these indicate that non-monotonic logics are not appropriate
computational-level theories of defeasible inference because they fail to capture
peoples' intuitions about the appropriate inferences to draw.

If, as we have argued, everyday reasoning is non-logical, then mental logics
and mental models would seem to be unable to generalise beyond the laboratory.
But recent psychological results indicate that logic-based models may be
inappropriate even within the laboratory. Work on conditional reasoning
indicates that subjects interpret conditional sentences as default rules (Holland,
Holyoak, Nisbett, & Thagard, 1986) even in laboratory tasks (Holyoak &
Spellman, 1993; Oaksford et al., 1990). Bymne (1989), and Cummins, Lubart,
Alksnis, and Rist (1991), have shown that background information derived from
stored world knowledge can affect inferential performance (see also, Markovits,
1984, 1985). Specifically they showed that additional antecedents influence the
inferences conditional statements allow. For example:

(1) If she has an essay to write then she will study late in the library.
(a) Additional Antecedent: The library is closed.

(1) could be used to predict that she will study late in the library if she has an
essay to write. This is an inference by modus ponens. However, including
information about an additional antecedent (a) defeats this inference (Byrne,
1989). Moreover, confidence in this inference reduces for rules that possess
many alternative antecedents even when this information is only implicit
(Cummins et al., 1991). Additional antecedents also affect inferences by modus
tollens. If she does not study late in the library, you can infer that she didn't have
an essay to write, unless the library was closed. Explicitly providing information
about alternative antecedents defeats modus tollens (Byme, 1989) and reduces
confidence in rules that possess many alternative antecedents even when this
information is only implicit (Cummins et al., 1991). In sum, people treat
conditionals in laboratory reasoning tasks as default rules.

Advocates of mental logics and mental models, although aware of these
arguments (Garnham, 1993; Johnson-Laird & Byrne, 1991; Rips, 1994), present
a variety of proposals that may be thought to deflect these difficulties. We
consider these later, and argue that they do not succeed.

Theories of Reasoning and the
Computational Level

Mental Logics. Mental logicians appear to have dismissed the influence of
default rules on reasoning as an interfering pragmatic or performance factor
(Braine, Reiser, & Rumain, 1984; Rumain, Connell, & Braine, 1983). This is in
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marked contrast to the reaction of logicians and Al researchers. These
researchers have almost uniformly abandoned restrictions on what is deducible
to the monotonic case, and have been driven to explore non-monotonic logics to
capture just the phenomenon the mental logicians dismiss (see e.g. the collection
edited by Ginsberg, 1987). As we have seen, embracing the defeasibility of
everyday inference, these researchers immediately confront unsolved problems
at both the algorithmic and the computational levels. Mental logic researchers,
by contrast, have attempted to avoid these difficulties by maintaining—at least
with respect to the experimental data they consider—that reasoning is in fact
monotonic.

Perhaps the best worked out example is Politzer and Braine’s (1991) attempt
to deny that the data that we examined earlier from Byrne (1989) and Cummins
et al. (1991) reflect defeasible inferential processes. We outline their position,
and argue that it involves a fundamental misunderstanding of the nature of
everyday, defeasible reasoning.

Politzer and Braine (1991) argue that Byrne’s (1989) results do not show that
additional information can defeat (or suppress) modus ponens because the
premises result in an inconsistency.” Their argument is as follows. Byme
presented subjects with premises such as:

(3) If she has an essay to write then she will study late in the library
(4) She has an essay to write

in response to which subjects sponteneously make the inference by modus
ponens that she will study late in the library. However, adding a further premise:

(5) If the library stays open then she will study late in the library
leads to a significant reduction in the number of subjects concluding that she
will study late in the library. Subjects instead conclude that she may or may not
study late in the library. Byrne (1989, p.76) describes this effect as showing
“that context can suppress . .. valid . . . inferences.” Politzer and Braine (1991)
argue that general knowledge of libraries mean that (3)—(5) are likely to lead
subjects to add:

(6) If she studies late in the library then necessarily the library stays open

to their premise set because (5) “actually expresses a necessary condition”, i.e.

(57) If the library is closed, then she cannot study late in the library.

’We here ignore Bymne’s (1991) response to Politzer and Braine (1991) because we concur with
O’Brien (1993) that Bymne misrepresents Politzer and Braine’s argument.
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But now there is an inconsistency because, (3) and (6) entail:
(7) If she has an essay to write then necessarily the library stays open

which subjects know to be false. Politzer and Braine argue that subjects
therefore question the literal truth of (3) and hence fail to infer that she will
study late. They also suggest that all putative cases of suppression of modus
ponens are cases where one can question the literal truth of the premises.

Politzer and Braine’s modal argument is not valid. But it is not necessary to
delve into the technicalities (outlined in Appendix 2) to appreciate that this line
of reasoning cannot be sound. First, intuitively (3)—(5) do not seem to be
mutually inconsistent. And Politzer and Braine’s argument that they are, given
appropriate world knowledge, is not compelling. The crucial conclusion (6) is
intuitively and logically bizarre: it suggests that a contingent truth about whether
somebody studies late in the library implies that it could be a necessary truth that
the library stays open. But whether or not somebody works late cannot make it
necessary (in a logical, physical, causal, or any other substantive sense of
necessity) that the library stays open, because counter-examples abound: she
might break into the library, be locked in accidentally, may have a key, be a
friend of the librarian, and so on. As we show in Appendix 2, our intuition that
this inference—that supposedly demonstrates the inconsistency in (3)—(5)—is
invalid, is supported by the fact that it is also invalid in modal logic. Given that
(6) does not follow, even if we grant that people may infer (57) from world
knowledge, the rest of Politzer and Braine's (1991) argument collapses.

Treating these rules as default rules, however, leads to a far more natural
interpretation of these experimental materials. The “inconsistent” conclusion
that the library stays open if she has an essay to write only looks aberrant
because Politzer and Braine explicitly add (6) and (7) as derived theorems. This
presentation makes “the library stays open” seem like the consequence of a false
rule (7). However, by treating (3) as a default rule, we can see “the library stays
open” for what it is—a default assumption. Interpret (3) as previously:

(37) If she has an essay to write & there is no reason to suppose otherwise,
then she will study late in the library.

Given (4) the second conjunct must be satisfied. This involves checking whether
she will not study late in the library can be proved from (3), (4), and (5°).
Assuming forward and backward chaining (Rips, 1983, 1994), (5°) provides a
match that yields “the library is closed” as a subgoal. This cannot be proved
from (3), (4), and (57). However, by the closed world assumption used by Al
systems, as noted earlier, (Hogger, 1984) not(the library is closed), i.e. the
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library is open, can be inferred.® Consequently, that she will not study late
cannot be proved either, and hence it is safe to infer that she will study late in
the library. Therefore (4) leads to the apparently undesirable assumption that the
library is open. This assumption is innocuous, however. Informally, you infer
she will study late in the library because (i) she has an essay to write and (ii)
although you don’t know whether the library is open or not, with no evidence to
the contrary, you assume that it is. Subjects’ willingness to endorse the
conclusion that she has an essay to write is therefore dependent on their
willingness to make this assumption and it is this assumption that experimenters
manipulate in the task. Thus interpreting conditionals as default rules makes
much better sense of the observed performance in conditional reasoning tasks
than the attempt to maintain a logical interpretation.

Rips (1994, p.270) takes a rather different line to Politzer and Braine,
conceding that “Defeasible inferences must be extremely common in everyday
thinking, and any general theory in Al or psychology must accommodate them”.
But he argues that default reasoning arises in the context of inductive inference
and (Rips, 1994, p.411) that although “Oaksford and Chater [1991] may be right
that inductive inference will eventually be the downfall of these [classical
logicist] approaches” this does not vitiate the mental logic approach. Rips (1994,
p.411) argues that nondemonstrative belief fixation may come about “in other
ways than making it the conclusion of an argument”. In addition to these “other
ways”, Rips assumes that people have considerable resources for deductive
reasoning, and argues for a particular account of these in terms of natural
deduction.

If our arguments are correct, then this intermediate position is not tenable.
The conclusion that people do not interpret natural language conditionals
logically, but rather interpret them as default rules (Holyoak & Spellman, 1993;
Oaksford & Chater, 1992, 1993) applies to almost any reasoning that mental
logicians attempt to explain. For example, Rips offers the following example as
a paradigmatic case of deductive inference:

(9) If Calvin deposits 50 cents, he’ll get a coke.
Calvin deposits 50 cents
Therefore, Calvin will get a coke.

Rips treats this inference as deductive and hence modus ponens applies.
However, in the light of previous discussion, the conditional premise is clearly
about as good an example of a default rule as one could find. Calvin won’t get
the coke if the machine is broken, if the cokes have run out, if the power is
turned off, and so on.

*We use an Al interpretation of defaults here for illustration only. As we noted earlier, such
interpretations of default rules are not in general adequate.
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It is possible to reply, as seems implicit in Politzer and Braine (1991) and
Rips (1994), that such additional circumstances do not show that the first
premise is defeasible (and therefore that some non-monotonic inference regime
must be invoked), but simply show that it is false, according to the standard,
non-defeasible, interpretation of the conditional. But if this is how people
interpret conditionals, then the only conditionals that people believe true will be
those that never admit of counter-examples. Because any everyday conditional,
including (9), admits exceptions, then all such conditionals will be false. Clearly,
people do not reject such conditionals, but freely assert them, argue about
whether they are true, and use them to guide their behaviour. This makes perfect
sense if people interpret conditionals as default rules; it makes no sense at all if
they interpret conditionals logically.

In summary, mental logicians have on the whole attempted to marginalise
defeasible reasoning. One argument is to deny (O’Brien, 1993; Politzer &
Braine, 1991) that the empirical evidence supports the claim that people view
the rules used in laboratory task as default rules (Holyoak & Spellman, 1993;
Oaksford & Chater, 1992, 1993). We have shown that these arguments are not
valid. However, even if they were valid, the mental logician would still have to
account for the many clear cut cases of default inferences that occur in everyday
life outside the laboratory. Rips (1994) attempts to avoid this problem by
arguing that most default inferences are inductive and that such processes do not
have to involve argument. However, we argue that even the paradigm examples
that mental logicians do intend to explain are not logically valid, but involve
defeasible inference. Given that standard logic cannot provide an appropriate
computational-level model of defeasible, uncertain reasoning one might expect
that the mental /ogician would therefore embrace non-standard, non-monotonic
logics. However, they are rightly cautious—such logics fail to characterise the
intuitively correct inferences, and hence could not provide an appropriate
computational-level theory.

Mental Models. Proposals for incorporating default reasoning into mental
models (Johnson-Laird & Bymne, 1991) rely on incorporating default
assumptions into the initial mental model of a set of premises. Reasoners recruit
these assumptions from prior world knowledge and may undo them in the
process of changing mental models. Mental model theorists claim that they
thereby avoid the problem of consistency checking, because there is no need to
search for counter-examples to default assumptions. This proposal does not
resolve the problem of default inference. A generalisable theory of reasoning
must address the problem of which default assumption(s) to incorporate in an
initial representation. For example, suppose I tell you that “Tweety is a bird”,
you may incorporate the default assumption that Tweety can fly in your mental
model because most birds can fly. However, it would be perverse to incorporate
this assumption if you also knew that Tweety is an ostrich. To rule out perverse
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or irrelevant default assumptions requires checking the whole of world
knowledge to ensure that any default assumption is consistent with what you
already know (or some relevant subset of what you already know). So mental
models theory confronts the problem of non-monotonic reasoning head on.

Mental model theorists may argue that the problem of searching for counter-
examples for default assumptions is part of a theory of memory retrieval that
mental models, as a theory of inference, need not provide. Three arguments
seem to vitiate this suggestion. First, Al treats these memory retrieval processes
as inferential processes that a theory of inference should explain. Second, these
memory retrieval processes involve the search for counter-examples. Therefore
in its own terms these processes are exactly the type of inferential processes for
which mental models theory should provide an account. Third, such. an
argument could only succeed if mental models theory itself didn’t already rely
heavily on these processes to explain the results of reasoning tasks. ‘

In recent accounts (e.g. Johnson-Laird & Byrne, 1991) the explanation of
various phenomena depends on the way in which an initial mental model of the
premises is “fleshed-out”. “Fleshing-out”, for example, determines whether a
disjunction is interpreted as exclusive or inclusive or (Johnson-Laird & Byrne,
1991, p.45); whether a conditional is interpreted as material implication or
equivalence (Johnson-Laird & Byrne, 1991, pp.48-50) which in turn determines
whether inferences by modus tollens will be performed; whether non-standard
interpretations of the conditional are adopted (Johnson-Laird & Byrne, 1991,
p-67), including content effects whereby the relation between antecedent and
consequent affects the interpretation (Johnson-Laird & Byme, 1991, pp.72-73);
confirmation bias in Wason’s selection task (Johnson-Laird & Byme, 1991,
p-80); and the search for counter-examples in syllogistic reasoning (Johnson-
Laird & Byme, 1991, p.119). Fleshing-out depends on accessing world
knowledge. Moreover, the explanatory burden placed on fleshing-out demands
that mental models theory accounts for the processes involved. Consequently it
is reasonable to expect mental models theory to provide an account of how
people retrieve relevant defaults from world knowledge. Appeal to fleshing-out
is thus simply an appeal to a solution to the problem of everyday defeasible
reasoning, it does not provide such a solution.

Garnham (1993) has suggested a related, but distinct, line of argument
suggesting that mental models are applicable to non-monotonic reasoning, if
there are restrictions on which models reasoners entertain. In particular, in non-
monotonic reasoning Garnham proposes that people do not exhaustively search
all possible models, but entertain only the most plausible models, perhaps even
just the single most plausible model. In response to Garnham, the following
default inference is considered by Chater & Oaksford (1993): if Fred eats a
banana he peels it first, and Fred eats a banana, to the conclusion that he peeled
it. As this inference is non-monotonic, there are many models in which the
premise is true and the conclusion false—a friend may have peeled the banana,
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Fred may have eaten it whole and so on. However, these models are not, in the
absence of additional information, plausible. Much more plausible is the model
in which Fred peeled the banana himself. To reason successfully about these
matters, reasoners should consider only the plausible models.

Chater and Oaksford (1993) suggest that this line of reasoning has, in
Russell's phrase, all the virtues of theft over honest toil. Mental models must
assume as given a mechanism that distinguishes plausible from implausible
models—and furthermore comes up with the most plausible models
spontaneously. In other words, it presupposes a mechanism that is able to carry
out inference to the best explanation—to devise and assess the plausibility of
hypotheses to explain and be explained by known information. But inférence to
the best explanation is simply a paradigm case of non-monotonic inference. A
mental models account in which the ability to construct just the right model (the
best explanation) is a primitive operation finesses, rather than addresses, the
problem of non-monotonic reasoning.

Mental models therefore inevitably seem to founder on either of two
difficulties (Chater & Oaksford, 1993). Without some notion of which models
are plausible and which are not, it will invariably be possible to construct some
(implausible) model, even for the most persuasive of common-sense inferences,
and hence mental models will license no common-sense inferences at all. On the
other hand, if mental modellers presuppose some notion of plausibility, then
they are simply assuming a solution to the problem of accounting for common-
sense reasoning rather than explaining it.

Garnham’s (1993) specific proposals for a theory of non-monotonic reasoning
based on mental models take the latter course. Garnham argues that certain quite
unexpected considerations may be sufficient to pick out which models people
should take to be plausible (Garnham, 1993, p.63):

The should is more likely to be cashed out in terms of what people can be
expected to do, given their cognitive capacities, in particular the processing and
capacity limitations of short-term memory working memory and the organisation
and retrieval of information from long-term memory. Thus, people should
consider revisions of their mental models that are required by a specific piece of
information that has entered working memory, from long-term memory or
elsewhere.

This does not, however, seem to help advocates of mental models. No doubt
the organisation of human memory plays an important role in human reasoning;
perhaps memory is organised to allow easy access to plausible models, and
restricted access to implausible models; perhaps relevant information feeds into
a short-term store as required, and irrelevant information is suppressed, and so
on. This is just to say that the organisation of human memory profoundly affects
human common-sense reasoning processes. This is a view, as we noted earlier,
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with which most theorists would probably concur. However, it goes no way at
all to providing an account of how such reasoning occurs. Moreover, it does not
indicate why such an account should look like, or have any place for, mental
models theory.

Apart from appealing to memory, Garnham (1993) also suggests that simple
strategies can guide the model-building process. So, for example (Garnham
1993, p.63) “ ... revisions that falsify a conclusion consistent with the current
model should not be considered, unless they are unavoidable” and “A
conclusion can be accepted (tentatively, if it is defeasible) if there is some model
of the premises that will accommodate it.” However, Chater and Oaksford
(1993) argue that these proposals cannot distinguish good from bad inferences,
without covert assumptions concerning which models are plausible. With regard
to Garnham’s first principle, suppose you learn that Fred ate a banana, and
create a model in which he peeled the banana before eating it. Suppose you then
discover that Fred choked on the banana skin. Your natural reaction would be to
overturn the tentative conclusion that Fred peeled the banana before eating it,
and infer instead that Fred attempted the whole banana, peel and all. This seems
more plausible than alternative models, where Fred peels and eats his banana
and then eats the skin too, and so on. However, Garnham’s principle does not
allow such a retraction to occur, as revision of the tentative conclusion is
certainly not unavoidable—just rather unlikely. Unless there is some hidden
appeal to plausibility, and hence to a prior solution to the problem of non-
monotonic inference, Garnham’s principle will not allow us to account for this
obvious everyday inference.

Let us turn to Garnham’s second principle, that reasoners can accept (albeit
tentatively) any proposition that some model of the premises can accommodate.
Chater and Oaksford (1993) argue that this principle seems to lead immediately
to inferential anarchy. For example, there is a model in which Fred eats a banana
and a pig is sitting on the roof of his house (assuming no information to the
contrary). Thus Garnham’s second principle licenses this bizarre conclusion,
which reasoners tentatively accept. Of course, similar reasoning can also lead to
the acceptance of the opposite conclusion (although, by the first principle, the
first of these to be accepted will preclude the other from being accepted). There
is, of course, a very large difference between models in which there is and is not
a pig on the roof—the former will generally be less plausible. But plausibility is
what is to be explained, and thus cannot itself be presupposed in explanation.

In summary, as might be expected from its reliance on logic as a
computational-level theory, mental models theory fares no better than mental
logic in dealing with defeasible everyday reasoning.

Probabilistic Approaches

We have argued that those theories of reasoning that have a computational-level
account employ logic in that role, and hence cannot generalise to everyday
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inference. We have, furthermore, argued that these theories provide in-
appropriate accounts of much reasoning in the laboratory. The problem for
logical approaches is that real human reasoning is uncertain. So rather than
attempting to apply deductive logic, the calculus of certain reasoning, to model
uncertainty, why not apply probability theory, i.e. the calculus of uncertain
reasoning? In this section, we illustrate this approach using Wason’s selection
task. This task has been of central importance to the development of the
psychology of reasoning, and the difficulty of reconciling subjects’ performance
with logic has even been taken to question human rationality (Stich, 1985,
1990).

Wason’s Selection Task. Wason’s (1966, 1968) task requires subjects to
assess whether some evidence is relevant to the truth or falsity of a conditional
rule of the form if p then g, where by convention “p” stands for the antecedent
clause of the conditional and “q” for the consequent clause. The task involves
four cards each having a number on one side and a letter on the other, and a rule,
e.g. if there is a vowel on one side (p), then there is an even number on the other
side (gq). The four cards show an “A” (p card), a “K” (not-p card), a “2” (g card),
and a “7” (not-q card). Subjects select those cards they must turn over to
determine whether the rule is true or false. Typical results were: p and g cards
(46%); p card only (33%) p, g and not-q cards (7%); p and not-q cards (4%)
(Johnson-Laird & Wason, 1970).

Logic, and Popper’s (1959) account of falsification, provide the standard
computational-level theory of the selection task. Popper argued that observation
cannot prove the truth of a scientific law because it is always possible that the
next instance of the law observed will be falsifying. However, you can be
logically certain that a law is false by uncovering a single counter-example.
Popper’s account means that scientific reasoning is fundamentally deductive in
character—scientists must establish a logical contradiction between putative
laws and observation. Hence looking for false (p and not-g) instances should be
the goal of scientific inquiry. However, in the selection task subjects typically
select cards that could confirm the rule, i.e. the p and g cards. Thus, it appears
that the logical computational-level theory based on Popper, is descriptively
inadequate, and hence inappropriate as a computational-level theory.’

It is a common assumption that Wason's selection task is a deductive task.
However, as we noted earlier, this assumption is called into question if we can
show that an alternative computational-level theory of the task is more
descriptively adequate. We have recently recast Wason's selection task

"It is an independent and controversial issue whether Popper’s account is normatively justified.
Few modern philosophers of science endorse the falsificationist position; and there has been
renewed interest in probabilistic models of scientific inference (Earman, 1992; Horwich, 1982;
Howson & Urbach, 1989).
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probabilistically, as a problem of Bayesian optimal data selection (Oaksford &
Chater, 1994). Any problem of deciding what experiment to perform next, or
which observation is worth making, is a problem of optimal data selection.
Suppose that you are testing the hypothesis that eating tripe makes people feel
sick. In collecting evidence, should you ask known tripe-eaters or tripe-avoiders
whether they feel sick? Should you ask people known to be sick, or known not
to be, whether they have eaten tripe? This case is analogous to the selection task.
Logically, you can write the hypothesis as a conditional sentence, if you eat tripe
(p) then you feel sick (g). The groups of people that you may investigate then
correspond to the various visible card options, p, not-p, q, and not-q. In practice,
who is available will influence decisions about who to investigate. The selection
task abstracts away from this practical detail by presenting one example of each
potential source of data. In terms of our everyday example, it is like coming
across four people, one known to have eaten tripe, one known not to have eaten
tripe, one known to feel sick, and one known not to feel sick. You must then
judge which of these people you should question about how they feel or what
they have eaten.

Oaksford and Chater (1994) suggest that hypothesis-testers should select data
points expected to provide the greatest information gain in deciding between
two hypotheses: (i) that the task rule, if p then g, is true, i.e. ps are invariably
associated with gs, and (ii) that the occurrence of ps and gs are independent. For
each hypothesis, Oaksford and Chater (1994) define a probability model that
derives from the prior probability of each hypothesis (which for most purposes
they assume to be equally likely, i1.e. both = 0.5), and the probabilities of p and
of g in the task rule. They define information gain as the difference between the
uncertainty before receiving some data and the uncertainty affer receiving that
data, where they measure uncertainty using Shannon-Wiener information. Thus
Oaksford and Chater define the information gain of a data point D as:

Information before receiving D: I(H,) = - i}:’(ﬂi)log2 P(H,)

i=1

Information after receiving D: I(H,|D) =— i P(H;|D)log, P(H,;|D)

i=1

Information gain: J ¢ =1(H;)-I1(H,;|D)

Oaksford and Chater calculate the P(H, /D) terms using Bayes’ theorem. Thus
information gain is the difference between the information contained in the prior
probability of a hypothesis (H,) and the information contained in the posterior
probability of that hypothesis given some data D.

In the selection task, however, when choosing which data point to examine
further (that is, which card to turn), the subject does not know what the data
point will be (that is, what will be the value of the hidden face). So they could
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not calculate actual information gain. However, subjects can compute expected
information gain. Expected information gain is calculated with respect to all
possible data outcomes, e.g. for the p card, g, and not-q.

To model selection-task data, Oaksford and Chater (1994) calculated the
expected information gain of each card assuming that the properties described in
p and g are rare. Klayman and Ha (1987) make a similar assumption in
accounting for related data on Wason’s (1960) 2-4-6 task. The order in expected
information gain is:

E(Lp)) > Ed (@) > EU (not-g)) > E{ (not-p))

This corresponds to the observed frequency of card selections in Wason’s
task: p > g > not-q > not-p and thus explains the predominance of p and g card
selections as a rational inductive strategy. Using this style of explanation,
Oaksford and Chater (1994) model a wide range of data concerning: the non-
independence of card selections (Pollard, 1985); the negations paradigm (e.g.
Evans & Lynch, 1973); the therapy experiments (e.g. Wason, 1969); the reduced
array selection task (Johnson-Laird & Wason, 1970); work on so-called fictional
outcomes (Kirby, 1994); and deontic versions of the selection task, including
perspective and rule-type manipulations (e.g. Cheng & Holyoak, 1985); and the
manipulation of probabilities and utilities in deontic tasks (Kirby, 1994).

In short, using the calculus of uncertainty, we have provided a new
computational-level theory of the selection task, which appears to be
descriptively adequate for a wide range of experimental data. The possibility of
probabilistic models of the selection task has been raised, but not pursued, in the
past (Fischhoff & Beyth-Marom, 1983; Klayman & Ha, 1987; Rips, 1990).%
Furthermore, there have been some informal (Manktelow & Over, 1991) and
formal (Kirby, 1994) probabilistic treatments of certain aspects of the selection
task. We believe that we can extend our probabilistic computational-level theory
of the selection task to other inductive reasoning tasks. In these areas, a number
of probabilistic computational-level accounts have demonstrated descriptive
adequacy on tasks that, like the selection task, were previously thought to
impugn human rationality (Anderson, 1990, 1991a, 1991b; Birnbaum, 1983;
Cheng & Novick, 1990, 1991, 1992; Gigerenzer, Hell, & Black, 1988;
Gigerenzer & Hoffrage, in press; Gigerenzer, Hoffrage, & Kleinbolting, 1991;
Gigerenzer & Murray, 1987).

®It is interesting that mental logicians such as Rips (1990) have advocated probabilistic models of
the selection task, suggesting that they too agree that logic does not provide a descriptively adequate
computational-level theory for this task.
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CONCLUSIONS

We have argued that current theories of reasoning fail to generalise to defeasible
everyday inference. They are inadequate at both Marr's algorithmic and
computational levels because they are unable either to provide tractable
algorithms for defeasible inference, or to provide a computational-level theory
that characterises the inferences that people draw. We focused on the
computational level, arguing that current reasoning theories use logic as a
computational-level theory, where such a theory is evident at all. We suggested
that probabilistic computational-level accounts are more appropriate for
capturing the uncertain character of human reasoning and illustrated this
approach for Wason's selection task.

Our approach is consistent with similar proposals of Anderson (1990) and
Evans (1993). Anderson argues for what he calls “rational analyses” of a wide
range of cognitive phenomena, though not focusing on traditional reasoning
tasks. A rational analysis provides a computational-level explanation of a task,
by showing that behaviour is optimally adapted to the task environment. In such
analyses, the task environment is usually characterised probabilistically. Our
account of Wason’s selection task thus provides a rational analysis in Anderson's
sense. We suggest that it may be fruitful for reasoning theory to adopt
Anderson’s programme for other tasks. This also seems consistent with Evans’
recent distinction between rationality, and rationality, theories of reasoning
(Evans, 1993; Evans, Over, & Manktelow, 1993). A rationality, theory aims to
‘explain how behaviour is suitable for fulfilling the organism's goals; thus it
provides a computational-level theory or rational analysis. A rationality, theory
concerns the processes from which behaviour arises, and hence focuses on the
algorithmic level.

Marr argued that the computational level of explanation is primary. We have
suggested a fundamental shift, from logic to probability, in the framework in
which to construct computational-level theories of reasoning. But the
algorithmic problem remains. We have already noted that probabilistic
inference, like logical inference, is, in full generality, computationally in-
tractable. What is encouraging is that probabilistic computational-level theories
promise to explain much data on human reasoning, without having to engage so-
far-unsolved questions concerning the algorithms that implement world
knowledge in the brain. A complete psychological theory must, of course,
provide explanations at each of Marr’s three levels. But as Marr argued, only
with a descriptively adequate computational-level theory in hand is it possible
sensibly to ask which algorithms carry out these computations, and how these
algorithms are implemented in the brain.
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APPENDIX 1:
COMPUTATIONAL COMPLEXITY THEORY

Complexity theory derives a function describing the rate at which an algorithm consumes
computational resources dependent on the size of the input, n (Garey & Johnson, 1979; Horowitz &
Sahni, 1978). The crucial aspect of this function is its order of magnitude, O(), that reflects the rate
at which resource demands increase with n:

O(1) < O(logn) < O(n) < O(nlogn) <O(n?) < O(n?)...<O(M)...<O@2")...

For example, O(1) indicates that the number of times the algorithm executes basic machine
operations does not exceed some constant, regardless of the length of the input. O(n?) < O(n%) . .. <
O(n) indicate that the number of times the algorithm executes basic machine operations is some
polynomial function of the input length; such algorithms are polynomial time computable (this class
includes all algorithms of order lower than some polynomial function).

Complexity theory draws an important distinction between polynomial-time computable
algorithms [O(n') for some n], and exponential-time algorithms [for example, O(2") or worse]. As n
increases, exponential-time algorithms consume vastly greater resources than polynomial-time
algorithms. This distinction marks the boundary between tractable (polynomial-time) and intractable
(exponential-time) algorithms. Applying these distinctions to problems, a problem is polynomial-
time computable if it has a polynomial-time algorithm. If all algorithms for the problem are
exponential-time, then the problem is “exponential-time computable”.

An important class of problems whose status is unclear relative to this distinction is the class of
NP-complete problems. "NP" stands for non-deterministic polynomial-time algorithms. Problems
that only possess polynomial-time algorithms that are non-deterministic are “in NP”. NP-complete
problems form a subclass of NP-hard problems. A problem is NP-hard if satisfiability reduces to it
(Cook, 1971). A problem is NP-complete if it is NP-hard and is in NP. The class of NP-complete
problems includes such classic families of problems as the “travelling salesman” problems. Whether
any NP-complete problem is polynomial-time computable is unknown, but if any NP-complete
problem is polynomial-time computable, then they all are (Cook, 1971). All known deterministic
algorithms for NP-complete problems are exponential-time. In practice, computer scientists take the
discovery that a problem is NP-complete to rule out the possibility of a real-time tractable
implementation. In practical terms this may mean that for some »n an algorithm that is NP-complete
may not provide an answer in our lifetimes, if at all.

APPENDIX 2:
THE VALIDITY OF POLITZER AND BRAINE'S (1991)
MODAL ARGUMENT

We show that Politzer and Braine’s argument is not valid and that it relies on inappropriately mixing
modal and classical arguments. Politzer and Braine argue that (6) and (3) lead to (7) and that (6) is a
necessary truth. On closer examination neither claim is sustainable. We note first that (6) does not
follow from (57), although a similar modal conclusion to (6) does follow on the assumption that the
conditional in (5°) is interpreted as strict implication (p could not be true and g false) rather than the
material conditional (p is not true and q false) (Haack, 1978). (8) follows from not-g < not-p (where
“< " 1s strict implication and where “L” is necessarily):

®) Lipoq)
which means (6) should read:

(6") Necessarily, if she studies late in the library, then the library stays open.
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This inference is valid in Brouwer's System T, and systems S4 and S5, which form the basis of most
modal logics (Hughes & Cresswell, 1968). In none of these systems, or, to our knowledge, in any
modal logic, is the inference that Politzer and Braine's argument relies on [(not-g D not-p) |= (p ©
Lg)], a valid inference. As Hughes and Cresswell (1968, p.27 footnote) observe, p O Lg (7) is “often
confused [with (8)] in ordinary discourse, sometimes with disastrous results.” The result here is that
(3) and (6") do not entail (7), because (8) is equivalent to Lp O Lg, but (3) and (4) do not lead to the
conclusion that necessarily she will study late in the library. So, (3) and (6”) could not transitively
entail (7). Consequently Politzer and Braine's argument is not valid. Moreover, far from being a
necessary truth (67) is strictly false, as it is possible that she studies late in the library while the
library remains shut—she could break in, get accidentally locked in, and so on. Thus neither (6) nor
(6") express necessary truths as Politzer and Braine assert.




