9

Commonsense Reasoning, Logtc,
and Human Rationality

MIKE OAKSFORD & NICK CHATER

5

1. Introduction

In cognitive psychology it is widely assumed that our understanding of
human deductive reasoning will generalize to provide an unde.,-rstandmg
of everyday, commonsense reasoning and of human th()'..lght in genergl
(Johnson-Laird 1983; Johnson-Laird and Byrne 1991; Rips 1994). T.hIS
assumption presupposes that, in everyday life, much of human reasoning
is deductive. Contrary to this view, we argue that almost no commonsense
inferences are deductive. Moreover, we view this fact as diagnostic of Fhe
mismatch between the normative principles of logic and actual reasoning
behavior on “deductive” reasoning tasks (e.g., Evans 1982, 1989; Evans,
Newstead, and Byrne 1993; Johnson-Laird 1983; Iohnsoanajrd and Byrne
1991; Rips 1994; Wason and Johnson-Laird 1972). This mlst‘natch has been
taken to argue that humans may be irrational (Stein 1996; Stich 1.985, 1990).
In contrast, we argue that behavior on these tasks reflects rational, com-
monsense reasoning strategies that are appropriate to reasoning about
our uncertain world. We thereby throw into question the sigmﬁcance‘ of
current psychological theories of deductive inference for understar.1d¥ng
commonsense reasoning. We suggest that performance on many exxst.:ng
laboratory reasoning tasks can be better understood in nondeductive,

commonsense terms.
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Our argument is as follows: The most important issue for the cognitive
science of reasoning is whether deduction provides a computational-level
theory (Marr 1982) of a substantial amount of everyday, commonsense
thought. Three sources of evidence appear to have the potential to settle the
question decisively. These are the analysis of corpora of commonsense infer-
ences; direct tests of performance on “deductive” reasoning tasks; and a priori
considerations from computer science. We show that despite their superficial
plausibility, none of these sources of evidence decides the question at issue.
However, a more sophisticated interpretation of these sources of evidence can
provide answers. First, the analysis of corpora circularly presupposes a stan-
dard logical analysis of individual arguments. It is more appropriate to inves-
tigate directly the kinds of reasoning that underpin organized systems of
knowledge in which particular natural-language arguments (such as would
be found in a corpus) are embedded. This is the subject matter of epistemol-
ogy and the philosophy of science. Second, the study of reasoning tasks
circularly presupposes that people interpret the tasks as deductive reasoning
problems. It is more appropriate to contrast deductive and nondeductive
characterizations of both interpretation and reasoning and see which pro-
vides the best account of the empirical data. This is the domain of the psy-
chology of reasoning. Third, a priori considerations from computer science
(suggesting that all computations are, in a sense, deductive) are too abstract
to bear on issues relevant to the cognitive science of reasoning. It is more
appropriate to consider whether computational systems based on deductive
reasoning, in the sense employed in cognitive science, can provide the basis
for systems that can reason about the everyday, commonsense world. This
project has been extensively considered in AI. We argue that these lines of
argument, from three different fields of inquiry—epistemology, AI, and psy-
chology of reasoning—converge on the conclusion that deduction plays no
significant role in commonsense reasoning about the everyday world.

This chapter is organized as follows: We begin by outlining what deduc-
tion is, in abstract terms, and then consider various ways in which it can
be related to human reasoning, using the framework of D. Marr's (1982)
levels of explanation. We argue that the fundamental issue for the cognitive
science of reasoning is whether deductive logic provides a computational-
level theory of human reasoning. We then consider how this question can
be addressed. We first consider and reject the three superficially plausible
methods of resolving the question of the prevalence of deduction introduced
earlier. We then develop three more sophisticated lines of argument, from
epistemology, Al, and the psychology of reasoning. We show that each
argument supports our conclusion that deduction has no significant role in
commonsense reasoning. Finally, we consider the implications of rejecting
deduction for the cognitive science of human reasoning.

2. What Is Deduction?

Classically, in a valid deductive argument, the conclusion must be true if the
premises are true. That is, deductive inferences are certain. Such inferences
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guarantee that the conclusion is true, if the premises are true, independent
of any other information. Therefore, if a conclusion follows deductively
from a set of premises, then it must also follow deductively from that set
of premises conjoined with any set of additional premises (see Oaksford
and Chater 1998, chapter 1). That is, nothing can overturn a deductive
inference. Suppose, for example, that the commutativity of addition (that is,
x+y=y+ux, for all x and y) can be deduced from some axiomatic formula-
tion of arithmetic. It therefore follows that commutativity holds, whatever
further axioms are added. This property is known as monotonicity, and it is
a crucial property of axiomatic systems in mathematics. Moreover, many
logicians regard this property as the defining feature of a logical system
(Curry 1956).

Other modes of reasoning, which are not deductively valid, are “nonmo-
notonic"—adding premises can lead to conclusions being withdrawn. An
important example is induction, in which general laws or regularities are
inferred from particular observations. At any time it is possible that a new
observation may conflict with the regularity and undermine it. For example,
a new observation of a nonblack raven logically undermines the inductive
inference that all ravens are black based on the observation of numerous black
ravens. Thus, adding a new premise (a new observation) can remove the
conclusion, and hence induction is nonmonotonic. Another example is
abduction, which typically involves inferring causes from their effects. For
example, in a detective mystery a particular set of clues might, for example,
suggest that the butler is the murderer. But a new and decisive clue (e.g., the
chauffeur’s bloodstained shirt) might overturn this conclusion. Thus, abduc-
tion is also nonmonotonic and hence not deductive.

3. Deduction and Reasoning?

The claim that human reasoning involves deduction can be understood in
a number of different ways. We can understand these different interpre-
tations in terms of two of Marr's (1982) three levels of computational
explanation.

Marr’s highest level of analysis is the computational level, where “the
performance of the device is characterized as a mapping from one kind of
information to another, the abstract properties of this mapping are defined
precisely, and its appropriateness and adequacy for the task at hand are
demonstrated” (1982, p. 24). Marr uses the example of a cash register. The
theory of arithmetic provides the computational-level analysis of this device,
and its appropriateness is demonstrated by showing that our intuitive con-
straints on the operation of a cash register map directly onto this mathe-
matical theory (1982, p. 22). In the case of human reasoning, psychologists
have typically assumed that deductive logic plays the role that arithmetic
plays for the cash register; that is, logic characterizes the inferences people
draw. Whether or not this is true is clearly an empirical question, just as it
is an empirical question whether or not a particular piece of machinery
functions as a cash register.
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Marr’s algorithmic level describes how to compute the function specified
at the computational level. This level also involves specifying the represen-
tations that the algorithm manipulates in computing the function. Thus, in
the case of the cash register, using Arabic numerals as the representations
involves using the standard rules “about adding the least significant digits
first and ‘carrying’ the sum if it exceeds g” (1982, p. 22) as an algorithm.
Although the choice of algorithm is constrained by the choice of represen-
tation, it is not uniquely constrained—there may be several ways of com-
puting a certain function that use the same representation. It could be the
case that deduction provides a crucial component at the algorithmic level.
In computer science, this idea is embodied in theorem provers, which are
computational systems for proving logical theorems. Theorem provers can
be used to reason about the everyday world, given axioms that embody
everyday knowledge. They have also been used to construct general pro-
gramming languages, such as PROLOG (Clocksin and Mellish 1984).

Hypotheses about deductive reasoning at the computational and algo-
rithmic levels have been prevalent within the psychology of deductive rea-
soning. Many theorists argue for deduction at both levels. For example,
B. Inhelder and J. Piaget (1958, p. 305) g0 as far as to say that human “re-
asoning is nothing more than the propositional calculus itself.” For Piaget,
attainment of the formal operational stage in cognitive development is, by
definition, revealed in the ability to show logical reasoning behavior, Thus,
logic is viewed as an appropriate computational-level description of mature
human behavior. But, moreover, the quotation earlier reveals that the mech-
anism that achieves this performance is itself logic. This view is still widely
advocated in current psychology of reasoning, by advocates of “mental
logic” (Braine 1978; Braine and O’Brien 1991; Henle 1962; Lea et al. 1990;
O'Brien, Braine, and Yang 1994; Pollitzer and Braine 1991; Rips 1983, 1994;
for a collection on these issues, see Macnamara and Reyes 1994). For
example, Rips (1994, p. viii) argues for what he calls the Deduction System
Hypothesis: that logical “principles . . . are central to cognition because they
underlie many other cognitive abilities . . . [and] that the mental life of every
human embodies certain deduction principles.”

Although the claims that logic has a role at the computational and algo-
rithmic levels are often held together, they are clearly independent. It is
possible that while logic characterizes the behavior of a device at the
computational level, the algorithms that produce the behavior are not them-
selves logical. This viewpoint is explicitly advocated in the psychology of rea-
soning by J. Macnamara, who also places deductive logic at the center of
human cognition but articulates this thesis more guardedly: “A logic that
is true to intuition in a certain area constitutes a competence theory [in
Chomsky's (1965) sense] for the corresponding area for cognitive psychol-
ogy” (Macnamara 1986, p. 22). As Marr (1982) notes, “competence theory"’
Is simply another way of talking about a computational-level account.
Mental model theory (Johnson-Laird 1983; Johnson-Laird and Byrne 19971)
explicitly takes the view that logic is part of the computational-level theory
of reasoning.' But mental model theory is typically viewed as not involving
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logical inference at the algorithmic level. Instead mental model theory
assumes that deductive reasoning involves the construction and manipula-
tion of mental models.?

The converse position is also possible. The algorithms that underlie
thought might follow deductive logic, but the behavior that results from
those algorithms might be best characterized in nondeductive terms. For
example, a theorem prover could implement list-handling operations or
arithmetic. Therefore, the computational-level characterization of what
the program is doing will involve descriptions of list manipulation or
arithmetical calculation, rather than logical proof. Within the psychology of
reasoning, this viewpoint has not been explicitly advocated, as far as we
know.? However, it is reasonable to interpret influential theorists in the foun-
dations of cognitive science, such asJ. A. Fodor, as advocating this position.
Thus, Fodor and Z. W. Pylyshyn (1988, pp. 29-30) argue that “it would
not be unreasonable to describe Classical Cognitive Science as an extended
attempt to apply the methods of proof theory to the modeling of thought,”
and they proceed to defend this position strongly. Because proof theory is the
mechanism by which deductive inferences are made, this amounts to the
claim that cognition is deductive at the algorithmic level. But Fodor (1983)
also argues extensively that almost all aspects of thought are “nondemon-
strative,” that is, nondeductive, in character (and we shall outline some of
these arguments later). Therefore, Fodor seems to reject deduction as a com-
putational-level theory of reasoning but embraces logic as an algorithmic
theory.

In this chapter, we shall focus primarily on whether deductive logic pro-
vides an appropriate computational-level description of human reasoning,
rather than dealing with the algorithmic level. As we have seen, the assump-
tion that deduction does provide a computational-level description for much
human inference is shared by many contemporary researchers on reason-
ing, including advocates of mental logics and mental models. Of course, no
theorist would propose that deductive logic could provide a computational-
level theory of all aspects of human reasoning, such as reasoning under
uncertainty (Tversky and Kahneman 1974), decision making (Baron 1994;
Tversky and Kahneman 1986), and abductive (Gluck and Bower 1988),
and inductive (Gorman and Gorman 1984; Wason 1960) reasoning. Instead,
deductive logic is assumed to provide a computational-level account of an
important class of human reasoning. Moreover, deductive logic is assumed
to play at least a partial role in almost every other aspect of cognition
(Johnson-Laird and Byrne 1991; Macnamara and Reyes 1994; Rips 1994).
For example, P. N. Johnson-Laird and R. M. J. Byrne (1991, pp. 2—3) argue for
the centrality of deduction

because of its intrinsic importance: it plays a crucial role in many tasks.
You need to make deductions in order to formulate plans and to evaluate
actions; to determine the consequences of assumptions and hypotheses;
to interpret and formulate instructions, rules and general principles; to
pursue arguments and negotiations; to weigh evidence and to assess data;
to decide between competing theories; and to solve problems.
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J.f.lj..lb‘, LE ued LIdL a dequctive competence tneory Is Cenwrdl Lo nuimadan cog-
nition both has a long pedigree and is widely held by many leading figures
in the psychology of reasoning.

In this chapter, we argue against this tradition in the psychology of
reasoning. We claim that almost no commonsense human reasoning can
be characterized deductively or has any significant deductive component.
Although many theorists have argued that deduction is at the core of cog-
nition, we argue that it is at the periphery. From this point of view, we shall
argue that the “errors and biases” observed in “deductive” tasks in psycho-
logical experiments should be understood not as failed deductive reasoning
but as successful nondeductive reasoning. Consequently, these “biases” do
not provide evidence for human irrationality; rather, they reveal the nature
of people’s commonsense reasoning strategies. Other theorists have argued
for a similar position (e.g., Cheng and Holyoak 1985; Cosmides 1989;
Fischhoff and Beyth-Marom 1983; Gigerenzer and Hug 1992; Holland et al.
1986; Holyoak and Spellman 1993; Klayman and Ha 1987). But these theo-
rists have focused on whether particular tasks are deductive, rather than on
whether deduction provides a satisfactory computational-level description of
real, commonsense reasoning.* It is this wider question that is the central
concern of this chapter,

4. Deduction and Common Sense:

False Trails

There are three methods of investigating the question of how much com-
monsense reasoning is deductive at the computational level, which initially
appear to provide decisive answers. First, the collection and analysis of
corpora of commonsense arguments promises to reveal the statistical pre-
valence of deductive reasoning directly. Second, presenting people with
deductive reasoning tasks should directly tap any underlying deductive
competence. Third, a priori considerations from computer science appear to
decide the question, before any empirical investigation is carried out: specif-
ically, any computational process whatever can be viewed as deductive. In
this section, we show that none of these considerations can decide the ques-
tion. In the next section, we show that when these sources of evidence are
viewed from a more sophisticated perspective the question can be genuinely
addressed. The three sources of evidence provide three criteria of adequacy
on theories of reasoning, from epistemology, Al and the psychology of rea-
soning, none of which can be met by a cognitive science of reasoning using
deduction as its computational-level theory.

Looking at Commonsense Argument

This strategy involves collecting and analyzing corpora of commonsense
natural-language arguments and deciding what fraction of them are deduc-
tively valid. If deduction is prevalent in commonsense argument, it is also
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likely to be prevalent in reasoning, on the reasonaple dsSULLPLULL LildL wua
people say is closely related to what they think. ‘

The problem is that whether or not a natural-language argument is
deductive cannot be straightforwardly ascertained by purely logical analy-
sis. Consider, for example, the argument:

Birds fly.
Tweety is a bird.
Therefore, Tweety flies.

One way of assessing the validity of this argument is to translate it info a
logical formalism, such as the predicate calculus, as follows:

Wx(bird(x) — flies(x))
bird(Tweety)
flies(Tweety)

According to the logical properties of the predicate calculus, this is a‘deduc-
tively valid argument: in logical terms, there is no model in which the
premises are true, but the conclusion is false. o

But this only means that the original argument is deductively valid if the

translation from natural language into the logical language is accepted as
capturing the “logical form” of natural-language statements (Haack 1978).
In practice, this step is frequently highly controversial. For examplf:, even the
logical terms —, A, and v are notoriously distant relatives of their natural-
language counterparts not, and and or (e.g., Hodges 1977; Horn 1989;
Lemmon 1965). The relation between quantifiers ¥V and 3 and universal aFld
existential quantification in natural language is even more complex (Barwise
and Cooper 1981). This is particularly true when, as in our example sentence
“Birds fly,” the quantification is not explicit. Should this sentence be treated
as meaning that all birds fly? Or is a better interpretation that most birds fly,
that normal birds fly (McCarthy 1980), or perhaps that it is reasonable to
assume that a bird flies unless there is reason to believe the contrary (Reiter
1980, 1985)? On any of these latter interpretations, the conclusion of
the preceding inference does not follow deductively—Tweety may be one
of the exceptional nonflying birds. Therefore, whether or not a natural-
language argument is deductive depends on how the premises and cond‘u—
sions are translated into logic—and this translation is a highly controversial
matter.

Moreover, both philosophers (e.g., Davidson 1984; Quine 1960) and ps.y—
chologists (Smedslund 1970) have pointed out that there is a circular.ity in
the relationship between studying reasoning and studying the meaning of
what people say. That is, which translation of a natural-}angu_age statement
is correct depends on how people reason with that statement.’ For example,
is the statement rejected as soon as a counterexample is found? Will a person
wager an arbitrarily large sum of money against the possibility that the
premises are true but the conclusion false? The logical form of a statement
is intended to capture the patterns of reasoning in which it figures, and
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translation. But, of course, discovering how people reason with a statement
Is a question in the psychology of reasoning. So psychologists cannot look to
a purely logical analysis of natural-language arguments as a neutral way of
assessing how much deduction people do, because the appropriateness of
any particular logical analysis itself depends on how people reason. -

The fact that logical analysis of natural-language arguments itself
depends on psychological considerations rules out the obvious methodol-
ogical strategy of collecting and analyzing a corpus of commonsense
arguments,

Using Deductive Reasoning Tasks

Instead of collecting a corpus, a more appropriate strategy might be to ex-
perimentally test people’s ability to solve deductive reasoning problems.
However, the problem that logical analysis is not psychologically neutral also
applies to the interpretation of materials in psychological experiments
(Smedslund 1970). In setting up putative “deductive reasoning problems,”
psychologists have typically assumed a particular logical analysis of the
natural-language statements that people are asked to reason over. This
analysis is typically accepted uncritically from logical texts, and the psycho-
logical presuppositions involved in adopting a particular analysis are not
examined. But if the logical analysis chosen turns out to be psychologically
inappropriate (for example, a quantifier is interpreted as meaning “all” when
it should be interpreted as “almost all”), then serious consequences may
follow. First, the psychologist may not be studying deductive reasoning at all.
Second, the logical misanalysis will lead the psychologist to assume that
people are making reasoning errors (in terms of the wrong logical analysis),
while they may be reasoning correctly (in terms of the psychologically
appropriate analysis). Third, the psychologist will postulate biases and other
reasoning limitations to explain the apparent reasoning errors and will be
unable to discover any rational pattern in people's performance. In our dis-
cussion of the psychology of reasoning later, we argue that these problems
lie at the heart of current theories of the psychology of deductive reasoning.
We argue that most “deductive” reasoning tasks are not deductive at all
and that human data can be rationally explained as involving uncertain,
commonsense reasoning, rather than deduction.

At the heart of this issue is the question “what is the appropriate
computational-level description of human behavior on ‘deductive’ reason-
ing tasks?” Although logic may have inspired a particular task, it is an empir-
ical question whether people interpret the task deductively. We illustrate this
point by an analogy with discovering the function of an unknown device.
Suppose it has a keypad on it, a digital readout, and a coin slot. You there- -
fore form the reasonable hypothesis that it is a public pay calculator; that
is, its function is to perform arithmetic calculations for you when you put a
coin in the slot. To test this reasonable hypothesis you may enter a coin and
punch in some numbers in the following sequence: “2.” LT =P Your
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hypothesis leads you to predict that the digital readout some short t.in:fe later
will be “8.” Three possibilities arise: (1) Suppose that the readout is indeed
“8,” which seems to confirm your hypothesis. It would not take many
more such successful tests before you were reasonably confident that
this device was indeed a pay calculator. (2) Suppose, however, that you adopt
the same hypothesis, but now, after placing your coin in the slot and p“ress:
ing the appropriate keys in the preceding test, the digital readout was “10.
This would seem to suggest that the device was not a calculator after all,
However, you continue to test the device in the same way-per%laps you
think quite reasonably that even machines can make occasional mistakes—
and still find no consistent arithmetic relation between the inputs and the
outputs. At this point you should become reasonably convinced that the
device is not a calculator, (3) You then notice that the number that comes
up at each trial in fact corresponds to the value of the coin you insert into
the device. You therefore come to the conclusion that the device is actually
a pay phone. -

We suggest that contemporary psychology of reasoning theory is in situ-
ation (2) earlier. Researchers have assumed that the tasks they present
people are deductive but then fail to elicit logical performance. However,
rather than abandon the view that people interpret these tasks logically,
researchers have inferred that people have error-full deductive mechanisms.
We will argue that reasoning researchers should instead search for more
appropriate computational-level theories—specifically, they shol.?ld explore
computational-level theories of nonmonotonic, uncertain reasoning, rather
than computational-level theories based on deduction.

In sum, the strategy of presenting people directly with deductive reasc.m—
ing problems confronts the same problem of interpretation as studying
corpora—ryou can never tell which arguments in the corpus, or which exper-
imental tasks, are indeed deductive. Moreover, illogical performance on a
task need not bear on whether people are rational, because they may inter-
pret the task in such a way that some other normative theory applies by
whose standards their reasoning is perfectly sound.

An Answer from Computer Science?

Perhaps all these empirical considerations are wholly unnecessary. Cognitive
science is built on the assumption that cognition is computation. And there
are deep results in computer science that suggest that all computations can
be viewed as deductive, that is, logical, inferences.

All computational devices are equivalent to Turing machines -{assu1:ning
the Church-Turing thesis). It is simple to write logical axioms that perfectly
model the behavior of any Turing machine (Boolos and Jeffrey 1980). Thus,
logic (assuming the appropriate axioms) provides a computationaltlevel
theory of the behavior of the device. In this sense, logic can pr‘owde a
computational-level account of any computational process, includlng any
postulated in cognitive science. Furthermore, the steps that unde.rhe .the
Turing machine’s behavior each correspond to a step in a logical derivation.
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Therefore, logic also provides an algorithmic-level account of the Turing
machine’s behavior, '

Similarly, programming languages are typically given two kinds of
semantics, according to which they can be understood as performing logical
inferences. Operational semantics maps the programming language onto
machine operations. Denotational semantics typically maps the program-
ming language onto some abstract mathematical structure, according to
which, for example, algorithmic correctness can be proved (Girard 1989;
Scott and Strachey 1971). According to both approaches, logic can provide
a computational- and an algorithmic-level theory for any programming
language,

It would therefore appear that the question of how much deduction there
is in human cognition is decided the moment we adopt the assumption that
cognition is computation. Any behavior that we can explain in computa-
tional terms must automaticaﬂy have a logical interpretation both at the
algorithmic and at the computational level. Consequently, it appears that all
cognitive processes are ipso facto deductive.

However, there is clearly something seriously wrong with this line of
argument. If it is accepted, then any cognitive task is necessarily a logical
task. This would mean that arithmetic, reading, probabilistic reasoning,
motor control, perceptual processing, syntactic analysis, and so on are all
examples of logical reasoning. Furthermore, this means that all mundane
computations, such as doing spreadsheets, word processing, solving differ-
ential equations, and doing actuarial calculations, have deductive logic as
their computational-level theory. But this is close to a reductio ad absurdum
of this line of reasoning. The point of computational-level theory is that it
describes both the purpose of the computation and the objects and relations
itis about. Thus, a computational-level theory of a cash register must involve
numbers and numerical operations: a computational-level theory of syn-
tactic analysis must deal with words, phrases, and sentences of natural lan-
guages; and so on. However, the objects utilized in providing the overarching
logical analyses outlined earlier involve states and possible state transitions
of a Turing machine or mathematical objects in abstract function spaces. A
logical description in terms of these objects provides a computational-level
description of a sort, but at such an abstract level of specification that it says
nothing about the point of the computation. At this level of description, it is
not possible to discriminate a computational process that carries out actu-
arial calculations from one that does word processing or produces natural-
language utterances. The whole point of Marr’s (1982) computational-level
analysis is to make exactly these distinctions, to which these highly abstract

analyses are insensitive.

In the case of human reasoning, it is crucial that a computational-level
theory view human reasoning as about the objects and relations in the every-
day world. The claim that an inference from “Birds fly” and “Tweety is a bird”
to “Tweety flies” is (or is not) deductive only makes sense where we interpret
these statements as referring to birds, flying, and Tweety, not to either states
of a computational device or to objects in an abstract function space.
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Therefore, the apparently decisive a priori arguments from computer
science turn out to be entirely beside the point in determining whether or
not human inference should be understood deductively. The results from
computer science only apply to a level of analysis so abstract as to be of no
practical value in constructing computational- or algorithmic-level theories
of human reasoning.

Summary

The three possible ways of answering our question concerning the relation-
ship between commonsense and deductive reasoning turned out, on closer
inspection, to be inadequate. The first and second cases, analyzing corpora
of inferences or directly testing people with “deductive” reasoning tasks,
both founder on the same problem. This is that the interpretations of argu-
ments and of tasks both circularly involve assumptions about how people
reason. Moreover, a priori concerns from computer science are too abstract
to differentiate deductive from nondeductive reasoning in any sense inter-
esting to cognitive theory.

Each of these sources of evidence can, however, when viewed from a more
sophisticated perspective, bear on the prevalence of human deductive rea-
soning at Marr’s computational level of description. First, we have argued
that analyzing natural-language corpora of inferences piecemeal would
be futile, because of the problem of interpretation. This issue is directly
addressed in philosophy, by classical epistemology and its contemporary
counterpart, the philosophy of science. These philosophical projects attempt
to characterize the inference patterns that underpin whole bodies of beliefs
(such as scientific theories), in which specific arguments and inferences are
embedded. Second, we have argued that simply testing people on “deductive”
reasoning tasks confronts the same problem—that how participants inter-
pret the task is unclear. But empirical psychology can answer this question,
by providing theories of how tasks are interpreted and how to characterize
people’s reasoning given these interpretations, that is, by providing a
computational-level explanation. Competing explanations at this level (e.g.,
involving or not involving deduction) can then be compared with the data
to see which provides the best characterization of human reasoning behav-
ior. Third, we have argued that a priori considerations from computer science
are too abstract to be useful. But computer science can inform the question
of how much deduction there is in commonsense reasoning via the practi-
cal attempt to build intelligent reasoning systems using logical methods
(where logic is employed at the level relevant to psychology). This is not
merely an abstract possibility but has been a popular research strategy in
much of Al (Charniak and McDermott 1985). Therefore, the success or
failure of this strategy can inform the viability of a deductive characteriza-
tion of human thought. We now consider each of these more sophisticated
approaches and argue that each reveals that little or no commonsense
human reasoning is deductive.

- FAAMTAIAN CENER RREASONTING. ANT RATIONALITY

5. Common Sense and Deduction:
Lines of Evidence ‘

If real human reasoning is based on deduction, then three criteria of ade-
quacy can be adduced, which correspond to three more sophisticated
research strategies mentioned earlier. First, unless we are to give up the claim
that human reasoning has any rational justification, then a deductive
account of how people should reason about the world must be viable. That
is, deduction must be central to our theories of epistemology, which define
the very standards of rationality against which we measure actual human
reasoning performance. Second, any psychological theory must be com-
putationally viable. Therefore, if deduction is the foundation of human
thought, then it must be possible to design and successfully implement Al
systems that reason about the real world using deduction. Third, a good psy-
chological theory must, of course, be consistent with the data. Psychologi-
cal theories of reasoning based on deduction should provide better fits to the
data than accounts that reject deduction.

We argue that the claim that human reasoning is based on deduction at
the computational level fails on all three counts: it represents an epistemo-
logically outmoded tradition; it has not proved viable in Al; and, moreover,
nondeductive accounts of human reasoning provide better fits to the empir-
ical data.

Epistemological Adequacy

In this section our argument is in three parts. First, we argue that the view
that deduction is the foundation for reasoning about the world reflects an
outmoded epistemological tradition. Second, we consider what aspects of
reasoning might be deductive and conclude that the obvious candidates turn
out to be nondeductive in character. Third, we briefly consider and reject a
possible defense of the centrality of deduction in psychology. which seeks to
exploit the fact that epistemology considers how we should reason, whereas
cognitive science is concerned with how people actually do reason.

DEDUCTION: A FOUNDATION FOR THOUGHT? Euclid provided the first
systematic exploration of deductive reasoning (Coolidge 1940). Beginning
with definitions and apparently self-evident axioms, he showed how purely
deductive argument could establish a large class of geometrical truths. The
Euclidean method has proved to be enormously productive not just in
geometry but throughout mathematics.

But mathematical reasoning does not seem, superficially, to have much
in common with commonsense thought. In particular, mathematics appears
to be about establishing certainties that concern abstract objects (see
Putnam and Benacerraf 1983 for discussion). In contrast, commonsense
thought appears to be about making the best sense possible of an ill-defined,
concrete external world, in which certainty is rarely, if ever, encountered
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(Barwise and Perry 1983). Can deduction extend beyond the mathematical
realm and provide a route to knowledge that concerns the external world?
This question is crucial for the psychology of reasoning, for it concerns the
scope that human reasoning might have. It is also a central question in the
history of epistemology (Russell 1946).

Euclid’'s astonishing successes in geometry and the absence of any
comparably impressive achievements that use other reasoning methods
suggested that deductive reasoning could also provide a foundation for
knowledge of the external world. From Plato to Kant, an influential line of
philosophers has attempted to establish nonmathematical knowledge using
deductive argument. Attempts to model scientific inquiry on Euclid’s deduc-
tive model had a profound influence on Greek and medieval science (Russell
1946). Spinoza even went as far as using the Euclidean method in his Ethics,
with definitions, axioms, and “proofs.” It would not be unreasonable to
suggest, then, that psychologists of reasoning have simply taken over a pre-
occupation with deduction that has been evident more widely in Western
thought since Plato.

However, more recently, the view that science derives knowledge of the
world by deduction from self-evident foundations has fallen into disrepute
(Lakatos 1977a, 1977b; Popper 1959). Contrary to the Euclidean picture,
science appears to proceed by plausible conjecture on the basis of observa-
tion, not by deductively certain inference. For example, Bacon explicitly
advocated alternative inferential methods for what he called inductive rea-
soning (James 1975). In the twentieth century, it has become increasingly
accepted that people derive knowledge of the world by different means from
knowledge of mathematics (see, for example, Russell 1919). The nondeduc-
tive origin of scientific knowledge is a common thread that links diverse
views in modern philosophy of science (e.g., Glymour 1980; Howson and
Urbach 1993; Kuhn 1962; Lakatos 1970; Putnam 1974; Thagard 1988;
Toulmin 1961; Van Frassen 1980). In epistemology more generally there is
agreement that knowledge of the world does not have a deductive basis (see,
e.g., Goldman 1986; Lehrer 1990; Pollock 1986; and Thagard 1988).

The deductive picture has, however, remained influential as an appar-
ently unattainable standard against which philosophers may assess other
knowledge-gathering methods. In particular, skepticism concerning knowl-
edge of the world, from Descartes onward, has its roots in the distance
between the certainty that deduction can assure and the lack of certainty
that nondeductive empirical methods of inquiry provide (Burnyeat 1983).
That no one has met the skeptical challenge to provide a certain grounding
for knowledge reinforces our thesis that science does not obtain knowledge
by deductive means.

So it seems that we have two paradigms of thought: mathematical knowl-
edge, where deductive inference appears to be of primary importance; and
empirical, scientific knowledge, in which deductive inference plays at most a
secondary role. Both within epistemology and in psychology, there is agree-
ment that we should view human thought as generally analogous to scien-
tific, rather than mathematical, inquiry (Fodor 1983). For example, many
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philosophers advocate the view that common sense and science are parts
of the same general project of understanding the world, differing only by
degree of systematicity and rigor (e.g., Goodman 1951; Quine 1960, 1990).
Developmental psychologists frequently view the child as a “naive scientist”
(Carey 1988; Karmiloff-Smith 1988); accounts of causal reasoning in adults
also use the naive-scientist metaphor (Jaspars, Fincham, and Hewstone
1983; Kelley 1967). Further, psychologists view learning from experience in
any domain as involving inductive inference (Holland et al. 1986), and so on.

As mentioned earlier, Fodor (1983) argues strongly for the nondeductive
character of thought. He notes that the perceptual system attempts to infer
the causes in the external world of the inputs to the sensory receptors and
that such reasoning is an instance of inference to the best explanation
(Harman 1965). This pattern of inference, like induction, is uncontrover-
sially nonmonotonic. From a distance, the perceptual system may misclas-
sify sensory input as being generated by a horse. However, on moving closer
it may be apparent that it is actually a cow. The addition of new information
overturns the original conclusion—additional information that indicates
another explanation is better overturns what was previously the best expla-
nation. Thus, perception involves nonmonotonic and hence nondeductive
reasoning. Moreover, Fodor argues that what he calls “central” cognitive
processes, of belief revision and commonsense thought, face a problem anal-
ogous to scientific inference. For reasons similar to those we have outlined
earlier, Fodor believes that scientific inference is nonmonotonic and that it
is not deductively formalizable. He therefore concludes that central cognitive
processes will likewise be nondeductive in character.

To sum up so far: There is a long tradition in epistemology, initially
inspired by Euclidean geometry, that attempts to provide deductive founda-
tions for nonmathematical knowledge. According to this model, it seems
quite reasonable to postulate that deduction is the foundation of human
thought. However, the rise of science has involved plausible but uncertain
inferences that do not fit this deductive pattern. Furthermore, human cog-
nition is related to empirical, nondeductive inquiry, rather than deductive,
mathematical inquiry. So the view that deduction provides the foundation
for human thought may be unworkable, a vestige of an outmoded episte-
mological tradition.

DEDUCTIVE ASPECTS OF THOUGHT? The conclusion that deduction is not
the foundation for thought does not, of course, imply that no thought is
deductive. From the point of view of the psychology of reasoning, the study
of deduction may still be of wide significance to psychology, if some sub-
stantial and important aspects of human reasoning are deductive. Indeed,
many psychologists of reasoning appear, at least in some passages, to advo-
cate this relatively modest position. Johnson-Laird and Byrne (1991), who
advocate a central role for deduction, nonetheless concede that much
human reasoning is not deductive in character. For example, they point out
that even Sherlock Holmes, whose “powers of deduction” are legendary, does
not really solve problems deductively at all. Johnson-Laird and Byrne note

COMMON SENSE, LOGIC, AND HUMAN RATIONALITY 187



that Holmes's inferences are plausible conjectures, which although
ubiquitous in everyday life are not the consequences of deductively valid
arguments.

Pursuing the analogy with science, it is interesting that although philoso-
phers of science have generally abandoned the view that scientific inference
might be deductive, some continue to advocate the view that certain aspects
of science involve deductive inference. Roughly, the view is that although
forming theories does not involve deductive inference, deduction is crucially
involved in prediction, explanation, and theory testing. Most notably the
hypothetico-deductive account of prediction and hypothesis testing (Popper
1959) and the deductive nomological view of scientific explanation and
prediction (Hempel 1965) advocate this view. If this view is right, we can
conjecture that deduction plays an analogous role in human thought as in
science. Thus, perhaps deduction does have an important, if not exclusive,
role in human cognition.®

However, deductive views of science provide little support for the deduc-
tively inclined psychologist of reasoning. Contrary to the views of C. Hempel
and K. R. Popper, recent philosophy of science has suggested that prediction,
explanation, and hypothesis testing in science are not really deductive in
character. Taking prediction as an example, according to the deductive view
a prediction is a deductive consequence of a theory or a hypothesis together
with some initial conditions. So, according to Hempel's view, we have the
following picture:

(1) Theory (T) A Initial Conditions (I)|= Prediction (P)

where the theory and initial conditions form the antecedent of an entailment
and the prediction the consequent. For example, Newton's laws (T) together
with information (I) about the state of the solar system at time, to, deduc-
tively imply particular trajectories (P) for the planets at subsequent times t >
t,. However, as critics have pointed out (Duhem 1954; Lakatos 1970, 19774,
1977b; Putnam 1974; Quine 1953), this conclusion only follows all other
things being equal. Real physical systems are not causally sealed off from
external forces; they are open systems. Consequently there are limitless pos-
sible intervening forces and factors, that is, “auxiliary hypotheses” (Putnam
1974), that could intervene to make the prediction fail—unexpected fric-
tional, electromagnetic, or as yet undiscovered forces, changes in physical
constants in different parts of space/time, and so on.

The nondeductive character of scientific prediction becomes clear when
the prediction does not fit with observation. If the prediction followed deduc-
tively from the theory, then the theory would automatically be falsified.
However, in practice, the theory may be fine, because auxiliary hypotheses
such as those noted earlier may be the cause of the mismatch between pre-
diction and observation. H. Putnam (1974) notes, for example, that Newton's
laws are entirely compatible with square orbits, given appropriate additional
forces.

One possible defense for the deductive view is to argue that the predictions
follow deductively from the conjunction of the theory under test and the

auxiliary hypotheses. This suggestion involves modifyin
; : g the anteced
the entailment in (1) as follows: ent of

(2) TAIAAH, AAH; A...A AH, |=Prediction (P)

If the prediction turns out to be false, then the scientist may reject

these auxiliary hypotheses, not the theory under test, thug bringin Onz.of
tion and observation back into line. However, this requires a com lgetl::re o
meration of all the auxiliary hypotheses, which appears to be 1:?1 0s ?Elu-
even in principle (Putnam 1974; Quine 1953). Science is concernid ; ‘Tl‘
causally open systems where there are indefinitely many unexpected o
nal factors. It is impossible to exhaustively enumerate these other poesﬁsfe;
i?‘i:isc;lz_ﬂd hence scientific prediction cannot be made to fit into the deduc-

We have considered prediction in science at length because precisel anal.
ogous considerations arise in attempting to model commonsense reagonin :
in deductive terms (e.g., Schiffer 1987), as we shall see in the discyssi 3
default rules in AT later. e

We have so far argued that deduction is not appropriate for formalizin
predictive and explanatory reasoning: that is, the derivation of empirical reg.
dictions about the world does not proceed by deductive inference. The é)na[
position we consider is that deductive reasoning leads not to empirical pre-
dictions but to conceptual or analytic truths. For example, perhaps it follows
deductively from what it is to be a bachelor that bachelors must be male
Kant's program for establishing the properties of space, causality, and the.
like pursued this line: the idea was that these properties are not really prop-
erties of the external world but conceptual necessities of human thought
(Scruton 1982). Perhaps this kind of inference is deductive.

Modern epistemology suggests that it is not, because the distinction
between conceptual and empirical claims cannot be maintained. For
example, W. V. O. Quine (1953) has forcefully argued that there is no non-
circular way to characterize the distinction between analytic, conceptual
truths and synthetic, empirical truths. According to contemporary episte-
mology, all statements are revisable in the light of experience—none
are purely conceptual truths derived by deductive argument alone (although
see Katz 1990 for an opposing point of view). Furthermore, the development
of mathematics and physics since Kant has shown that “conceptual
necessity” is unexpectedly flexible. For example, Kant took the Euclidean
character of space to be conceptually necessary, but modern science has
shown that space is in fact non-Euclidean (Putnam 1975). Hence, what
appears to be conceptual knowledge, which might potentially be the result
of deduction, may be empirical and thus not derived by deduction.” In
sum, epistemological considerations suggest that deduction is not central
to human thought in either making empirical predictions or establishing
conceptual truths.

From the first part of the epistemological argument, we concluded that
deduction cannot be the primary means of acquiring knowledge of the
world. In the second part, we have searched for a substantial residual role
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for deductive reasoning and failed to find one. From an epistemological point
of view, one might suspect that deduction plays only a small role in human
reasoning.

We have shown that deduction does not provide an adequate epistemol-
ogy. If deduction is never or rarely justified, then it seems unlikely to provide
a useful design principle for intelligent systems, whether human or artificial.
This suggestion is reinforced by the next two arguments, which concern Al
and the empirical data.

A POSSIBLE DEFENSE? Epistemology and the philosophy of science are
concerned with how people should reason, rather than how they do reason:
it is normative rather than descriptive. This appears to leave open the possi-
bility that the epistemological arguments described earlier may be accepted,
but that they imply only that people should not use deduction in everyday life.
This seems not to preclude the possibility that people actually do reason
deductively about the everyday world.

But this defense fails for a number of reasons. First, notice that episte-
mological considerations show that interesting conclusions never (or almost
never) follow deductively from known premises about the real world. This
means that if people do reason deductively, then the conclusions that they
will be able to draw will be entirely uninteresting: they will not support
induction of general rules, allow predictions about or explanations of the
everyday world, or even reveal conceptual “analytic” truths. The arguments
from contemporary epistemology earlier show that reasoning deductively
about the world would not yield conclusions of any interest, despite a long
philosophical tradition to the contrary. Therefore, it would seem bizarre, to
say the least, to suppose that deduction is central to human thought, even
though the results of deduction would never be useful.

Second, it is clear that people do predict, explain, and find regularities in
the scientific and everyday worlds and use this knowledge as a basis for deci-
sions and action. These abilities are of fundamental cognitive significance.
So even if one were, in desperation, to maintain that much reasoning is per-
versely based on deduction (and reaches no useful conclusions about the
everyday world), it would still be necessary to grant that reasoning that does
lead to substantial and interesting conclusions about the everyday world is
not based on deduction. But given that these concessions must be granted,
deductive reasoning is clearly marginal, rather than central, to cognition,
which is the conclusion for which we are arguing.

Third, the attempt to drive a wedge between how people should reason and
how they do reason is beside the point in this context, because the episte-
mological arguments that we discussed earlier are themselves derived from
the actual practice of scientific reasoning. The tendency to make inductive
leaps with no deductive justification, the Quine-Duhem thesis, the failure to
automatically reject hypotheses when their predictions are disconfirmed,
and so on are not merely abstract methodological recommendations. They
are manifest in the history of science (e.g., Kuhn 1962). Indeed, in philoso-
phy of science and contemporary epistemology more generally the con-
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straints between accounts of how people should and do reason are so
tight that many philosophers have argued that they cannot be separated
(Kornblith 1994; Quine 1969; Thagard 1988).

A final defense might be that people do derive interesting conclusions
about the world (e.g., prediction, explanation, and the like), that they use
deduction to do this, and that epistemology simply shows that these
deductions are not valid. But admitting that people’s actual deductions are
invalid amounts to giving up deduction as a computational-level explanation
of human reasoning. This is because, by assumption, people’s actual deduc-
tions are not valid, and hence their reasoning behavior cannot be charac-
terized by deductive logic. Moreover, the degree to which human reasoning
about the world is successful is left entirely mysterious on the view that
human reasoning is merely bungled deductive logic.

We have seen that the view that deduction characterizes people’s rea-
soning about the world at the computational level is epistemologically unvi-
able. Reasoning about the everyday world should not be and is not deductively
valid. This conclusion is reinforced by considerations from our two other
sources of evidence: Al and the psychology of reasoning.

Artificial Intelligence

A cognitive scientific approach to reasoning assumes that reasoning is a kind
of computation. Any adequate cognitive theory must therefore be computa-
tionally viable. But, we shall argue, this minimal condition is violated by
theories of reasoning that use deduction as their computational-level theory.
The fundamental reason should already be clear from our discussion of epis-
temology: that real-world inferences are not deductively valid and must be
outside the scope of any theory based on deduction. But Al provides an ideal
testing ground for the hypothesis that reasoning is deductive, because it
has adopted the practical project of attempting to formalize (fragments of )
human knowledge and build computational systems that reason using this
knowledge (e.g., Charniak and McDermott 1985). As we now see, research
in Al reinforces the conclusion from epistemology that deductive inference
has little or no role in reasoning about the everyday world.

First, let us briefly consider inductive reasoning and inference to the
best explanation, as they are studied in Al According to Hempel's (1965)
deductive-nomological view of explanation and Popper's (1959) hypothetico-
deductive approach to prediction and theory testing, deduction might be
expected to play an important role in computational systems that perform
such reasoning. Similarly, according to Rips (1994) and Johnson-Laird and
Byrne (1991), who argue that deduction plays an important role in almost
all cognitive processes, it might be expected that deduction would have an
important role to play. But in fact, as might be expected in the light of the
epistemological arguments outlined earlier, Al has found no useful role for
deduction in inductive and abductive reasoning. Induction, which is studied
in the Al and engineering literatures on machine learning (e.g., Michalski,
Carbonell, and Mitchell 1983), pattern recognition (e.g., Duda and Hart
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1973), and neural networks (e.g., Hertz, Krogh, and Palmer 1991), has no
place for deduction. Inference to the best explanation, which we mentioned
in the previous section, is known as abduction in Al. Al systems for abduc-
tive inference are generally nondeductive in character (Josephson and
Josephson 1994). Furthermore, making predictions, where deduction at least
seems prima facie to be appropriate, is no more deductive in the domain of
commonsense reasoning than we found it to be in science.

Consider, for example, the prediction that if you drop an egg it will break,
based on knowledge about eggs, the floor surface, the height from which you
drop the egg, and so on. This inference is uncertain: you may catch the egg
before it lands, you may have hardened the shell by artificial means, and
so on. As an alternative, reconsider our inference that Tweety flies, from
the general proposition that birds fly and the knowledge that Tweety is a
bird. This inference, too, is uncertain, since Tweety may be a penguin, have
an injury, be newborn, have clipped wings, and so on. Different areas of
cognitive science, from cognitive psychology and philosophy to Al give many
different labels to this phenomenon. Commonsense inference is “context-
sensitive” (Barsalou 1987), “holds only relative to background conditions”
(Barwise and Perry 1983), is “defeasible” (Minsky 1977), “admits exceptions”
(Holland et al. 1986), “lacks generality” (Goodman 1983), and has categories
that are “intention-relative” (Winograd and Flores 1986). Borrowing a term
from AI, we shall call inferences that use rules that allow exceptions default
inferences.

How can deductive logic, the calculus of certainty, be used to model the
uncertainty of default inference? An initial suggestion is to deny that pre-
diction really is uncertain; instead, the conclusion follows deductively from
the premises and fails only when one or more of the premises do not apply.
According to this view, prediction only appears to be uncertain because some
of the premises are left unstated. In the case cited earlier, for example, addi-
tional premises such that the egg falls unimpeded, no one has artificially
tampered with the shell, and so on are required to deduce the conclusion
that the egg will break. If those premises are true, so the story goes, the
conclusion follows with certainty.

We saw that this approach does not appear to be successful in the context
of scientific reasoning, where we noted that because systems under study
are open there will always be indefinitely many unexpected factors that can
defeat our predictions. Open systems are also the concern of commonsense
reasoning about the everyday world, and so here, too, similar problems arise.
In formalizing commonsense reasoning, as in formalizing science, it is not
possible to restore certainty by including all these possible additional factors
as extra premises in the argument. Even if we rule out the possibility that
the dropped egg has an artificially hardened shell or that you catch the egg
before it lands, there remain possibilities, such as that room is in free fall or
is flooded, that the egg is caught by a net, and so on, that defeat the conclu-
sion that the egg will break. Whatever additional premises we add, there are
always further additional factors, not ruled out by those premises, that will
overturn the conclusion.®
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It seems that the majority of inferences about the real world, whether
commonsense or scientific, are uncertain‘rather than deductive. In particu-
lar, we have seen that prediction in both science and common sense is non-
deductive. Recent research in Al, in contrast to the psychology of reasoning,
has abandoned the attempt to model commonsense reasoning purely deduc-
tively and has recognized the need for a calculus of default reasoning that
goes beyond deduction (Ginsberg 1987).

There are three broad approaches to dealing with uncertainty in Al, none
of which maintains that commonsense inference is deductively valid:

1. The logicist approach. This approach attempts to develop non-
monotonic logics (or related methods) where future premises can
overturn conclusions; that is, they sacrifice deductive validity
(McCarthy 1980; McDermott 1982; McDermott and Doyle 1980;
Reiter 1980, 1985). Within logic, there have been other attempts to
extend logical methods so that they handle the uncertain, nonde-
ductive character of inference that concerns the real world, situa-
tion theory (Barwise and Perry 1983) being a notable example. We
may view these approaches as broadening the notion of deduction,
rather than abandoning it. We should not underestimate the
magnitude of the change, however. From an epistemological point
of view, giving up certainty is, of course, of fundamental signifi-
cance: from a formal and computational point of view, nonmonot-
onic reasoning has different properties from standard monotonic
reasoning, partly because these systems must continually reevalu-
ate past conclusions in the light of new information, to see if they
still follow (Brachman and Levesque 1985; Ginsberg 1987; Harman
1986; Oaksford and Chater 1991). As noted earlier, in this chapter
we restrict deduction to monotonic reasoning, as this is the sense
used in the psychology of reasoning; according to this usage, these
nonmonotonic reasoning schemes are not deductive. Indeed, psy-
chologists of reasoning have generally rejected the use of non-
monotonic logics (Johnson-Laird 1986; Johnson-Laird and Byrne
1991; Rips 1994). Indeed, Johnson-Laird and Byrne (1991) and A.
Garnham (1993) suggest that the psychology of reasoning does not
need to appeal to nonmonotonic logics to understand how people
carry out nonmonotonic reasoning (although see Chater 1993;
Chater and Oaksford 1993; Oaksford 1993; and Oaksford and
Chater 1997 for critiques of such approaches).

2. The probabilistic approach. This approach to uncertainty in human
reasoning uses the mathematical theory of uncertainty, probabil-
ity theory, or related formalisms (Dempster 1967; Pearl 1988; Shafer
1976). This approach reconstructs commonsense inferences as
establishing that a conclusion is probable, rather than deductively
certain, given a set of premises. In cases in which conditional prob-
abilities are close to I, then the probabilistic style of reasoning
becomes increasingly close to logical inference. Pearl (1988)
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exploits this fact in developing a nonmonotonic logic that he justi-
fies as a limiting case of probabilistic inference. This approach has
the advantage of dealing with defeasibility naturally without many
of the problems inherent in the nonmonotonic logic approach
(Oaksford and Chater 1998). Moreover, it provides a set of norma-
tive principles against which to assess human rationality. Later on
we will show that this approach permits us to reinterpret some
important results in the psychology of reasoning that had previ-
ously been thought to impugn human rationality. We show that
these results conform to the normative principles of probability
theory (Oaksford and Chater 1994a).

3. The proceduralist approach. This approach involves devising proce-
dures that solve particular inference problems, but without
attempting to ground such procedures in any formal theory of
inference (McDermott 1987). A fortiori, this approach rejects the
reconstruction of commonsense inference as deductive inference.

We have seen that none of these three approaches to uncertainty rely on
deductively valid inference. Thus, we might expect that cognitive psycholo-
gists concerned with computational models of the mind would similarly
have rejected deductive inference as the central mechanism for human
thinking. Indeed, it appears that cognitive psychology has implicitly recog-
nized this point, although the implications of this fact do not appear to have
touched the psychology of reasoning.

Outside the psychology of reasoning, cognitive psychology has used Al
models to provide theoretical proposals about how to organize world knowl-
edge to support commonsense reasoning. We now discuss three approaches
that have been influential in psychology: semantic networks, schemas, and
production systems. All of these approaches contain mechanisms for dealing
with default inference. We shall consider how these theories relate to the
three-way classification of Al approaches to default reasoning, arguing that
they are all examples of the proceduralist approach.

Semantic networks (e.g., Collins and Loftus 1975; Collins and Quillian

1969) use a hierarchical organization of knowledge and associate properties .

of objects with nodes in the hierarchy. Suppose that the BIRD node is asso-
ciated with the property of FLYING, but that the PENGUIN node is associ-
ated with the property of NOT_FLYING. On encountering Tweety, a specific
penguin, the system can infer both that Tweety cannot fly (because Tweety
is a penguin) and that Tweety can fly (because Tweety is a bird). To resolve
the conflict the system assumes that information lower in the hierarchy (i.e.,
more specific information) takes precedence. Thus, the system infers that
Tweety does not fly. This method involves a particular approach to a certain
kind of default rule—rules that apply to most of the objects in a class but not
to some subclasses of that class (rather than default rules that intervening
external factors may override, such as those we discussed in the section on
epistemology). However, as it stands, the approach is very unconstrained. For
example, the label NOT_FLYING may apply to all varieties of bird, although
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FLYING may still attach to the class BIRD, and other bizarre possibilities (see
Woods 1975 for related discussion).

Schema theories and production systems use essentially similar mecha-
nisms for dealing with default inference. In schema or frame. theories
(e.g., Minsky 1977; Schank and Abelson 1977), incoming information fills
“slots” in rules that are organized into domain-specific compartments or
“schemas.” Slots have associated default values, which further information
can override. For example, Tweety may fill the BIRD slot in a rule such as IF
hears(BIRD, bang), THEN flees(BIRD) (i.e., if a bird hears a bang it flees).
The slot for BIRD will carry the default assumption that birds fly and hence
that Tweety can fly. This may lead, for example, to the inference that Tweety
will flee by flying away on hearing the bang. But if you know Tweety is a
penguin, then this will override the default using much the same mechanism
as in the semantic network, and you may infer that Tweety will waddle
rather than fly away. Production systems (e.g., Anderson 1983; Newell 1990)
encode knowledge in conditional rules much as in the preceding example.
Default inferences arise out of conflicts between different conditional
rules, for example, between the rule that IF bird(x), THEN flies(x) and IF
penguin(x), THEN NOT(flies[x]). On encountering Tweety, to which both
rules apply, the system resolves the conflict by choosing the most specific
rule, as with semantic networks. Production systems also embody a variety
of other procedures, in addition to specificity, for resolving conflicting
defaults, including use of production strength, goodness of match with the
antecedent of the conditional, and so on (Anderson 1983).

Semantic networks, schemas, and productions are all procedural
approaches in the sense discussed earlier, specifically in regard to their
approach to default reasoning. They handle defaults by simple procedural
strategies, such as preferring rules whose antecedents are at a lower level in
a default hierarchy. Although the nondefault aspects of some of these systems
can be formalized using standard monotonic logic (for example, regarding
semantic networks see Woods 1975; for schemas see Hayes 1979), the default
inferences are simply treated as procedures without any logical justification.
For this reason, none of these systems simply implement logical inference.
Hence, since almost all knowledge is defeasible, as we have already discussed,
the majority of inferences drawn will be nondeductive in character.

It seems that from the perspective of constructing practical Al systems,
as well as from the point of view of epistemology, thought about the world
(rather than about mathematics) does not appear to be deductive in charac-
ter. Thus, AI, as well as epistemology, strongly suggests that psychological
theories should not place deductive reasoning at the center of human
thought. We now turn to a more direct source of evidence for this view from
experimental studies in the psychology of reasoning.

The Argument from Psychology

It is symptomatic of the focus on deduction in the psychology of reasoning
that the defeasible, nondeductive character of commonsense inference has



not been a major focus of research. In other areas of psychology, though,
discussion of such inferences is ubiquitous. We have already noted the
popular views that cognitive development is akin to scientific theory change,
that commonsense inference is equivalent to the problem of confirmation in
science, that perception is inference to the best explanation, and that learn-
ing from experience, in whatever domain, involves induction. We have also
observed that theories of the organization of knowledge and commonsense
inference borrowed by psychologists from Al including semantic networks,
schemas, and production systems, were specifically developed to deal with
nondeductive default inference. It is easy to add more examples of aspects of
psychology where default inference is central: in text comprehension, the
wealth of “bridging” and “elaborative” inferences (e.g.. Clark 1977; Garrod
and Sanford 1977; Kintsch and van Dijk 1978; O'Brien et al. 1988) required
to understand a text do not follow deductively from what is said; similarly,
pragmatic inferences about speakers’ intentions do not follow deductively
from what is said but are a special case of inference to the best explanation
(e.g.. Levinson 1983; Sperber and Wilson 1986). In memory, elaborative
inferences, which importantly affect memory performance, are not deduc-
tive inferences from what people must recall—rather, they go beyond and
elaborate what people hear (e.g., Craik and Lockhart 1972; Craik and Tulving
1975). Research on decision making and probabilistic reasoning has directly
focused on nondeductive forms of inference (e.g., Kahneman, Slovic, and
Tversky 1982). Moreover, within the psychology of reasoning itself there has
been interest in inductive reasoning tasks (e.g., Klahr and Dunbar 1988;
Mynatt, Doherty, and Tweeny 1977: Oaksford and Chater 1994b; Wason
1960).

Mainstream psychology of reasoning has, however, concentrated on
what are regarded as deductive reasoning tasks. Our discussions of episte-
mology and Al suggest that deductive reasoning is rather rare in everyday
life: we submit that it is also rather rarer in the laboratory than many
reasoning theorists have suspected. At a superficial level, this is because
subjects do not appear to perform many deductively valid inferences in
laboratory tasks and draw many inferences that are not deductively valid
(e.g., Evans, Newstead, and Byrne 1993). In the psychology of reasoning,
however, this mismatch between human performance and deductive
expectations has not discouraged researchers from proposing theories of
reasoning that postulate a core deductive component and explaining away
the experimental data as performance errors. We argue that there is a deeper
reason that reasoning researchers rarely observe deduction in laboratory
reasoning tasks. This is because many tasks that experimenters assume
tap deductive reasoning are not really deductive tasks at all. Moreover,
experimental data on these tasks are better modeled as uncertain, non-
deductive reasoning, rather than as error-full deductive reasoning. We
consider two examples that have been of central importance in the psychol-
ogy of reasoning: P. C. Wason's selection task and conditional inference
tasks.

nfh COMMON SENSE. RRASONTNG. AND RATIONALITY

WASON'S SELECTION TASK Wason's selection task (1966, 1968) is
perhaps the most intensively studied task in the psychology of reasoning.
Subjects must assess whether some evidence is relevant to the truth or
falsity of a conditional rule of the form if p then g, where by convention
p stands for the antecedent clause of the conditional and g for the conse-
quent clause. In the standard abstract version of the task, the rule concerns
cards, which have a number on one side and a letter on the other. The
rule is if there is a vowel on one side (p), then there is an even number on the
other side (g). Four cards are placed before the subject, so that just one side
is visible; the visible faces show an "A" (p card), a “K" (not-p card), a “2" (q
card), and a “7" (not-q card). Subjects then select those cards they must
turn over to determine whether the rule is true or false. Typical results
were: p and q cards, 46 percent; p card only, 33 percent; p, q, and not-q
cards, 7 percent; and p and not-q cards, 4 percent ( Johnson-Laird and Wason
1970).

The task subjects confront is analogous to a central problem of experi-
mental science: the problem of which experiment to perform. The scientist
has a hypothesis (or a set of hypotheses) that he or she must assess (for the
subject, the hypothesis is the conditional rule) and must choose which exper-
iment (card) will be likely to provide data (i.e., what is on the reverse of the
card) that bears on the truth of the hypothesis.

In the light of the epistemological arguments we have already considered,
it may seem unlikely that this kind of scientific reasoning will be deductive
in character. Nonetheless, the psychology of reasoning has viewed the selec-
tion task as paradigmatically deductive (e.g., Evans 1982; Evans, Newstead,
and Byrne 1993), although a number of authors have argued for a non-
deductive conception of the task (Fischhoff and Beyth-Marom 1983; Kirby
1994; Klayman and Ha 1987; Rips 1990).°

The assumption that the selection task is deductive in character arises
from the fact that psychologists of reasoning have tacitly accepted Popper's
hypothetico-deductive philosophy of science. Popper (1959) assumes that
evidence can falsify but not confirm scientific theories. Falsification occurs
when predictions that follow deductively from the theory do not accord with
observation. This leads to a recommendation for the choice of experiments:
to only conduct experiments that have the potential to falsify the hypothesis
under test.

Applying the falsificationist account to the selection task, the recommen-
dation is that subjects should only turn cards that are potentially logically
incompatible with the conditional rule. When viewed in these terms, the
selection task has a deductive component, in that the participant must
deduce which cards would be logically incompatible with the conditional
rule. According to the rendition of the conditional as material implication
(which is standard in the propositional and predicate calculi; see Haack
1978), the only observation that is incompatible with the conditional rule if

p then q is a card with p on one side and not-q on the other. Hence, subjects
should select only cards that could potentially falsify the rule. That is, they
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should turn the p card, since it might have a not-q on the back, and the not-
g card, since it might have a p on the back.

This pattern of selections is rarely observed in the experimental results
outlined earlier."® Subjects typically select cards that could confirm the rule,
that is, the p and g cards. However, according to falsification the choice of
the g card is irrational and is an example of so-called confirmation bias
(Evans and Lynch 1973; Wason and Johnson-Laird 1972). The rejection of
confirmation as a rational strategy follows directly from the falsificationist
perspective.

We have argued that the usual standard of “correctness” in the selection
task follows from Popper’s hypothetico-deductive view of science. Rejecting
the falsificationist picture would eliminate the role of logic and hence deduc-
tion in the selection task. In the preceding section on epistemology, we have
already seen that the hypothetico-deductive view faces considerable diffi-
culties as a theory of scientific reasoning. This suggests that psychologists
should explore alternative views of scientific inference that may provide dif-
ferent normative accounts of experiment choice and hence might lead to a
different “correct” answer in the selection task. Perhaps the dictates of an
alternative theory might more closely model human performance and hence
be consistent with the possibility of human rationality.

We (Oaksford and Chater 1994a) adopt this approach, adapting the
Bayesian approach to philosophy of science (Earman 1992; Horwich 1982;
Howson and Urbach 1989), rather than the hypothetico-deductive view,
to provide a rational analysis (Anderson 1990, 1991) of the selection task.
We view the selection task in probabilistic terms, as a problem of Bayesian
optimal data selection (Good 1966; Lindley 1956; MacKay 1992). Suppose
that you are interested in the hypothesis that eating tripe makes people feel
sick. Should known tripe eaters or tripe avoiders be asked whether they feel
sick? Should people known to be or not to be sick be asked whether they
have eaten tripe? This case is analogous to the selection task. Logically,
you can write the hypothesis as a conditional sentence: if you eat tripe
(p), then you feel sick (g). The groups of people that you may investigate
then correspond to the various visible card options, p, not-p, g, and not-q. In
practice, who is available will influence decisions about which people you
question. The selection task abstracts away from this factor by presenting
one example of each potential source of data. In terms of our everyday
example, it is like coming across four people, one known tripe eater, one
known not to have eaten tripe, one known to feel sick, and one known not
to feel sick. The task is to decide who to question about how they feel or what
they have eaten.

We (Oaksford and Chater 1994a) suggest that hypothesis testers should
choose experiments (select cards) to provide the greatest possible “expected
information gain” in deciding between two hypotheses: (1) that the task rule,
if p then g, is true, that is, ps are invariably associated with gs, and (2) that
the occurrences, of ps and gs are independent. For each hypothesis, we
(1994a) define a probability model that derives from the prior probability of
each hypothesis (which for most purposes we assume to be equally likely, i.e.,
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both = .5) and the probabilities of p and of g in the task rule. We detine intor-
mation gain as the difference between the uncertainty before receiving some
data and the uncertainty after receiving that data where we measure uncer-
tainty using Shannon-Wiener information. Thus, we define the information
gain of data D as:

Information before receiving D: I(H,)=—Y P(H,)log,P(H,)

=1
Information after receiving D: I(H, | D)=-3 P(H, | D)log,P(H, | D)

i=1

Information gain: I, =I(H,)-I(H, | D)

We calculate the P(H,|D) terms using Bayes's theorem. Thus, information
gain is the difference between the information contained in the prior prob-
ability of a hypothesis (H;) and the information contained in the posterior
probability of that hypothesis given some data D."

When choosing which experiment to conduct (that is, which card to
turn), the subjects do not know what that data will be (that is, what will be
on the back of the card). So they cannot calculate actual information gain.
However, subjects can compute expected information gain. Expected infor-
mation gain is calculated with respect to all possible data outcomes, for
example, for the p card: g and not-q, and both hypotheses.

We (1994a) calculated the expected information gain of each card assum-
ing that the properties described in p and q are rare. J. Klayman and Y. Ha
(1987) make a similar assumption in accounting for related data on Wason's
(1960) 2-4-6 task. The order in expected information gain is:

E(Ig[p])> E(Iglq]) > E(Ig[not-q]) > E(Ig[not-p])

This corresponds to the observed frequency of card selections in Wason's
task: p > g > not-q > not-p and thus explains the predominance of p and g card
selections as a rational inductive strategy. We (1994a) also show how our
model generalizes to all the main patterns of results in the selection task (for
discussions of this account see Almor and Sloman 1996; Evans and Over
1996; and Laming 1996 and for a response see Oaksford and Chater 1996).
Specifically, it accounts for the nonindependence of card selections (Pollard
1985), the negations paradigm (e.g., Evans and Lynch 1973), the therapy
experiments (e.g., Wason 1969), the reduced array selection task (Johnson-
Laird and Wason 1970), work on so-called fictional outcomes (Kirby 1994),
and deontic versions of the selection task (e.g., Cheng and Holyoak 1985),
including perspective and rule-type manipulations (e.g., Cosmides 1989;
Gigerenzer and Hug 1992), the manipulation of probabilities and utilities in
deontic tasks (Kirby 1994), and effects of relevance (Oaksford and Chater
1995a; Sperber, Cara, and Girotto 1995). '
We noted earlier that the philosophy of science that underlies the “deduc-
tive” conception of the selection task now has few adherents. The consen-
sus is that scientific theories do not deductively imply predictions and hence
that the general problem of choosing which experiment to perform (or,
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analogously, which card to turn in the selection task) cannot be recon-
structed deductively. Further, our (Oaksford and Chater 1994a) probabilistic
and hence nonmonotonic account provides a better model of human per-
formance on the selection task. According to this model, people do not use
deduction when solving the selection task—rather, they use a nonmonoto-
nic inferential strategy. Crucially, this model preserves human rationality:
the optimal data selection model shows that under certain minimal assump-
tions (the rarity assumption: real-world properties only apply to small
subsets of all the objects in the world) people’s behavior on the selection task
conforms to the principles of a normative theory.

CONDITIONAL INFERENCE TASKS The selection task is perhaps the most
celebrated “deductive” reasoning task. However, the conditional inference
task is perhaps the task that seems most unequivocally to engage deductive
reasoning processes. For example, Rips (1994) uses example (3) as the para-
digm example of deductive inference in introducing his mental logic theory
of reasoning. Therefore, if human reasoning is not deductive even in this
task, then it seems unlikely that other areas of human reasoning will be well
explained in deductive terms. For this reason, the conditional reasoning task
is a particularly crucial test case for theories of reasoning that employ deduc-
tive logic as a computational-level theory.

In the standard conditional inference task, subjects see a conditional rule,
if p then g, and an additional premise (p, g, not-p, or not-q) and are asked
whether a given conclusion (again, p, g, not-p, or not-q) follows. Consider the
simplest form of the task, where the premises are p and if p then g and sub-
jects decide whether g follows. This appears to be an example of the para-
digmatic deductive inference of modus ponens. Rips's (1994) central example
of deductive inference appears to have this form:

(3) If Calvin deposits 50 cents, he'll get a Coke.
Calvin deposits 50 cents.
Therefore, Calvin will get a Coke.

As we have argued earlier, interpreting this natural-language argument
involves applying a standard logical analysis, which presupposes that it
should be viewed in deductive terms. But in the light of our discussion of
epistemology and Al, this inference seems to be a typical example of default
inference and not an instance of the deductive reasoning at all, despite Rips.
Calvin won't get the Coke if the machine is broken, if the Cokes have run
out, if the power is turned off, and so on. That is, additional premises can
overturn the conclusion, which monotonic deductive inference does not
allow. Thus, although the task is intended as a test of deductive reasoning,
the subject may be more likely to interpret the reasoning materials so that it
involves nonmonotonic, nondeductive reasoning.

The question for the psychology of reasoning, then, is which account of
how people interpret and reason with the materials in the task provides the
best fit with reasoning performance. It turns out that the experimental data
support the claim that people treat such inferences as defeasible rather than
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deductive. Work on conditional inference indicates that subjects interpret
conditional sentences as default rules (Holyoak and Spellman 1993) even in
laboratory tasks (Oaksford, Chater, and Stenning 1990). Byrne (1989) and
Cumn_iins, T. Lubart, O. Alksnis, and R. Rist (1991) have shown that back-
ground information derived from stored world knowledge can affect infer-
ential performance (see also Markovits 1984, 1985). Specifically, they showed
that additional antecedents influence the inferences conditional statements
allow. For example:

(4) If you turn the key the car starts.
(5) Additional Antecedent: You are out of gas.

Example (4) could be used to predict that the car will start if you turn the
key. This is an inference by modus ponens. However, including information
about an additional antecedent, example (5), defeats this inference (Byrne
1989). Moreover, confidence reduces in this inference for rules that possess
many alternative antecedents even when this information is only implicit
(Cummins et al. 1991). Additional antecedents also affect inferences by
modus tollens. If the car does not start, you can infer that you didn't turn the
key, unless you are out of gas. Explicitly providing information about alter-
native antecedents undermines the use of modus tollens (Byrne 1989) and
reduces confidence in rules that possess many alternative antecedents even
when this information is only implicit (Cummins et al. 1991). This result was
very striking and unexpected within the context of the psychology of rea-
soning. However, from the point of view of epistemology and Al it is just
what we would expect. Human inferences about Coke machines, like those
about the rest of the external world, are defeasible.

In sum, the experimental data seem to show that people treat condition-
als in laboratory reasoning tasks as default rules. So it seems that even the
commonsense inferences that some reasoning researchers regard as para-
digmatic examples of deduction, like example (3), are not examples of deduc-
tive inference at all. If defeasibility infects even such paradigmatic cases of
deductive reasoning, then it threatens to leave the advocate of deductive
reasoning with no commonsense reasoning at all to explain.

How can theories in the psychology of reasoning that place deduction at
center stage in human cognition attempt to account for the ubiquity of
defeasibility? A popular view is that defeasibility is illusory. The idea is that
encountering a fresh premise defeats one of the existing premises and it is
this that now allows the rejection of the conclusion.

For example, G. Politzer and M. D. 8. Braine (1991)* and D. P, O'Brien
(1993) argue that the observed effects on reasoning of additional premises
do not show that the major premise is defeasible (thereby invoking some
nonmonotonic inference regime) but simply show that it is false, according
to the standard, nondefeasible, interpretation of the conditional. However, if
this is how people interpret conditionals, then the only conditionals that
people should believe are true will be those that never admit of counterex-
amples. Because any commonsense conditional, including example (4),
admits exceptions, then all such conditionals will be false. Clearly, people do
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not reject such conditionals out of hand but freely assert them, argue about
whether they are true, and use them to guide their behavior. This makes
perfect sense if people interpret conditionals as default rules; it makes no
sense at all if they interpret these conditionals logically.

A related line of argument is that people assume that the conditional
premise is true until additional premises force them to question it. Before
encountering such premises, they reason by modus ponens but retract this
inference when additional information casts doubt on this premise (e.g.,
Garnham 1993; Johnson-Laird and Byrne 1991; Politzer and Braine 1997;
Stevenson and Over 1995; see Chater 1993; Chater and Oaksford 1993; and
Oaksford 1993 for discussion). The idea is that subjects start off assuming the
truth of the conditional if you turn the key the car starts. If told that you turn
the key, they infer by modus ponens that the car starts. However, on encoun-
tering the additional premise that you are out of gas, subjects question the
conditional—this is because general knowledge tells them that the condi-
tional does not apply to cars that are out of gas.

The proposal is that people treat conditional rules as rigid, rather than
defeasible, and that people use them deductively. General knowledge acts
as a “shield” for cases of apparent defeasible reasoning; general knowledge
specifies that the rule does not apply in certain contexts (e.g., when the car
is out of gas). The superficial plausibility of this story evaporates once
we consider when general knowledge operates in the process of inference
(see Chater and Oaksford 1993 and Oaksford and Chater 1991, 1995b, for
detailed discussion of these issues). Suppose that it operates post hoc; that is,
after you are presented with a particular problem: you apply modus ponens
as usual; your general knowledge then determines whether to accept the
conclusion; if not, you reject the conclusion, shielding the conditional infer-
ence from counterexample by deciding that it was not applicable in that
instance. This story is viable only by virtue of being completely vacuous. The
inferential processes are exactly those that would occur if the conditional
were a default rule, except that every time you find a counterexample you
put it aside by assuming that the inference did not apply. In a similar vein,
one might maintain that all birds fly and cope with any apparent coun-
terexamples by insisting post hoc that these are not birds. Such a strategy is
clearly absurd: it only holds the counterexamples at bay by removing any
empirical content from the generalization—it would be held true whatever
the state of the world.

Suppose, however, that people adopt a strategy that prespecifies general
knowledge of the conditions under which the rule applies. This means that
the rule that the subject believes to be true is not that if you turn the key,
the car starts but that if you turn the key and there is gas in the car, the car
starts. This rule clearly does not apply to the case where there is no gas
in the car. However, in the light of our discussion of epistemology and Al,
it should be clear that prespecifying the conditions under which a default
rule is true is an endless and impossible task. However many additional
conditions you add, further uneliminated counterexamples are always
available.”
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reasoning tasks? (Braine 1978; Braine and O'Brien 1991; Henle 1962; Lea
et al. 1990; O'Brien, Braine, and Yang 1994; Pollitzer and Braine 1991; Rips
1983, 1994). If subjects show correct logical inference on some tasks, then
surely we cannot dismiss logic as having a role in human thought? All such
demonstrations, however, involve particular inference rules, such as modus
ponens or and-elimination (Braine, Reiser, and Rumain 1984). Such demon-
strations bear on the question of whether people are logical but are in them-
selves far from conclusive. The point of providing a logic is to specify a whole
system of inference determined by the logical terms of a language. Logical-
ity can only be determined by conformity to all the patterns of inference
licensed by a logic. Isolated conformity to one or another rule does not mean
that behavior is logical, because other explanations are equally as plausible
and usually more parsimonious than attributing people with the inferential
power of deductive logic. For example, isolated logical performance is ex-
plicable by procedural accounts that do not attempt to provide any rational
basis for cognition. Consequently, in the face of the widespread illogicality
observed in reasoning tasks, that behavior conforms to one or two logical
rules provides little evidence that people are logical.

Supporters of mental logic get around people's apparent illogicality by
arguing that people do not possess various rules or that some inferences
are more complex than others. Such attempts to square logic with people’s
behavior on laboratory tasks cannot, however, resolve the central problem
that scientific and commonsense inference is invariably nonlogical. Hence,
theories based on logic and derived to explain behavior in laboratory tasks
cannot generalize to real inference in the everyday world (Oaksford and
Chater 1993, 1995b). Further, as we have argued, even in the laboratory
it is clear that conditionals are regarded not as rigid logical rules but as
default rules (Cummins et al. 1991; Holyoak and Spellman 1993). Ultimately,
however, within the psychology of reasoning, the issue will only be decided
by which theories provide the best fits to the empirical data. In this respect
nonlogical, probabilistic accounts seem to do better than logical accounts.
For example, as we indicated earlier, our account of the selection task
(Oaksford and Chater 1994a) provides good fits to most of the existing data.

In short, psychologists of reasoning must conclude, along with philoso-
phers and workers in Al that human conditional reasoning (outside math-
ematical domains) is defeasible and not deductive.

Deduction at the Algorithmic Level?

We have argued that deduction cannot provide a computational-level theory
of commonsense inference, as has been widely assumed (e.g., Johnson-Laird
and Byrne 1991; Macnamara 1986; Rips 1994). But this leaves open the
possibility that deduction may be important at the algorithmic, but not the
computational, level. We now argue that this position, too, is not viable.
First, note that the principal reason that psychologists (Inhelder and
Piaget 1958; Rips 1994) have postulated deduction at the algorithmic level is
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son deductively. But if people cannot

because it explains how people can rea ‘ .
d to postulate a deductive machinery

reason deductively, then there is no nee
(e.g., a mental logic) to explain reasoning performance.

Second, it remains conceivable in principle that logical procedures at the
algorithmic level are used to implement nonlogical reasoning, 'in the same
way as a computer program to perform arithmetic, manipulate lists, (?r carry
out probabilistic calculations might be written in the logic programming lan-
guage PROLOG. But it seems unlikely that the cognitive system uses .algn—
rithms based on logic, if only because it is so computationally expe.nswe to
convert procedures into steps of logical inference. Indeed, in practice, p.ro-
grams written in PROLOG run slowly, and moreover, practical prog.ranm:ung
requires extensive use of nonlogical tricks to reduce the complexity of the
program (such as PROLOG's “cut,” Clocksin and Mellish 1984). More genezj-
ally, the “purer” the logical programming style used (i.e., the mor?, nonlogi-
cal tricks are avoided), the more rapidly computational complexity grows.
Indeed, results from computational complexity theory show that computa-
tional systems based solely on logic must be computationally intractable,

even when the logical language is just the propositional calculus (Garey and
Johnson 1979; for implications for the psychology of reasoning, see Oaksford
and Chater 1991, 1993, 1995b and Chater and Oaksford 1993). Moreover,
these computational complexity results apply to serial and parallel compu-
tational systems and hence must apply to the cognitive system (see Oaksford
and Chater 1991). . ’

In sum, then, it seems unlikely that deduction has a significant role in
reasoning at either the computational or the algorithmic level.

6. Conclusions

ring the view that deductive reasoning is central to
we have found that the scope of deductive rea-
soning is remarkably small: it includes neither scientific reasoning, C(.)m;
monsense reasoning, nor important paradigmatic laboratory “deductive

reasoning tasks. It is nondeductive, uncertain reasoning that appears
to be cognitively ubiquitous. What does this imply for the psychology of

We began by conside
human cognition. However,

reasoning? . . .
The mental logic account of human reasoning (Braine 1978; Rips 1983,

1994), which advocates deduction at both computational and algorithmic
levels of explanation, is directly under threat from this line of argument,
for it seems that the deductive inferences for which the mental logic purports
to account are actually extremely rare. According to the arguments we
have presented, the vast majority of the examples of reason.ing that mental
logicians reconstruct deductively are not, in fact, deductive mferenf:es at all.

Equally under threat is the mental model view of hun?an mferer.lce
(Johnson-Laird 1983; Johnson-Laird and Byrne 1991), for which deduct.xofl
is part of the computational level of explanation. At a general level.. this is
because the apparatus of mental model theory simply provides a specific way
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.()1" drawing deductive, logical inferences: “. ..the [mental] model theory
is in no way incompatible with logic: it merely gives up the formal approach
(rules of inference) for a semantic approach (search for counter-examples)”
(Johnson-Laird and Byrne 1991, p. 212). Since the mental model view relies
on the search for counterexamples, it cannot extend beyond monotonic
deductive inference. In nonmonotonic inference, it is, by definition, possible
for the premises to be true but the conclusions false: that is, counterexam-
ples will always be possible. Any approach based on search for counter-
examples will reject all nonmonotonic inferences as invalid (Chater and
Oaksford 1993).

If human reasoning is not deductive, how can it be modeled? Epistemol-
ogy may provide valuable qualitative constraints on patterns of uncertain
human reasoning, which have been subject to particularly intensive study
in the philosophy of science. Furthermore, each of the three approaches to
uncertain reasoning in Al provides possible psychological mechanisms. The
logicist wants to somehow extend logical methods to handle uncertain
reasoning, the probabilistic account uses probability theory and related
formalisms as a starting point, and the procedural approach abandons the
search for a rational underpinning for thought and proposes heuristics for
particular types of uncertain reasoning.

To what extent are these approaches being taken up within the psychol-
ogy of reasoning? As we have noted, theorists who argue for mental logics
have been surprisingly unwilling to propose nonmonotonic logics as
psychological mechanisms but have attempted to maintain that nonmono-
tonic logics are (at least in a large range of cases) unnecessary (Johnson-
Laird 1986; Johnson-Laird and Byrne 1991; Rips 1994). The proceduralist
approach has also been relatively little investigated, although J. St. B. T. Evans
(1982, 1983, 1984, 1989) can be viewed as taking up this approach, in that
he focuses on processing-based explanations of reasoning data. Nonetheless,
Evans is not a full-blown proceduralist. He views his procedures only as sup-
plements to accounts of deductive competence, to explain systematic errors
and biases in people's deductive reasoning (1991). J. H. Holland, K. ]. Holyoak,
R. E. Nisbett, and P. R. Thagard (1986) provide a more thoroughgoing
proceduralist account of default reasoning, which, however, they have not
directly applied to reasoning research. They view knowledge as organized

into hierarchies of default rules in a production system. Although such
systems seem directly applicable to commonsense human reasoning, no
detailed modeling of experimental reasoning data has so far been carried
out. A number of researchers have taken up the probabilistic approach
(Cheng and Novick 1992; Fischhoff and Beyth-Marom 1983; Gigerenzer and
Hug 1992; Kirby 1994; Klayman and Ha 1987; Manktelow and Over 1991),
including our work on the selection task described earlier (Oaksford and
Chater 1994a). We view this approach as the most promising because it suc-
cessfully explains some of the most problematic data on human reasoning
as conforming to the principles of a normative theory: that is, it preserves
the rationality of people's reasoning and thus explains why cognition is
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successful. Nonetheless, only further research within each of these three
approaches will provide an answer to the question of which is the most
appropriate framework for studying human reasoning.

NOTES

1. They argue that logic must be supplemented with additional principles
that constrain which logical inferences people actually draw (Johnson-Laird and
Byrne 1991).

2. There is ambiguity over whether the algorithmic level postulated by
mental models is really a kind of logical proof theory, based on semantic princi-
ples (like truth tables or semantic tableaux). For example, this viewpoint seems
implicit in Johnson-Laird and Byrne (1991, p. 212): “The [mental] model theory
is in no way incompatible with logic: it merely gives up the formal (rules of
inference) for a semantic approach (search for counterexamples).”

3. However, advocates of mental logic, for example, do explicitly argue that
deductive reasoning has an important role in many nondeductive reasoning
tasks, such as induction and decision making (e.g., Rips 1994).

4. Although J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard’s
(1986) assumption that knowledge is organized as hierarchies of default rules
does implicitly involve a general rejection of the idea that much of cognition is
deductive in character.

5. This view is explicitly taken in formal semantics, where the goal of
logical analysis is typically to capture the inferences that people draw from a
statement (e.g., Cresswell 1985; Kamp and Reyle 1993; Montague 1974). The set
of these entailments is closely related to or even identical with its meaning.

6. Of course, many scientific theories make only probabilistic predictions, and
these predictions are not readily modeled in deductive terms. It is worth noting
that many predictions of commonsense thinking often appear to have this char-
acter: I predict that if T am late to the bus stop, I will miss the bus; but this
prediction is only probabilistic, since the bus is late, say, 5 percent of the time.
Although probabilistic cases were of considerable concern to Popper (1959) and
also to Hempel (1965), who dubbed them “inductive-statistical” inference, we
leave this complication aside here.

7. Indeed, even the deductive character of mathematics is under threat from
this point of view (Lakatos 1976).

8. The open character of the everyday world is often dealt with by fiat in Al—
by simply making a “closed-world” assumption (Clark 1978) that the current
contents of the system's database include all relevant factors. Even within the
closed world, however, researchers must assume that inference is nonmonoto-
nic, and hence nondeductive, which is all we are concerned with in this chapter.
As it happens, the open character of the commonsense world means that many
inferences that follow from the closed-world assumption are clearly invalid from
outside the perspective of that closed world.

9. J.St.B.T. Evans and D. Over (1996) suggest that the selection task is a “deci-
sion making task,” rather than a deductive reasoning task—a decision must
be made concerning which cards to choose. But it appears that, at this level of
abstraction, almost any psychological task involves “decision making,” in the
trivial sense that the subject must decide how to respond. It is therefore not clear
whether Evans and Over's viewpoint amounts to accepting that reasoning in the
task involves uncertain inductive inference, as we argue.
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to the deductive view, the bulk of the experimental data must be explained in
terms of performance error. ’

11. In response to Evans and Over's (1996) observation that information
gains may sometimes be negative and that this is intuitively unattractive, we
(Oaksford and Chater 1996) develop an alternative motivation for their account,
based on expected Kullback-Liebler distance. This revised account is mathemat-
ically identical to the current account but is somewhat more complex to derive,
so we have retained our original account here. We also note here that the equa-
tions here have the opposite sign to those used in Oaksford and Chater (1994a):
that is, information gains are all positive rather than negative.

12. See Oaksford and Chater 1995b for a formal demonstration of the fallacy
in Politzer and Braine's (1991) argument.

13. Such shielding of rules would seem to preclude any role for counter-
examples to refute rules, and hence inferences like reductio ad absurdum would
no longer be possible. We don't believe this to be a problem because inferences
like reductio can apply but now become more a matter of degree. The situation
is analogous to I. Lakatos's (1970) account of the “protective belt” that surrounds
a theory, protecting it from simple falsification by counterexample. Although the
theory will survive many counterexamples by invoking auxiliary assumptions in
its protective belt, there is a point at which this is no longer viable and at which
counterexamples penetrate to falsify the theory.
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