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The predictions of M. Oaksford and N. Chater's (1994) optimal data selection (ODS) model 
for the reduced array selection task (RAST) were tested in 4 experiments. Participants tested a 
hypothesis, ifp then q, by selecting cards showing q or not q instances. In Experiment 1, where 
selections were made from different sized stacks of q and not q cards, as P(q) increased, not q 
card selections rose, and q card selections fell, as predicted. Experiment 2 controlled for the 
possibility that stack height influenced responses; these results were also consistent with ODS. 
Experiment 3, which controlled further for this possibility, replicated Experiment 1. 
Experiment 4 addressed a final issue concerning the medium P(q) condition by concentrating 
on initial card selections; the results were again consistent with ODS. Although generally 
consistent with the ODS model, these experiments also suggest some interesting revisions. 

The psychology of reasoning appears to show that on 
some tasks people do not reason according to the rules of 
logic (e.g., Evans, 1982, 1989; Johnson-Laird & Byrne, 
1991; Wason & Johnson-Laird, 1972). Some authors have 
therefore concluded that humans may be irrational (Stich, 
1985, 1990). However, others have suggested that appar- 
ently irrational behavior occurs because participants do not 
regard these as logical tasks (e.g., Rips, 1990; Thagard, 1988). 
Consequently, some normative theory other than logic may 
better describe what participants should do in these experi- 
mental situations. Recently, Oaksford and Chater (1994, 
1996) have suggested that the normative theory of optimal 
data selection (Lindley, 1956) may explain results from 
Wason's (1966, 1968) selection task. This task has been 
widely interpreted as raisingdoubts about human rationality 
(Cohen, 1981; Manktelow & Over, 1993; Stich, 1985, 1990). 

In the selection task, an experimenter presents partici- 
pants with four cards, each with a number on one side and a 
letter on the other, and with a rule of the form i f p  then q; for 
example, i f  there is a vowel on one side (p),  then there is an 
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even number on the other side (q). The four cards show an A 
(p card), a K (no tp  card), a 2 (q card), and a 7 (not q card). 
Participants have to select those cards that they must turn 
over to determine whether the rule is true or false. Logically, 
participants should select only the p and the not q cards. 
However, as few as 4% of participants make this response, 
with other responses being far more common (p and q cards 
[46%], p card only [33%], p, q, and not q cards [7%], p and 
not q cards [4%]; Johnson-Laird & Wason, 1970b). 

Oaksford and Chater (1994) provided a rational analysis 
(Anderson, 1990) of the selection task based on Bayesian 
optimal data selection (Fedorov, 1972; Lindley, 1956; 
Mackay, 1992). They argued that participants' behavior 
reflects a strategy of optimizing the expected amount of 
information gained by turning each card. According to this 
view, the selection task is not a logical reasoning task but a 
task of probabilistic optimal data selection in inductive 
hypothesis testing. Oaksford and Chater also generalized 
their optimal data selection (ODS) model to all the main 
experimental results on the selection task. Specifically, it 
accounts for the nonindependence of card selections (Pol- 
lard, 1985), the negations paradigm (e.g., Evans & Lynch, 
1973), the therapy experiments (e.g., Wason, 1969), the 
reduced array selection task (RAST; Johnson-Laird & 
Wason, 1970a), and work on so-called fictional outcomes 
(Kirby, 1994). Oaksford and Chater also showed how a 
related maximum expected utility model accounts for deon- 
tic versions of the selection task (e.g., Cheng & Holyoak, 
1985), where participants must reason about how one ought 
to behave, including perspective and rule-type manipula- 
tions (e.g., Cosmides, 1989; Gigerenzer & Hug, 1992) and 
the manipulation of probabilities and utilities (Kirby, 1994). 1 

The status of Oaksford and Chater's (1994) model is 
contentious (see, e.g., Almor & Sloman, 1996; Evans & 
Over, 1996; Laming, 1996; and for a reply, Oaksford & 
Chater, 1996). On the one hand, support for this model is 

i Copies of the Mathematica program (Wolfram, 1991) in which 
the ODS model is implemented are available on request from Mike 
Oaksford preferably via electronic mail. 
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derived from Oaksford and Chater's (1995a) reinterpretation 
of Sperber, Cara, and Girotto's (1995) results and the recent 
results of Manktelow, Sutherland, and Over (1995). The 
latter confirmed the prediction of Oaksford and Chater's 
expected utility model of the deontic selection task, which is 
that both not q card and p card selections should decrease as 
the probability that the rule is being violated decreases (see 
Oaksford & Chater, 1994, Table 10). On the other hand, 
Evans and Over (1996) argued that data from Pollard and 
Evans's (1983) experiments falsify the ODS model. More- 
over, Green (1995) and Platt and Griggs (1995) claimed to 
show that probabilistic manipulations fail to have the effects 
predicted by Oaksford and Chater (1994) in the abstract 
selection task. However, Oaksford and Chater (1996) argued 
that the ODS model may be consistent with Pollard and 
Evans's data. Further, they argued that the probabilistic 
manipulations used by Green and by Platt and Griggs (1995) 
may have been confounded by other manipulations designed 
to force a logical response. Consequently, how these data 
bear on Oaksford and Chater's model is unclear. 

The purpose of the present experiments is to provide more 
direct tests of the predictions of Oaksford and Chater's 
(1994) model for the RAST (Girotto, 1988; Girotto, Blaye, 
& Farioli, 1989; Girotto, Light, & Colbourn, 1988; Johnson- 
Laird & Wason, 1970a; Light, Blaye, Gilly, & Girotto, 1989; 
Wason & Green, 1984). In the RAST, participants typically 
have access only to the q and not q cards (hence, reduced 
array). We first introduce the ODS framework. We then 
introduce the RAST and the predictions made by ODS. 

Optimal Data Selection 

In this section, we outline Oaksford and Chater's ODS 
model. The outline is condensed, and we refer the reader to 
Oaksford and Chater (1994) for the complete description of 
the model. 2 

In Wason's (1966, 1968) selection task, participants 
confront a problem that is analogous to the scientist's 
problem of which experiment to perform. Scientists have a 
hypothesis (the conditional rule) to assess, and they aim to 
perform experiments (turn cards) likely to provide data (i.e., 
what is on the reverse of the card) bearing on its truth or 
falsity. Oaksford and Chater's (1994) model is based on 
contemporary Bayesian accounts of scientific inference, 
which reject Popper's (1935/1959) falsificationist view that 
only potentially falsifying evidence should be sought (Ear- 
man, 1992; Horwich, 1982; Howson & Urbach, 1989). 
Bayesian accounts adopt an explicitly subjective as opposed 
to a frequentist approach to probability. According to the 
subjective interpretation, probabilities are degrees of belief 
(Keynes, 1921; Ramsey, 1931) rather than limiting frequen- 
cies (e.g., Mises, 1939). Oaksford and Chater's model is 
about how prior beliefs affect judgments about the most 
informative data to select. 3 In particular, people's prior 
beliefs about the probabilities of the antecedents, p and 
consequents, q, of rules, ifp then q, play a central role. In the 
experiments we report below, we attempt to manipulate 
participants' subjective degrees of belief by manipulating 
the objective frequencies of cards in the selection task. 

Oaksford and Chater (1994) suggested that hypothesis 
testers should choose experiments (select cards) that provide 
the greatest possible "expected information gain" in decid- 
ing between two hypotheses: (a) that the task rule ifp then q 
is true, that is, that ps are invariably associated with qs 
(although qs are not invariably associated with ps) and (b) 
that the occurrences of ps and qs are independent. Partici- 
pants' prior degree of belief in (b) is P(Mt), and their prior 
degree of belief in (a) is P(MD), that is, 1 - P(Mr), where Mr 
refers to the contingency table representing independence 
(I) between p and q, and MD refers to the contingency table 
representing a dependency (D) betweenp and q (Oaksford & 
Chater, 1994). For most purposes, Oaksford and Chater have 
assumed that these are equally likely, that is, P(MI) = .5. For 
each hypothesis, Oaksford and Chater define probability 
models (Mr and Mo) that derive from participants' prior 
beliefs about the probabilities of p and of q in the task rule. 
They define information gain as the difference between the 
uncertainty before receiving some data and the uncertainty 
after receiving that data, where they measure uncertainty by 
using Shannon-Wiener information (Shannon & Weaver, 
1949; Wiener, 1948). This is the same approach to optimal 
data selection proposed by Lindley (1956). Thus, Oaksford 
and Chater define the information gain of data D as follows: 

information before receiving D: 

n 

l(Hi) = - X P(Hi) log2 P(Hi), (1) 
i = 1  

information after receiving D: 

n 

I(H~[D) = - ~ P(H~[D) log2 P(H~ID), (2) 
i=l  

information gain: Ig = I(Hi) - I(HiID). (3) 

The posterior probabilities, P(Hi[D), are calculated with 
Bayes's theorem. Thus, information gain is the difference 
between the information contained in the prior probability of 
a hypothesis (Hi) and the information contained in the 
posterior probability of that hypothesis given some data D. 

When choosing which experiment to conduct (i.e., which 
card to turn), participants do not know what that data will be 
(i.e., what will be on the back of the card), so they cannot 
calculate actual information gain. However, they can com- 
pute expected information gain. Expected information gain 

20aksford and Chater (1994) embodied the distinction between 
the abstract (or indicative) task and the deontic task, first noted by 
Manktelow and Over (1987), by proposing different models for 
each case. However, this distinction has recently been questioned 
by Almor and Sloman (1996; see also Oaksford & Chater, 1996). 

3 It is important to note that Oaksford and Chater's (1994) model 
is not about hypothesis testing per se. It is about the optimal design 
of experiments (see Fedorov, 1972); that is, the question of where 
the best place to look for evidence to test a hypothesis is. 
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is calculated with respect to all possible data outcomes (e.g., 
for the p card: q and not q) and both hypotheses. 

Given the expected information gains, a decision has to be 
made about which cards to select. Oaksford and Chater 
(1994) incorporated two aspects of the decision process in 
their measure. First, they introduced a noise factor by adding 
.1 to the information gain for each card. This allows that 
people may occasionally see the notp card as informational. 
Second, card selection is a competitive matter. To reflect 
this, Oaksford and Chater scaled their information gain 
measure by the mean value for all four cards. Consequently, 
card choice is relative to the total expected information gain 
available and is not determined by the absolute E(Ig) value 
alone. The higher the proportion of the total E(lg) a card 
possesses the more likely it is to be selected. Oaksford and 
Chater referred to this derived measure as scaled expected 
information gain, SE(Ig). 4 

Oaksford and Chater (1994) calculated the SE(Ig) for each 
card, assuming that the properties described in p and q are 
rare (i.e., that they have a low probability of occurrence). 
Take the rule all ravens are black, for example; the 
probability that any given bird is a raven is low, as is the 
probability that it is black. The rarity assumption seems to 
apply to the vast majority of everyday categories that are 
used to construct hypotheses about the world. Moreover, 
there is evidence that people adopt this assumption from the 
literature on other reasoning tasks (Anderson, 1990; Klay- 
man & Ha, 1987; see Oaksford & Chater, 1994). Oaksford 
and Chater (1996) pointed out that further evidence for the 
rarity assumption comes from the normative literature on 
Bayesian epistemology (e.g., Horwich, 1982; Howson & 
Urbach, 1989). Making a rarity assumption resolves the 
ravens paradox of non-Bayesian confirmation theory (Good- 
man, 1954/1983), whereby nonblack, nonravens (e.g., a pair 
of white socks) must confirm the hypothesis that all ravens 
are black. Consequently, there are strong normative and 
empirical grounds for Oaksford and Chater's (1994) assump- 
tion that people's strategies for dealing with conditional 
rules are adapted to the case where rarity holds. 

Adopting the rarity assumption, the order in SE(Ig) is as 
follows: 

SE[I,(p)] > se[tg(q)] 

> SE[Ig(not q)] > SE[Ig(notp)]. (4) 

This corresponds to the observed frequency of card selections 
in Wason's (1966) task: n(p) > n(q) > n(not q) > n(not p), 
where n(x) denotes the number of cards of type x selected. 
This account thus explains the predominance ofp  and q card 
selections as a rational inductive strategy. This ordering 
holds only when P(p) and P(q) are both low. Oaksford and 
Chater (1994) noted that task manipulations that suggest that 
this condition does not hold--when P(p) or P(q) or both are 
high lead to alternative orderings, predominantly that, 

SE[Is(p)] > SE[Ig(not q)] 

> SE[Is(q)] > SE[Ig(notp)]. (5) 

This ordering is more consistent with Popperian falsification- 
ism, which favors the p and not q instances. The effects of 
rarity and its violation permit us to explain the range of 
results we outlined above and make definite predictions in 
the RAST. 

Implementation and Sensitivity 

The ODS model provides a rational analysis (Anderson, 
1990, 1994) of the selection task, which suggests that 
manipulating P(p) or P(q) should lead to predictable 
variations in the proportions of cards selected in the 
selection task. However, as Oaksford and Chater (1994) 
discussed, the level of detail at which the model can make 
predictions also depends on how the cognitive system 
implements this model (see also Anderson, 1990). The 
critical question is how sensitive can we expect people to be 
to changes in P(p) or P(q) and consequently to changes in 
the SE(Ig) values? 

At one extreme, the cognitive system may implement the 
rational analysis directly (i.e., it may perform all the 
computations specified by the model). If this were the case, 
then varying the parameters of the model should lead to card 
selections that directly mirror the resulting SE(Ig) values. At 
the other extreme, the cognitive system may implement this 
analysis with a hardwired and cognitively impenetrable 
(Pylyshyn, 1984) heuristic that has evolved to deal with an 
environment where rarity is the norm. If this were the case, 
then although our model would explain why selecting the p 
and q cards is an adaptive rational strategy, we could not 
predict any performance variation in response to variation in 
the model's parameters. 

To explain the data, Oaksford and Chater (1994) have 
already assumed that people are sensitive to manipulations 
of P(p) and P(q), and consequently we regard the second 
possibility as implausible. We also regard the first possibility 
as implausible because, as Oaksford and Chater have 
argued, the full Bayesian analysis it assumes is likely to 
prove computationally intractable when scaled up to real 
human reasoning (see also Chater. & Oaksford, 1990; 
Oaksford & Chater, 1991, 1992, 1993). In summary, the 
truth must lie somewhere between these two extremes of 
perfect sensitivity to changes in P(p) or P(q) and no 
sensitivity to such changes. 

Sensitivity may depend on a variety of factors. If people 
compute and mentally represent something analogous to 
SE(Is) values, then noise, imperfect transduction, or both 
may lead to reduced sensitivity. Moreover, there is quite a 
broad region where SE[Is(not q)] ~- SE[Ig(q)] as P(p) or P(q) 
vary. Depending on the discriminability between the mental 
analogues of SE[Is(not q)] and SE[Ig(q)], this could lead to 
quite a broad region of uncertainty about which card to 

4 Noise is introduced prior to scaling by the mean value. This is 
because we envisage the mental correlates of the E(Ig) measures 
being produced by an inherently noisy cognitive system. This is not 
unfamiliar from signal detection theory (McNicol, 1972). Indeed, 
we view the decision problem participants confront as analogous to 
the signal detection situation. 
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Figure 1. A: SEI s plotted as a function of P(q), with P(MI) = .5 
and P(p) = P(q) - .001. SE[ls(q)] is the decreasing function of 
P(q) (over most of the range), and SE[Iz(q)] is the increasing 
function. B: Discdminability, [SE[Is(not q)] - SE[Is(q)] I, plotted 
against P(q). The vertical dashed lines labeled Low, Medium, and 
High correspond to the three values of P(q) used in the subsequent 
experiments. The horizontal dashed line in (B) corresponds to a 
quite high level of sensitivity where little discrimination is required 
to determine which card to choose. SEIg = scaled expected 
information gain; P(q) = probability of q; P(Mt) = participants 
prior degree of  belief that occurrences ofps and qs are independent. 

choose. Figure 1 illustrates this point. The graph in figure 1A 
shows SEI s plotted as a function of P(q), with P(Mt) = .5 
and P(p) = P(q) - .001; P(p) was set so that we could 
observe the variation all the way down to the bottom end of 
the P(q) scale. 5 SE[Is(q)] is the decreasing function of P(q), 
and SE[Ig(not q)] is the increasing function. The discrim- 
inability between the mental analogues of SE[lg(not q)] and 
SE[Is(q)] can be measured as the absolute difference be- 
tween these two values, that is, as [SE[Is(not q)] - SE[Is(q)] I. 
This is plotted against P(q) in Figure lB. The level of 
discriminability required between the mental analogs of 
SE[Ig(not q)] and SE[ls(q)] before which card to select is 
unambiguous will clearly vary. We have illustrated one 
possibility by the horizontal dashed line in Figure lB. We 
have dropped vertical dashed lines to the P(q) axis to 
illustrate the corresponding region of uncertainty. Between 
P(q) = .18 and .35 (approximately), participants may be 
relatively uncertain as to which card to turn. However, 

according to Oaksford and Chater (1994) rarity is the norm. 
Consequently, participants may require higher discriminabil- 
ity to convince them that rarity has been violated than to 
convince them that they are in the default rarity situation. We 
have illustrated this possibility in Figure 1B by taking 1.0 as 
the higher level of discriminability required. The region of 
uncertainty now extends from P(q) = .18 to .54 (approxi- 
mately). These values are clearly for illustrative purposes. 
Nonetheless, the sensitivity participants show toward varia- 
tions in P(q) clearly affects the predictions we can make in 
the selection task, and in deriving our predictions for the 
RAST we refer back to Figure 1. 

Two further factors may affect sensitivity. First, sensitiv- 
ity depends on how well people are calibrated to P(p) or 
P(q). People tend to overestimate the bottom end and 
underestimate the top end of the probability scale (Lichten- 
stein, Slovic, Fischhoff, Layman, & Combs, 1978). Second, 
whether people use probabilistic information can depend on 
how it is presented. Gigerenzer, Hell, and Blank (1988) and 
Gigerenzer and Hoffrage (1995) have shown that people are 
more likely to use probability information if it is presented in 
a frequency format (e.g., 10 out of a 1,000, rather than in a 
probability format, i.e., .01). In the RAST, the probability 
information is always in a frequency format, which suggests 
that participants should use this information. 

The Reduced Array Selection Task (RAST) 

In a RAST, participants choose between the q and not q 
options only, hence reduced array (Johnson-Laird & Wason, 
1970a; Wason & Green, 1984). The stimuli in the original 
RAST consisted of 30 colored shapes. The experimenter 
informs the participants that there are 15 black shapes and 15 
white shapes, each of which is a triangle or a circle. The 
shapes are in two boxes, one containing the white shapes and 
the other containing the black shapes. On being presented 
with a test sentence (e.g., All the triangles are black.), 
participants have to assess the truth or falsity of the sentence 
by asking to see the least number of black or white shapes. 6 
In Johnson-Laird and Wason's (1970a) research, although all 
participants chose some confirmatory black shapes (no 
participant chose more than 9), they all chose all 15 
potentially falsificatory white shapes. Thus, where partici- 
pants in effect perform multiple selection tasks, they tend to 
show falsificatory behavior. Wason and Green (1984) re- 
ported a variant on the RAST (see Oaksford & Chater, 
1994), and Girotto and Light and their colleagues (Girotto, 

5 Similar graphs are obtained if we set P(p) to a fixed value 
reflecting our default rarity assumption and vary P(q) on its own. 
This reflects the dependency of not q card selections on both P(p) 
and P(q) in the ODS model. This is in contrast to Kirby's (1994) 
model in which not q card selections depend exclusively on P(p). 

6 The task rule used in the standard task is of  the form ifp then q. 
However, whether the rule is stated as a quantified sentence, which 
is nonetheless rendered logically as a conditional, Vx(Fx ---. Gx), or 
whether it is stated as a conditional makes no difference to selection 
task performance (Wason & Johnson-Laird, 1972). 
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1988; Girotto et al., 1988, 1989; Light et al., 1989) have used 
it in developmental studies with thematic content. 

Oaksford and Chater (1994) suggested the following 
explanation for the basic findings of the RAST. The RAST 
makes explicit that the rule applies to a limited domain of 
cards or shapes that the experimenter describes as being in a 
box or in a bag (or in Wason & Green's, 1984, research as 
under the bar). The experimenter also informs participants 
that in this limited domain, there are equal numbers of q and 
not q instances. It follows that P(q) = P(not q) = .5, 
violating the rarity assumption. If participants are sensitive 
to these experimentally given frequencies, then this leads to 
a value of SE[Ig(not q)] that is higher than SE[I~(q)]. 
Consequently, ODS predicts more not q card selections than 
q card selections as is typically observed in the RAST. 

In the experiments that follow, we tested this explanation 
of performance on the RAST by systematically varying 
P(q). We did this by using stacks of cards rather than boxes 
of colored shapes. The number of cards in each stack was 
varied to achieve the probability manipulation. By varying 
these probabilities, we hoped to show that the proportions of 
q and not q cards selected would vary in accordance with the 
ODS model; that is, as P(q) falls, q card selections rise, and 
not q card selections fall. 

Experiment  1 

ODS suggests that varying the ratio of q and not q 
cards---that is, varying P(q)--in the RAST will vary P(p). 
This is because for the rules in the selection task to make 
sense P(p) < P(q). This is also a constraint on Oaksford and 
Chater's (1994) model. 7 If this were not the case, then one 
could state nonsensical, obviously false rules (e.g., all black 
things are ravens). You know this is false without examining 
any data because you know that there are many black things 
other than ravens. For our predictions, this means that as 
P(q) decreases, participants should decrease their subjective 
estimates of P(p) by at least as much. (This factor was 
responsible for our setting P(p) to P(q) - .001 in deriving 
Figure 1.) 

In these experiments, we use three different values of 
P(q), low, medium, and high (see Figure 1), and test whether 
this variation leads to changes in q and not q card selections 
in the RAST. We use the computed SEIg values only as a 
guide to predicting the frequency of card selections because 
of the uncertainty about the level of sensitivity participants 
are likely to display to variations in P(q). These possible 
variations suggest two broad levels at which predicting the 
pattern of card selection frequencies seems feasible. First, 
we consider the predictions that can be made if participants 
are relatively insensitive to variations in P(q). We call these 
the Level 1 predictions. In deriving these predictions, we 
refer to Figure 1. Following Oaksford and Chater's (1994) 
research, we assume that card selection frequencies are 
monotonically related to SEI 8 values. According to this 
assumption, most of our predictions can be seen to follow 
directly from Figures 1A and lB. At Level 1, three such 
predictions of increasing levels of detail can be derived. 

Level 1 Predictions 

1. Even if participants are relatively insensitive to variation 
in P(q), the model predicts that the difference in the frequency 
of q card and not q card selections, that is, n(not q) - n(q), 
should rffnror the relationslfip between SE[l~(not q)] - SE[ls(q)] 
and P(q). This relationship is partly illustrated in Figure lB. 
However, Figure 1B shows the absolute value of SE[Is(not 
q ) ]  - SE[ls(q)] so at the point where [SE[ls(not q)] - 
SE[ls(q)] I = 0, the function should be viewed as continuing 
to be negative as P(q) continues to decrease. Consequently, 
the model predicts that there should be a significant trend 
such that n(not q) - n(q) increases as P(q) increases. 

2. Moreover, in principle, the model predicts that there 
should be significant pairwise differences between all condi- 
tions on the n(not q) - n(q) measure. However, because lack 
of sensitivity may affect both the low and medium P(q) 
conditions, in practice there may be no significant difference 
between these two conditions (see Figure 1B). 

3. Referring to Figure 1A, the model predicts individual 
trends such that as P(q) increases, the frequency of q card 
selections, n(q), should fall, and the frequency of not q card 
selections, n(not q), should rise. 

As we discuss further in the General Discussion, it is 
important to note that no other theory of RAST performance 
makes similar predictions even at this level of detail. For 
example, although Kirby (1994) predicted similar effects on 
n(not q) as a result of variation in P(p), his account could not 
predict similar effects on n(q) when varying either P(p) or 
P(q). Consequently, if these predictions are confirmed at any 
level of detail, then these data will raise serious questions for 
other theories of reasoning. 

Because insensitivity may affect both the low and medium 
P(q) conditions, we cannot unequivocally predict differ- 
ences between the frequencies of q and not q card selections 
within conditions, except for the high P(q) condition. 
However, if participants are relatively sensitive to variations 
in P(q), then the following simple effects can also be 
predicted. 

Level 2 Predictions 

1. In Figure 1A, in the low P(q) condition there should be 
more q card selections than not q card selections. In the 
medium and high P(q) conditions, there should be more not 
q card selections than q card selections. 

2. In principle, the model also predicts the following 
interactions (differences between the above simple effects). 
There should be more q card selections and fewer not q card 
selections in the low versus the high P(q) conditions, in the 
medium versus high P(q) conditions, and in the medium 

7 The actual constraint on the model is that P(q) >-- P(p)P(MD). 
However, in the RAST, participants rapidly come to believe that the 
task rule is true, because all the cards conform to the rule, which 
means that P(Mv) ~- 1. Moreover, this constraint arises in the 
computation of expected values of P(p) and P(q) with respect to 
the two models. Actual values of P(p) and P(q) must respect the 
P(q) > P(p) constraint for the reasons given in the text. 
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versus low P(q) conditions. The last two interactions should 
be full crossover interactions. However, because lack of  
sensitivity may affect both the low and medium P(q) 
conditions, again, in practice there may be no significant 
interaction between these two conditions (see Figure 1). 

These predictions also rely on the assumption that the 
RAST procedure does not substantially alter participants '  
assessments o f  the ODS model ' s  parameters. The RAST 
may violate this assumption because it is a sequential 
sampling paradigm in which the evidence is revealed at each 
trial. Hence, participants may continuously update the 
parameters of  the model. However,  this seems unlikely to 
affect our model ' s  predictions. First, all the data are consis- 
tent with the dependence model. Consequently, Bayesian 
revision of  P(Mt) can lead only to lower values; that is, 
P(Mo) can only get higher. But as Oaksford and Chater 
(1994) observed, the predictions of  the ODS model are 
relatively insensitive to variation in P(Mt). Nonetheless, as 
P(MD) tends to 1, so the SE(Is) values tend to 1. (This is only 
because of  the scaling factor; the E(Is) values tend to 0.) This 
means that as the evidence convinces you that the rule is 
true, which evidence is relevant becomes harder to discrimi- 
nate. This could lead to some unpredicted switches of  
attention. 

Second, another way to affect the model ' s  predictions is 
for sampling to affect participants '  estimates of  P(p) and 
P(q). However, participants know P(q) from the outset 
because the experimenter tells them the numbers of  q and 
not q cards that are in the stacks from which they start to 
sample cards. Consequently, information gained from sequen- 
tial sampling should not alter the value of  this parameter. 
Further, i f  P(q) remains constant, then under the constraint 
that P(p) <- P(q), the predictions of  the ODS model remain 
the same, as we saw above. 

Method  

Participants. There were 36 participants. All participants were 
recruited from the Department of Psychology, University of Wales, 
Bangor participant panel. Each participant was paid £2.50 for his or 
her participation. None of the participants had any prior knowledge 
of Wason's (1966) selection task. 

Design. Participants were assigned randomly to one of three 
conditions, so that there were 12 participants in each condition: a 
high probability condition, P(q) = .83 (%); a medium probability 
condition, P(q) = .50 (½); and a low probability condition, P(q) = 
.17 (¼). 

Materials. The materials consisted of two packs of 25 cards 
each. One pack depicted red circles on one side, and the other pack 
depicted blue triangles on one side. The obverse side of all the cards 
in each pack was blank. The rule used in this experiment was all the 
triangles (p) are blue (q). Two stacks of cards were placed before a 
participant. One stack was drawn from the pack of red circles and 
the other from the pack of blue triangles. Both stacks were placed 
before participants with the blank faces uppermost so that they 
could not see the colored shapes on the cards. Each stack had a 
label behind it. The stack of red circles had a label reading Red 
Shapes (not q cards), and the stack of blue triangles had a label 
reading Blue Shapes (q cards). In the high probability condition, 
there were 25 cards in the q card stack and 5 cards in the not q card 
stack. In the medium probability condition, there were 15 cards in 

the q card stack and 15 cards in the not q card stack. In the low 
probability condition, there were 5 cards in the q card stack and 25 
cards in the not q card stack. 

In the RAST, a "prompt" card is usually included among the q 
cards. This card is an instance of a not p and q card (i.e., in this 
experiment, a blue circle). The purpose of the prompt card is to 
indicate the irrelevance of the q cards; "such an item is obviously 
irrelevant to the claim that all triangles are [blue] and hence it 
follows that the [blue] shapes provide no information" (Wason & 
Green, 1984, p. 600). According to the logic of ODS, this argument 
is not valid. Although finding blue circles may be uninformative 
concerning the truth or falsity ofaU the triangles are blue, this does 
not mean that finding blue triangles is similarly uninformative. 
From the perspective of ODS, therefore, the prompt introduces an 
unwanted confound into the RAST. procedure (see also Wason & 
Green, 1984, p. 600). In this experiment, the prompt card was 
therefore omitted from the q card stack. 

Procedure. Participants were tested individually. On entering 
the experimental room, participants were seated in front of a table 
where the experimental materials were laid out. The experimenter 
then read out the following instructions (based on Johnson-Laird & 
Wason's, 1970a, instructions): 

Before you are two stacks of cards. Each card in these stacks 
has a blue shape or a red shape on it. The shapes on the cards 
are triangles or circles. 

Your task is to prove whether the following claim is true or 
false of these cards: 

ALL THE TRIANGLES ARE BLUE. 
You ask me to turn over a card from either stack (blue 

shapes or red shapes), then, when you have examined it, you 
ask me to turn another card---again from either stack. We 
continue in this way until you are satisfied that the rule is true 
or false. There is no hurry, but I want you to do the task 
economically, i.e., to examine as few cards as you need. 

Some information that may help you decide which cards to 
choose is that there are . . .  

The information participants were then given depended on the 
condition. In the high probability condition, they were told there 
were 25 blue shapes and 5 red shapes, in the medium probability 
condition they were told there were 15 blue shapes and 15 red 
shapes, and in the low probability condition they were told there 
were 5 blue shapes and 25 red shapes. Participants were then told, 
"When you have reached a decision about whether the claim is true 
or false, and hence you do not need to turn any more cards, please 
inform the experimenter." 

In Johnson-Laird and Wason (1970a), "if at any point it was 
claimed that the sentence had been proved true, when it had not 
been proved, the participant was told he was wrong and asked to 
continue with the task" (p. 51). We used the same instruction, but 
with one change in how it was applied. This instruction can be 
interpreted only to mean that if participants had not looked at all the 
not q cards and determined that none was also a p card, then they 
were told they were wrong. This criterion for terminating the 
experiment is based on the surategy of falsification. However, 
according to ODS, in the present experiment, different stacks were 
relevant in different conditions, so in the low probability condition, 
the q cards were most informative. Therefore, we predicted that 
participants should select all of these cards and only some of the not 
q cards. Conversely, in the high probability condition the not q 
cards were the most informative; therefore, we predicted that 
participants should select all of these cards and only some of the q 
cards. In all conditions, we therefore terminated the experiment 
when participants announced that the rule was either true or false 
and one stack was exhausted; that is, we laid down no prescriptions 
about which stack had to be exhausted before we allowed a 
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participant to terminate the experiment. This termination condition 
was used in all the experiments reported in this article. In practice, 
although the possibility of falsity is mentioned in the instructions, 
because the rule was always true of the cards in the stacks, 
participants always announced that the rule was true. (No partici- 
pants gave the aberrant response that the rule was false.) 

Results and Discussion 

We first converted each participant's data into proportions 
of cards selected because of the unequal numbers of q and 
not q cards involved in each condition) We show the 
.proportions of each card selected in Table 1. We then 
transformed the data by using the arcsine transform so that 
the data would meet the underlying assumptions of the 
analysis of variance (ANOVA; Snodgrass, 1977, pp. 379- 
382). To test Level 1, Prediction 1 and Level 1, Prediction 2 
of ODS, we linearly combined these measures (Lindeman, 
Merenda, & Gold, 1979) by taking the proportion of q card 
selections (arcsine corrected) from the proportion of not q 
card selections (arcsine corrected) to produce a composite 
variable that equates with discriminability. Oaksford and 
Stenning (1992) used a similar measure that they called the 
consequent falsification index (CFI). We show the values of 
CFI by P(q) (low, medium, and high) in Table 1. 

At Level 1, ODS predicts that CFI should increase asP(q) 
increases. We therefore performed a linear contrast with 
P(q) (low, medium, and high) as a between-subjects variable 
and with CFI as the dependent variable. As predicted, there 
was a highly significant linear contrast, F(1, 33) = 26.68, 
MSE = 3.22, p < .0001, such that CFI increased with P(q). 
This confirmed Prediction 1, Level 1 of ODS. At Level 1, 
ODS also predicts that CFI should be higher in the high P(q) 
condition than in the other two conditions and that CFI 
should be higher in the medium P(q) condition than in the 
low P(q) condition. Post hoc Newman-Keuls tests con- 
firmed all these predictions at the .05 level. These tests 
confirmed Prediction 2, Level 1 of ODS in this experiment. 

At Level 1, ODS further predicts individual trends in the 
proportions of q and not q cards selected as P(q) varies 
(Prediction 3, Level 1). To test these predictions, we used 
similar between-subjects ANOVAs with the arcsine trans- 
form of the proportion of cards selected as the dependent 
variable. Consistent with the Level 1 predictions of ODS, 
the trend for a lower proportion of q card selections as P(q) 
increases was highly significant, F(1, 33) = 15.88, MSE = 

Table 1 
Mean Proportion of q Cards, Mean Proportion of  not q 
Cards, and Consequent Falsification Index ( CFI; Arcsine 
Corrected)for Each Level of P(q) in Experiment 1 

Mean Prop. Mean Prop. 
q not q CFI 

P(q) M SD M SD M SD 

Low (~) .88 .30 .35 .35 - 1.51 1.86 
Medium (½) .68 .47 .68 .34 -0.02 2.27 
High (~) .25 .36 1.00 .00 2.28 1.03 

Note. Prop. = proportion; P(q) = probability of q. 

1.36, p < .0001, as was the trend for a higher proportion of 
not q card selections as P(q) increases, F(1, 33) = 32.86, 
MSE = 0.65, p < .0001. These simultaneous effects on both 
the q and the not q cards are predicted only by the ODS 
model. 

The Level 2 predictions of ODS rely on people being 
quite sensitive to variation in P(q) and consequently to 
differences in SE[Ig(q)] and SE[Ig(not q)] within conditions. 
At this level, ODS predicts that in the low P(q) condition, 
there should be more q card selections and fewer not q card 
selections and that in the medium and high P(q) conditions, 
there should be more not q card selections and fewer q card 
selections. Qualitatively, these predictions are supported by 
the CFIs in each condition except for the medium condition. 
On average, CFI was negative for the low and medium P(q) 
conditions, albeit only marginally for the medium P(q) 
condition, indicating more q than not q card selections. In 
contrast, on average, CFI was positive in the high P(q) 
condition, indicating more not q than q card selections. 

We further investigated these results by conducting a 3 × 
2 mixed ANOVA with P(q) as the between-subjects variable 
and card as the within-subjects variable and with proportions 
of cards selected (aresine corrected) as the dependent 
variable. We used simple effects comparisons at each level 
of P(q) to test the above predictions. At the low P(q) level, 
the proportion of q cards selected was significantly higher 
than the proportion of not q cards selected, F(1, 33) = 8.50, 
MSE = 1.61, p < .01. Moreover, at the high P(q) level, the 
proportion of not q cards selected was significantly higher 
than the proportion of q cards selected, F(1, 33) = 19.27, 
MSE = 1.61, p < .0001. However, at the medium P(q) level, 
the proportion of not q cards selected was not significantly 
higher than the proportion of q cards selected, F(1, 33) < 1. 
Apart from the final comparison, these results confirmed 
Level 2, Prediction 1 of ODS. 

Finally at Level 2, ODS predicts the following interac- 
tions between these simple effects: There will be more q card 
selections and fewer not q card selections in the low P(q) 
condition than in the medium and the high P(q) conditions 
and more q card selections and fewer not q card selections in 
the medium P(q) condition than in the high P(q) condition 
(Prediction 2, Level 2). To test these pairwise interactions 
between conditions, we treated q and not q cards as levels of 
a single within-subjects cards variable and performed three 
separate 2 × 2 mixed ANOVAs with proportion of cards 
selected (arcsine corrected) as the dependent variable. For 
the low versus high P(q) comparison, there was a significant 
crossover interaction, F(1, 22) = 38.12, MSE = 1.13, p < 
.0001, such that there was a higher proportion of q cards 
selected and a lower proportion of not q cards selected in the 

8 Proportions were used because of the termination conditions of 
the experiment that one stack has to be exhausted. By Bayesian 
revision, this may mean that participants were convinced that the 
rule was true before they were allowed to stop sampling. In these 
circumstances, we assume that participants continued to sample 
from the stack suggested by ODS when they became convinced of 
the rule's truth. As we point out later on, this assumption may need 
to be revised in the light of the data. 
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low P(q) condition than in the high P(q) condition. There 
was also a significant interaction for the medium versus high 
P(q) comparison, F(1, 22) = 10.12, MSE = 1.55,p < .005, 
such that there was a higher proportion of q cards selected 
and a lower proportion of not q cards selected in the medium 
P(q) condition than in the high P(q) condition. However, the 
interaction between the medium and the low P(q) conditions 
failed to reach significance at the 5% level, F(1, 22) = 3.12, 
MSE = 2.15, p = .091. Apart from the final interaction, 
these results confirmed Prediction 2, Level 2 of ODS. 

These findings are consistent with the predictions of ODS, 
which predicts that as P(q) and hence P(p) rises, q card 
selections should decrease and not q card selections should 
increase. In particular, Experiment 1 demonstrates that in a 
task where the not q card selection normally dominates, a 
probabilistic manipulation can lead to more q card selec- 
tions. Other than the failure to observe the predicted results 
for the medium P(q) condition, all the Level 1 and the Level 
2 predictions of the ODS model were confirmed in this 
experiment. The confirmation of the Level 2 predictions 
seems consistent with participants being quite sensitive to 
variations in P(q). 

In part, these results are also consistent with the standard 
RAST results. In the medium P(p)  condition, P(p) = 
P(q) = .5, as in the standard RAST. The proportion of not q 
cards selected was 68%, which is far higher than the 4% to 
12% found in the standard selection task. This is the standard 
RAST result. However, in Experiment 1 the proportion of q 
cards selected was the same as the proportion of not q cards 
selected, whereas in the standard RAST it is typically lower. 
Moreover, the number of participants selecting all the q and 
only some of the not q cards was higher than the number of 
participants selecting all the not q and only some of the q 
cards, which does not replicate the standard RAST. These 
results are not consistent with ODS, which predicts more not 
q card than q card selections at these values of P(p) and 
P(q). 

One possible reason for the discrepancy is that we did not 
use a prompt card to try to cue participants that the q cards 
were irrelevant. Another possible reason is that, as we 
discussed when introducing this experiment, participants 
were not perfectly sensitive to variations in P(q). As we 
mentioned, because rarity is the norm, participants may 
require quite high discriminability to prefer not q to q, which 
equates with higher values of P(q) (see Figure 1B). This 
situation could produce the pattern of results where in the 
mid range of P(q) values, participants are uncertain of which 
card to choose. We return to this issue later, specifically in 
Experiment 4. We first discuss other possible explanations 
for the results of Experiment 1. We address these possible 
explanations in the next two experiments. 

In the low P(q) condition, the smallest stack was the q 
stack. In the high P(q) condition, the smallest stack was the 
not q stack. In these circumstances, there are other possible 
explanations of Experiment 1 that we investigate in the next 
two experiments. First, these results may be found if 
participants were selecting randomly from the stacks and 
terminating when one stack was exhausted. In these circum- 
stances, the proportion of cards selected from the small stack 

would always be higher and would always correspond to the 
stack that ODS predicts should yield the highest proportion 
of selections. Second, participants could have been choosing 
cards from the stack containing the fewest cards; once they 
exhausted this stack, they announced that the rule was true. 

Such a "small stack bias" or random selection does not 
account for why participants also selected cards from the 
stack containing the most cards. It could be argued that a few 
logically competent falsifiers (selecting not q cards) in the 
low condition and a few committed confirmers (selecting q 
cards) in the high condition could explain this finding. 
However, even with this modification, neither small stack 
bias nor random selection can explain these data. First, small 
stack bias must predict that most participants should not pick 
any cards from the stack containing the most cards; but in 
the low P(q) condition, only 1 participant did not pick one or 
more cards from the stack containing the most cards, and in 
the high P(q) condition, only 4 participants did not pick one 
or more cards from the stack containing the most cards. 
Second, random selection could not predict that participants 
would select more cards from the stack containing the most 
cards. However, on average, in the low P(q) condition, 
participants selected 8.67 cards from the stack containing 
the most cards, and in the high P(q) condition, they selected 
6.25 cards from the stack containing the most cards. These 
results are not consistent with participants selecting cards at 
random and terminating when one stack was exhausted. 

Another possibility is that participants prefer not q cards 
in the low P(q) condition in some fixed ratio to the q cards. 
In the low P(q) condition, although participants chose all the 
q cards and only some of the not q cards, they chose 
approximately twice as many not q as q cards, giving a 2:1 
preference for not q cards. If  participants had selected in this 
ratio between stacks, they could still have exhausted the 
small stack while preferring not q cards in this condition. 9 
However, according to this proposal, there is no reason to 
predict that people's preferences should change between 
conditions. Consequently, participants should prefer not q to 
q cards in the fixed ratio 2:1; that is, they should also have 
selected twice as many not q as q cards in the medium and 
high conditions. However, in the medium condition this ratio 
was 1.0, and in the high condition it was .8. These values are 
not consistent with the proposal that participants are select- 
ing cards in a fixed ratio. 

An issue raised by this proposal concerns our use of the 
proportion of cards selected as the dependent variable in 
these analyses. This was the appropriate measure because to 

9 It is legitimate to question what sense can be made of 
"preference" in this context such that not all of the "preferred" 
option was selected. In this task, both options q and not q were 
equally accessible, and so it would be expected that the most 
preferred option would be exhausted. Moreover, the only way that 
it seems to make sense to talk of preferring one type of evidence to 
another in some fixed ratio (as opposed to, say, one kind of fruit to 
another) is in terms of the very probabilistic analysis that the ODS 
model offers. For example, the values of P(q)--and consequently 
of P(p)--may suggest that one is twice as likely to find some 
discriminatory evidence on the not q than on the q cards. 
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achieve the probability manipulation the stack sizes were 
unequal, which meant that participants had unequal opportu- 
nities to select cards from the different stacks. Using the 
proportion allows us to control for this unequal number of  
opportunities to select cards. However, this leaves open the 
possible confounds we have discussed. Although, as we 
have argued, Experiment 1 itself provides evidence that 
these results are not confounded in the ways that we have 
mentioned, in Experiments 2-4,  to which we now turn, we 
further controlled for these possibilities. 

Exper imen t  2 

If  altering the number of  cards available induces partici- 
pants to choose cards at random, from the stack containing 
the fewest cards, or in a fixed ratio, then participants should 
do the same if we use the p and not p cards in the RAST. 
ODS predicts that the p card should be preferred to the notp 
card at all levels of  P(p). These other possibilities, in 
contrast, predict that the notp card should be preferred to the 
p card in the high P(p) condition. Using the antecedent cards 
in a RAST procedure would also allow us to test the 
predictions of  ODS for these cards. ODS also predicts that as 
P(p) increases, p card selections should decrease and not p 
card selections should increase. However, the termination 
criterion for the RAST implies that all cards in the most 
preferred stack will be selected. ODS must therefore predict 
that the p stack will always be exhausted because it predicts 
that the p cards should be preferred in all conditions. 
Consequently, because of  the termination conditions for the 
RAST, p card selections are predicted to always be at 
ceiling, and hence the predicted trend for this card is 
unlikely to be observed. 

M e ~ o d  

Participants. There were 36 participants. All participants were 
recruited from the Department of Psychology, University of Wales, 
Bangor participant panel. Each participant was paid £2.50 for his or 
her participation. None of the participants had any prior knowledge 
of Wason's (1966) selection task. 

Design. Participants were assigned randomly to one of three 
conditions, so that there were 12 participants in each condition: a 
high probability condition, P(p) = .83 (sA); a medium probability 
condition, P(p) = .50 (½); and a low probability condition, P(p) = 
.17 (%). 

Materials. The materials were the same as those used in 
Experiment 1. The same rule----all the triangles (p) are blue 
(q)---was also used. However, because the choice of cards was now 
between the p and the not p cards, the stack of red circles had a 
label reading Circles (not p cards), and the stack of blue triangles 
had a label reading Triangles (p cards). The number ofp and notp 
cards in each condition directly mirrored the number of q and not q 
cards, respectively, in each condition in Experiment 1. 

Procedure. The procedure was the same as in Experiment 1 
except for the following changes to the instructions to reflect that 
the choice of cards was now between the p and not p cards. 
Sentences 2 and 3 were replaced with "Each card in these stacks 
has a coloured triangle or a circle on it. The colours on the cards are 
blue or red," and the description in parentheses at the end of the 
fifth sentence was replaced with "triangles or circles." The 
information participants were then given, depending on the condi- 

Table 2 
Mean Proportion of p Cards and Mean Proportion of not p 
Cards for Each Level of P(p) in Experiment 2 

Mean prop. Mean prop. 
p not p 

P(p) M SD M SD 

Low (I) .92 .29 .14 .30 
Medium (½) 1.00 .00 .19 .31 
High (I) .93 .25 .42 .42 

Note. Prop. = proportion; P(p) = probability ofp. 

tion, was the same as in Experiment 1 except for the substitution of 
triangles for blue and circles for red. 

Results and Discussion 

Our goal in this experiment was to control for the 
possibility that participants either were selecting cards at 
random or were biased toward the smaller stack. This 
predicts that participants should opt for the smallest stack in 
the low and high P(p)  conditions. Consequently, they should 
select more p cards than not p cards in the low P(p) 
condition but more not p cards than p cards in the high P(p) 
condition. In contrast, ODS predicts that participants should 
make more p than not p card selections regardless of  P(p). 
To test these competing hypotheses, we first transformed the 
raw data in the same way as in Experiment 1. We then 
performed a 2 X 3 mixed ANOVA with card type (p  and not 
p) as a within-subjects variable and P(p)  (low, medium, and 
high) as a between-subjects variable, with the arcsine of  the 
proportion of  cards selected as the dependent variable. There 
was a significant main effect for card type, F(1, 33) -- 69.40, 
MSE = 1.18, p < .0001, but not for P(p) ,  F(2, 33) = 2.92, 
MSE = 0.42, p > .10, with no significant interaction, F(2, 
33) = 1.16, MSE = 1.18, p > .30. We show proportion of  
cards selected in each condition in Table 2. Table 2 shows 
that consistent with ODS, the proportion o f p  card selections 
is higher than the proportion of  not p cards selected for all 
levels of  P(p). Simple main effects comparisons revealed 
that the proportion of  p cards selected was significantly 
higher than the proportion of  not p cards selected in the low 
P(p),  F(1, 33) = 28.51, MSE -- 1.18, p < .0001, in the 
medium P(p),  F(1, 33) -- 30.47, MSE = 1.18, p < .0001, 
and crucially in the high P(p),  F(1, 33) = 12.76, MSE = 
1.18, p < .001, conditions. These results, although consis- 
tent with ODS, are not consistent with random selection or 
with a small stack bias. In particular, both possibilities 
predict that not p should be preferred to p in the high P(p)  
condition, which it was not. It is therefore unlikely that 
participants adopted a small stack bias or selected cards at 
random in Experiment 1. 

We further investigated any trends for thep  and notp card 
selection frequencies. Consistent with ODS, there was a 
trend for a higher proportion of  notp card selections as P(p)  
increased that just failed to reach significance at the 5% 
level, F(1, 33) --- 3.67, MSE = 1.16, p = .064. As predicted, 
we did not observe a significant trend for the p card, F(1, 
33) < 1. 
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These results indicate that altering the number of  cards 
available does not induce participants to select cards at 
random or from the stack containing the fewest cards. 
Participants consistently selected more p cards than not p 
cards for all levels of  P(p).  This means that any attempt to 
explain the results of  Experiment 1 as an artifact of  altering 
the number of  cards available must provide a different 
account of  Experiment 2, an almost identical task. 

The trend for more notp  card selections as P(p)  increases 
is consistent with ODS. As predicted, p card selections were 
very near ceiling at all levels of  P(p).  However, the p card's  
dominance may call into question whether Experiment 2 
successfully addressed small stack bias. Therefore, we 
further investigated this bias in Experiment 3. 

E x p e r i m e n t  3 

The dominance of  the p card may call into question 
Experiment 2's ability to act as a control for a small stack 
bias. Every theory of  the selection task predicts that the p 
card should predominate.l° Although the dominance of  the p 
card overrides the small stack bias for the antecedent cards 
in Experiment 2, this does not mean that this bias or a 
random selection of  cards was not the cause of  the behavior 
observed for the consequent cards in Experiment 1. In 
Experiment 3, we controlled for this potential confound by 
replicating Experiment 1 but keeping the stack sizes the 
same. We achieved this by having the experimenter deal 10 
cards from different sized packs. Participants then had to 
select from the two now equally sized stacks. 

M e t h o d  

Participants. There were 36 participants. All participants were 
recruited from the Department of Psychology, University of 
Warwick participant panel. Each participant was paid £2.00 for his 
or her participation. None of the participants had any prior 
knowledge of Wason's (1966) selection task. 

Design. Participants were assigned randomly to one of three 
conditions, so that there were 12 participants in each condition: a 
high probability condition, P(q) = .83 (5/~); a medium probability 
condition, P(q) = .50 (½); and a low probability condition, P(q) = 
.17(¼). 

Materials. The materials consisted of two packs of 100 cards 
each. One pack depicted red circles on one side, and the other pack 
depicted blue triangles on one side. The obverse side of all the cards 
in each pack was uniformly patterned to prevent show-through of 
the colored shapes. The rule used in this experiment was all the 
triangles (p) are blue (q). In this experiment, the stacks from which 
participants selected cards were drawn from two larger packs that 
were placed in front of participants. One pack consisted of red 
circles and the other of blue triangles. Both packs were placed 
before participants with the patterned faces uppermost so that they 
could not see the colored shapes on the cards. Each pack had a label 
behind it. The pack of red circles had a label reading Red Shapes 
(not q cards), and the pack of blue triangles had a label reading Blue 
Shapes (q cards). In the high probability condition, there were 100 
cards in the q card pack and 20 cards in the not q card pack. In the 
medium probability condition, there were 60 cards in the q card 
pack and 60 cards in the not q card pack. In the low probability 
condition, there were 20 cards in the q card pack and 100 cards in 
the not q card pack. 

Procedure. The procedure was the same as in Experiment 1, 
with the following changes to the instructions. 

Before you are two packs of cards. One pack contains cards 
with red shapes on one side and the other pack contains cards 
with blue shapes on one side. The shapes on the cards are 
triangles or circles. I will deal you 10 cards with a red shape on 
one side and 10 cards with a blue shape on one side. 

Your task is to prove whether the following claim is true or 
false of these cards: 

ALL THE TRIANGLF~ ARE BLUE, 

You ask me to turn over a card from either stack (blue shapes 
or red shapes), then, when you have examined it, you ask me 
to turn another card--again from either stack. We continue in 
this way until you are satisfied that the rule is true or false. 
There is no hurry, but I want you to examine as few cards as 
you need. 

Some information that may help you decide which cards to 
choose is that, there a r e . . .  

The information participants were then given depended on the 
condition. In the nigh probability condition, they were told that the 
packs from which the stacks of cards were drawn contained 100 
blue shapes and 20 red shapes, in the medium probability 
condition, 60 blue shapes and 60 red shapes, and in the low 
probability condition, 20 blue shapes and 100 red shapes. 

It is possible that these instructions created an ambiguity about 
whether the rule applied (a) to just the 20 cards in the two stacks or 
(b) to all the cards in the pack. Only the latter interpretation is 
consistent with altering participants' beliefs about P(q) in the 
intended directions. The first interpretation (a) would leave P(q) = 
.5 in all conditions. There are two points to make here. First, the 
additional information participants were given, which they are told 
"may help . . .  [to] . . .  decide which cards to choose," was 
inconsistent with this interpretation (a) according to which, informa- 
tion about the distribution of colors in the packs must be irrelevant. 
Therefore, it is unlikely that having been told that information 
about the packs was relevant to their card choice, participants 
should then have interpreted the rule as applying only to the cards 
in the two stacks. Second, according to ODS, if P(q) = .5 in all 
conditions, then there should have been no differences in card 
selections between conditions. Consequently, interpretation (a) can 
be dismissed to the same extent that our experimental hypotheses 
were confirmed. 

One final concern with the revised procedure in Experiment 3 is 
that with the intended interpretation (b), participants can never be 
certain that the rule is actually true because it applies to cards that 
they are not given the opportunity to examine. Nonetheless, given 
the random sample of 20 cards drawn from this population, they 
can be highly confident that it does apply. Moreover, any lack of 
certainty must predict that participants would never declare the rule 
true on the basis of sampling the cards in the stacks. Further, it 
would predict that participants would exhaust both stacks without 
seeking to terminate the experiment. To anticipate our findings, 
neither of these predictions were confirmed. Consequently, it 
would appear that interpretation (b) does not significantly alter the 
way participants viewed the task. 

10 It is reasonable, however, to question the extent to which other 
theories predict the dominance of the p card. Most other theories 
provide informal accounts that incorporate this dominance post 
hoc. In contrast, Oaksford and Chater's (1994) ODS model applied 
ideas from optimal data selection provided by Lindley (1956) to the 
selection task from which the p card dominance emerges as a 
consequence. 
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Results and Discussion 

We analyzed the results of Experiment 3 in the same way 
as we analyzed those in Experiment 1. At Level 1, ODS 
predicts that CFI should increase as P(q) increases (see 
Table 3). We therefore performed a linear contrast with P(q) 
(low, medium, and high) as a between-subjects variable and 
with CFI as the dependent variable. As predicted, there was a 
significant linear contrast, F(1, 33) = 4.53, MSE = 4.56, 
p < .05, such that CFI increased with P(q). This analysis 
confirmed Prediction 1, Level 1 of ODS. At Level 1, ODS 
also predicts that CFI should be higher in the high P(q) 
condition than in the other two conditions and that CFI 
should be higher in the medium P(q) condition than in the 
low P(q) condition. Post hoc Newman-Keuls tests con- 
firmed the first two predictions at the .05 level. However, 
there was no significant difference between the medium P(q) 
and the low P(q) conditions. These tests confirmed all but 
one of the Prediction 2, Level 1 predictions of ODS in this 
experiment. 

At Level 1, ODS further predicts individual trends in the 
proportions of q and not q cards selected as P(q) varies 
(Prediction 3, Level 1). To test these predictions, we used 
similar between-subjects ANOVAs with the arcsine trans- 
form of the proportion of cards selected as the dependent 
variable. Consistent with the Level 1 predictions of ODS, 
the trend for a lower proportion of q card selections as P(q) 
increases was significant, F(1, 33) = 6.28, MSE = 1.53,p < 
.025. However, the trend for a higher proportion of not q 
card selections as P(q) increased failed to reach significance 
atthe 5% level, F(1, 33) = 2.78, MSE = 1.12,p = .10. 

The Level 2 predictions of ODS rely on participants being 
quite sensitive to variation in P(q) and consequently to 
differences in SE[Is(q)] and SE[Is(not q)]. At this level, ODS 
predicts that in the low P(q) condition there should be more 
q card selections than not q card selections and that in the 
medium and high P(q) conditions there should be more not q 
card selections than q card selections. Qualitatively these 
predictions are supported by the CFIs in each condition 
except for the medium condition. On average, CFI was 
negative for the low and medium P(q) conditions, indicating 
more q than not q card selections. In contrast, on average 
CFI was positive in the high P(q) condition, indicating more 
not q than q card selections. 

We further investigated these results by conducting a 3 >< 
2 mixed ANOVA with P(q) as the between-subjects variable 

Table 3 
Mean Proportion of q Cards, Mean Proportion of not q 
Cards, and Consequent Falsification Index ( CFI; Arcsine 
Corrected)for Each Level of P(q) in Experiment 3 

Mean prop. Mean prop. 
q not q CFI 

P(q) M SD M SD M SD 

Low (~) .69 .40 .63 .39 -0.12 2.17 
Medium (½) .75 .45 .56 .42 -0.53 2.42 
High (~) .30 .35 .89 .26 1.73 1.76 

Note. Prop. = proportion; P(q) = probability of q. 

and card as the within-subjects variable and with proportions 
of cards selected (arcsine corrected) as the dependent 
variable. We used simple effects comparisons at each level 
of P(q) to the test the above predictions. At the low and 
medium P(q) levels, there were no significant differences 
between the proportion of q cards selected and the propor- 
tion of not q cards selected, F(1, 33) < 1, in both cases. 
However, at the high P(q) level the proportion of not q cards 
selected was significantly higher than the proportion of q 
cards selected, F(1, 33) = 7.91, MSE = 2.28,p < .01. 

Finally, at Level 2, ODS predicts the following interac- 
tions between these simple effects: There should be more q 
card selections and fewer not q card selections in the low 
P(q) condition than in the medium and the high P(q) 
conditions and more q card selections and fewer not q card 
selections in the medium P(q) condition than in the high 
P(q) condition (Prediction 2, Level 2). To test these palrwise 
interactions between conditions, we treated q and not q cards 
as levels of single within-subjects cards variable and per- 
formed three separate 2 × 2 mixed ANOVAs with propor- 
tion of cards selected (arcsine corrected) as the dependent 
variable. For the low versus high P(q) comparison, there was 
a significant crossover interaction, F(1, 22) = 5.30, MSE = 
1.95, p < .05, such that there was a higher proportion of q 
cards selected and a lower proportion of not q cards selected 
in the low P(q) condition than in the high P(q) condition. 
There was also a significant interaction for the medium 
versus high P(q) comparison, F(1, 22) = 6.87, MSE = 2.25, 
p < .025, such that there was a higher proportion of q cards 
selected and a lower proportion of not q cards selected in the 
medium P(q) condition than in the high P(q) condition. 
However, the interaction between the medium and the low 
P(q) conditions was not significant, F(1, 22) < 1. Apart from 
the final interaction, these results confirm Prediction 2, 
Level 2 of ODS. Moreover, they directly replicate the results 
of Experiment 1, even though in this experiment the simple 
effect for the low P(q) condition was not replicated. 

The results of Experiment 3 are consistent with the 
predictions of ODS and in the main replicate the findings of 
Experiment 1. In this experiment, participants selected from 
equal sized stacks of cards drawn from larger packs reflect- 
ing different probabilities of q cards. Consequently, there 
was no possibility of a small stack bias or that selecting 
cards at random could have generated these results. How- 
ever, participants showed behavior very similar to that 
observed in Experiment 1. Therefore, it would appear that 
the results of Experiment 1 were not due to random sampling 
or to a small stack bias. 

Experiment 3 replicated Experiment 1 in not confirming 
the Level 2 prediction of more not q than q card selections in 
the medium P(q) condition. However, it did not replicate 
Experiment 1 insofar as it failed to confirm the Level 2 
prediction of more q than not q cards selections in the low 
P(q) condition. The Level 2 predictions depend on partici- 
pants being quite sensitive to variation in P(q). Conse- 
quently, one explanation for this pattern of results follows 
the possibility we mentioned in the discussion of Experi- 
ment 1. The failure to observe the predicted difference for 
the medium P(q) condition may have occurred because 
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people require higher discriminability to override the default 
rarity assumption (see Figure 1). 

The results for the low P(q) condition may also be 
explained in similar terms. In the low condition, P(q) = 
• 167, which is close to the region of uncertainty, even with 
the assumption that people are quite sensitive to P(q) (see 
Figure 1B). Consequently, the failure to observe the Level 2 
prediction for the low P(q) condition in Experiment 3 may 
also be explained by a lack of sensitivity. However, the same 
lack of sensitivity was not observed for the low P(q) 
condition in Experiment 1. We therefore explored these 
effects further in Experiment 4. 

Exper iment  4 

Another possible explanation for the effects observed for 
the medium and low P(q) conditions in Experiments 1 and 3 
concerns sequential sampling. As we mentioned in introduc- 
ing Experiment 1, ODS is about where to direct attention to 
pick up the most informative evidence. Accumulating evi- 
dence, as in sequential sampling in the RAST, may serve to 
redirect attention to evidence types other than those initially 
recommended by ODS. As we discuss in the General 
Discussion section, such redirection of attention may result 
from sequential sampling altering the parameters of the ODS 
model online. An immediate prediction is that participants' 
card selections should be as predicted by ODS for all 
conditions if the sequential sampling component of the task 
is removed. This suggests focusing on the initial card 
selected which can be influenced only by the initial param- 
eter values and not by subsequent sampling. Experiments 
1-3 focused on the percentage of cards selected from each 
stack as the dependent variable. This measure is also 
sensitive to participants refocusing attention on other types 
of evidence as sampling proceeds. Concentrating instead on 
the initial card selected provides a way of testing ODS in the 
absence of sequential sampling. 

In Experiment 4, we therefore replicated and extended 
Experiment 3. We had participants perform two RASTs, one 
with the p, not p cards and one with the q, not q cards. For 
the q and not q cards task (QNQ task), we made the 
following predictions. If  the discrepancy for the medium 
P(q) condition is because of sensitivity, then there would be 
no differences in the frequency of initial selections of not q 
and q cards. Conversely, if the discrepancy is because of 
sequential sampling, the opposite result is predicted; that is, 
there would be significantly more initial selections of the not 
q card than the q card in the medium P(q) condition• 
Furthermore, similar predictions hold for the low P(q) 
condition. If the discrepancy between Experiments 1 and 3 
for the low P(q) condition is because of sensitivity, then 
there would be no differences in the frequency of initial card 
selections for the not q and the q cards. Conversely, if the 
discrepancy is because of sequential sampling, the opposite 
result is predicted; that is, there would be significantly more 
initial selections of the q card than the not q card in the low 
P(q) condition. For the p and not p cards task (PNP task), 
ODS predicts that more participants would initially select 
the p card than the not p card across all conditions, This is 

because the choice of initial card is mutually exclusive. 
Therefore, the card with the highest information gain, p, 
should win to the exclusion of the not p card.H 

Method  

Participants. There were 36 participants. All participants were 
recruited from the Department of Psychology, University of 
Warwick participant panel. Each participant was paid £2.00 for his 
or her participation. None of the participants had any prior 
knowledge of Wason's (1966) selection task. 

Design. In this experiment, participants performed two RASTs. 
One RAST was identical to that in Experiment 3. The other RAST 
was the same as in Experiment 3 except that the p and not p card 
stacks were used as in Experiment 2. With three probability 
conditions and two possible orders in which to conduct the tasks, 
there were 18 possible combinations of task order and condition. 
With 36 participants, each possible combination was used twice. 

Materials. The materials were the same as those in Experi- 
ment 3. 

Procedure. The procedure was similar to that of Experiment 3, 
with the following changes. After having performed the first PAST, 
participants moved to a second table and performed the second 
PAST according to their condition and task order. 

Results and Discussion 

In this experiment, the dependent variable of interest was 
which card participants selected first. Table 4 shows these 
results for all three conditions. We analyzed the PNP and 
QNQ tasks separately. From Table 4, it is clear that the 
pattern of results was as predicted. In the QNQ task, 
although not q dominated q for the medium and high 
conditions, q dominated not q for the low condition. In the 
PNP task, p dominated not p in all conditions. 

Within each task, each category is mutually exclusive, and 
hence we used the chi-square statistic to test the statistical 
significance of these results. 12 For the QNQ task, we 
partitioned the degrees of freedom by first comparing the 
medium and high conditions with each other and then 
comparing these two conditions collapsed with the low 
condition (for the logic of partitioning, see Siegel & 
Castellan, 1988). As is obvious from Table 4, the first 
partition indicated that the effects of the high and medium 
conditions were identical, X2(1, N = 36) = 0. The second 
partition revealed the predicted crossover interaction be- 
tween the medium and high conditions collapsed and the 
low condition, X~(1, N = 36) = 3.85, p < .025 (one-tailed). 
Although there were more not q than q card selections in the 
medium and high conditions, there were more q than not q 
card selections in the low condition as predicted by ODS. 

We tested the prediction of more not q than q card 
selections in the medium and high P(q) conditions by using 
the chi-square goodness-of-fit statistic (Siegel & Castellan, 

II This contrasts with the normal selection task where any or all 
of the cards may be chosen. 

12 For all 2 × 2 contingency tables reported here, Yate's (Camilli 
& Hopkins, 1978) correction for continuity was not used because 
not all the marginal totals were fixed. 
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1988). As predicted by ODS, there were significantly more 
not q than q initial card selections in the medium P(q) 
condition, ×2(1, N = 12) = 3.00, p < .05 (one-tailed) and in 
the high P(q) condition, ×2(1, N = 12) = 3.00, p < .05 
(one-tailed) than would be expected by chance. However, 
casual inspection shows that there were no more q than not q 
card selections in the low P(q) condition. Note that the 
selections of  not q and q cards were the same in the medium 
and the high P(q) conditions. However, ODS predicts that 
there should be more not q and less q card selections in the 
high P(q) condition than in the medium P(q) condition. We 
offer no explanation for this finding apart from noting that it 
was probably due to chance variation and that perhaps a 
larger sample size may confirm this prediction for the initial 
card selections in the same way that Experiments 1 and 3 
confirmed it for all card selections. 

For the PNP task, we tested to what extent selections 
differed from chance by using the chi-square goodness-of-fit 
statistic (Siegel & Castellan, 1988). As predicted, for each 
condition the distribution of p and not p card selections 
differed significantly from chance: low, ×2(1, N = 12) = 
5.33,p < .025 (one-tailed); medium, ×2(1, N = 12) = 8.33, 
p < .005 (one-tailed); high, ×2(1, N = 12) = 3.00, p < .05 
(one-tailed). 

For completeness, we also show the results of Experiment 
4 presented as in Experiments 1-3. We show the proportion 
of each card selected by order and by condition in Table 5. 
Because of a strong order effect, the results of Experiment 3 
were replicatedmalbeit not significantly-only when the 
QNQ task was performed first. Order affected the conse- 
quent card selections (q and not q) such that in the 
PNP-QNQ order, there were more not q than q cards 
selected for all conditions, but in the QNQ-PNP order, there 
were more not q than q cards selected for the high P(p) 
condition only, as in Experiments 1 and 3. In a 2 × 3 
between-subjects ANOVA with order and condition as 
variables and proportion of q cards selected as the dependent 
variable, there was a significant main effect of order, F(1, 
30) = 6.24, MSE = 0.16, p < .025, such that there was a 
higher proportion of q card selections in the QNQ-PNP 
order than in the PNP-QNQ order. 

Could these order effects explain the significant results 
found for the initial card selections? The main order effect 
was for high levels of not q card selections for all conditions 
and for fewer q card selections in the PNP-QNQ order. If  
anything, this would predict more not q than q card 
selections in all conditions in Experiment 4. However, we 
still observed the predicted interactions between conditions 

Table 4 
Number of  Cards Initially Chosen From the Card 
Stacks in Experiment 4 

Card stack 

P(p) or P(q) p not p q not q 

Low (~) 10 2 7 5 
Medium (½) 11 1 3 9 
High (~) 9 3 3 9 

Note. P(p) = probability of p; P(q) = probability of q. 

Table 5 
Proportion of  Cards Selected in Each Order and in Each 
Condition in Experiment 4 

Condition 

Low Medium High 

Card and order M SD M SD M SD 

P 
PNP-QNQ .92 .20 1.00 .00 .77 .38 
QNQ-PNP .87 .22 1.00 .00 1.00 .00 

not p 
PNP-QNQ .35 .44 .10 .20 .35 .51 
QNQ-PNP .33 .52 .35 .42 .08 .12 

q 
PNP--QNQ .47 .44 .28 .40 .52 .46 
QNQ-PNP .70 .38 .93 .16 .62 .45 

not q 
PNP--QNQ .83 .32 .83 .41 .85 .37 
QNQ-PNP .70 .34 .75 .42 .83 .26 

Note. PNP = the p and not p cards task; QNQ = the q and not q 
cards task. 

for initial card selections. Consequently, the order effect in 
Experiment 4 could not explain the results for initial card 
selections because it would predict the opposite result to that 
observed. We explore possible reasons for these order effects 
in the General Discussion. 

The results of Experiment 4 are largely consistent with 
ODS. Participants' attention was initially focused on the 
cards that ODS predicts. However, in the low condition, it 
would appear that P(q) was close to the area of uncertainty, 
which is why no significant differences between q and not q 
card selections were observed in this experiment and in 
Experiment 3. As we discuss in the General Discussion, this 
difference with Experiment 1 for the low P(q) condition may 
be understood in terms of the effects of sequential sampling 
and the different stack sizes used in that experiment. 
Moreover, in the medium P(q) condition, it would appear 
that participants subsequently attended to classes of evi- 
dence other than those initially recommended by ODS 
alone. (Although as we argue in the General Discussion, if 
the model's parameters are being updated online, then the 
ODS model may predict these results.) Because of the binary 
choice at each trial in the RAST, any effect of accumulating 
evidence must be to focus attention away from the cards 
ODS initially recommends. In spite of this, the trends 
predicted by ODS were significantly observed in the RAST 
in Experiments 1-3. Thus, it would appear that if additional 
mechanisms are needed to explain refocusing (which they 
may not be, see the General Discussion), then they overlay 
the basic mechanisms of ODS. It is important that when the 
effects of refocusing were eliminated by looking only at the 
first card chosen, as we did in Experiment 4, the predictions 
of  ODS were again confirmed. 

General  Discussion 

The purpose of these experiments was to test the predic- 
tions of Oaksford and Chater's (1994) ODS model. In all 
these experiments, the parameters of the model were varied 
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at three levels--low, medium, and high--by varying the 
sizes of the card stacks used in the RAST. Predictions were 
derived at two different levels of sensitivity to variation in 
the model's parameters, P(q) and P(p). At Level 1, where 
participants were assumed to be relatively insensitive to 
such variation, four predictions were derived at increasing 
levels of detail. The Level 1 predictions were all between 
conditions. At Level 2, where participants were assumed to 
be quite sensitive to varying the model's parameters, predic- 
tions were also made within conditions concerning the 
relative frequency of different cards that should be selected. 
In summary, Experiment 1 confirmed all the Level 1 
predictions of the ODS model. The experiment confirmed all 
the Level 2 predictions except that there should be more not 
q than q card selections for the medium P(q) condition and 
the related prediction that there should be an interaction for 
the proportions of q and not q cards selected for the medium 
versus low P(q) conditions. 

The results of Experiment 1 could be explained by 
participants selecting at random or by a small stack bias; in 
other words, participants may simply have tended to choose 
a higher proportion of cards from small stacks. Experiment 2 
controlled for these possible confounds by using a RAST 
with the p and not p cards. Random selection or small stack 
bias would predict trends similar to those observed in 
Experiment 1--that participants should select p cards in 
preference to not p cards for a small p stack and not p cards 
in preference to p cards for a large p stack with intermediate 
choices for a medium p stack. ODS, by contrast, predicts 
that the p card should always be preferred. Furthermore, it 
predicts that the notp selections will be greatest for a large p 
stack, but because ODS predicts that the p card should be so 
much preferred in all conditions, the termination conditions 
of the RAST mean that p selections will always be at ceiling. 
Experiment 2 provided strong evidence against random 
selection and small stack bias. As ODS predicts, p card 
selections were significantly higher than not p card selec- 
tions for all levels of P(p). Moreover, the predicted trend for 
not p card selections to increase as P(p) increases was very 
close to significance. 

However, it could be argued that although random 
sampling and small stack bias are not factors for the p cards, 
they might nonetheless affect performance in the original 
RAST with q and not q cards. Experiment 3 removed both 
possibilities by using stacks of equal size in all conditions 
and manipulating probabilities by changing the size of the 
packs from which the stacks were drawn. ODS makes the 
same predictions in Experiment 3 as in Experiment 1, which 
Experiment 3 largely replicated at Level 1. It also replicated 
Experiment 1 at Level 2 insofar that in the medium P(q) 
condition, no difference was observed in the frequency of q 
and not q card selections, However, Experiment 3 did not 
replicate Experiment 1 insofar as the same result was found 
for the low P(q) condition. Neither result is consistent with 
the Level 2 predictions of the ODS model. 

Although these Level 2 results could be attributed to a 
simple lack of sensitivity, we investigated them further in 
Experiment 4. We argued that the discrepancies for the low 
and medium conditions could be due either to a lack of 

sensitivity or to sequential sampling leading to changes of 
attentional focus to evidence other than that initially recom- 
mended by ODS. In Experiment 4, we therefore looked at 
the first card selected which, not being susceptible to any 
subsequent changes of  attentional focus, provides a more 
critical test of our model's predictions. For the medium P(q) 
condition, Experiment 4 confirmed the predictions of ODS--  
the discrepancy for this condition observed in Experiments 1 
and 3 disappeared for the first card selected. This result 
suggests that the findings for this condition in Experiments 1 
and 3 were due to sequential sampling. However, for the low 
P(q) condition, the results of Experiment 4 mirrored those of 
Experiment 3. This result suggests that the low condition, 
where P(q) = .167, is in the region of uncertainty (see 
Figure 1B). As we noted in introducing the predictions of the 
ODS model, even if people are quite sensitive to manipulat- 
ing its parameters, P(q) = .  167 will be close to this region. 
The significant Level 2 result for the low P(q) condition in 
Experiment 1 may have been due to chance, but we offer an 
alternative explanation below in terms of sequential sampling. 

Experiments 1-4 confirmed that there are significant 
effects of varying the parameters of the ODS model in the 
RAST. The results of these experiments are broadly in line 
with the predictions of the ODS model down to quite a fine 
level of detail. It is important to note that even if the precise 
predictions of the ODS model were not confirmed in these 
experiments, the significant effects we observed are not 
consistent with most other major theoretical accounts of 
selection task performance. We now show this in a review of 
how other theoretical approaches may attempt to explain 
these data. 

First, we deal briefly with theories that seem in principle 
incapable of handling these results. Mental logic (e.g., 
Bralne, 1978; Henle, 1962; Rips, 1983, 1994)--the proposal 
that we reason in these tasks by using syntactic rules orproof 
theory--provides no mechanisms for handling probabilistic 
effects. However, as Oaksford and Chater (1994) observed, 
Rips (1990) has argued that the selection task is not a 
deductive reasoning task but is rather a "loose" probabilistic 
task. Consequently, although mental logic cannot explain 
these effects, they do not necessarily question the utility of 
the mental logic approaches to "tight" logical tasks where it 
may provide a more appropriate approach (although see 
Oaksford & Chater, 1995b, for discussion of whether such 
tasks exist outside of mathematics). 

There have been some recent proposals for how to extend 
mental-models theory to handle probabilistic effects 
(Johnson-Laird, 1994). However, it is not clear how this 
extension could be applied in particular cases. Moreover, the 
core of mental models as an approach to inference has been 
the claim that reasoning is the search for counterexamples. 
But when it comes to probabilistic relations, counterex- 
amples will always be possible. Consequently, the very basis 
on which the mental models theory of inference operates 
must be revised to account for probabilistic effects like those 
in Experiments 1-4. Further, recent work on focusing and 
mental models may be thought to explain why participants 
refocus on cards other than those initially recommended by 
ODS (Legrenzi, Girotto, & Johnson-Laird, 1993). The 
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suggestion is that people focus only on the contents of their 
mental models, but this just restates the problem. We want to 
know what evidence people attend to; no doubt this is the 
evidence that people then represent, but what makes them 
attend to it in the fast place? Chater and Oaksford (1993; see 
also, Oaksford & Chater, 1995b) argued that there is nothing 
intrinsic to mental models theory that can provide an answer 
to this question. 

Sperber et al. (1995) have suggested that relevance theory 
(Sperber & Wilson, 1986) can account for attentional 
changes in the selection task. Consistent with relevance 
theoretic accounts, Oaksford and Chater (1995a) have 
proposed that ODS provides a formal relevance measure that 
serves to direct attention to informationally salient evidence. 
Consequently, these accounts are not in competition. How- 
ever, although agreeing on the importance of relevance 
processing in reasoning (see also Evans, 1994), Sperber et 
al.'s relevance account could not explain the results of 
Experiments 1-4. Their account is framed in terms of 
cognitive effects and effort that do not appear to have any 
immediate application to the purely probabilistic manipula- 
tions used in these experiments. Indeed, Oaksford and 
Chater (1995a) argued that the success of Sperber et al.'s 
experiments demonstrating relevance theoretic effects may 
have been due to their implicitly manipulating P(p) and 
P(q). We now consider approaches that contain an explicit 
probabilistic component. 

Kirby's (1994) model suggests that people attend to the 
cards in the selection task depending on the probability of 
finding a counterexample. Consequently, when P(p) is low, 
participants should be less inclined to check the not q card 
because it is unlikely to be a p, not q instance. However, 
when P(p) is high, the not q card is highly likely to yield 
such a counterexample. Kirby's emphasis on searching for 
counterexamples means that he was unable to explain why 
we also observed significant changes in selections for the q 
card in these experiments (a result that Kirby also found). 
These changes are predicted by Oaksford and Cbater's 
(1994) Bayesian model because it allows that both confirm- 
ing and disconfirming evidence is relevant. In, for example, 
Experiment 3, the difference in q card selections between the 
high and low conditions was significant, F(1, 33) = 5.65, 
MSE = 16.30, p < .025, despite the tendency to also select 
not q cards in the low condition. Kirby's model cannot 
explain these effects. 

Recently, Over and Evans (1994, see also Evans & Over, 
1996) have proposed an account based on what they call 
epistemic utility. They have not provided a formal model of 
this account so it is difficult to apply in particular cases. The 
principal contrast with Oaksford and Chater's (1994) ac- 
count is that different classes of evidence may have different 
epistemic values in different contexts. Consequently, rather 
than laying all the emphasis on counterexamples as in 
Kirby's (1994) model or allowing that confirming and dis- 
confirming evidence are weighted depending solely on P(p) 
and P(q) as in Oaksford and Chater's (1994) model, Over 
and Evans argued that confirmation and disconfirmation 
may also be differentially weighted depending on a person's 
goals. Although this is an eminently reasonable suggestion 

as Oaksford and Chater (1996) observed, without a formally 
specified model we are unable to assess whether Over and 
Evan's proposal would make different predictions than ODS 
did in Experiments 1-4. Nevertheless, there are aspects of 
our data that may point to an epistemic utility account. 

The finding that during sequential sampling participants' 
attention may have been drawn to cards other than those 
initially recommended by ODS is open to a variety of 
interpretations. First, consistent with Oaksford and Chater's 
(1994) current ODS model, it could be that participants were 
updating P(p) and P(q) online as a result of sequential 
sampling. Although participants were told the distribution of 
the q (or p) cards at the outset and these values determined 
their initial selections as Experiment 4 revealed, they may 
nonetheless have treated the stack sizes as only tentative 
estimates of P(p) and P(q) to be revised when sampling the 
real data. We used continuous updating of P(p) and P(q) in a 
simulation, and it would indeed appear that this can lead to 
trial-by-trial alternations in the stacks that ODS recommends 
as the most informative. 

Second, consistent with Over and Evans's (1994) article, 
it could be that sequential sampling was altering partici- 
pants' goals. According to ODS, in both the medium and 
high P(q) conditions, participants' attention was initially 
directed toward the not q card stack. All the cards in this 
stack were not p, not q cards; that is, although examining 
these cards would confirm the rule--that is, P(MD) rises--- 
they provided participants with no positive instances of the 
rule. This is like arguing that although you have never seen a 
raven, you are confident that all ravens are black because all 
the nonblack things you have examined were also not 
ravens. As discussed earlier, the ravens paradox is elimi- 
nated by Oaksford and Chater' s (1994) default rarity assump- 
tion (Horwich, 1982; Howson & Urbach, 1989). In the low 
P(q) condition, participants' attention was focused on the q 
cards, which were allp, q instances; that is, participants were 
looking for blue triangles (black ravens). However, when 
rarity was not in force (i.e., in the medium and high P(q) 
conditions), participants may have wanted to see some blue 
triangles as well as red circles to confirm that the rule was 
not just vacuously true. Consequently, although participants 
were initially guided to the not q stack in the medium and 
high P(q) conditions by ODS, they may at some time have 
decided to search for positive instances of the rule. 

However, participants were more likely to look for 
positive instances in the medium condition than in the high 
condition. SElg(not q) was much higher in the high P(q) 
condition than in the medium P(q) condition. Consequently, 
it would take more data to overcome the attentional focus on 
the not q card in the high P(q) condition than in the medium 
P(q) condition. However, in the RAST the number of data 
points are limited to a fixed number. (In Experiments 3 and 
4, it was 10.) Therefore, the point where attention is 
refocused was more likely to have been met in the medium 
P(q) condition than in the high P(q) condition. 

Conversely, in the low P(q) condition after initially 
focusing on the q cards, participants' attention may have 
been diverted toward the not q cards. From our Bayesian 
perspective, both p, q and p, not q cases may provide 
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important classes of evidence. After examining a certain 
number of p, q cases, attention may have shifted to looking 
forp, not q cases. This could explain the differences between 
Experiments 1 and 3 in the low condition. In Experiment 1, 
in the low P(q) condition there were 5 q cards, whereas in 
Experiment 3 there were 10. It was therefore more likely that 
participants would exhaust this stack while their attention 
was still focused on p, q instances in Experiment 1 than in 
Experiment 3. Because these instances were then exhausted, 
participants declared the rule true and terminated the experi- 
ment. Consequently, a far lower proportion of not q cards 
should have been selected in the low P(q) condition in 
Experiment 1 than in Experiment 3, which would be 
consistent with the observed differences between these 
experiments.13 

This explanation for attentional shifts during sequential 
sampling can also explain the order effect observed in 
Experiment 4. In the PNP-QNQ order, participants initially 
chose all thep cards, which all had qs on the other side. They 
then moved on to the QNQ task. However, by then they had 
already observed up to 10 positive p, q instances. Conse- 
quently, they focused attention on the p, not q cases. How- 
ever, in the QNQ-PNP order, participants did not have the 
same opportunity to examine positive instances of the rule. 

Current epistemic utility theory does not address how 
these changes of attention come about. However, a simple 
proposal would be to allow different utilities of evidence in 
Oaksford and Chater's (1994) ODS model (as Evans & 
Over, 1996, suggest) in a manner similar to their maximum 
expected utility model of the deontic selection task (Oaks- 
ford & Chater, 1994, pp. 621-625). Modeling changes of 
attention due to sequential sampling would involve making 
the utilities for each evidence type some decreasing function 
of the number of instances of that evidence type observed. If  
all evidence were equally weighted initially, such a model 
would make the same predictions as ODS for initial card 
selections. However, after accumulating data, other evi- 
dence types would come to have higher utility as the utility 
of the evidence type initially recommended by ODS falls off. 

It is important to note that these proposals are consistent 
with the ODS framework. If  people were doing the mental 
equivalent of updating their parameter values online, then 
they were effectively changing the models (i.e., Mt and MD) 
that are compared in ODS. As with the changes in these 
models we intended to bring about in these experiments by 
explicitly manipulating P(q) and P(p), the ODS model still 
predicts that participants select the optimally informative 
experiments to perform. However, as the models change, 
which experiments are optimal may also change. A similar 
argument applies to the suggestion that utilities of different 
evidence types should be introduced into these calculations 
as seems to be suggested by epistemic utility theory. We 
suggested that such an approach could be incorporated by 
introducing a utility function with respect to evidence types 
that is some decreasing function of the number of instances 
observed. Weighting these utilities by expected information 
gain provides a quantity that it would be worth maximizing 
in the same way as any other expected utility measure. 
Consequently, any of the revisions to the ODS model that we 

have suggested in response to Experiments 1-4 are still very 
much in the spirit of ODS. 

Which of these possible accounts of the observed devia- 
tions from ODS is the fight one must await further research. 
The RAST provides an excellent paradigm for investigating 
these issues. This investigation will involve detailed analy- 
ses of the sequences of selections that people make that we 
did not investigate in these experiments. It will further 
involve simulating the various models, like epistemic utility 
and the revised ODS model, to see if they can be discrimi- 
nated by virtue of their predictions for the structure of 
sequential samples. It is important, however, to note that 
although we did observe some deviations from ODS, the 
data reported here are most consistent with that model. 

13 This would also be true because the number of not q cards in 
Experiment 1 was 25, whereas it was 10 in Experiment 3. 
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