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Four experiments investigated the effects of probability manipulations on the
indicative four card selection task (Wason, 1966, 1968). All looked at the effects
of high and low probability antecedents (p) and consequents (q) on participants’
data selections when determining the truth or falsity of a conditional rule, if p then
q. Experiments 1 and 2 also manipulated believability. In Experiment 1, 128
participants performed the task using rules with varied contents pretested for
probability of occurrence. Probabilistic effects were observed which were partly
consistent with some probabilistic accounts but not with non-probabilistic
approaches to selection task performance. No effects of believability were
observed, a finding replicated in Experiment 2 which used 80 participants with
standardised and familiar contents. Some effects in this experiment appeared
inconsistent with existing probabilistic approaches. To avoid possible effects of
content, Experiments 3 (48 participants) and 4 (20 participants) used abstract
material. Both experiments revealed probabilistic effects. In the Discussion we
examine the compatibility of these results with the various models of selection task
performance.

INTRODUCTION

Results in the psychology of reasoning appear to show that people make
systematic errors on tasks with apparently straightforward logical solutions. The
task most often used to illustrate this point in both the philosophical and the
psychological literature is Wason’s (1966, 1968) selection task. In the selection
task an experimenter presents participants with four cards, each with a number on
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one side and a letter on the other, and a rule of the form if p then q, e.g. if there is
a vowel on one side (p), then there is an even number on the other side (q). This
rule is in the indicative mood—it putatively describes how the world is. The four
cards show an “A”(p card), a “K”(not-p card), a “2”(q card), and a “7”(not-q
card). Participants have to select those cards that they must turn over to determine
whether the rule is true or false. Logically participants should select only the p
and the not-q cards, i.e. those cards with the potential to reveal a falsifying
instance (Popper, 1959). However, as few as 4% of participants make this a
response, other responses being far more common: p and q cards (46%); p card
only (33%); p, q and not-q cards (7%); p and not-q cards (4%) (Johnson-Laird &
Wason, 1970). This robust and reliable effect has been widely interpreted to cast
doubt on human rationality (Cohen, 1981; Manktelow & Over, 1993; Stich,
1985, 1990) which has raised the selection task to the status of a benchmark
against which theories of reasoning are often judged. More recently the selection
task has been the focus of attempts to unify the areas of deductive reasoning and
decision making (e.g. Evans, Over, & Manktelow, 1993).

All theories of human reasoning have attempted to explain selection task
results. There are two hierarchically related distinctions between the different
theories. First, there are probabilistic theories (e.g. Evans & Over, 1996a, Kirby,
1994; Klauer, 1999; Nickerson, 1996; Oaksford & Chater, 1994, 1995a, 1996)
and non-probabilistic theories (e.g. Cheng & Holyoak, 1985; Cosmides, 1989;
Evans, 1984, 1989; Johnson-Laird & Byrne, 1991; Rips, 1994; Sperber, Cara, &
Girotto, 1995). Second, the different probabilistic theories make different
predictions for the selection task. In particular, some predict no influence of prior
belief (Nickerson, 1996; Oaksford & Chater, 1994, 1995a, 1996) whereas some
predict more falsificatory responses for disbelieved rules (Evans & Over, 1996a,
b; Klauer, 1999). The purpose of these experiments is therefore to investigate
whether probabilistic effects occur in the standard indicative form of the
selection task and to see whether prior beliefs affect people’s behaviour.

In the next two sections we outline the non-probabilistic and the probabilistic
approaches to the indicative selection task.

NON-PROBABILISTIC THEORIES OF THE
SELECTION TASK

Mental Logic and PSYCOP

The mental logic approach (e.g. Braine, 1978; Rips, 1983, 1990) assumes that
people reason logically using syntactic rules. Most mental logicians have avoided
dealing with selection task results. For example, Rips (1990) has argued that
mental logic does not apply to this task, because it is not a logical problem but an
inductive, probabilistic problem, in line with probabilistic approaches. However,
recently Rips (1994) has argued that his PSYCOP model can explain the
selection task within the mental logic framework. In PSYCOP, the pattern of
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logical “errors” is modelled by limiting the number of logical rules and the way
that they can be applied. PSYCOP treats each card as an opportunity to use the
task rule to draw a conditional inference. So for example, given the p card and the
rule if p then q, PSYCOP will infer by modus ponens that there should be a q on
the back of the card. In PSYCOP modus ponens is implemented by the Forward
IF elimination rule. In the selection task the lack of explicit conclusions (the other
sides of the card) means that PSYCOP cannot apply backward rules that work
from conclusion to premises (as in a PROLOG interpreter, see Clocksin &
Mellish, 1983). Consequently, only the p card can be selected because this card
provides the only match to a rule. According to Rips (1994) some participants
also select the q card because they interpret the rule as a biconditional, i.e. if p
then q and if q then p. For Rips, succeeding on this problem requires proposing
assumptions about what is on the backs of the cards so that backward rules can
also be applied. Notice that according to the mental logic approach people should
respond logically—they only fail to do so because of the particular algorithms
hypothesised to implement logic in the mind.

Mental Models

Mental models theory (e.g., Johnson-Laird, 1983; Johnson-Laird & Byrne,
1991), assumes that people reason logically by manipulating arbitrary mental
tokens representing the meaning of the premises. This semantic way of drawing
inferences explains selection task behaviour largely in terms of people’s
preference to initially represent only part of the meaning of if … then statements.
This leads people into error if they do not subsequently “flesh out” these
representations to express the full meaning of these sentences. So, for example,
the rule if p then q should be represented by all the instances that make it true.
However, people may only represent the named cases, i.e.

[p] q

…

where [p] means that p is exhausted and so any other instances must be associated
with not-p, and “…” is an ellipsis indicating that other unrepresented models may
be relevant. Because only the p has a value on the other side bearing on the truth
or falsity of the rule, people turn this card but not the q card. However, if
participants believe the rule to be a biconditional where both if p then q and if q
then p are true, represented as

[p] [q]

…

they will turn both cards. Moreover, if they “flesh out” their model to include
other cases that make the rule true, i.e.
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[p] q

not-p not-q

…

people will realise they must turn the not-q card as well, for if the rule is true this
card must have a not-p on the other side.

Like recent mental logic theories (Rips, 1994), mental models theory assumes
that people are capable of reasoning logically in this task but that the
psychological mechanisms involved make it difficult to derive the full logical
response, i.e. “people are rational [logical] in principle but fallible in practice”
(Johnson-Laird & Byrne, 1991, p.19). Both theories also agree that, given certain
restrictions, logic provides the computational-level theory (Marr, 1982) of the
selection task, i.e. the theory of what people should do.

Pragmatic Reasoning Schema and Darwinian Algorithms

Pragmatic reasoning schema theory (Cheng & Holyoak, 1985) was developed to
explain the realisation that the “facilitating” effect of thematic material in the
selection task was due to the deontic nature of the rules used. For example, the
rule if someone is drinking beer, they must be over 21 years of age (Griggs &
Cox, 1983) leads to much higher selections of p and not-q cards. This happens
because this rule provides a prescription for how you are obliged to behave
(deontic), rather than a description of how the world is (indicative). A pragmatic
reasoning schema contains domain-specific rules that apply when obligations
and permissions are described by a rule. Similarly Cosmides (1989) has argued
that people possess Darwinian algorithms that enable them to check for cheaters,
i.e. people who take benefits without paying costs, e.g. under-age drinkers. These
theories diverge in their predictions for some rules. However, because they have
been applied mainly to the deontic tasks we are not concerned to explicitly test
them in this paper.1 Rather we are concerned that in our subsequent experiments
we can discount any facilitation effects being due to the rules involved being
interpretable either as obligations or as having a cost–benefit structure.

Relevance and Heuristic Approaches

Two approaches argue that in the selection task people do not reason at all, but
instead make relevance judgements of one sort or another. According to Evans
(1983, 1984, 1989), relevance judgements are mediated by two linguistic

1Although it has been proposed that people may possess many different schemata including one
for causal reasoning (Cheng & Holyoak, 1985) we know of no specific proposals for dealing with the
probabilistic manipulations we introduce in these experiments.
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heuristics (as well as by probabilistic factors, see later). An if-heuristic focuses
attention on cases that satisfy the antecedent, p, biasing people towards selection
of the p card. A not-heuristic focuses attention on items named in the rule, p and
q, biasing people towards selection of the p and the q cards. This is called the
“not”-heuristic because it serves to explain people’s behaviour when negations
are used in the antecedents, p, and consequents, q, of the rule: they tend to ignore
the negations and match the named items (Evans & Lynch, 1973). The
combination of these two heuristics can explain the predominant selection
patterns in the task.

Recently Sperber, Cara, and Girotto (1995) have argued for a different
understanding of relevance using the linguistic theory of Sperber and Wilson
(1986). The core of this account is how a p, not-q response can be made relevant.
Conditionals may be relevant for a variety of reasons. One is when the logically
equivalent denial—something does not exist that is both p and not-q—is
highlighted. This interpretation will lead people to check that such an instance is
not on the cards and hence to check the p and not-q cards. Sperber et al. (1995)
argue that this interpretation is highlighted when the cognitive effects of adopting
it are high and the cognitive effort of deriving it is low. They suggest a variety of
ways to achieve this. For instance, on the effort side, they suggest making the not-
p and not-q categories easy to represent by allowing the negated categories to be
an explicitly introduced positive feature. For example, they may be told that only
two letters, A or B, and two numbers, 1 and 2, appear on the cards, so that with
respect to the rule if A, then 1, not-p = B and not-q = 2. This manipulation allows
all possible combinations to be readily represented. On the effects side,
participants might be told that the p, not-q instance is diagnostic of a fault, e.g. for
a machine printing cards according to the rule if A, then 1, a card with A and 2 on
it shows that the machine is not working properly.

PROBABILISTIC THEORIES OF THE
SELECTION TASK

A variety of probabilistic approaches to the selection task have recently been
proposed (Chater & Oaksford, 1999a; Evans & Over, 1996a, b; Kirby, 1994;
Klauer, 1999; Nickerson, 1996; Oaksford & Chater, 1994, 1995a, 1996, 1998a;
Over & Evans, 1994, Over & Jessop, 1998). This development is not in itself
novel. Many researchers have proposed a similar approach in the past (e.g.
Dorling, 1983; Klayman & Ha, 1987; Rips, 1990). What is novel is that specific
formal models have been developed which show that this approach can account
for a broad range of results on the selection task.

All these probabilistic accounts attempt to explain putative errors by adopting
different accounts of what people should do in the task. These accounts are based
on probability theory rather than on logic. By switching to a different account of
what people should do, these approaches argue for a different explanation of the
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mismatch between human reasoning performance and logical expectations.
Rather than suggesting that people are trying but failing to perform logical
inferences because of limitations at the algorithmic level, these accounts suggest
that people are succeeding at drawing probabilistic inferences.

Kirby (1994)

Kirby developed a signal detection approach to the task in which the signal to be
detected is a card that is inconsistent with the rule, i.e. a p, not-q instance.
According to this account people should choose a card when the posterior odds of
an inconsistent outcome exceed a simple function of the utilities associated with
a Hit, a False Alarm (FA), a Correct Rejection (CR), or a Miss (see equation 1). In
deriving predictions, Kirby assumes that the utilities on the right hand side of
equation (1) remain constant.

P(inconsistent outcome present | C) U(CR) – U(FA)
> (1)

P(inconsistent outcome absent | C) U(Hit) – U(Miss)

As q and not-p cards (C) have 0 probability of yielding an inconsistent outcome,
as with logical accounts, Kirby’s predicts that participants should never turn
these cards and hence interest centres on the p and not-q cards.2 Equation (1)
predicts that the posterior odds of finding an inconsistent outcome with the not-q
card will increase if P(p) is larger, and hence that participants should choose the
not-q card more frequently. Note, however, that equation (1) predicts no changes
for the q cards.

Optimal Data Selection

The next four accounts we look at (Evans & Over, 1996a, b; Klauer, 1997;
Nickerson, 1996; Oaksford & Chater, 1994, 1995a, 1996; Over & Evans, 1994,
Over & Jessop, 1998) can all be encompassed within the optimal experimental
design approach (Berger, 1985; Fedorov, 1972) and all share a basic underlying
structure that we articulate before highlighting where they disagree.

The basic assumptions shared by all these approaches were specified by
Oaksford and Chater (1994). All assume that people are attempting to choose
between probabilistic models of the world. In practice two models are usually
considered, one in which the rule is true (MD: a Dependence model) and a foil
hypothesis in which the two sides of the cards are statistically Independent (MI).
(See the later section on the Effects of Prior Beliefs for some proposals for a
different selection of models.) People want to know which model truly describes

2This is because for this analysis to make sense the goal must be to avoid false alarms and misses,
U(CR) > U(FA) and U(Hit) > U(Miss).
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the world given the possible data that they can select. This depends on three
parameters: the probability of the antecedent P(p); the probability of the
consequent, P(q); and the prior probability that the rule is believed true in the first
place P(MD). On the further shared assumption that P(p) and P(q) are low
(Oaksford & Chater’s, 1994, “rarity” assumption), then the probabilities of what
is on the unseen sides of each card follow the distribution shown qualitatively in
Table 1. As Oaksford and Chater (1996) argue, the rarity assumption can be
readily justified from the literature on Bayesian epistemology (e.g. Horwich,
1982; Howsen & Urbach, 1989). Table 1 shows clearly that under this
assumption the p and q cards are the most informative in discriminating between
hypotheses, i.e. these cards show the greatest difference in the probabilities of
finding the same outcome under the two models.

The theoretical accounts we look at differ on how to formalise the notion of
informativeness. The critical difference concerns whether a “disinterested” or a
“decision-theoretic” approach is taken to inquiry (Chater, Crocker, & Pickering,
1998; Chater & Oaksford, 1999a). On the disinterested approach, people are
inquiring into the structure of their world with no particular decision problem in
mind, their only goal is find out about their world. On this account the only costs
that enter into the selection of cards concerns those of turning a card. On the
decision-theoretic approach, people are inquiring into their world with a
particular decision problem in mind. For example, they might be trying to
determine whether they should eat tripe by seeking evidence concerning whether
tripe makes you ill. On this account the utilities of various decisions (to eat or not
to eat tripe) should clearly affect their data selection activities. The first two
probabilistic accounts we look at (Nickerson, 1996; Oaksford & Chater, 1994)
take a disinterested approach, whereas the second two (Evans & Over, 1996a;
Klauer, 1999) take a decision-theoretic approach.

TABLE 1
Dependence and Independence Models

Turn Find Rule true (MD) Unrelated (M I)

p card q certain low
not-q impossible high

not-p  card q (very) low low
not-q very high high

q card p high low
not-p low high

not-q  card p impossible low
not-p certain high

Probabilities of finding a particular outcome on turning each card in
the selection task under a model where the rule is true (MD) and under a
model where the sides are unrelated (MI) and assuming rarity.
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Oaksford and Chater (1994). Borrowing from the Bayesian optimal design
literature (Fedorov, 1972), Oaksford and Chater (1994) used a measure first
introduced by Lindley (1956). They call this measure “expected information
gain” because it is a measure of the difference between the information in the
prior distribution, P(MD), and the expected amount of information in the
posterior distribution, P(MD|D), i.e. after selecting some data (a card).
Information is defined quantitatively using Shannon-Wiener information
(Shannon & Weaver, 1949; Wiener, 1948) and the posteriors are calculated using
Bayes’ theorem. On the information gain account, selections of the not-q and the
q cards are both sensitive to changes in either P(p) or P(q) (Oaksford & Chater,
1994). The main predictions that differentiate the information gain account from
Kirby’s (1994) are that there should be effects of P(q) (i) on the q card such that
there are more q card selections when P(q) is low, and (ii) on the not-q card such
that there should be more not-q card selections when P(q) is high (see Oaksford
& Chater, 1994).

Nickerson (1996). Nickerson (1996) proposed a Bayesian analysis of the
selection task that is very similar to Oaksford and Chater (1994) who measure
information using the expected value (E()) of the difference between the prior
(I(H)) and posterior information (I(H |D)), i.e. information gain (Ig) is defined as
follows:

Ig = E(I(H|D)–I(H)) (2)

Nickerson (1996) instead defines a notion of “impact.” Rather than use the prior
(P(H)) and posterior (P(H |D)) probabilities to compute Shannon-Wiener in-
formation, impact is defined as the expected value of the absolute difference
between the prior and posterior probabilities, i.e. impact (IP) is defined as:

Ip = E( ï P(H |D)–P(H) ï ) (3)

Not surprisingly information gain and impact make essentially the same pre-
dictions in the selection task.

Evans and Over (1996a). In response to Oaksford and Chater’s (1994)
article, Evans and Over (1996a) argued that a better measure of the informative-
ness of a card would be given by the expected absolute value of the log-likelihood
ratio:

log
( )

( )

P D|M

P D|M
.D

I

æ
è
ç ö

ø
÷ (4)
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(4) is the “diagnosticity” of the card, i.e. the extent to which the other side of the
card (the data “D”) discriminates between the two hypotheses. This measure has
not been systematically applied to the original selection task, so its predictions
have not been fully specified or empirically evaluated.3 However, Over and
Jessop (1998) have used it to model “causal” selection tasks, where they show
that it makes identical predictions to information gain (Oaksford & Chater,
1994). However, Evans and Over (1996a) argue informally that there should be
strong effects of believability, P(MD), on selection task performance. We have
verified these predictions formally. Specifically, their measure predicts more
not-q card selections than q-card selections when believability is low, even when
rarity holds. This prediction contrasts with information gain and impact, which
both predict that card selections should be largely independent of believability.
As Oaksford and Chater (1996, 1998a) point out, although Evans and Over
(1996a; Over & Jessop, 1998) endorse a decision-theoretic approach their
measure does not explicitly introduce utilities into the decision to turn cards.
However, Klauer (1999) has developed a thoroughgoing decision-theoretic
model of the task that captures most of Evans and Over’s intuitions.

Klauer (1999). Klauer (1999) argues that information gain is not optimal in
one sense discussed by Oaksford and Chater (1996)4 and he introduces two
different optimal decision-theoretic procedures that could apply to the selection
task. The measures used in these procedures both embody costs (i) for making
different types of epistemic error, i.e. the type I and type II errors of standard
statistical hypothesis testing, and (ii) for each experiment (turning each card).
These costs combine to create an overall loss function. The decision to turn a card
depends on whether the amount of information available exceeds the losses a
decision maker is willing to accept. Following work in Bayesian decision theory,
Klauer employs Kullback-Liebler information rather than uncertainty reduction
to measure information (see equation 5). Equation 5 shows the information
provided by experiment e (e.g. turning the p card) given models (hypotheses) Mi
and Mj and different possible outcomes (D, i.e. q or not-q),

I M M e P D M e
P D M e

P D M e
i j i

i

jD
( , , ) ( | , )log

( | , )

( | , )
= æ

è
ç

ö
ø
÷å 2 (5)

3It appears that using the standard models, this measure will be infinite for the p and not-q  cards,
because absolute log-likelihood is infinite when the rule is shown to be false. Therefore, Over and
Jessop (1998) assume that rules are defeasible, which means that rules cannot be shown to be false
with absolute certainty (see Oaksford & Chater, 1998a, for discussion).

4Concerning minimising the number of cards that must be turned over in a sequential version of
the task.
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Klauer shows that this optimal procedure leads to exactly the same pattern of
responses as information gain for the data considered by Oaksford and Chater
(1994). Importantly, however, he also shows that these approaches diverge on the
effects of prior beliefs, i.e. P(MD). As for Evans and Over (1996a), Klauer
predicts that, if you believe the rule is false, i.e. P(MD) is low (< .5), then people
should select falsifying cases, i.e. they should always select the not-q card in
preference to the q card regardless of P(p) and P(q). This prediction arises
because I(Mi, Mj, e) is not symmetrical and so I(MI, MD, e) ¹  I(MD, MI, e). On the
optimal procedure used by Klauer, if the P(MD) < .5, i.e. participants do not
believe the rule, then the I(MI, MD, e) values are used, whereas if P(MD) > .05, i.e.
participants do believe the rule, then the I(MD, MI, e) values are used. It is this
factor that leads the predictions of Klauer’s model to diverge from the predictions
of the information gain and impact models in the same way as Evans and Over
(1996a).

The Effects of Prior Beliefs. We have shown how the various probabilistic
accounts diverge on how prior beliefs affect data selection. However, we have
concentrated only on how the prior probabilities vary. There have been two other
suggestions for how prior beliefs may affect people’s data selection performance.
First, Oaksford and Chater (1994: see also Oaksford, 1998) suggested that prior
beliefs might affect the way people assign probabilities in the task. A constraint
on the information gain model is that P(q) > P(MD)P(p). A problem arises with
rules where P(p) is high but P(q) is low (i.e. an “HL” rule), e.g. all black things
are ravens. This rule is known to be false: there are many black things that are not
ravens. Participants therefore have to decide what to do when asked to test such a
rule in the selection task, i.e. they have to reconcile their prior beliefs with the
experimental instruction suggesting that it is meaningful to empirically test this
rule. Chater and Oaksford (1999a) have argued that it is not always the case that
a rule with many exceptions is disbelieved. For example, many people strongly
believe that letting children walk home from school increases the likelihood of
their being abducted. However, the probability of being abducted given a child
walks home from school is very low, i.e. there are many exceptions to this rule.
So when participants are confronted by a high P(p) but low P(q) rule to test, they
may assume that the experimenter intends them to believe it. Consequently to
reconcile a high P(MD) value with the constraint that P(q) > P(MD)P(p) requires
revising P(p) down. As Oaksford and Chater (1994) suggested, participants may
therefore treat high P(p) but low P(q) rules as if they were low P(p) and low P(q)
rules.

This conjecture has recently been confirmed by Green, Over, and Pyne (1997,
see also, Oaksford, 1998). They found that participants’ estimates of the
probability of finding a p on the back of the not-q card systematically
underestimated P(p) such that P(p) < P(q), even though an HL rule was used,



PROBABILITIES AND DATA SELECTION 203

i.e. P(p) > P(q), and participants’ estimates of P(q) were accurate. As Oaksford
(1998) points out, this finding is consistent with participants revising down P(p)
when P(p) > P(q) as Oaksford and Chater (1994) originally suggested. However,
Green and Over (1998) have argued that revising P(p) down is not necessitated
by the situation where P(p) > P(q). They observe that, depending on the models
that a participant may be considering, it is possible that it would be incoherent to
revise P(p) down. We fully agree with Green and Over’s (1998) observation.
However, we need only claim that revising P(p) down is the normal reaction to
this situation and that this is consistent with participants’ responses to the HL
rule. For example, what would be the appropriate reaction if you were told that if
it’s black then it’s a raven? Either you must assume that your interlocutor is
uttering totally uninformative falsehoods or that there is an interpretation of their
utterance that makes it likely to be true. Perhaps she is referring just to birds in the
aviary, where it just so happens that the only black birds are ravens. This amounts
to restricting the reference class from all birds to birds in the aviary. Note also
that it means revising P(p) down so that P(p) £  P(q). (Of course, in this situation
P(q) could also change, but with no information to the contrary it should reflect
its default rarity value). Consequently we do not dispute Green and Over’s
(1998) claim that there may be other situations where such a strategy is
unreasonable. We would argue, however, that the situation we have described is
the usual one and the only one that makes sense of the data. The strategy of
revising P(p) down when P(p)  > P(q) is exploited in deriving our predictions for
the experiments we report here.

A second suggestion for how prior beliefs may affect data selection is that
people may compare a hypothesis to more than a single foil, i.e. to more than just
MI (Green & Over, 1997; Over & Jessop, 1998), and that prior beliefs may
suggest more appropriate foils, i.e. other than MI (Green & Over, 1998; Green et
al., 1997). For example, suppose you are asked to test the hypothesis that all
ravens are pink. Because you know that all ravens are black you might be
inclined to test this novel hypothesis against a model where all ravens are not
pink, rather than a model that treats whether a bird is a raven or pink as
statistically independent, as in Oaksford and Chater (1994).

In our first two experiments we used thematic materials where specific
prior beliefs may influence data selection performance. The benefit of such
materials is that they avoid constructing complex scenarios that explicitly
introduce probabilistic information. These materials therefore avoid cueing
participants to the relevance of such information and so we can see if it is
used spontaneously. The main potential cost of using such materials is that
they may interact with prior beliefs in perhaps unpredictable ways. Anticipating
our results, in Experiment 2, it would appear that one rule form triggered a
different foil hypothesis, as Over and Jessop (1998) have suggested is a
possibility.
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Summary

All these probabilistic approaches argue that the p card should be selected the
most and the not-p card selected the least. Consequently these cards cannot
discriminate between these approaches. In our analyses we therefore concentrate
on the consequent, q and not-q, cards. We now summarise the key predictions
that discriminate between the various theories of the selection task, and which we
test in these experiments. These predictions are formulated at general and
specific levels, and all involve probabilistic effects:

Prediction 1. Probabilistic vs. Non-probabilistic Accounts. Probabilistic
approaches predict that probability manipulations will affect card selections, but
non-probabilistic accounts do not. This general prediction is confirmed to the
extent that our following more specific predictions are confirmed. However,
proponents of non-probabilistic accounts could argue that other features of the
materials may be responsible for any effects we observe. Consequently in the
Discussion we consider each account case by case to see whether any existing
distinction made by these theories could account for the effects we observe. Of
course proponents of non-probabilistic accounts may be able to formulate ad hoc
explanations of any effects we observe but that hardly counts in their favour.

Prediction 2. Kirby (1994) vs. Optimal Data Selection Accounts. Optimal
data selection accounts predict (a) more q card selections when P(q) is low, and
(b) more not-q card selections when P(q) is high (see, Oaksford, Chater,
Grainger, & Larkin, 1997; Fig. 1). Kirby’s (1994) account predicts no such
differences. These predictions arise because according to optimal data selection
accounts any information that discriminates between MD and MI is useful
whether it is confirming or falsifying. When P(q) and P(p) are low, it is very
surprising to find a p, q instance and so these are very informative. However, as
P(q) or P(p) rise such instances become less surprising and so less informative.
Importantly if P(p) is kept constant and P(q) increased then the informativeness
of the q card falls and that of the not-q card rises.

As we discussed in the section Effects of Prior Beliefs, in the selection task
people treat high P(p) and low P(q) rules as low P(p) and low P(q) rules. This
means that when analysing the selection task data for effects of P(p) we can only
treat the high P(p) and high P(q) rule as a genuine high P(p) rule.

Prediction 3. Information Gain and Impact vs. Evans & Over (1996a) and
Klauer (1999). Information gain and impact predict that q and not-q card
selections are independent of believability (see Oaksford & Chater, 1994, Fig. 2).
In contrast, Evans and Over (1996a) and Klauer (1999) predict that when belief
in the rule is low, more not-q and fewer q cards will be selected. We illustrate
how this prediction arises in Fig. 1. In this figure we show the predictions of the
various informativeness measures for the case where P(p) and P(q) are both low
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FIG. 1. The predictions of the different probabilistic models of selection task performance, A:
Information Gain (Oaksford & Chater, 1994), B: Impact (Nickerson, 1996), C: Log-likelihood ratio
(Evans & Over, 1996a); and D: Kullback-Leibler information (Klauer, 1999). The different
information measures have been calculated with P(p) = P(q) = .1, and at two levels of P(MI), .4 (Lo)
and .6 (Hi). All measures have been scaled by adding .1 to the informativeness of each card and then
dividing by the average informativeness, as in Oaksford and Chater (1994) and in Klauer (1999).

but where P(MD) is varied. Figure 1 shows that when belief in the rule is high, i.e.
P(MD) is high (.6 in Fig. 1) and so P(MI) is low (.4 in Fig. 1), then all the optimal
data selection accounts agree that the q card is more informative than the not-q
card. However, when belief in the rule is low, i.e. P(MD) is low (.4 in Fig. 1) and
so P(MI) is high (.6 in Fig. 1), then although information gain and impact still
predict that the q card is more informative than the not-q card, Evans and Over
(1996a) and Klauer (1999) predict that the not-q card is more informative than
the q card.
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EXPERIMENT 1

We investigated these alternative explanations of the selection task by using
contents that had been pretested for P(p), P(q), and P(MD). We fully crossed high
and low values of each parameter, creating eight separate rules.

We ensured that each rule was a standard indicative claim about the way the
world may be. We describe the rules using ordered couples, <P(p), P(q)>, or
ordered triples, <P(p), P(q), P(MD)>. Thus “LHH” is the low P(p), high P(q), and
high P(MD) rule and “LH” simply disregards P(MD), i.e. it refers to both the LHL
and the LHH rules. Our strategy will be to check for the predicted effects of the
probability manipulations and, should they occur, to dismiss post hoc other
possible explanations based on the non-probabilistic approaches described
earlier.

There have been other experiments apparently demonstrating effects of
varying probabilities in the selection task (Green et al., 1997; Kirby, 1994;
Manktelow, Sutherland, & Over, 1995; Oaksford et al., 1997; Pollard & Evans,
1981, 1983). However, Manktelow et al. (1995) investigated the deontic task, not
the indicative task that is our current focus. Kirby (1994) showed that increasing
the probability of the p card increased not-q card selections. However,
methodological questions about these results have been raised by Over and Evans
(1994). Moreover, Kirby did not systematically vary the probability of the q card,
so his data could not distinguish among the probabilistic approaches. Green et al.
(1997) again did not systematically vary P(p) and P(q) in their experiments.
Moreover, the interpretation of their results is currently under debate (see Green
& Over, 1998; Oaksford, 1998). Importantly, however, Green and Over (1998)
recommend that progress in looking for probabilistic effects in the selection task
can only be made by obtaining participants’ estimates of the relevant
probabilities, which is exactly the methodology used in Experiments 1 and 2.
Oaksford et al. (1997) demonstrated probabilitistic effects in the reduced array
version of the selection task (“RAST”). However, this task version only allows
manipulation of P(q) and introduces a sequential sampling element not captured
by most of the other theories we introduced earlier (the exception is Klauer,
1999). Moreover, the results in this task have always been aberrant—in an
abstract task people appear to make p, not-q selections. Therefore, judging these
accounts on the basis of RAST data may not be considered a fair test.

A number of studies have also varied believability (Fiedler & Hertel, 1994;
Love & Kessler, 1995; Pollard & Evans, 1983) and appear to show results
consistent with Evans and Over (1996a) and Klauer (1999). However, as Chater
and Oaksford (1999a) discuss, these studies did not vary believability directly
but only indirectly either by using materials protested by other participants
(Pollard & Evans, 1981) or by manipulating the possibility of exceptions rather
than believability itself (Fiedler & Hertel, 1994; Love & Kessler, 1995; Pollard &
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Evans, 1983).5 Moreover, none of these studies explicitly obtained measures of
participants’ degree of belief in the rules they tested in the selection task.
Consequently it is difficult to say whether their responses are directly related to
their respective degrees of belief. In this experiment we included a probability
rating task (“PRT”) to obtain estimates of P(p), P(q), and P(MD) from our
participants before or after they performed the selection task. This also served the
function of confirming the high–low probability status of the antecedent and
consequents of the rules we used.

Finding an HLH rule is difficult because of the problems we discussed in the
section Effects of Prior Knowledge. However, in protesting materials for this
task, we came across an HL rule that was rated by five independent raters as
being highly believable. For completeness we therefore included it in our
experiment. Of course it is always possible that given a larger sample—128
people participated in this experiment—this rule will not be rated as believable in
the PRT.

Method

Participants

A total of 128 undergraduate psychology students from the University of
Warwick took part in this experiment. Each participant was paid £4.00 an hour to
participate. None of these participants had any prior knowledge of the selection
task.

Design

The experiment was a 2 × 2 × 2 × 2 [Prob(p) × Prob(q) × Prob(MD) × Order]
between-subjects factorial design. Participants were randomly assigned to
conditions such that 16 participants performed the experiment with one of the
eight task rules. Within each of the eight rule conditions half of the participants
received the probability rating task before the selection task and half of the
participants received it after the selection task, giving the fourth binary factor.

Materials

The eight rules used in this experiment were as follows (the words in italics
correspond to what was seen on the faces of the four cards, the words in
parentheses are the corresponding not-p or not-q instances).

5Although the possibility of exceptions and belief in the rule may sometimes go together they are
not co-extensive. For example, everyday generalisations like “birds fly” admit of many exceptions
(very young birds, injured birds, ostriches, penguins, and so on) but are believed very strongly.
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1. If a game is played on a rink (court) then it is bowling (rugby). (LLL)
2. If a person is a politician (cleaner) then they are privately (state) educated.

(LLH)
3. If a drink is whisky (coffee) then it is drunk from a cup (glass). (LHL)
4. If an animal is a chipmunk (cat) then it has fur (shell). (LHH)
5. If an item of food is savoury (sweet) then it is mousse (cheese). (HLL)
6. If a vegetable is eaten cooked (raw) then it is a parsnip (cauliflower).

(HLH)
7. If a flower is under 1 (over 1) foot tall then it is domestic (wild). (HHL)
8. If an item of furniture is heavy (light) then it is big (small). (HHH)

Each rule is a standard indicative claim about how the world is, like the rule in the
standard selection task.

Some of the categories used in these rules are binary, for example, savoury
may be treated as one half of an antonymic pair with sweet. However, most of the
categories are not binary, for example, mousse, big (which is one end of a
continuum), and cup. This division could potentially provide a confounding
factor in these experiments. However, Oaksford and Stenning (1992) used binary
material in a negations paradigm task and found no deviation from standard
selection task performance. The binary material did allow participants to readily
identify the contrast set for a negated constituent, e.g. knowing that only two
colours, red and blue, were in use allowed participants to interpret “the circle is
not blue” unambiguously as “the circle is red”. However, in Oaksford and
Stenning’s (1992) results, binary materials did not lead to any deviations from
the standard pattern of results for the rule containing no negations, like all the
aforementioned rules. Consequently it seems unlikely that effects observed in the
present experiment can be attributed to this aspect of the materials. We will see
that Oaksford and Stenning’s (1992) results also bear on the interpretation of
possible relevance accounts of this experiment, which we discuss later.

The materials consisted of 128 three-page booklets. The first page of each
booklet was an instruction page. Depending on the order assigned, the
Probability Rating Task (PRT) appeared on one of the following pages and the
selection task appeared on the other. In the selection task, for each of the 16
participants in each rule condition, the order in which the materials, i.e. p, not-p,
q, and not-q instances, appeared on the four cards was randomly selected without
replacement from the 24 (4!) possible orders.

Procedure

Participants were tested in three large classroom groups of varying sizes. At
the beginning of each class, the booklets were handed out face down and
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participants told not to turn them over until instructed. On turning over the
booklet the first page revealed the following instructions:

Your task is to solve the following problems on these pages. You must the
problems in order. You may change your mind by crossing an answer out and
replacing with another but you may not go back and change your answer once you
have turned over the page. Please use whole numbers when responding. Thank
you.

The PRT consisted of the following three questions, using the LLH rule as an
example:

(Question 1a) Of every 100 people, how many would you expect to
be politicians? …

(Question 1b) Of every 100 people, how many would you expect to
be privately educated?

Please estimate on a scale from 0% (must be false) – 100% (must be true) the
likelihood that the following statement is true:

(Question 1c) If a person is a politician then they are privately educated.

The instructions for the selection task read as follows, again using the LLH rule
as an example:

Below are four cards. Each card represents a person. One side of each card
describes a person’s occupation and the other side of each card describes their
educational background. Of course you can only see one side of each card.

Below these instructions the four cards were depicted followed by the
instruction:

Your task is to indicate which card or cards you must turn over in order to test that
the following rule is true or false:

If a person is a politician then they are privately educated

Please tick those cards you think should be turned over. You may make corrections
if you wish, as long as it is unambiguous as to what your final selection is. You
may take as long as you like over the problems.

When all participants had finished the booklet they were thanked for their
participation. At the end of the experiment participants were fully debriefed
concerning the purpose of the experiment.
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Results and Discussion

Probability Rating Task

Table 2 shows the results of the PRT. Table 2 reveals that with the exception
of two P(MD) values all probability estimates fell within the high–low classifi-
cation required by the optimal data selection models introduced earlier. P(p) must
be greater than approximately .4 to count as a high P(p) rule and P(q) must be
greater than approximately .25 to count as a high P(q) rule (see Oaksford &
Chater, 1994, Fig. 3). For the LLH and the HLH rules P(MD) was low, i.e. less
than .5. However, as we discussed in the section Effects of Prior Beliefs, we did
not expect participants to rate HL rules as believable. Because of this result we
analyse the effects of believability including and not including the LLH and the
HLH rules.

To test whether the task rules affected participants’ assessments of P(p), P(q),
and P(MD) as predicted by the pre-test classification we carried out 2 × 2 × 2
[Prob(p) × Prob(q) × Prob(MD)] ANOVAs with each of the PRT measures, P(p),
P(q), P(MD), as dependent variables. We then used planned comparisons to
check whether the main effect of the corresponding independent variable,
Prob(p) Prob(q), Prob(MD) was significant. The antecedents of the High-
Prob(p) rules were rated as more probable than the antecedents of the Low-
Prob(p) rules, F(1, 120) = 286.09, MSe = 321.47, P < .0001; the consequents of
the High-Prob(q) rules were rated as more probable than the consequents of the
Low-Prob(q) rules, F(1, 120) = 215.46, MSe = 301.58, P < .0001; and
participants rated the High-Prob(MD) rules as more believable than the Low-
Prob(MD) rules, F(1, 120) = 44.28, MSe = 652.51, P < .0001. These results
confirm the pre-test classification of these rules.6

TABLE 2
Experiment 1: Probability Rating Task

Low Belief High Belief
P(p) P(q) P(MD) P(p) P(q) P(MD)

Rule M sd M sd M sd M sd M sd M sd

LL 9.13 8.49 6.38 8.21 19.00 27.74 4.19 9.66 13.06 10.93 34.06 31.45
LH 9.13 15.34 39.31 22.71 14.69 15.08 6.88 11.49 51.44 27.21 85.94 33.63
HL 57.50 17.32 10.63 13.73 12.06 18.94 70.00 24.15 7.00 7.19 12.00 24.92
HH 55.31 24.66 64.38 19.40 34.38 29.15 60.94 23.40 62.19 18.79 68.31 16.56

Mean P(p), P(q), and P(MD) (in %) for each rule in the probability rating task (PRT) in
Experiment 1.

6We do not include analyses involving the order in which participants received the tasks, i.e. PRT
either before or after the selection task. Although there were some effects of this factor, they were
uninterpretable. Importantly we observed the predicted probabilistic effects irrespective of order.
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Selection Task

Table 3 shows the percentage of cards selected in the selection task (we
discuss the CFI measure below). There are clear effects of the probability
manipulations which seem to confirm Prediction 1. We discuss whether the non-
probabilistic approach could explain these effects after considering whether the
data discriminate between the different probabilistic approaches.

Prediction 1. The probabilistic accounts predict more not-q card selections
for high Prob(p) rules than for low Prob(p) rules. To test this prediction we
collapsed the data over the high and low Prob(MD) rules. Moreover, as we argued
in the section Effects of Prior Beliefs, HL rules are treated like LL rules.
Therefore we collapsed the HL rule with the LL and LH rules. Significantly more
participants selected the not-q card when Prob(p) was high than when it was low,
x 2(1, N = 128) = 8.19, P < .005, consistent with Kirby (1994). This effect was
also significant when the HL rules were excluded, x 2(1, N = 96) = 4.67, P < .025,
one-tailed.

It could be argued that the PRT indicates that participants did not treat the HL
rules as LL rules. Therefore it is illegitimate to collapse the HL rule with the LH
and LL rules. However, as we argued in the section Effects of Prior Beliefs, the
strategy of revising down P(p) is only triggered by the anomaly of being asked to
test an HL rule in the selection task phase. Consequently there is no inconsistency
in arguing that participants treat HL rules as LL rules in the selection task.

Predictions 1 and 2: Optimal Data Selection vs. Kirby. In contrast to Kirby
(1994), optimal data selection approaches predict that Prob(q) should affect not-
q and q card selections (Prediction 2). Significantly more participants selected
the not-q card when Prob(q) was high than when it was low, x 2(1, N = 128) =
6.65, P < .005, one-tailed. Moreover, more participants selected the q card when
Prob(q) was low than when it was high, albeit not quite significantly, x 2(1, N =
128) = 2.00, P = .08, one-tailed. Nonetheless when Prob(p) was low, i.e. for the
LL and LH rules, significantly more participants selected the q card when

TABLE 3
Experiment 1: Selection Task

Low Belief High Belief
Rule p not-p q not-q CFI p not-p q not-q CFI

LL 81.2 12.5 62.5 18.8 –.44 (.73) 75.0 12.5 50.0 25.0 –.25 (.68)
LH 81.2 12.5 37.5 37.5 .0 (.73) 93.8 0.0 25.0 18.8 –.06 (.57)
HL 87.5 18.8 50.0 6.2 –.44 (.63) 87.5 18.8 62.5 18.8 –.44 (.63)
HH 93.8 43.8 50.0 37.5 –.13 (.72) 87.5 43.8 62.5 56.2 –.06 (.68)

Percentage of cards selected and Mean CFI (sd) for each rule in the selection task in Experiment 1.
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Prob(q) also was low than when it was high, x 2(1, N = 64) = 4.06, P < .025. These
results are consistent with the optimal data selection accounts, but not with Kirby
(1994).

Predictions 1 and 3: Information Gain and Impact vs. Evans and Over
(1996a) and Klauer (1999). According to Evans and Over (1996a) and Klauer
(1999) there should be more not-q card selections when people do not believe the
rule. However, there was no significant difference in the frequency of
participants selecting the not-q card for the low Prob(MD) rules than for the high
Prob(MD) rules, x 2(1, N = 128) = .35, P = .55. Moreover, the frequency of
participants selecting the not-q card for the low Prob(MD) rules (16/64) was
lower than for the high Prob(MD) rules (19/64). It could be argued that the
difference was not significant because LLH and HLH are not genuine high
Prob(MD) rules. We therefore excluded these rules and repeated the test, which
still did not reach significance, x 2(1, N = 96) = 1.6, P = .10, one-tailed. Moreover,
as before, the proportion of participants selecting the not-q card for the low
Prob(MD) rules (16/64) was lower than for the high Prob(MD) rules (12/32). This
effect is in the opposite direction to that predicted by Evans and Over (1996a) or
Klauer (1999) and replicates Green and Over’s (1997) similar failure to find any
effects of believability on card selection. Consequently these results are most
consistent with the information gain and impact.7

We now consider whether the non-probabilistic approaches could explain the
effects we have observed.

PSYCOP and Mental Models. According to both these accounts, response
changes in the selection task arise for two reasons. First, the materials alter the
balance of people interpreting the rule as a conditional, or as a biconditional.
Second, they alter the balance of people who (i) make assumptions about what is
on the back of the cards (PSYCOP), or (ii) view their mental model as needing to
be “fleshed out”. So for example, to explain the significant effect of Prob(p) on
not-q card selections, these accounts would have to argue that rules 7 and 8 (see
earlier) encourage (i) and (ii) more than rules 1–4. However, current mental logic
or mental model theories cannot explain why the HHH rule, if an item of furniture
is heavy then it is big, should encourage (i) or (ii) any more than the LLH rule, if
a person is a politician then they are privately educated. A similar argument

7Green et al. (1997) presented point-biserial correlations between participants’ estimates of P(p)
and whether the not-q  card was selected. We could also have performed similar analyses using the
estimates from the PRT. However, the effects of prior beliefs on this experiment preclude this form of
analysis. This is because, as we argued in the section Effects of Prior Beliefs, for some rules, e.g. HL,
participants re-assess the probabilities when asked to test the rule. Consequently, it is not always the
case that the PRT directly reflects the values used in the selection task.
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applies to the significant effect of Prob(q) on not-q card selections—why should
if a flower is under 1 foot tall then it is domestic (HHL) encourage (i) or (ii) any
more than if an item of food is savoury then it is mousse (HLL). Similarly, to
explain why Prob(q) affects q card selections—at least for the low P(p) rules—
these theories would have to explain why if a person is a politician then they are
privately educated (LLH) leads to more biconditional interpretations than if an
animal is a chipmunk then it has fur (LHH). Neither Rips’ PSYCOP model nor
mental models can explain these differences.

Recently, however, Johnson-Laird et al. (in press) have suggested that mental
models theory can explain probability judgements in cases where prior
knowledge is irrelevant. Moreover, in more realistic settings where prior
knowledge is available, Johnson-Laird et al. suggest that individual mental
models may be annotated with probabilities, as proposed by Stevenson and Over
(1995). Probabilistic calculations over these numbers may explain probabilistic
effects in reasoning. Such an account may provide an appropriate algorithmic-
level theory of how people reason with conditionals. However, such a theory
would have to explain the differences in inferential performance that we
observed in this experiment by the probabilistic calculations over the annotations
rather than by operations on mental models themselves. Johnson-Laird et al. (in
press) do not specify how these calculations are performed but they are clearly
not processes similar in kind to the manipulation of mental models. Conse-
quently, there is still no mental model theory that could explain these results.

From a logical point of view, it could be argued that because in Experiment 1
some of the rules are true (4) and some are false (1), it does not make sense to
select any data at all. Consequently no predictions can be made about what cards
participants should select. Such an objection presupposes a logical approach to
data selection explicitly denied by probabilistic approaches. According to these
approaches all rules encoding common-sense knowledge are viewed as
probabilistic and our belief in them as consequently fallible (Oaksford & Chater,
1998a, in press), i.e. no such rule is believed to be unequivocally true or false.
Moreover, probabilistic approaches do make explicit predictions about people’s
data selections when people believe or disbelieve a rule. Consequently, although
according to logical approaches it may make no sense to select data to test rules
already believed true or false, it does make sense according to probabilistic
approaches which do not countenance such extreme commitments.

Pragmatic Reasoning Schema and Darwinian Algorithms. Could our
results be explained by participants interpreting some of these rules as deontic
regulations or as having a particular cost–benefit structure? Such an
interpretation may explain the difference in not-q card selections between high
Prob(q) and low Prob(q) rules. This interpretation would require regarding, for
example, the rule if a flower is under 1 foot tall then it is domestic (HHL) as a
deontic regulation, but not if an item of food is savoury then it is mousse (HLL).
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However, there is no reason to regard HHL as any “more deontic” than HLL.
Moreover, neither can be interpreted deontically because they are both just
indicative descriptions of the world and not prescriptions for behaviour.
Nonetheless, there can be borderline cases (see Almor & Sloman, 1996). As a test
Oaksford and Chater (1996) suggested appending a rule with “It should be the
case that”. If the resulting sentence makes sense the rule probably has a deontic
interpretation. Consider the following:

It should be the case that if you are drinking beer, you are over 21 years of
age.
*It should be the case that if a flower is under 1 foot tall then it is domestic.
*It should be the case that if an item of food is savoury then it is mousse.

The first sentence makes sense—the rule is a regulation. However, the second
two sentences do not make sense: neither rule should be the case, if they are true,
they just are the case. Consequently these rules are not regulations. Therefore the
differences in not-q card selections between rules cannot be explained by some
being interpreted deontically. Moreover, neither of these rules possesses the
cost–benefit structure required to evoke the appropriate Darwinian algorithm,
e.g. being a domestic flower cannot be interpreted as a cost paid for the benefit of
being under one foot tall.

Relevance and Heuristic Approach. Evans’ (1983, 1984, 1989) heuristic
approach to relevance cannot explain these results because changes in the
balance of card selections, q or not-q, are only predicted when negations are used
in the rules. Therefore the heuristic approach predicts selection of the p and q
card for all rules used in Experiment 1.

Could the differences we observed between rules be explained by Sperber et
al.’s (1995) relevance approach? The materials we have used seem to preclude
differences in cognitive effects. For the rules where more not-q cards were
selected, no scenarios were provided indicating that p, not-q cases were
contentious, diagnostic of something that matters, or undesirable (see Sperber et
al., 1995, p.61). Consequently whether relevance explains our results depends on
whether there were any differences on the effort side. Sperber et al. (1995, p.60)
suggest four ways of reducing effort to increase the relevance of the p, not-q
instance. The first three either involve contexts where the p, not-q instance is
made salient or involve a prior learning task, none of which were provided in
Experiment 1. Consequently, establishing differential effort relies on showing
that the materials introduced a positive feature for the negated categories, the
method we discussed in the Introduction . However, in Sperber et al. (1995), this
was achieved by introducing the relevant features in a brief scenario presented
prior to the selection task. Again we did not do this in Experiment 1.
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However, taking the HHH rule, the use of “small” on the not-q card implicitly
provides a positive term for the set of things that can be described as not-q, the
“not-q set”. In Sperber et al.’s Experiment 4, for example, in both low effort
conditions participants were told that a machine producing cards prints a 4 or a 6
on one side and an A or an E on the other, so that, with reference to the rule if 6
then E, all the not-p cards have a “4” on one side and all the not-q cards have an
“A” on one side. Oaksford and Stenning (1992) refer to the negated categories as
contrast classes. In contrast to Sperber et al.’s Experiment 4, the objects in the q
card contrast class for the HHH rule do not all possess a unique feature, i.e. they
are not all small—they may be medium sized, larger than average, quite small,
biggish etc. Consequently, the HHH rule does not conform to Sperber et al.’s
prescription for how to reduce cognitive effort.

Sperber et al.’s (1995) prescription for reducing cognitive effort suggests that
the use of antonymic pairs in the selection task, e.g. sweet/savoury (HLL), should
lead to more not-q card selections. However, as we pointed out in the Method
section, Oaksford and Stenning (1992) showed that these materials do not have
this effect. Indeed, as they mention, this was clear from the early experiments on
the selection task that proposed rules such as if there is a vowel on one side there
is an even number on the other side (Wason & Johnson-Laird, 1972). “Vowel” is
the antonym of “consonant” and “even” is the antonym of “odd”. These materials
therefore satisfy Sperber et al.’s (1995) prescription for reduced cognitive effort,
but they do not lead participants to select the not-q card (e.g. Oaksford &
Stenning, 1992).8

Between-card Differences. Our analyses in Experiment 1 concentrated on
between-rule comparisons within a card. However, all the optimal data selection
accounts also make certain standard predictions within rules, between cards. So,
for example, these accounts predict more q than not-q card selections for the LL
and HL rules (assuming the HL Þ  LL transformation suggested by Oaksford &
Chater, 1994), whereas for the LH and HH rules they predict the opposite order.
Although in Experiment 1 we did not observe this switch for the LH and HH
rules, it is clear from Table 3 that the trends are in the predicted direction—the
difference between selections of q and not-q cards is much smaller for the LH and
HH rules than for the LL and HL rules. To test this effect we computed the
“consequent falsification index” (CFI, Green et al., 1997; Oaksford et al., 1997;
Oaksford & Stenning, 1992) by adding 1 if participants select the not-q card and
taking 1 away if they select the q card. Thus, CFI measures the degree to which

8Sperber et al. (1995) do not cite the Oaksford and Stenning (1992) study and so were presumably
unaware of this apparent falsification of their account. Although not leading participants to select the
not-q  card, Oaksford and Stenning (1992) do show that such binary materials do remove the matching
effect in the negations paradigm selection task (Evans & Lynch, 1973).
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participants are aiming to prove the rule false rather than confirming it. We then
carried out a 2 × 2 × 2 [Prob(p) × Prob(q) × Prob(MD)] ANOVA, with CFI as the
dependent variable. If there is a significant trend in the predicted direction then
there should be a significant main effect of Prob(q) such that CFI is greater when
Prob(q) is high. This was observed, F(1, 120) = 7.60, MSe = .45, P < .01.

Summary

The results of Experiment 1 do not seem consistent with non-probabilistic
approaches, and within the probabilistic approaches, they seem most consistent
with the information gain and impact measures (Nickerson, 1996; Oaksford &
Chater, 1994). However, the support offered for all the probabilistic accounts is
equivocal. Although the trends for the consequent cards (q and not-q) were
significant, not-q selections did not predominate q for the high P(q) rules. This
may be because these probabilistic effects are superimposed on some more basic
process determining card selection. One possibility is that the p and q cards were
dominant for each rule because of some general default heuristic to pick the
possibly confirming instances that applies irrespective of probabilities. This may
happen because rarity is the norm for indicative rules like those used in
Experiment 1, and hence selection of the positive instances has become a hard-
wired default option (see Oaksford & Chater, 1994, for discussion). In
Experiment 2, we therefore attempted to construct materials that would lead to
the predicted pattern of selections within rules as well as between rules.

It could be argued that these rules differ along dimensions other than the
probabilities we attempted to manipulate. Consequently any differences may be
the result of these factors and not our probabilistic manipulations. Although this
is possible, the rules did not differ on any dimension identified as significant by
any other theory of selection task performance, as we argued in discussing how
these theories might explain these data. Therefore any explanation offered by
non-probabilistic accounts would be ad hoc. Nonetheless in Experiment 2 we
also sought to remove this potential confound by standardising the contents
between rules.

EXPERIMENT 2

In this experiment we used the familiar domain of Members of Parliament
(“MPs”). In the UK it is general knowledge that there are a fixed number of MPs,
approximately 650. Moreover, rough estimates of the number of MPs from
different parties will be common knowledge, e.g. the party forming the
Government has a majority in the House of Commons, i.e. more than half of the
MPs are in the ruling party.9 Furthermore, minority parties, e.g. the Ulster

9Note that this experiment was conducted before the 1997 UK general election result radically
changed the distribution of the parties in the House of Commons.
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Unionists or the Scottish Nationalists, are known to have very few seats. We
would predict that these familiar contents will overcome any tendency towards a
general confirmation bias, if people are attending to the probabilities. Further-
more, these contents allowed us to define rules corresponding to the eight rules
used in Experiment 1 but using similar contents about the voting intentions of
MPs of different parties. We again included a PRT in order to check that
participants’ estimates of the various probabilities that an MP is in a certain party
and votes in a certain way conformed to the ranges of values demanded by the
optimal data selection models.

In this experiment we also attempted to construct HL rules that made more
sense to participants than those used in Experiment 1. We did this by varying
P(p) and P(q|not-p) rather than P(p) and P(q). P(q|not-p) corresponds directly to
one of the parameters used in the optimal data selection models. We again used a
PRT to gauge the success of this manipulation.

Method

Participants

A total of 80 undergraduate students from the University of Warwick took
part in this experiment. Each participant was paid £4.00 per hour to participate.
None of these participants had any prior knowledge of the selection task.

Design

The experiment was a 2 × 2 × 2 × 2 [Prob(p) × Prob(q) × Prob(MD] × Order]
mixed design with Prob(p), Prob(q) and Order as between-subjects factors and
Prob(MD) as a within-subject factor. Participants were randomly assigned to
conditions such that 20 participants performed the experiment with one of the
four types of rule, LL, LH, HL, and HH. Each participant performed two
selection tasks, with a low and high believability version of the same rule type.
Within each condition, half the participants received the probability rating tasks
before the selection tasks and half received them after the selection tasks, leading
to the fourth binary Order factor.

Materials

The eight rules used in this experiment were as follows (the words in italics
correspond to what was seen on the faces of the four cards, the words in square
brackets are the corresponding not-p or not-q instances).

1. If an MP is a Scottish Nationalist (MP) [Conservative MP] then s/he votes
Ulster Unionist [votes Conservative] in the General Election (LLL)

2. If an MP is a Scottish Nationalist (MP) [Labour MP} then s/he votes Scottish
Nationalist [votes Conservative] in the General Election (LLH)
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3. If an MP is a Scottish Nationalist (MP) [Conservative MP] then s/he votes
Conservative [votes Labour] in the General Election (LHL)

4. If an MP is a Scottish Nationalist (MP) [Conservative MP] then s/he votes
[abstains] in the General Election (LHH)

5. If an MP is a Conservative (MP) [Ulster Unionist MP] then s/he abstains from
voting [votes] in the General Election (HLL)

6. If an MP is a Conservative (MP) [Ulster Unionist MP] then s/he votes
Conservative [votes Labour] in the General Election (HLH)

7. If an MP is a Conservative (MP) [Ulster Unionist MP] then s/he votes Labour
[votes Scottish Nationalist] in the General Election (HHL)

8. If an MP is a Conservative (MP) [Ulster Unionist MP] then s/he votes
[abstains] in the General Election (HHH)

The materials consisted of 80 five-page booklets similar to those used in
Experiment 1. The first page of each booklet was an instruction page. Depending
on the order assigned, on the following two pages both Probability Rating Tasks
(PRT) appeared and on the remaining two pages the selection tasks appeared, or
vice versa.

Procedure

Participants were tested individually. After being seated in the experimental
cubicle each participant was given the booklet face down on a table and were told
not to turn it over until instructed. On turning over the booklet the first page
revealed the same instructions as used in Experiment 1. The PRT was the same
form as in Experiment 1.

The instructions for the selection task read as follows, again using the LLH
rule as an example:

A Commons researcher has gathered data about the political allegiance of all
Members of Parliament and their voting behaviour. She has recorded the
information on a set of cards. Each card represents an MP. One side of each card
describes his/her political party and the other side of each card describes their
voting intentions in the General Election. Of course you can only see one side of
each card.

Below these instructions the four cards were depicted followed by the
instruction:

A reporter suggests that:

If an MP is a Scottish Nationalist the s/he votes Scottish Nationalist in the General
Election.

You want to find out whether this is true or false. Before you are four of the
researcher’s cards. Please tick the card or cards you must turn over in order to test
whether the reporter’s suggestion is true or false.
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You may make corrections if you wish, as long as it is clear what your final
selection is. You may take as long as you like over the problems.

When a participant had finished the booklet they were thanked for their par-
ticipation and were debriefed concerning the purpose of the experiment.

Results and Discussion

Probability Rating Task

Table 4 shows the results of the PRT. Six participants failed to fully complete
the PRT and so their data were excluded from the following analyses. Table 4
reveals that, with the exception of P(q) for the HLH rule, all probability estimates
fell within the high–low classification required by the optimal data selection
models. This indicates that although the HLH rule is now believable (in contrast
to Experiment 1), this is because it was treated as an HHH rule. In analysing the
PRT we will continue to analyse these data as though they conformed perfectly to
our prior high–low classification. We indicate when it is clear that this single
discrepancy is responsible for any of the effects we describe.

We used similar analyses as in Experiment 1 to test whether the task rules
affected participants assessments of P(p), P(q), and P(MD). The antecedents of
the High-Prob(p) rules were rated as more probable than the antecedents of the
Low-Prob(p) rules, F(1, 66) = 173.39, MSe = 283.95, P < .0001; the consequents
of the High-Prob(q) rules were rated as more probable than the consequents of
the Low-Prob(q) rules, F(1, 66) = 75.64, MSe = 653.88, P < .0001; and
participants rated the High-Prob(MD) rules as more believable than the Low-
Prob(MD) rules, F(1, 66) = 334.53, MSe = 558.11, P < .0001. These results
confirm the pre-test classification of these rules.

TABLE 4
Experiment 2: Probability Rating Task

Low Belief High Belief
P(p) P(q) P(MD) P(p) P(q) P(MD)

Rule M sd M sd M sd M sd M sd M sd

LL 9.42 10.48 13.05 22.32 9.74 8.89 9.42 10.48 13.84 22.77 88.32 16.17
LH 12.15 15.34 36.00 24.40 22.05 23.43 11.90 15.51 76.10 34.09 76.30 29.59
HL 46.31 9.89 6.63 11.60 9.38 16.49 46.31 9.89 48.44 24.54 85.00 27.77
HH 49.05 12.05 35.63 16.87 5.95 12.11 48.90 13.25 84.63 29.52 81.53 30.69

Mean P(p), P(q), and P(MD) (in %) for each rule in the probability rating task (PRT) in
Experiment 2.
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TABLE 5
Experiment 2:  Selection Task

Low Belief High Belief
Rule p not-p q not-q CFI p not-p q not-q CFI

LL 94.7 5.3 52.6 15.8 –.37 (.68) 100 5.3 63.2 15.8 –.47 (.61)
LH 100 0 45.0 30.0 –.15 (.59) 100 10.0 35.0 50.0 .15 (.49)
HL 93.8 0 25.0 56.2 .31 (.60) 81.2 6.2 25.0 56.2 .31 (.60)
HH 89.5 10.5 47.4 31.6 –.16 (.60) 94.7 5.3 52.6 10.5 –.42 (.61)

Percentage of cards selected and Mean CFI (sd) for each rule in the selection task in Experiment 2.

Selection Task

Table 5 shows the percentage of cards selected in the selection task. We first
analyse the predictions for the probabilistic approaches to the selection task in the
order they were introduced.

Prediction 1: Probabilistic vs. Non-probabilistic Effects. To assess
predictions within a card we collapsed the two levels of the within-subject
believability factor, Prob(MD). We performed separate between-subjects 2 × 2
ANOVAs for each card with Prob(p) and Prob(q) as factors and the number of
not-q card selections as the dependent variable. For the not-q card, although no
main effects were significant, there was a highly significant interaction between
these Prob(p) and Prob(q), F(1, 70) = 12.04, MSe = .54, P < .001, such that not-
q card selections were high for the LH and HL rules but low for the LL and HH
rules. This probabilistic effect is not consistent with the non-probabilistic
account of the selection task, thereby confirming Prediction 1.

However, this finding does not appear to be consistent with existing
probabilistic models. To examine this possibility we used the P(p), P(q), and
P(MD) values for these rules that we obtained in the PRT to generate information
gains according to Oaksford and Chater’s (1994) model for each card and found
the following correlations with the selection task data: LL rule, r(6) = .92,
P < .0025; LH rule, r(6) = .92, P < .0025, HL rule, r(6) = .94, P < .001, HH rule,
r(6) = .11, ns.10 There was considerable agreement, except for the HH rule. In
evaluating Kirby’s predictions for the not-q card, we therefore excluded the HH
rule and contrasted HL with LL and LH collapsed. Consistent with probabilistic
accounts there were significantly more not-q card selections when Prob(p) was
high than when it was low, F(1, 70) = 6.78, MSe = .54, P < .025.

10Note that because we have made the HL rules plausible, it makes sense to test them in the
selection task phase without revising P(p).
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Participants selection behaviour for the HH rules may be the result of prior
beliefs suggesting more appropriate foil hypotheses as suggested by Over and
Jessop (1998) and discussed in the section Effects of Prior Beliefs. The HHL rule
seems to conflict with the reasonable prior belief that MPs of a particular party
vote for that party in the general election. This prior belief can be embodied in the
probabilistic models as an alternative hypothesis. So rather than comparing the
task rule with an independence model, representing no relation between
antecedent and consequent, it may instead be compared against a model
representing people’s more specific prior beliefs. With respect to the HH rules in
Experiment 2, people may have strong beliefs that Conservative MPs vote
Conservative (HHL), and that the appropriate alternative model for the HHH rule
is not independence but where an MP abstains (see Green & Over, 1998, for a
related suggestion). In both cases the appropriate foil hypothesis (F) would be the
opposite model, i.e. one where the dependency is not between p and q (i.e. P(q|p,
MD) is high) but between p and not-q (i.e. P(not-q|p, MF) is high). As an
illustration, we used these models to calculate information gains for the HHL rule
using the mean PRT values. Consistent with the results for these rules in
Experiment 2, the information gain associated with the q card was almost three
times higher than that associated with the not-q card. That is, using these models,
the q card should still be preferred even though rarity is violated.

Such specific effects of prior beliefs, although perhaps predictable (see
section Effects of Prior Beliefs), suggest that we should also attempt to
demonstrate probabilistic effects using abstract material where specific prior
beliefs should not influence the results. Experiments 3 and 4 both used abstract
material.

Predictions 1 and 2: Optimal Data Selection vs. Kirby (1994). According to
the PRT the HLH rule was treated as an HH rule. We therefore looked initially
only at the high Prob(MD) rules comparing the LLH rule with the LHH and HLH
rules collapsed. As predicted, more participants selected the not-q card when
Prob(q) was high than when it was low, x 2(1, N = 55) = 7.09, P < .005. We then
compared the LL and LH rules across both levels of believability by using
planned contrasts with the number of not-q card selections made as the dependent
variable. This comparison was significant in the predicted direction, F(1, 70) =
4.24, MSe = .54, P < .05.

We then performed similar analyses for the q card using the number of q cards
selected as the dependent variable. Again there were no significant main effects
of Prob(p) or Prob(q). However, there was a significant interaction, F(1, 70) =
4.76, MSe = .71, P < .05, such that q card selections were high for the LL and HH
rules but low for the LH and HL rules. We therefore analysed the data as earlier.
First we looked only at the high Prob(MD) rules, comparing the LLH rule with
the LHH and HLH collapsed. As predicted more participants selected the q card
when Prob(q) was low than when it was high, x 2(1, N = 55) = 5.43, P < .01. We
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then compared the LL and LH rules across both levels of believability by using
planned contrasts with number of q cards selected as the dependent variable.
This, however, was not significant, F(1, 70) = 1.76, MSe = .71, ns.

Overall, as in Experiment 1, these data appear most consistent with optimal
data selection accounts with respect to Prediction 2.

Predictions 1 and 3: Oaksford and Chater (1994) and Nickerson (1996) vs.
Evans and Over (1996a) and Klauer (1999). To assess whether there were
more not-q card selections when people did not believe the rule we used the
McNemar change test (Siegel & Castellan, 1988) which was not significant,
x 2(1) = 0. Indeed the change cell frequencies were identical. This means that
exactly the same number of participants selected not-q in the high Prob(MD)
condition but not in the low Prob(MD) condition, as selected this card in the low
Prob(MD) condition but not in the high Prob(MD) condition. Consequently there
was no evidence that people preferred to select the not-q card when they did not
believe the rule, replicating, within-subject, the results of Experiment 1.
Experiments 1 and 2 are the first to provide direct evidence about what the
participants actually performing the selection task believe about the rules they are
asked to test.

Experiment 2 revealed a variety of probabilistic effects that were predictable
only by the probabilistic approaches. That we again found significant effects of
Prob(q) on both q and not-q card selections but failed to find any effects of
Prob(MD) is again most consistent with the information gain and impact
accounts.

We now again briefly consider whether the non-probabilistic theories of the
selection task could explain the results of Experiment 2.

PSYCOP and Mental Models. In order to explain these data, these accounts
must explain why, for example, the LLL rule If an MP is a Scottish Nationalist
then s/he votes Ulster Unionist in the General Election is interpreted as more
biconditional than the LHH rule If an MP is a Scottish Nationalist then s/he votes
in the General Election, and, moreover, why the LHH rule, but not the LLL rule,
is interpreted (i) as requiring assumptions about what is on the back of the cards
(PSYCOP), or (ii) as requiring the mental model to be “fleshed out”. As for the
materials used in Experiment 1 these theories provide no mechanisms to explain
why these materials should lead to these different interpretations.

Pragmatic Reasoning Schema and Darwinian Algorithms. Some of the
rules used in Experiment 2 may be interpreted deontically. For example, the
following seems to make sense:
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It should be the case that if an MP is a Conservative then s/he votes Conservative in
the General Election (HLH).

A Conservative MP is obliged to vote Conservative. However, the following
seems implausible:

*It should be the case that if an MP is a Scottish Nationalist then s/he votes Ulster
Unionist in the General Election (LLL)

The problem for a deontic interpretation of these results is that the deontic
reading makes most sense for the LLH and HLH rule. But these two rules led to
different behaviour, e.g. for the LLH rule there were more q than not-q selections,
whereas for the HLH rule the reverse pattern was observed. A similar argument
applies in the case of Darwinian algorithms. Although it may make sense to
interpret the consequents of the LLH and HLH rules as costs paid (voting for a
particular party) for the benefits described in the antecedents (being an MP of that
party), the behaviour on these rules was very different. Consequently this pattern
of results cannot be explained by participants interpreting some of these rules
deontically or in terms of costs and benefits.

Relevance and Heuristic Approaches. Negations were not used in this
experiment. Consequently, as for Experiment 1, Evans’ (1989) heuristic account
does not apply, and hence cannot explain the differences between rules in
Experiment 2.

Could Sperber et al.’s (1995) account of relevance explain these results? A
brief scenario was introduced in this experiment, but as it was the same for all
rules this could not have produced between rule differences on the effect side. On
the effort side, only the same prescription discussed in Experiment 1 could apply
to these materials, i.e. using antonyms to provide a unique feature for the not-q
set. However, as we have pointed out, it is questionable whether this
manipulation could be primarily responsible for any facilitation effect, because it
has been used in experiments where no facilitation is observed (e.g. Oaksford &
Stenning, 1992).

Summary

In summary, Experiment 2 produced probabilistic effects that are not con-
sistent with non-probabilistic approaches. Among the probabilistic approaches
these data were again most consistent with the information gain and impact
approaches. Moreover, the effects for the HH rules could be explained by the
probabilistic accounts assuming participants adopted different foils as suggested
by Over and Jessop (1998). Note also that in this Experiment, three rules (LHH,
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HLL, HLH), led to more not-q than q card selections. Consequently it would
appear that probabilistic manipulations can be powerful enough to override any
default confirmation heuristic (Oaksford & Chater, 1994). This result suggests
that these probabilistic accounts may not just function as good normative
accounts at the computational level, but may also reflect something of the
underlying algorithmic processes that may implement these models in the mind.

The precise pattern of results predicted by the probabilistic approaches was
not observed because of the effects of specific prior beliefs. In the following two
experiments we therefore used abstract materials where such effects should be
less in evidence.

EXPERIMENT 3

Sperber et al. (1995) successfully facilitated the logical response in an abstract
version of the selection task by manipulating relevance. They constructed
experimental materials that they took to vary cognitive effects and effort in the
selection task. They argue that their results are consistent with relevance theory,
but not other explanations of selection task performance. In contrast, Oaksford
and Chater (1995a) argued that probabilistic approaches and relevance accounts
are compatible, rather than in competition, and that information gain can be
viewed as a quantitative measure of relevance appropriate to the selection task.
Oaksford and Chater (1995a) argued for the validity of this interpretation by
showing that information gain can explain Sperber et al.’s (1995) experimental
results. In particular Oaksford and Chater (1995a) argued that Sperber et al.’s
(1995) relevance manipulation using abstract material in their Experiment 4
worked by implicitly manipulating P(p) and P(q). So, for example, in a low effort
condition where only two features are used, e.g. the letters printed at random on
the cards can only be A or E, implicitly defines a high probability category, i.e.
P(A) = P(E) = .5. If Oaksford and Chater (1995a) are correct, then varying the
pattern of high and low effort conditions within rules between the antecedents
and consequents should create the LL, LH, HL, and HH rules required to test
probabilistic effects. In contrast, Sperber et al. (1995) did not vary effort (and
hence according to Oaksford & Chater, 1995a, the probabilities) for antecedent
and consequent independently.

We also used a high and a low effects condition in this experiment. If
Oaksford and Chater’s (1995a) interpretation of Sperber et al.’s (1995)
Experiment 4 is correct then only the probability manipulation should influence
participants’ card selections. In contrast, if Sperber et al. are right about cognitive
effects, then we would expect more not-q card selections in the high effects
condition. Cognitive effects were manipulated as in Sperber et al.’s Experiment 4
by making the p, not-q instance diagnostic of a fault. However, in their
instructions for the high effects condition, Sperber et al. (1995, p.75) explicitly
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introduce the p, not-q instance, “On the back of the card with a 6, the machine has
not always printed an E: sometimes it has printed an A instead of an E.” This
explicit mention of the “6, A” counterexample, means that rather than making the
p, not-q instance relevant, people may be simply “matching” (Evans & Lynch,
1973) the named counterexample to the cards. In this experiment we left out
explicit mention of the actual counterexample. If the diagnostic context is what is
important, as Sperber et al. (1995) argue, then people should be able to infer the
nature of a fault (counterexample) for themselves.

We now contrast the predictions of the two approaches for the present
experiment. On the effects side, Sperber et al. (1995) predict that there should be
significantly more not-q selections in the high rather than the low effects
condition. The probabilistic accounts predict no such effect. On the effort side,
because effort manipulates probabilities, the probabilistic account makes the
same predictions as in Experiments 1 and 2 (Predictions 1–2).

In Experiments 1 and 2, Prob(p) and Prob(q) were treated as between-
subjects factors. In Experiments 3 and 4 they were treated as within-subject
factors.

Method

Participants

A total of 48 undergraduate psychology students from the University of
Warwick took part in this experiment. Each participant was paid £4.00 an hour to
take part. None of these participants had any prior knowledge of the selection
task.

Design

The experiment was a 2 × 2 × 2 [Prob(p) × Prob(q) × Effects] mixed design
with Prob(p), Prob(q) as within-subject factors and Effects as a between-subjects
factor. Participants were randomly assigned to the relevance conditions such that
24 participants performed the experiment in each condition. Each participant
performed the four selection tasks with LL, LH, HL, and HH rules presented in
random orders.

Materials

In a high effects condition, as in Sperber et al. (1995), it was made clear that
the falsifying case was diagnostic of a fault. However, explicit mention of the
falsifying case was omitted. As in Kirby (1994), the scenario describes a machine
printing cards. In the low Prob(p) and low Prob(q), LL, condition the materials
were as follows:
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A machine manufactures cards.
It is programmed to print at random, on the front of each card, a letter (A to Z).
On the back of each card, it prints a number:
� When there is an A, it prints a 1.
� When there is a letter B to Z, it prints a number between 1 and 9 (inclusive) at

random.

One day, Mr Jones, the person in charge, realised that the machine has produced
some cards it should not have printed.
Mr Jones fixes the machine, examines the newly printed cards and says: don’t
worry, the machine works fine,

If a card has an A on the front, it has a 1 on the back.

Your task is to indicate which cards need to be turned over in order to establish
whether what Mr Jones said is true or false, at least as far as these four cards are
concerned. Indicate only the cards that it is absolutely necessary to turn over.

According to Oaksford and Chater (1995a) because not-p corresponds to the
letters B–Z, and not-q corresponds to the numbers 2–9, and these are randomly
assigned, Prob(p) = 1/26 and Prob(q) = 1/9, i.e. they are both low. They also
correspond to a high effort condition according to Sperber et al. (1995).

To construct the other probability conditions the clauses in these instructions
in italics were replaced with the following. For the LH condition: “a letter (A to
Z)” and “When there is a letter B to Z, it prints a 1 or a 2 at random”. For the HL
condition: “an A or a B” and “When there is a B, it prints a number between 1 and
9 (inclusive) at random”. For the HH condition: “an A or a B” and “When there is
a B, it prints a 1 or 2 at random”.

In the low effect condition, rules and scenarios were constructed that
corresponded to Sperber et al.’s (1995) low effect condition. For the low Prob(p)
and low Prob(q), LL, condition the materials were as follows:

A machine manufactures cards.
It is programmed to print at random, on the front of each card, a letter (A to Z).
On the back of each card, it prints a number between 1 and 9 (inclusive) at random.

The person in charge, Mr Jones, examines the cards and has the strong impression
that the machine is not really printing the numbers on the backs at random. He
thinks that:

If a card has an A on the front, it has a 1 on the back

but that for the letters B–Z (inclusive) the numbers 1 to 9 are printed on the backs
at random. Your task is to indicate which cards need to be turned over in order to
establish whether Mr Jones is right or wrong, at least as far as these four cards are
concerned. Indicate only the cards that it is absolutely necessary to turn over.
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According to Sperber et al. (1995), in these instructions cognitive effects are
low because the p, not-q instance is no longer diagnostic of a fault.

In the low effect condition, to achieve the probability manipulation the
clauses in these instructions in italics were replaced with the following. For the
LH condition: “a letter (A to Z)” and “1 or 2”. For the HL condition: “an A or a
B” and “between 1 and 9 (inclusive)”. For the HH condition: “an A or a B” and
“1 or 2”.

In each effects condition the materials consisted of 24 5-page booklets. The
first page of each booklet was an instruction page. On the following four pages
each of the four selection tasks appeared. Beneath the final line of the instructions
on each page four cards were depicted showing p, not-p, q, and not-q instances.
The order in which these instances appeared on the four cards was randomly
selected without replacement from the 24 (4!) possible orders.

Procedure

Participants were tested individually. After being seated in the experimental
cubicle each participant was given the booklet face down on a table and was told
not to turn it over until instructed. On turning over the booklet the first page
revealed the following instructions:

Please solve the following four problems. There is no time limit so please think
carefully before responding.

When all participants had finished the booklet they were thanked for their
participation. Participants were debriefed concerning the purpose of the
experiment by written note after the final participant had been run in order to
avoid communication between participants.

Results and Discussion

Table 6 shows the results of Experiment 3. Analysing the results of Experiments
3 and 4 is simplified because using abstract material means that any probabilistic
or relevance effects can only be explained by the probabilistic or relevance
models. Thus any such effects count against other approaches. Moreover, we did
not manipulate believability in these experiments and so they do not distinguish
between the optimal data selection models. We begin as before with the
probabilistic approaches.

Probabilistic Approaches

Prediction 1: Probabilistic vs. Non-probabilistic Effects. We tested whether
Prob(p) affects not-q card selections by collapsing across the effects conditions.
In these analyses we used the proportion of not-q cards selected as the dependent
variable. The mean proportion of not-q card selections when Prob(p) was high
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(mean = .60, sd = .44) did not differ significantly from when Prob(p) was low
(mean = .57, sd = .45), Wilcoxon test, z = .91, P = .18, one-tailed. This failure to
observe a significant increase in not-q selections when Prob(p) was high, may be
because for the HL rule with abstract material there is a stronger tendency to
revise down P(p) (Oaksford & Chater, 1994). We therefore compared selections
of this card between the LH and HH rules using the McNemar test, which did not
approach significance, x 2(1) = .14, P = .5, one-tailed. Consequently there was no
evidence in Experiment 3 that Prob(p) affects the selection of not-q cards. This
result is not consistent with the probabilistic approaches.

Predictions 1 and 2: Optimal Data Selection vs. Kirby (1994). We per-
formed the same type of analysis for the not-q card as described earlier except
that we compared the high (LH and HH) and low (LL and HL) Prob(q)
rules. The mean proportion of not-q card selections when Prob(q) was high
(mean = .64, sd = .45) was significantly higher than when Prob(q) was low
(mean = .54, sd  = .46), Wilcoxon test, z = 2.07, P < .025, one-tailed. However,
the mean proportion of q card selections when Prob(q) was high (mean = .31,
sd = .45) was not significantly lower than when Prob(q) was low (mean = .33,
sd = 44), Wilcoxon test, z = .71, P = .24, one-tailed. Although the result for the
not-q card is consistent with the optimal data selection approaches, the result for
the q card is not.

Non-Probabilistic Approaches

The materials and manipulations used in Experiment 3 rule out mental
models, mental logics, pragmatic reasoning schemas or Darwinian algorithms as
explanations of these data, especially in the light of the very high levels of not-q
card selections. We therefore concentrate on the relevance approach to explain-
ing these data.

Relevance. According to the relevance approach (Sperber et al., 1995) there
should be more not-q card selections in the high effects condition than in the low

TABLE 6
Experiment 3

Low Effects High Effects
Rule p not-p q not-q CFI p not-p q not-q CFI

LL 70.8 37.5 45.8 45.8 0 (.83) 79.2 4.2 16.7 58.3 .42 (.72)
LH 79.2 41.7 45.8 62.5 .17 (.70) 75.0 8.3 16.7 62.5 .46 (.72)
HL 70.8 37.5 54.2 54.2 0 (.72) 75.0 4.2 16.7 58.3 .42 (.65)
HH 75.0 29.2 54.2 66.7 .13 (.74) 79.2 4.2 8.3 62.5 .54 (.66)

Percentage of cards selected and mean (SD) CFI for each rule in the selection task in Experiment 3.
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effects condition. However there was no significant difference in the proportion
of not-q cards selected between the high (mean = .60, sd = .44) and low (mean =
.57, sd = .43) effects conditions, Mann-Whitney test, z = .13, P = .45, one-tailed.
However, a similar analysis did reveal significantly fewer q card selections in the
high (mean = .15, sd = .31) effects condition that in the low (mean = .57, sd = .43)
effects condition, Mann-Whitney test, z = 2.85, P < .005, one-tailed. Moreover,
there were significantly fewer not-p card selections in the high (mean = .05,
sd = .18) effect conditions that in the low (mean = .37, sd = .38) effects condition,
Mann-Whitney test, z = 3.71, P < .0001, one-tailed.

These results seems to support relevance theory. The high effects condition
led to significant reductions in the selection of the non-logical, not-p and q, cards.
This interpretation is further confirmed by the within-rules analysis. We carried
out a 2 × 2 × 2 [Prob(p) × Prob(q) × Relevance] mixed ANOVA, with Prob(p)
and Prob(q) as within-subject factors and Relevance as a between-subjects
factor, with CFI as the dependent variable. CFI was significantly higher when
Prob(q) was high than when Prob(q) was low as predicted by probabilistic
approaches, F(1, 46) = 4.41, MSe = .14, P < .05. However, CFI was also higher in
the high effects condition than in the low effects condition, F(1, 46) = 4.46,
MSe = 1.60, P < .05, which is uniquely predicted by relevance theory.

We also checked for the predicted effects of relevance theory using the
frequency of selecting the p and not-q card combination as the dependent
variable. There was a significantly higher proportion of p, not-q card com-
binations selected in the high (mean = .45, sd = .43) effects condition than in the
low (mean = .23, sd = .41) effects condition, Mann-Whitney test, z = 1.83,
P < .05, one-tailed. There was also a significantly higher proportion of p, not-q
card combinations selected in the high Prob(q) (mean = .38, sd = .44) condition
than in the low Prob(q) (mean = .30, sd = .45) condition, Wilcoxon test, z = 1.71,
P < .05, one-tailed.

Summary

The pattern of results in Experiment 3 seems most consistent with relevance
theory. There was a significant effect of cognitive effects, not predicted by
probabilistic accounts. Moreover, it could be argued that the probabilistic effects
we observed are also consistent with the relevance account. According to
relevance theory low effort conditions facilitate the representation of p, not-q
instances. What matters is being able to identify the contrast class for not-q (as
suggested by Oaksford & Stenning, 1992). So if only 2 and 7 are possible then a
card with not-2 on it, must have a 7 on one side. Consequently, according to
relevance theory low effort on the consequent is the main requirement for
selection of the p, not-q card combination. The high Prob(q) categories always
correspond to low effort and so relevance can explain the effects of Prob(q). In
our next experiment we therefore kept effort fixed between rules while varying
probabilities by other means.
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EXPERIMENT 4

Gigerenzer and Hoffrage (1995) showed that many errors and biases in prob-
abilistic reasoning can be removed by using frequency formats, i.e. people will be
told that 6 out of 30 swans are white, rather than simply being told that the
probability of a swan being white is .2 (see also Gigerenzer, Hell, & Blank,
1988). Such formats seem to encourage people to use probabilistic information
appropriately in their reasoning. Recently Oaksford et al. (1997) demonstrated
probabilistic effects consistent with optimal data selection using the reduced
array version of the selection task. Their version of this task involved showing
participants stacks of cards, thereby presenting the probability information con-
cretely in a frequency format. In Experiment 4, therefore, we used a concrete
frequency format to manipulate probabilities in the original four card selection
task, while using p and q categories designed to create low effort for all rules.

Method

Participants

A total of 20 undergraduate psychology students from the University of
Warwick took part in this experiment. Each participant was paid £4.00 per hour
to take part. None of these participants had any prior knowledge of the selection
task.

Design

The experiment was a 2 × 2 within-subjects design with Prob(p), Prob(q) as
factors. Each participant performed the four selection tasks with LL, LH, HL, and
HH rules.

Materials

The materials consisted of two packs of 100 cards each. One pack depicted red
circles on one side and the other pack depicted blue triangles on one side. The
other side of all the cards in each pack was uniformly patterned. Four stacks of
cards were placed in front of participants. One pack contained 10 triangles, one
contained 50 circles, one contained 10 blue shapes, and the last contained 50 red
shapes. All stacks were placed before participants with the patterned faces upper-
most, so that they could not see the coloured shapes on the cards. Each pack had
a label behind it. The pack of triangles had a label reading “Triangles”, the pack
of circles had a label reading “Circles”, the pack of blue shapes had a label
reading “Blue Shapes”, and the pack of red shapes had a label reading “Red
Shapes”. The rules used in the study described a particular shape as all being of
the same colour, e.g. All the triangles are blue. As there were only two shapes and
two colours and participants were made aware of this, all the rules in this experi-
ment satisfied Sperber et al.’s prescription for a low effort condition.
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Procedure

Participants were tested individually. On entering the experimental room they
were seated in front of a table where the experimental materials were laid out.
The participant was then given the following instructions to read:

I have a pack of 120 cards. Each card has a coloured shape on one side. The shapes
are either circles or triangles, and the colours are either red or blue. In the pack, 20
of the cards have triangles on them and 100 of the cards have circles on them. 20 of
these shapes are blue and 100 of them are red. But you do not know which shapes
are which colour.

I have laid out the cards before you so that in one stack there are 10 triangles, in
one stack there are 50 circles, in one stack there are 10 blue shapes and in the
remaining stack there are 50 red shapes.

Your task is to find out whether ALL THE TRIANGLES ARE BLUE. I will
shuffle each stack of cards and deal one card from each stack. You must decide
which of these four cards (one or more) you must turn over to help find out
whether all the triangles are blue.

The rule illustrated is the LL rule, i.e. the low Prob(p) and low Prob(p) rule. To
achieve the probability manipulation, participants were presented with different
rules replacing the two occurrences of the rule (in italics) in the instructions. In
the LH condition the rule used was “all the triangles are red”; in the HL condition
the rule used was “all the circles are blue”; and in the HH condition the rule used
was “all the circles are red”. The four rule conditions were presented in randomly
assigned order. The card dealt from each stack was placed face down in front of
the stack from which it was dealt. A new set of instructions containing the new
rule was presented in each condition and after each condition the card dealt from
each pack was returned ready for the next condition.

Results and Discussion

Table 7 shows the results of Experiment 4. We assess the results in the same way
as Experiment 3.

Prediction 1: Kirby (1994)

We tested whether Prob(p) affects not-q card selections using the proportion
of not-q cards selected for the low Prob(p) rules (LL and LH) and for the high
Prob(p) rules (HL and HH). The mean proportion of not-q card selections when
Prob(p) was high (mean = .48, sd = .41) was significantly lower than when
Prob(p) was low (mean = .65, sd = .37), Wilcoxon test, z = 1.94, P < .05, one-
tailed. This result is significant but in the wrong direction. However, it is only
significant because of the HL rule, which as we have noted has peculiar pro-
perties. With HL removed there is no significant difference comparing the HH
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rule with LL and LH collapsed, Wilcoxon test, z = .54, P = .29, one-tailed.
Consequently there was no evidence in Experiment 4 that Prob(p) affects the
selection of not-q cards. This result is again not consistent with probabilistic
approaches.

Predictions 1 and 2: Probabilistic Approaches

Again we deal with the probabilistic approaches together because they all
make the same predictions, that there should be effects of Prob(q) on not-q and q
card selections. We performed the same type of analysis for the not-q card as
described earlier except that we compared the high (LH and HH) and low (LL
and HL) Prob(q) rules. The mean proportion of not-q card selections when
Prob(q) was high (mean = .68, sd = .41) was significantly higher than when
Prob(q) was low (mean = .45, sd = .39), Wilcoxon test, z = 2.18, P < .025, one-
tailed. Moreover, the mean proportion of q card selections when Prob(q) was
high (mean = .30, sd = .41) was significantly lower than when Prob(q) was low
(mean = .60, sd =  .35), Wilcoxon test, z = 3.21, P < .001, one-tailed. These
results are consistent with the optimal data selection approaches. They are not
consistent with relevance theory because cognitive effort was low for all rules.

Relevance

Every condition in this experiment was a low effort condition, where Sperber
et al.’s (1995) relevance account predicts that not-q card selections should
dominate over q card selections. However, in both the LL and HL condition, we
found more q card than not-q card selections as predicted by the optimal data
selection models. To test this quantitatively we used CFI as the dependent
measure. Contrary to Sperber et al. (1995), the optimal data selection accounts
predict a main effect of Prob(q) such that CFI is lower when Prob(q) is low than
when it is high. We carried out a 2 × 2 ANOVA, with Prob(p) and Prob(q) as
within-subject factors. Consistent with the optimal data selection accounts but

TABLE 7
 Experiment 4

Rule P(p) P(q) p not-p q not-q CFI

LL
1

6

1

6
75.0 30.0 65.0 55.0 –.10 (.85)

LH
1

6

5

6
85.0 10.0 30.0 75.0 .45 (.89)

HL
5

6

1

6
65.0 20.0 55.0 35.0 –.20 (.89)

HH
5

6

5

6
75.0 25.0 30.0 60.0 .30 (.87)

Percentage of cards selected and mean (SD) CFI for each rule in the selection task in
Experiment 4.
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not with relevance theory, CFI was significantly lower when Prob(q) was low
than when it was high, F(1, 19) = 13.54, MSe = .41, P < .0025. Moreover, for
these rules there were no more p and not-q card combinations (25%) selected
than, for example, p and q card (27.5%) combinations. In sum, only when the
effort manipulation is in line with the probability manipulation did we observe
the predicted effects of effort. When they are in opposition the probability
manipulation dominates. This result is consistent with the view that effort has its
effects by manipulating probabilities as Oaksford and Chater (1995a) suggested.

In Experiment 4 the effects of Prob(q) were consistent with the probabilistic
optimal data selection approaches. This experiment replicates for the fourth time
the finding that there are more not-q card selections when Prob(q) is high than
when it is low, which is uniquely predicted by the optimal data selection
approaches to the selection task.

GENERAL DISCUSSION

The purpose of these experiments was to investigate current theories of per-
formance on the indicative selection task where the rules describe how the world
is. Experiment 1 used contentful rules whose antecedents and consequents were
pre-tested for probability of occurrence. In the selection task the results were
most consistent with the information gain and impact theories—card selections
were affected by both P(p) and P(q) but not by P(MD).

The materials in Experiment 1 did not lead to more not-q than q card selections
for the LH and HH rules as predicted by the optimal data selection models. In
Experiment 2 we used familiar material about the voting behaviour of members
of parliament in order to provide a stronger manipulation and to standardise the
materials between rules. The results of Experiment 2 were again most consistent
with the information gain and impact accounts—card selections were affected by
both P(p) and P(q) but not by P(MD). Moreover, with these materials we now
observed more not-q than q card selections, but for the LH and HL rules, and not
for the HH rule. This was consistent with participants’ PRT results for the HL
rules but not for the HH rules.

We argued that these effects may arise as a result of more specific prior beliefs
suggesting better foil hypotheses. Consequently in Experiment 3 we moved to
abstract materials in order to avoid such effects. Experiment 3 used standard
abstract materials and employed the probability manipulations implicit in
Sperber et al.’s (1995) effort manipulations and noted by Oaksford and Chater
(1995a). We also manipulated effects. We found significant probabilistic effects
predicted by the optimal data selection models. However, we also found effects
of the effect manipulation. Moreover, the probabilistic effects we observed could
be explained by relevance theory.

In Experiment 4 we kept effort constant while manipulating probabilities
using a concrete frequency format (Gigerenzer & Hoffrage, 1995) as used by
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Oaksford et al. (1997). This experiment confirmed most of the effects predicted
by the optimal data selection theories.

Our attempts to manipulate probabilities in these experiments have only been
partially successful. No single experiment in this sequence has produced all
the effects predicted by probabilistic approaches. The first two experiments
attempted to manipulate probabilities using thematic content in order to
demonstrate the spontaneous use of probabilistic information. In Experiment 1,
although the trends were significantly in the predicted direction, not-q card
selections did not exceed q card selections for the LH or HH rules. In Experiment
2, although not-q card selections did exceed q card selections for some rules, the
HH rules seemed to invoke prior beliefs that led to the standard pattern of card
selections where more q than not-q cards are selected. Nonetheless there are three
good reasons to treat these data as supportive of existing probabilistic accounts.
First, we did observe significant effects of our probabilistic manipulations.
Second, these effects could not be predicted by non-probabilistic accounts. For
Experiments 1 and 2 we explored in detail whether non-probabilistic theories
could account for these data. Our conclusion was that no existing distinction
made by these theories could account for the pattern of effects we observed.
These theories may be changed to take account of these data but as we have
already pointed out such ad hoc modification is always possible.

Third, the deviations we observed in the data can be explained by theoretical
distinctions already in the literature. In Experiment 1 we suggested that people
may employ a default confirmation heuristic derived from prior knowledge in-
dicating that such a strategy is the most effective in a world where rarity is the
norm. This possibility was first raised by Oaksford and Chater (1994). In
Experiment 2 we suggested that where more specific prior beliefs are available
people may compare rules to foils other than an independence model. This pos-
sibility was raised by Over and Jessop (1998). Consequently, although the
theoretical distinctions to which we have appealed have been applied post hoc,
they were not developed as an ad hoc response to these data.

It could be argued that although the distinctions to which we appeal are not ad
hoc they do amount to allowing probabilistic models a degree of freedom not
extended to non-probabilistic models. There are two reasons why our account
does not succumb to such an argument. First, such an objection is only possible
because the probabilistic models are sufficiently formally precise for the degrees
of freedom to be easily specified. For other non-probabilistic accounts it is
unclear how many degrees of freedom they already assume. For example, in
mental models it appears that the initial model constructed has an undue
influence on people’s inferential performance (Garnham, 1993; Johnson-Laird &
Byrne, 1991). In mental models theory that one model rather than another is
chosen as the initial model is treated as a primitive operation (Chater & Oaksford,
1993). However, the processes underlying initial model construction must be
very complex and must rely as heavily on prior knowledge as probabilistic
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accounts. Consequently, it is unclear whether theories such as mental models do
not already assume more degrees of freedom than probabilistic accounts.

Second, in Experiment 3 and 4 we did not use contents that could invoke much
prior knowledge and we observed effects that more closely reflected the pre-
dictions of the probabilistic models (unmodified by the distinctions invoked in
Experiments 1 and 2). However, in Experiments 3 and 4 we also failed to observe
some of the effects predicted by probabilistic accounts. In particular we did not
observe effects of P(p) and in Experiment 3 most of the effects we observed were
consistent with relevance theory (Sperber et al., 1995). As for Experiments 1 and
2 these apparent deviations can be seen as the product of distinctions already
drawn by proponents of the probabilistic approach.

Oaksford and Chater (1995a) argued that probabilistic models could be
characterised as offering a quantitative account of how prior knowledge affects
the relevance of data. That is, probabilistic approaches are not in competition
with the relevance account of Sperber et al. (1995). Indeed Oaksford and
Stenning (1992) argued that the use of binary materials, which Sperber et al.
(1995) use to achieve their effort manipulation, should be interpreted as allowing
participants to adopt the most relevant interpretation of a task rule. Consequently
we see very few differences between these approaches. Both view the selection
task as requiring people to make relevance judgements rather than engage in
complex deductive reasoning.11

Moreover, it seems likely that the effects manipulation can be explained
within decision-theoretic approaches such as Evans and Over (1996a) and Klauer
(1999). The effects manipulation can be regarded as raising the costs of failing to
reject a hypothesis when it is false (i.e. failing to detect a fault). A decision-
theoretic perspective may also be more appropriate to explain the results of Green
and Over (1997) who manipulated the seriousness of an illness and thereby the
costs associated with failing to detect the illness. Of course this suggests that
disinterested approaches such as information gain and impact should not be
generalised to the effects manipulation. Consequently, these latter approaches are
not questioned by the results of Experiment 3.

In Experiments 3 and 4, we did not observe any effects of P(p). A possible
reason is that when P(p) is kept constant and P(q) varied, the change in
information gain is much higher than when P(q) is kept constant and P(p) varied.
For example, in Experiment 4 moving from the LL to the LH rule, i.e. from a low
to a high P(q) rule, leads to a 98% increase in the information gain associated
with the not-q card. However, moving from the LH to the HH rule, i.e. from a low

11The main difference appears to concern the role of logic. Sperber et al. (1995)  seem to view
their account as demonstrating the consistency of selection task behaviour with logic and hence as
showing that such results do not question that logic plays a role in human reasoning. In contrast, we
regard our probabilistic approach as questioning whether logic plays a significant role in human
reasoning.
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to a high P(p) rule, leads to only a 5.6% increase in the information gain
associated with the not-q card.12 Consequently it would appear that the particular
choices of P(p) and P(q) values have led to a situation where the effects of P(q)
are much more detectable than those of P(p).

There is recent evidence suggesting that some people may be capable of
logical performance on the selection task. According to optimal data selection
accounts the logical p, not-q response only occurs when P(p) or P(q) are high.
However, these recent experiments are important because it does not seem
plausible to suggest that any manipulation of P(p) or P(q) has occurred to bring
about the logical response. Green (1995a,b) has shown that some participants do
construe the task logically, and Stanovich and West (1998) have shown that a
subgroup (around 10%) of participants with high intelligence are capable of
logical performance. These results present few difficulties for probabilistic ap-
proaches. We do not deny that the selection task has a logical interpretation: If the
rule is interpreted as only applying to the four cards presented in the task, then the
task can be construed purely deductively. However, we do deny that this is the
most natural interpretation of the task. Interpreting an if … then statement as
restricted to a domain of only four objects, is pragmatically odd. For example,
suppose there are four men and those who are bald have beards, is it felicitous to
describe this situation as “if a man is bald, then he has a beard?” In a directly
analogous experiment Legrenzi (1971) found that when presented with the four
cards in the selection task so that both sides could be seen, only 1 participant out
of 30 described the situation using such a conditional. The most felicitous inter-
pretation of if a man is bald, then he has a beard is that it applies to all men not
just to four. Consequently, the four men should be interpreted as a sample from a
larger population and hence a data-selection strategy for verifying universal
claims should be adopted. However, some people may interpret the task logically
and they may reason about it in a logical way. As Stanovich and West (1998) sug-
gest, if these participants were removed then optimal data selection approaches
may reveal even better fits to the data.

More problematic for probabilistic approaches are results that seem to show
that in certain circumstances most participants can solve the standard abstract
selection task logically. Moshman and Geil (1998) showed that solving the task
in groups leads to far higher solution rates. As Stanovich and West (1998)
observed, the logical response may emerge because higher IQ participants are
able to override their default strategies and think about the task logically. Where
a group decision needs to be arrived at, people are likely to take much more time
over the task and not simply apply their default strategies. Consequently, this

12Only these comparisons made sense due to the problems already discussed at length concerning
the HL rule (see section Effects of Prior Beliefs). In making these comparisons we assumed that
exceptions were possible as in Oaksford and Chater (1998a) and we set the exceptions parameter
to .1. P(MD) was kept at .5 and the P(p) and P(q) values were set from the experimental set up.
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situation may permit participants to suspend judgement long enough to see the
logical interpretation. It would be interesting to assess the IQs of the individuals
in the groups, and to investigate their relative contributions to the collective
reasoning process.

Gebauer and Laming (1997) argue that performance in their experiments was
logical when participants’ interpretations of the task rule are taken into account.
In their Experiment 1, although most participants failed to give the logical
response it seemed that this was because they misinterpreted the rule. For
example, “one side … other side” may be conflated with “front … back”. When
these interpretations were taken into account, performance could be interpreted
as logical. Although this is an interesting result it is inconsistent with the attempts
to encourage a logical interpretation in the early literature on the selection task
which focused on the same possible misinterpretations (Wason & Johnson-Laird,
1970, 1972). Consequently, these experiments represent an interesting anomaly
that deserves further empirical investigation.

In general the reaction of proponents of the probabilistic approach to apparent
demonstrations of logicality depends on how thoroughgoing a probabilistic
stance is taken. The minimalist approach is to suggest that although a prob-
abilistic optimal data selection account is appropriate for explaining people’s
normal selection task behaviour, such an account should not be extended else-
where. This approach may allow that much human reasoning is still deductive in
character and should be explained by theories such as mental logic or mental
models. Our approach is more thoroughgoing. We suggest that because of the
uncertainty of all everyday inference, a probabilistic approach should be adopted
to all human reasoning (see Oaksford & Chater, 1998b). For example, we have
recently extended the probabilistic approach to syllogistic reasoning (Chater &
Oaksford, 1999b) and to conditional inference (Oaksford, Chater, & Larkin,
1998). On our view, apparent displays of logicality in the selection task could
arise because restricting the domain of the rule to the four cards may lead
participants to ignore prior knowledge. Consequently a probabilistic analysis
along the lines proposed by Laming (1996) may be appropriate, which predicts
the logical response. Alternatively, it could be conceded that people may have a
rudimentary facility for logical thought that, under the right circumstances, can
lead to logical performance. Either way logic is denied any central role in
everyday human thought.

All the optimal data selection models are defined at the computational level.
This contrasts with the non-probabilistic models that typically explain reasoning
performance in terms of properties of the algorithms that implement logic in the
mind/brain. A legitimate question concerns what process models are suggested
by the probabilistic accounts. Oaksford and Chater (1994) suggested that there
are a range of possible options from hard-wired heuristics to direct imple-
mentations of the mathematical models proposed by these probabilistic theories.
They also suggested that a hard-wired heuristic may take the form of a default
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confirmation strategy. This would be adaptive because in the normal world
where rarity holds it would always select the most informative evidence.
However, the current experiments reveal that this could not be the whole story,
because such an account would have to predict no behavioural variation as a
function of manipulating probabilities in this task. But these experiments show
that people are sensitive to probabilistic manipulations. Moreover, our ex-
planation of the aberrant HH rules in Experiment 2 would appear to suggest that
people’s data selection behaviour may be able to respond flexibly not only to
changes in the base rates of the antecedent and consequent but also to differences
in relevant prior beliefs—other than their degree of belief in the rule under test
[P(MD)]. Oaksford and Chater (1998b) suggest that these probabilistic accounts
may be implemented in neural networks following recent proposals that they can
be understood as performing various probabilistic computations (Chater, 1995;
McClelland, 1998). However, as Marr (1982) argued, the computational level is
the starting place for adequate computational models. It is our belief that a great
deal more work needs to be done at this level of analysis before considering the
cognitive algorithms that implement these accounts. This is because there still
seems to be a great deal of scope for explaining many of the observed phenomena
purely at the computational level (Oaksford & Chater, 1996).

These results may be relevant to explaining another set of data within the
optimal data selection approach. This is the negations paradigm (Evans & Lynch,
1973). In the negations paradigm selection task the antecedent and consequent of
a rule can contain negated constituents (not-p, not-q). There are four possible
conditional rules, the original if p, then q (AA), together with if p, then not q
(AN), if not p, then q (NA), and if not p, then not q (NN). Each participant
performs a selection task with each of these four rule types. Using the negations
paradigm, Evans and Lynch (1973) reported an effect that they called “matching
bias”. Participants tend to select the cards that are named in the rules, ignoring the
negations. So for example, for the AN rule they will select the p and the q cards,
which now correspond to the logical selection, i.e. antecedent, p, and the card
representing the denial of the consequent, not-(not-q) Þ  q. Oaksford and Chater
(1994) suggested that rather than simply matching, participants are attending to
the fact that a negated category is also a high probability category. For example,
the probability that you are not drinking whiskey now, is far higher than the
probability that you are. This suggests the following equivalences: AA Û  LL;
AN Û  LH; NA Û  HL; and NN Û  HH. In the negations paradigm task,
participants tend to select the q card throughout and hence make apparently
logical selections when the consequent is negated but confirmatory selections
when it is not negated. Adopting the equivalence just outlined, our results—
especially in Experiment 4—reflect this pattern of responding in task versions
where matching could not apply. Consequently, these experiments also provide
some support for Oaksford and Chater’s (1994) interpretation of the negations
paradigm selection task.
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Recently Klauer (1999) has shown that the information gain model is sub-
optimal when optimality is interpreted as minimising the length of a sequential
sample. This demonstration questions whether the information gain model is
compatible with rationality. However, the information gain model does provide a
close approximation to the optimal decision strategy which is all that can be
reasonably expected (Kacelnick, 1998). As Klauer notes, for all the empirical
data on the selection task, information gain and the optimal or “Bayes” decision
rule make the same predictions. As we have seen they only diverge on the role of
prior belief [P(MD)]. Consequently Experiments 1 and 2, which showed that our
participants appeared to be insensitive to variation in P(MD), support the sub-
optimal information gain measure (see also Chater & Oaksford, 1999a).

Although the evidence seems to favour the information gain or impact models,
Klauer’s (1999) analysis may create problems for the claim that information gain
provides a rational analysis of the selection task (Oaksford & Chater, 1994,
1996). Following Anderson (1990), Oaksford and Chater (1994) argued that
selection task behaviour could be regarded as rational because it reflected an
optimal adaptation to an environment in which properties are rare. Klauer’s
analysis implies that if we wish to argue that people are rational because their
behaviour is optimal, then showing that behaviour conforms to the information
gain model is inadequate because that model is suboptimal. In responding to
Klauer’s argument, Chater and Oaksford (1999a) argue that information gain and
decision-theoretic approaches may apply to different situations. As we discussed
in the Introduction, the information gain and impact measures seem most
appropriately applied to disinterested inquiry where the costs of making various
decisions are not specified. As Chater and Oaksford (1999a) argue, this situation
seems to capture the original selection task. However, when appropriate costs are
introduced, as we argued occurs in Sperber et al.’s effects manipulation, then a
decision-theoretic model may be more appropriate. Consequently with respect its
own domain of inquiry, information gain may still be optimal and hence rational
(Chater & Oaksford, 1999a).
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