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A probabilistic computational level model of conditional inference is proposed that can explain polarity 
biases in conditional inference (e.g., J. St.B.T. Evans, 1993). These biases are observed when J. St.B.T. 
Evans's (1972) negations paradigm is used in the conditional inference task. The model assumes that 
negations define higher probability categories than their affirmative counterparts (M. Oaksfurd & K. 
Stenning, 1992); for example, P(not-dog) > P(dog). This identification suggests that polarity biases are 
really a rational effect of high-probability categories. Three experiments revealed that, consistent with 
this probabilistic account, when high-probability categories are used instead of negations, a high- 
probability conclusion effect is observed. The relationships between the probabilistic model and other 
phenomena and other theories in conditional reasoning are discussed. 

In two areas of logical reasoning, Wason's selection task 
(Chater & Oaksford, 1999a; Oaksford & Chater, 1994, 1996, 
1998a) and syllogistic reasoning (Chater & Oaksford, 1999b), we 
have argued that many of the systematic biases seen in people's 
inferential behavior are a result of their applying everyday prob- 
abilistic reasoning strategies to these laboratory tasks. That is, 
people are applying strategies that are normally adaptive in the 
uncertain world in which they live (Oaksford & Chater, 1998b). 
According to this view, people are not trying and falling to perform 
logical inferences, rather, they are succeeding in drawing proba- 
bilistic inferences. In this article, we present experiments showing 
that a similar strategy may be able to account for polarity biases in 
the conditional inference paradigm (e.g., Evans, 1977; Evans, 
Clibbens, & Rood, 1995; Kern, Mirels, & Hinshaw, 1983; Marcus 
& Rips, 1979; Markovits, 1988; Rumain, Connell, & Braine, 1983; 
Taplin, 1971; Taplin & Staudenmayer, 1973; Wildman & Fletcher, 
1977). 

In a conditional inference task, participants are presented with a 
conditional sentence such as i f  a bird is a raven (p), then it is black 
(q) (the conditional premise) and various facts relating to the 
antecedent (p) and consequent (q) of the sentence (the categorical 
premise). From these pairs of premises, logic dictates that various 
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inferences should be made or withheld. Therefore, from this rule 
and the fact that Tweety is a raven, it should be inferred that 
Tweety is black (logically this is called "modus ponens" [MP]). 
Logic also says that from this rule and the fact that Tweety is not 
black, it should be inferred that Tweety is not a raven (logically 
this is called "modus tollens" [MT]). Logically one cannot infer 
anything else. However, people are far more willing to make the 
MP inference than the MT inference, even though there is no 
logical reason to do so. Moreover, people are also willing to 
endorse logical fallacies such as inferring that Tweety is not black 
from the fact that Tweety is not a raven (this is called the fallacy 
of "denying the antecedent" IDA]) and that Tweety is a raven from 
the fact that Tweety is black (this is called the fallacy of"affLrming 
the consequent" [AC]). The fallacies are endorsed less often than 
both logical inferences, but logically they should not occur at all. 

Polarity biases are observed when Evans's negations paradigm 
is used (Evans, 1977, 1993; Evans et al., 1995; Evans & Handley, 
1999; Evans, Newstead, & Byrne, 1993; Pollard & Evans, 1980; 
Wildman & Fletcher, 1977). This involves incorporating negations 
in the antecedents and consequents of the rules to create four 
different task rules (A = affmnative; N = negative): i f p  then q 
(AA); i f  p then not-q (AN); i f  not-p then q (NA); and i f  not-p then 
not-q (NN; Evans & Lynch, 1973). This manipulation means that 
half of the conclusions of any inference--MP, DA, AC, or M T - -  
will be affh'mative, and half of them will be negative (i.e., the 
conclusion will contain a negation). Negative conclusion bias is 
observed when participants endorse more inferences with a nega- 
tive conclusion than those with an affirmative conclusion. For 
example, in a meta-analysis of the studies cited previously, DA 
was endorsed by only 45.74% of participants when the conclusion 
was positive, (i.e., for AN and NN; a DA conclusion negates the 
consequent that for these rules is not-q, and not-not-q is equivalent 
to q). However, DA was endorsed by 69.83% of participants when 
the conclusion was negative (i.e., for A_A and NA). Similarly, half 
of the categorical premises of any inference will be affirmative, 
and half will be negative. Evans (1993) argued that the mental 
models theory predicts an affirmative premise bias. This occurs if 
participants endorse more inferences with affirmative categorical 
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premises than with negative categorical premises. Evans et al.'s 
(1995) experiments revealed a negative conclusion bias but no 
affirmative premise bias. They also showed that negative conclu- 
sion bias was most prevalent for DA and MT. However, Evans and 
Handley (1999) seem to show that negative conclusion bias is 
removed by the use of implicit negations--in which, for example, 
the categorical premise not-A is represented as K--and is replaced 
by an affirmative premise bias. We discuss these issues in the 
sequel. 

Several authors have suggested that human conditional infer- 
ence has a significant probabilistic component (Anderson, 1995; 
Chan& Chua, 1994; George, 1997; Liu, Lo, & Wu, 1996; Steven- 
son & Over, 1995). In this article, we develop this idea by 
proposing a probabilistic account of polarity biases. We first 
develop a probabilistic computational level model (Marr, 1982) of 
the inferences that people should make in the conditional inference 
task, and we show how it may explain negative conclusion bias. 
We then test the main predictions of this model in three 
experiments. 

A Conditional Probability Model of Conditional Inference 

In this section, we present a model of conditional inference 
based on conditional probability. Anderson (1995) suggested a 
similar account. 

Our account of polarity biases relies on Oaksford and Stenning's 
(1992) account in which identifying contrast sets is one important 
function of negations. For example, the interpretation of Johnny 
didn' t  serve coffee (where "coffee" is the focus) is that he served 
a drink other than coffee. The superordinate category "drinks" 
provides the universe of discourse and the contrast set is defined 
by the operation of set difference (i.e., it is the set of "drinks 
Johnny could serve, less coffee"). This account is called the 
"otherness" theory of negation, which goes back to Plato (see also 
Apostel, 1972; Horn, 1989; Ryle, 1929). The set of "drinks less 
coffee" is likely to be much larger than the set of "coffee drinks." 
Consequently, Oaksford and Chater (1994) suggested that negated 
categories are treated as high-probability contrast sets (higher at 
least than their unnegated counterparts). The following equiva- 
lences were therefore suggested for the rules in the conditional 
inference task: i f  p, then q <:~ LL; i f  p, then not-q <:~ LH; i f  not-p, 
then q ¢:) HL; i f  not-p, then not-q ¢:~ H H  (H = high, L = low, the 
pair, e.g., HL, is ordered to indicate a high P(p)  and low P(q) rule). 
These equivalences allow polarity biases to be reinterpreted. Neg- 
ative conclusion bias can be regarded as a preference for high- 
probability conclusions, and affirmative premise bias can be re- 
garded as a preference for low-probability (categorical) premises. 

Our account of how negations influence conditional inference is 
not a complete explanation of how people deal with negations. 
Negations can perform many different communicative functions: 
They allow us to refuse, to lie, to be ironic, to deny presupposi- 
tions, to distinguish truth from falsity (Horn, 1989) as well as to 
identify contrast sets. Our contention is that in the experiments on 
polarity biases, which typically use informationally impoverished 
abstract material, enough participants attend to a negations role in 
identifying contrast sets to explain these polarity preferences that 
are seen in the aggregate data. We argue that these preferences 
may be rational given a probabilistic model of conditional 
inference. 

A Computational Level Model 

In modeling Wason's (1968) selection task, we used a probabi- 
listic interpretation of conditional rules (Oaksford & Chater, 1994, 
1996). Rules were represented as a 2 × 2 contingency table as in 
Table 1. In this table, a = P(p), b = P(q), and • = P(not-qLo). We 
introduced an exceptions parameter, •, that corresponds to the 
probability of not-q given p, as in Oaksford and Chater (1998b), 
and allowed it to ramify throughout the joint probabilities while 
the marginals were kept constant. Following previous accounts 
(Chan & Chua, 1994; Stevenson & Over, 1995; Liu et al., 1996), 
we assumed that people endorse an inference in direct proportion 
to the conditional probability of the conclusion given the categor- 
ical premise. From Table 1 we derived expressions for the condi- 
tional probabilities for each inference and its converse (with the 
prime superscript, these featured prominently in our predictions): 

MP: P(q~) = 1 - E NIP': P(--q~) = 1 - P(q~) 
(1)  

1 - b - a ~  
DA: p(--,ql---~p) = 1 - a DA': P(qI-"P) = 1 - P(--,ql--~p) 

(2) 

A C :  e(Plq) = a(1 - ~) AC': e ( - -g ' l q )  = 1 - P(Plq) 
b 

(3)  
1 - b - a •  

MT: P(--Pl"q) = 1 - b MT': P(PI-'q) = 1 - P(-'~l"q) 

(4) 

We show how the model behaves in Figure 1. Figures 1A-1D 
show how the relevant conditional probability varies with the 
probabilities of the conclusion and categorical premise with ~ = 
.25. For example, Figure 1B shows this information for the DA 
inference. The x-axis represents the probability of the conclusion 
[P(not-q) or 1 - b]. Each curve represents how the conditional 
probability of the conclusion given the categorical premise [P(not- 
qlnot-p)] varies as a function of the probability of the conclusion 
(1 - b) for different values of the probability of the premise 
[P(not-p)]. The probabilities of both the premise and the conclu- 
sion were varied from .1 to .9 in steps of .2. Where no value 
appears, this is because it violates the assumptions of the proba- 
bility model. For example, according to Equation 2, with a = .9 

Table 1 
The Contingency Table f o r  a Conditional Rule 

g 

12 a (1 - E) 

not -p  b - a ( 1  - e) 

not-q  

ag 

(1 - b)  - ae  

Ifp then q, where there is a dependency between thep and q that may admit 
exceptions (8). a = P(p), b = P(q), and ~ = P(not-q~). 
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Figure 1. How the probability that a conclusion should be drawn varies as a function of the probability of the 
premise and conclusion for DA (Panel B), for AC (Panel C) and for MT (Panel D). The probability that an MP 
(Panel A) inference should be drawn relies only on the exceptions parameter e (P[not-q~]). 

(so the probability of the premise is .1), with b = .5 (so the 
probability of the conclusion is also .5), and with e = .25, the 
conditional probability of the conclusion given the categorical 
premise [P(not-qInot-p)] is 2.75 (i.e., it is not in the 0-1 probability 
interval). As the probability of the conclusion of DA, AC, or MT 
increases, the probability that any of these inferences will be drawn 
also increases. This is consistent with a high-probability conclu- 
sion effect. This relationship holds for all three inferences as long 
as there are exceptions. If there are no exceptions, then the prob- 
ability of drawing an MT inference [P(not-p]not-q)] is equal to 1 
and therefore MT should be drawn regardless of the probability of 
the premise or conclusion. The exceptions parameter (e) is 1 - 
P(qkT), which is why MP [P(qLa)] only relies on this single pa- 
rameter. Linguistically the structure o f / f . . ,  then rules reflects the 

causal ordering of events in the world (Comrie, 1986) which allow 
us to predict what will happen next. These predictions only go 
awry because of exceptions. Thus, MP and the reasons why it 
might fail are particularly eognitively salient (Cummins, Lubart, 
Alksnis, & Rist, 1991), which is why we treat exceptions as a 
primitive parameter of the model. 

A low-probability premise effect is predicted for AC and also 
for DA when the probability of the conclusion (1 - b) is greater 
than E (see Figure 1A), but the opposite effect is predicted for MT 
(see Figure 1, Panel D). Consequently, a low-probability premise 
effect is only unequivocally predicted for the AC inference. 

This model is defined at Marr's (1982) computational level; that 
is, it outlines the computational problem people are attempting to 
solve when they are given conditional inference tasks to perform. 
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The model also specifies the knowledge that they bring to bear on 
the problem; that is, knowledge of the probabilities of exceptions 
and of the antecedents and consequents of the rules they are given 
and of their contrast sets. That is, we abandon the conventional 
view that the problem people confront is one of which logical rules 
apply to these conditional statements. We do not pursue how 
people actually solve the computational problem, as we have 
reconceived it, in any depth in this article. However, even a brief 
consideration of how the cognitive system may implement our 
computational level model allows us to make some further predic- 
tions. The algorithms or heuristics that people use may only 
approximate this computational level theory and may differentially 
weight the sources of information relevant to finding a solution. 
For example, according to the model a high-probability conclusion 
is always an unambiguous cue to endorse an inference. Therefore, 
we would expect people to weight this information very heavily. 
However, premise information is equivocal. Low-probability pre- 
mises predict that the inference should be drawn for AC, but they 
predict the opposite for MT, and what they predict for DA depends 
on e. Consequently, we doubt that people weight premise infor- 
marion heavily at all; it is certainly weighted a lot less than 
conclusion information. Consequently we do not predict premise 
effects. 

To test whether the model is on the right track, we carried out 
a meta-analysis of the existing data on the negations paradigm 
conditional inference task (Evans, 1977; Evans et al., 1995; Pollard 
& Evans, 1980; Wildman & Fletcher, 1977) using study as the unit 
of analysis (Wolf, 1986). We only included conditions from Evans 
et al. that used the standard ifp then q rule form, and not roles such 
as q only if p. There were seven studies in all. There was a 
significant negative conclusion effect for DA, F(1, 6) = 91.64, 
MSE = 34.38, p < .0001. For the inferences with a negative 
conclusion ( -C) ,  the mean (and standard deviation), in percentage 
of participants endorsing an inference, was M = 59.86, SD = 9.21; 
for the inferences with an affirmative conclusion (+C), it was 
M = 38.64, SD = 14.22. There was also a significant negative 
conclusion effect for AC, F(1, 6) = 30.74, MSE = 34.38, p < 
.0001 ( - C :  M = 74.79, SD = 13.45; +C: M = 62.50, 
SD = 20.00) and for MT, F(1, 6) = 216.97, MSE = 34.38, p < 
.0001 ( - C :  M = 70.71, SD = 8.00; +C: M = 38.07, SD = 13.61). 
However, the only significant premise effect was an affh-mative 
premise effect for AC, F(1, 6) = 30.74, MSE = 34.38, p < .0001 
(+P: M = 74.79, SD = 14.66; - P :  M = 62.50, SD = 19.13). This 
pattern of effects is broadly consistent with our probabilistic model 
apart from the AC premise effect. We explore a possible reason for 
the effect in Experiment 2. 

We believe that a simple probabilistic model such as the one we 
have presented can explain a range of other effects in conditional 
inference. However, in this article, our goal is simply to verify 
some of its key empirical predictions about the origins of polarity 
biases. 

Prediction 1 

A high-probability conclusion effect analogous to negative con- 
clusion bias should be observed for DA, AC, and MT--bo th  
overall and within each inference type. A low-probability premise 
effect may also occur for the AC inference, but this depends on 
how conclusion and premise information is weighted. 

Prediction 2 

A high-probability conclusion effect should be observed for the 
converse inferences, DA',  AC',  MT'.  Intuitively, one might expect 
opposite effects for these inferences, leading to the expectation of 
a low-probability conclusion effect. However, take for example, 
the AC and AC' inferences. Take an HH rule in which P(p), the 
probability of the conclusion of an AC inference, is .8 (i.e., it is 
high) and P(q), the probability of the premise of both AC and AC',  
is .8, then with e = .25, as in Figure 1, P(plq), the probability with 
which AC should be endorsed, is .75 (i.e., it is high). For this rule, 
the probability that AC' should be endorsed [P(not-plq)] is then .25 
[1 - P(p[q)] (i.e., it is low), but the probability of the conclusion 
of this inference (not-p) is then .2 [1 - P(p)], (i.e., it is also low). 
Now take an LH rule where P(p) is .2 (i.e., it is low), then using 
the same values for P(q) and e, P(plq) = .188 (i.e., it is low). The 
probability that AC' should be endorsed [P(not-plq)] is then .812 
[1 - P(plq)] (i.e., it is high), but the probability of the conclusion 
of this inference (not-p) is then .8 [1 - P(p)] (i.e., it is also high). 
Consequently, a high-probability conclusion effect is also pre- 
dicted for the converse inferences. 

Prediction 3 

In deriving Prediction 2, we showed that, by rule, opposite 
effects are predicted for the standard and converse inferences; for 
example, when the probability that AC should be endorsed is high, 
the probability that AC'  should be endorsed is low. Therefore, our 
model predicts that acceptance ratings for the standard inferences, 
MP, DA, AC, and MT, should be anti-correlated with acceptance 
ratings for the converse inferences, MP', DA',  AC',  MT'.  

In the three experiments we report here, we manipulated the 
probabilities of the antecedents and consequents of conditional 
rules to test these predictions. Each experiment tested all three 
predictions. Experiment 1 used abstract material and framed the 
task as a prediction task. Experiment 2 replicated Experiment 1, 
but by using the standard conditional inference format. Experi- 
ment 2 also tested two further predictions concerning how people 
treat the I-IL rule (see introduction to Experiment 1) and how 
people interpret negations occurring in the DA and MT inferences. 
In both Experiments 1 and 2, probability information was provided 
explicitly. To check that the effects predicted by Predictions 1 to 3 
occur spontaneously, in Experiment 3 the probability manipulation 
was achieved implicitly by using roles pretested for probability of 
occurrence.  

Predict ions  

Our model makes several unique predictions for experiments in 
which the probabilities of the antecedent and the consequent of a 
conditional are varied rather than varying the presence or absence 
of negations. 

Exper iment  1 

In this experiment we manipulated probabilities in a way similar 
to Kirby (1994) and to Sperber, Cara, and Girotto (1995; see also 
Oaksford, Chater, & Grainger, 1999). Participants were told that a 
machine prints cards with colored shapes on them and that the 
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quality controllers believe that there is a fault. The fault is always 
the topic of  the rule. It was imlxn'tant to make the abstract category 
structures similar to real-world categories. For example, i f  some- 
one is told that "she was not driving a Mercedes," then they are 
likely to infer that she was driving some other make of car (e.g., a 
Ford, a Rover, a BMW, a Volvo, and so on). In defining task rules 
relating shapes and colors, we made it clear that there was a range 
of  possible shapes (six) and colors (five). This reflects real-world 
categories better than the standard task presentation in which they 
could be interpreted as binary (e.g., a letter that is not-A is 
determinately a K). 

Probabilities were introduced by using frequency formats 
(e.g., 10 out of 100) rather than probability formats (e.g., .1) 
because people are better able to utilize probabilistic information 
when it is introduced in this way (e.g., Gigerenzer & Hoffrage, 
1995). Introducing probabilities in this way means that any con- 
ditional sentence relating the shapes and colors of the cards is 
implicitly universal. Indeed, it is more natural to describe a situ- 
ation in which there are, for example, no nongreen stars, by using 
the universal all the stars are green rather than the condit ional /f  
a card has a star on it, then it is green. The underlying logical 
form of both sentences is identical (i.e., V x [star(x) D green(x)]), 
so the inferences predicted by logic are the same. However, 
because of  the greater naturalness of  the universal, this construc- 
tion was used throughout. 

We used a quality-control scenario so that we could provide 
unambiguous probability information without ruling out the pos- 
sibility of  exceptions and so that we could realistically present an 
HL rule. The task rule always describes a fault and not the 
machine's normal mode of operation. A rule describing the occur- 
rence of  a fault inherently admits exceptions. The HL rule is 
pragmatically infelicitous (Oaksford, 1998; Oaksford &Chate r ,  
1994; Oaksford et al., 1999). For example, it is like asserting that 
i f  something is black it is a raven, which is known to be false. We 
suggested that, in Wason's selection task, to make sense of being 
asked to test a rule known to be false, people revise the probability 
of  the antecedent [P(p)] down, treating it as an LL rule (Oaksford 
&Chater ,  1994). This strategy provided good fits to the selection 
task data, In the current model, when there are no exceptions (e = 
0), then the probability of the antecedent must be less than the prob- 
ability of  the consequent [P(p) < P(q)]. However, when the 
probability of exceptions is greater than zero (E > 0), then the prob- 
ability of  the consequent [P(q)] must be greater than the probability 
of the antecedent less the probability of exceptions [P(p) X (1 - 
e)]. This means that when there are few exceptions (e is low), as 
is normally the case, it is impossible to present an I lL rule. For 
example, i f  the probability of the antecedent [P(p)] is high, say .6, 
and the probability of exceptions (e) is equal to .1, then it must be 
the case that the probability of  the consequent [P(q)] is greater than 
.54. We got around this problem by using rules that describe how 
the quality controller believes the machine to be behaving. There- 
fore, participants may be told that the quality controller believes 
that all of  the stars are green, although 60% of the cards are stars 
but only 10% of  cards are green. This introduces an inconsistency 
between what the quality controller believes and the state of  affairs 
in the world. However, it avoids the experimenter seemingly 
providing participants with contradictory information; that is, us- 
ing a rule to describe a situation in which it could not be true. In 
the Results section, we checked to see how people dealt with this 

rule and whether they made any adjustments such as those we have 
suggested occur in the selection task. All the converse inferences 
were also included in this experiment. 

M e t h o d  

Participants. Thirty undergraduate psychology students from the Uni- 
versity of Warwick took part in this experiment. Each was paid £4.00 
($6.50) an hour to participate, and none had any prior knowledge of the 
conditional inference task. 

Design~ The experiment was a 4 x 2 x 2 × 2 Inference (MP vs. DA 
vs, AC vs. MT) X Conclusion (standard vs. converse) X P(p) x P(q) 
completely within-subject design. 

Materials. The materials consisted of a nine-pege booklet. The first 
page of each booklet was a general instruction page. Each of the following 
pages contained 4 of the 32 possible conditional inference problems. There 
were two pages for each of the LL, LH, HL, and HH rules. For each 
participant, these pages appeared in different random orders, 

The instructions for the LL condition read as follows: 

A machine prints colored shapes onto cards for educational p n ~  
The shapes are circles, diamonds, squares, triangles, stars and crosses, 
and the colors are red, green, yellow, blue and orange. 

The machine is supposed to print equal numbers of shapes of different 
colors. So, for example, out of every 60 cards printed, roughly there 
should be 10 of each shape, 2 of each shape being one of the different 
colors, making 12 cards of each color in total. 

In a certain batch in which the quality controllers think they have 
detected a problem, they believe that: 

All the triangles are blue 

However, all the other shapes have the full range of  colors printed on 
them. The machine sorts the cards into 11 bins labeled either with a 
shape (the "shapes bins") or a color (the "colors bins"). It sorts cards 
by shape or by color alternately, so if a card is sorted by shape, the 
next will be sorted by color, the next by shape and so on. 

On each of the two pages for the LL rule, four of the conditional infereace 
problems were also presented. Which four appeared on each page was 
determined randomly. The problem format for the DA inference for the LL 
rule is shown as follows: 

Given this problem, one of the quality controllers is trying to predict 
what they might find in the bins: 

Assuming that all the triangles are blue, he looks at a shapes bin that 
is not labeled "triangles" and predicts that ff he picks a card out of this 
bin it will not be blue. 

Please rate on a scale from one to seven how likely be is to be fight. 
(1 indicates that you are totally confident that he is wrong, 4 indicates 
that you are uncertain and 7 indicates that you are totally confident 
that he is correct; all other points on the scale (2, 3, 5, 6) can also be 
used) .... 

The pages for the LH, HL, and HH rules were the same, but with the 
following changes to the rule and to the sentence after it (in italics): 

LH: All the circles are red. Moreover, the machine is printing most of 
the other shapes red as well so that out of every 60 cards printed, 
roughly there are 10 of each shape. However, apart from the circles 
which are all red, 6 of each other shape are now red and only I of each 
other shape is of the remaining colors. This means that out of every 60 
cards, 40 are red and the rest consist of one of the remaining color- 
shape combinations. 
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HL: All the stars are green. Moreover, the machine is printing more 
stars than other shapes so that out of every 60 cards printed, roughly 
there are 40 stars and only 4 of each remaining shape. In fact the 
colors on each card are in proportion, that is, roughly 12 out of 
every 60 cards are of each color. 

HH: All the squares are yellow. Moreover, the machine is printing 
more squares than other shapes and more yellow shapes than other 
colors. So, out of every 120 cards printed, roughly there are 80 squares 
and only 8 of each remaining shape; the 80 squares and 4 of each of 
the other shapes are yellow, making 100 yellow shapes in all. Of the 
remaining shapes, 1 of each is of the remaining colors. 

Procedure. All participants were tested individually. The booklet was 
placed face down on a desk in the experimental cubicle. Participants were 
sat at the desk and told not to turn over the booklet until they were 
instructed. On turning over the booklet, the first page revealed the follow- 
ing instructions: 

Your task is to solve the following problems on these pages. There 
are 32 problems and instructions are provided at each stage. 

When participants finished the booklet, they were thanked for their 
participation and were fully debriefed about the purpose of the experiment. 

Resu l t s  

The mean acceptance ratings in all conditions are shown in 
Table 2 (inferences with a high-probability conclusion are shown 
in bold). We analyzed the standard inference and the converse 
inference data separately by using planned contrasts. 

Conclusion and premise effects. For the standard inferences, 
overall the acceptance ratings were significantly nigher for the 
inferences with nigh-probability conclusions than for those with 
low-probability conclusions, F(1, 87) = 33.47, MSE  = 1.48, p < 
.0001. The means and standard deviations were (HC = high- 
probability conclusion; LC = low-probability conclusion) HC: 
M = 5.64, SD = 1.65; LC: M = 5.00, SD = 2.05. We also checked 
whether this held for each inference individually. The acceptance 
ratings were significantly higher for the rules with high-probability 
conclusions than for those with low-probability conclusions for 
DA, F(1, 87) = 9.49, MSE  = 1.48, p < .005 (HC: M = 4.47, 
SD = 1.75; LC: M = 3.78, SD = 2.07); for AC, F(1, 87) = 17.71, 
MSE = 1.48, p < .0001 (HC: M = 5.50, SD = 1.60; LC: 

M = 4.57, SD = 1.98); and for MT, F(1, 87) = 5.78, MSE = 1.48, 
p < .025 (HC: M = 5.98, SD = 1.58, LC: M = 5.45, SD = 1.85); 
but not for MP, F(1, 87) = 3.53, MSE = 1.48, p = .064 (HC: 
M = 6.62, SD = 0.67; LC: M = 6.20, SD = 1.41). These results 
confirm Prediction 1. For the DA and MT inferences, the nigh- or 
low-probability status of a conclusion depends on the negation 
forming the appropriate contrast set. Consequently these results are 
also consistent with the contrast set account of negations (Oaks- 
ford & Chater, 1994, 1998b; Oaksford & Stenning, 1992). 

The result for MP was close to significance. This may have 
happened because participants'  estimates of the probability of 
exceptions (¢) are affected by the probabilities of the antecedent 
[P(p)] and consequent [P(q)]. For example, when the probability 
of the consequent [P(q)] is nigh, it seems highly likely that more 
ps are qs than not-qs, so the probability of exceptions (E) will be 
low (see Chater & Oaksford [1999b, Appendix A], for a similar 
argument concerning syllogistic premises). This may lead to a 
nigh-probability conclusion effect for MP because if the probabil- 
ity of exceptions (¢) is low, then the probability that this inference 
is drawn will be nigh. 

We checked for a low-probability premise effect in these data by 
using similar analyses as for the high-probability conclusion effect. 
The overall planned contrast was not significant, F(1, 87) < 1. For 
the individual inferences, there was only one close to significant 
effect for AC, F(1, 87) = 3.82, MSE = 1.48, p = .054. However, 
it was in the wrong direction; that is, participants endorsed AC 
more when the probability of the premise was nigh (HP: M = 5.25, 
SD = 1.82) than when it was low (LP: M = 4.82, SD = 1.87). The 
lack of a low-probability premise effect is consistent with partic- 
ipants  weight ing low-probabi l i ty  premises  less than high-  
probability conclusions. 

Converse inferences. We turn to the converse inferences in 
which logical approaches predict no variation in participants' 
acceptance ratings. However, we observed highly significant dif- 
ferences, such that DA'  > AC'  > MT'  > MP' .  Although there 
was no significant difference between MP'  and MT' ,  in planned 
contrasts the remaining pairwise comparisons were all significant 
at least at the .025 level. If, as we predicted, people endorse these 
inferences in inverse proportion to the standard inferences, then we 
should observe a similar nigh-probability conclusion effect. In 

Table 2 

Mean Acceptance Ratings and Standard Deviations f o r  the Standard Inferences and Their Converses f o r  Each Rule 
in Experiment 1 (N = 30) 

Standard Converse 

MP DA AC MT MP' DA' AC' MT' 

Rule M SD M SD M SD M SD M SD M SD M SD M SD 

LL 6.37 1.16 4.57 1.79 4.47 1.96 6.13 1.36 2.07 1.72 3.23 1.94 3.27 1.82 2.10 1.42 
LH 6.67 0.71 3.50 1.87 4.67 2.02 5.83 1.78 1.80 1.65 4.07 2.05 3.53 1.78 1.73 1.23 
HL 6.03 1.63 4.37 1.73 5.17 1.74 5.33 1.85 2.03 1.79 2.97 1.67 2.90 1.71 2.50 1.74 
HH 6.57 0.63 4.07 2.24 5.83 1.39 5.57 1.87 1.93 1.78 3.63 1.83 1.97 0.96 2.311 1.71 

Total 6.41 1.12 4.13 1.94 5.03 1.85 5.72 1.73 1.96 1.72 3.48 1.90 2.92 1.69 2.16 1.55 

Note. Numbers in boldface indicate a high-probability conclusion. MP = modus ponens; DA = denying the antecedent; AC = affmnlng the consequent; 
MT = modus tollens; LL = low P(p), low P(q); LH = low P(p), high P(q); HL = high P(p), low P(q); HH = high P(p), high P(q). Acceptance ratings 
range from 1 to 7. 



PROBABILITIES AND CONDITIONALS 889 

planned contrasts there was a highly significant high-probability 
conclusion effect, F(1, 87) = 22.90, MSE = 1.86,p < .0001 (HC: 
M = 2.93, SD = 1.93; LC: M = 2.33, SD = 1.65). As predicted, 
the acceptance ratings were significantly higher for the rules with 
high-probability conclusions than for those with low-probability 
conclusions, for DA' ,  F(1, 87) = 9.07, MSE = 1.86, p < .005 
(HC: M = 3.85, SD = 1.94; LC: M = 3.10, SD = 1.80); for AC' ,  
F(1, 87) = 15.07, MSE = 1.486, p < .0005 (HC: M = 3.40, 
SD = 1.79; LC: M = 2.43, SD = 1.45), and for MT' ,  F(1, 
87) = 3.77, MSE = 1.86, p = .056 (HC: M = 2.40, SD = 1.71; 
LC: M = 1.92, SD = 1.33), but not for MP',  F(1, 87) < 1. These 
results were consistent with Prediction 2 of our probabilistic 
model. Finally, we looked at the correlation between the mean 
acceptance ratings for the standard inferences and the converse 
inferences, shown in Table 2. Prediction 3 states that correspond- 
ing pairs, for example AC and AC' ,  for each rule should be 
anticorrelated, and this is what we observed, r(14) = - .95 ,  p < 
.0001. 

Modelfits. We also tested how well our model fit the data for 
the standard inferences. We fit each participant's data individually 
by using the coefficient of variation (R 2) as the measure of good- 
ness of fit. We did this for two reasons. First, a reviewer suggested 
that we assess the proportion of participants whose behavior is 
well predicted by our model. Second, it allowed us to assess 
statistically whether the best fit parameter values follow the high- 
low pattern our model predicts. We set the probability of excep- 
tions (E) directly from the data by rescaling the ratings for MP into 
the 0-1  probability scale and using 1 minus this value as an 
estimate of the probability of exceptions. For each participant we 
then calculated the best fit parameter values for a, the probability 
of the antecedent [P(p)], and b, the probability of the consequent 
[P(q)], for each rule. MP fits the data perfectly by definition. 
Therefore, in reporting fits to the data, we used only the estimated 
values for DA, AC, and MT that provided the best overall fit for 
each rule. We excluded one participant whose R 2 value was more 
than five standard deviations lower than the mean. The mean fit to 
the data was good, R 2 = .93 (SD = .08). All participants had R2s 
greater than .7, and 90% had R2s greater than .8. Consequently, the 
model can account for most participants' pattern of results. 

It could be argued that the model is overparameterized: For each 
rule, three data points were used to estimate two parameters. 
However, there is no other way to check the proportion of partic- 
ipants whose behavior can be captured by the model. Moreover, 
although affecting the level of fit, there was no guarantee that the 
pattern of best fit parameter values would mirror the high-low 
pattern required by our explanation of high-probability conclusion 
effects. As we now show, statistical analyses of these best fit 
parameter values revealed the predicted pattern. The means of the 
best fit values of a and b are shown in Table A1 in the Appendix. 
Planned comparisons were used to test whether they conformed to 
the predictions of the model. When a or b were predicted to be 
high, they were higher than when they were predicted to be low, 
F(1, 29) = 100.17, MSE = .01,p < .0001 (high: M = .66, SD = 
.27; low: M = .53, SD = .28). This also held for the parameters 
taken individually. Therefore, a was significantly lower for the LL 
and LH rules (M = .46, SD = .29) than for the HL and HH rules 
(M = .60, SD = .26), F(1, 29) = 104.51, MSE = .01, p < .0001, 
and b was significantly lower for the LL and HL rules (M = .59, 
SD = .26) than for the LH and HH rules (M = .72, SD = .27), F(1, 

29) = 72.23, MSE = .01, p < .0001. These results showed that the 
parameters of the model were interpretable in the way we have 
suggested. 

With models with a large number of parameters, one procedure 
is to estimate the parameters from part of the data and use these 
estimates to predict the rest of data (see, e.g., Polk & Newell, 
1995). Therefore, we also examined the fit of the model to the data 
by using a random split half procedure. We estimated the best fits 
to the mean data computed over a randomly selected half of the 
participants. We then used these values to predict the mean data 
computed over the other half of the participants. For each rule, we 
estimated three parameters against four means computed over half 
of the data. We repeated this procedure 20 times. 1 Each time we 
calculated the R 2 fit between the predicted probability of endorsing 
an inference, based on the parameter estimates from one half of the 
participants, and the observed mean probability of endorsing an 
inference, based on the other half of the participants. Across the 20 
random splits, the mean R 2 was .96 (SD = .02) with a range of .92 
to .98. That is, the model seemed to be predictively reliable. 

Discussion 

Three issues were raised by these analyses. First, it could be 
argued that variation in the probability of exceptions (E) could 
directly explain our results. However, these fits showed that even 
when we allowed as much variation in this parameter as can be 
justified from the data, a and b must also vary in the way that the 
model predicts to achieve the best fit. Second, although, with one 
exception, the relative values for a and b agree with those for the 
probability of the antecedent [P(p)] and consequent [P(q)] de- 
scribed in the experimental instructions, the absolute values differ. 
For example, for the LL rule the probability of the antecedent 
[P(p)] was .167, but for this rule the mean value of a was .42. 
Third, as we mentioned in the introduction, the HL rule is prag- 
matically infelicitous. Looking at the best fit values of  a and b, it 
would appear that participants have revised the probability of the 
consequent [P(q)] up so that it is higher than the probability of the 
antecedent [P(p)]. Although in the experimental instructions 
P(p) = .67 and P(q) = .20 for this rule, the best fit values of a and 
b were .52 (.25) and .62 (.25), respectively. Consequently, the HL 
rule was interpreted like the HH rule, which means that even if we 
had observed an effect for AC we could not interpret it as a 
low-probability premise effect. We investigated this interpretation 
further in Experiment 2. 

We also looked at the relationship between the experimental 
values of the probabilities of the antecedent [P(p)] and consequent 
[P(q)] and the best fit values of a and b. We assumed the people 
adjust the probability of the consequent [P(q)] up for the HL rule 
so that it ceases to violate the constraints of the model--that  is, that 
P(p) < P(q)/(1 - e ) - -by  substituting P(p)(1.0001 - E) for P(q) 
in the HL rule. The experimental values of P(p) and P(q) and the 
best fit values of a and b were positively related, r(6) = .82, p < 
.025, and remained so when the P(q) value for the HL rule was 
removed, r(5) = .82, p < .025. The regression equation relating 
best fit model parameters (M) to the experimental values (E) was 

1 There ale more than 77 million possible split halves so we could not do 
this exhaustively. 
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M = .43 + .32E. This suggests that there was not a perfect 
relationship between the experimentally provided probabilities and 
the value assumed when making inferences. In Experiment 3, we 
explored this relationship more fully and we asked participants for 
their individual assessments of the relevant probabilities. We also 
look at this relationship in more depth in the General Discussion 
section. 

The results of Experiment 1 were consistent with most of the 
predictions of our probabilistic account. The use of high- and 
low-probability categories produced a high-probability conclusion 
effect, which on the contrast set account of negations (Oaksford & 
Stenning, 1992) is responsible for negative conclusion bias. More- 
over, a complementary pattern of effects was observed for the 
converse inferences, which is uniquely predicted by our probabi- 
llstic account. Furthermore, our model provided good fits to the 
individual data, and the model parameters were interpretable as 
having the high and low values required. 

Experiment 2 

The results of Experiment 1 supported our probabilistic model. 
However, there were differences between Experiment I and the 
standard conditional inference paradigm that may be responsible 
for our results. In Experiment 1, we used the universal all rather 
than the standard / f . . .  then rule form, and the inferences were 
framed as prediction problems rather than in the standard condi- 
tional inference task format. In Experiment 2, we therefore used 
the i f . . .  then rule form and the standard format of the task. 

We also wanted to see if we could alter the pattern of inferences 
by manipulating the parameters of the model. Removing the pos- 
sibility of exceptions predicts a high-probability conclusion effect 
for DA and AC but not for MT. In Experiment 1, we introduced 
the possibility of exceptions by using rules that described faults (as 
in Sperber et al., 1995). In Experiment 2, we used rules that 
described the normal functioning of a machine and did not mention 
the possibility of faults, which reduced the possibility of 
exceptions. 

The use of this manipulation meant that the HL rule could not be 
introduced without the experimenter seemingly providing contra- 
dictory information. To have the probability of the consequent, 
[P(q)], low for this rule is important for the DA inference that our 
model predicts should be endorsed strongly because the probabil- 
ity of the conclusion, [P(not-q)], will then be high, as will the 
probability that this inference is drawn [P(not-q[not-p)]. However, 
the best fit parameter values in Experiment 1 revealed that b > a 
for the HL rule. This raises the question of whether the predicted 
pattern of effects can occur, even though participants treat the 
probability of the consequent [P(q)] as greater than the probability 
of the antecedent [P(p)] for the HL rule. To test this, for the HL 
rule we set the probability of the antecedent [P(p)] to .99 and the 
probability of the consequent [P(q)] to .991. From Equation 2, 
assuming no exceptions, this means that the probability of drawing 
the DA inference [P(not-qlnot-p) ] is .9. Treatment of the HL rule 
in this way reflects the best fit parameter values found in Exper- 
iment 1 that suggested participants treated P(q) as greater than 
P(p) for this rule. Experiment 2 provided a direct test of whether 
the predicted conclusion and premise effects occur under this 
interpretation. This experiment indeed provided quite a strong test 
because it predicted different behavior on the DA inference for the 

very similar HH rule. For this rule, we set the probability of the 
antecedent [P(p)] to .99 and the probability of the consequent 
[P(q)] to .999. Consequently, according to Equation 2 and again 
assuming no exceptions, the probability of drawing the DA infer- 
ence for this rule [P(not-qlnot-p)] is . 1. Therefore, DA should be 
endorsed significantly less for the HH rule than for the HL rule. 

Both rules still predicted a high-probability conclusion effect for 
AC: For HL, from Equation 3, the probability of drawing this 
inference [P(PIq)] was .999; for HH, it was .991. A low- 
probability premise effect was also predicted for AC, because 
according to Equation 3, for the LL rule, the probability of drawing 
this inference [P(Plq)] was .5, and for LH rule it was .01. Accord- 
ing to the model then, the mean probability of drawing an AC 
inference with a low-probability premise (LL and HL) is .750, but 
the mean probability of drawing this inference with a high- 
probability premise (LH and HH) is .501. However, this prediction 
is mainly attributable to the HL rule, which no longer has a 
low-probability premise. Consequently, any low-probability 
premise effect we observe for AC can be explained without as- 
suming people are paying attention to premise information. If 
participants make a similar conversion for the negated antecedent 
rule Of not-p then q) as for the HL rule, then this would also 
explain the specific affirmative premise bias effect we observed 
for AC in our meta-analysis of the negations paradigm data. 

Although reducing the possibility of exceptions may lead to 
more MT inferences, participants still have to process negations 
for this rule (and for DA). As we have discussed, Oaksford and 
Stenning (1992) showed that processing negations is a serious 
source of difficulty in conditional reasoning. However, two ma- 
nipulations reduce the effects of processing negations. First, Oaks- 
ford and Stenning have shown that binary materials make contrast 
set construction easier. For, example, with only two colors, say red 
and green, a shape that is not red is unequivocally green. Second, 
the use of implicit rather than explicit negations (Evans, 1983) also 
removes the effects of processing negations. For example, the use 
of implicit negations with binary materials for the rule i fA then 2 
would involve presenting MT as if A then 2, 7, therefore K rather 
than as if A then 2, not-2, therefore not-A which is the standard 
explicit presentation. By combining binary materials with implicit 
negations we can present an MT inference without negations. If 
nonbinary materials were used the conclusion would still have to 
be presented as not-A. (We discuss the relationship between these 
experiments and other research using the implicit negations ma- 
nipulation further in the General Discussion section.) 

These manipulations were predicted to affect the MT inference. 
With the possibility of exceptions reduced, the probability with 
which people should draw this inference is close to 1. Therefore, 
the only reason for any asymmetry with MP is the presence of 
negations. However, the use of implicit negations with binary 
material removes the need to use negations to express MT. Con- 
sequently, this manipulation makes two predictions. First, in an 
implicit condition, MT inferences should be drawn as frequently as 
MP inferences. Second, more MT inferences should be made in an 
implicit condition than in a standard explicit negations condition. 
A related prediction could be made for DA. However, according to 
our model for DA (and AC), participants must concentrate on the 
relative set sizes to determine how strongly to endorse an inference 
even if the possibility of exceptions is reduced. The removal of the 
negations does not prevent the need to process this information. 
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Therefore ,  we  predic ted  that  there wou l d  be  no  increase  in D A  

ana logous  to M T  in an  implici t  nega t ions  condi t ion.  

In  this  exper iment ,  we  therefore  used  rules  that  d id  not  in t roduce  

the  poss ibi l i ty  o f  except ions ,  we  u sed  b ina ry  mater ia l s  and  we  

in t roduced  two condi t ions:  one  u s i ng  expl ic i t  nega t ions ,  and  one  

u s ing  implici t  nega t ions .  

M e t h o d  

Participants. Twenty-five undergraduate psychology students from 
the University of  Warwick took part in this experiment. Each participant 
was paid £4.00 ($6.50) an hour to participate. None of the participants had 
any prior knowledge of the conditional inference task. 

Design. The experiment was a 4 × 2 x 2 × 2 × 2 Inference (MP vs. 
DA vs. AC vs. MT) × Conclusion (standard vs. converse) × Negations 
(explicit vs. implici0 × P(p) × P(q) completely within-subject design. 

Materials. For each participant the materials consisted of eight 9-page 
booklets and a single-page instruction sheet. There were two booklets for 
each of the rules: one in which implicit negations were used, and one in 
which explicit negations were used. Each booklet contained all four infer- 
ences and their converses. The first page of  each booklet was an instruction 
page. For each participant, these problems appeared in different random 
orders in each booklet, and each booklet was presented to each participant 
in different random orders. 

Procedure. All participants were tested individually. The instruction 
sheet and the first randomly assigned booklet was placed face down on a 
desk in the experimental cubicle. Participants were sat at the desk and told 
not to turn over the instruction sheet or booklet until they were told to do 
so. The other side of  the instruction sheet revealed the following instruc- 
tions: 

You will be presented with 8 booklets, one at a time. Please read the 
instructions carefully on the front of  each one and call the experi- 
menter after you have worked through each booklet. Thank you. 

The first page of each booklet contained the following instructions. The LL 
condition is used as an example: 

A company manufactures cards for educational use with numbers on 
one side and letters printed on the other side. 

One batch of cards uses just the letters "S" and "W," and just the 
numbers "5" and "8." 

O n  the front of 10 of  the I000 cards there is an  " S "  and  on the 
front of  the remaining 990 cards  there is a " W "  

For every 1000 cards in this batch; 

On the back o f  the 10 "S" s there is a "5," and; 

On the back o f  the 990 "W" s, t 0  have a "5" and 980 have an "8. " 

Consequently, the machine obeys the following rule: 

I f  a card has an "S" on the front, then it has a "5" on the back. 

Your task on the following pages will be to evaluate some inferences 
about these cards. Please place a mark on the scale to indicate your 
answer. You may refer back to these instructions. 

For the LH condition, the letters J and R and the numbers 9 and 6 were 
used, and the statements in italics were replaced with the following: 

On the back of the 10 "J"s there is a "9," and; 

On the back of the 990 "R"s, 980 have a "9" and 10 have a "6." 

The rule used was 

As discussed in the introduction, for the HL rule, P(q) was adjusted to just 
above P(p). For the HL role, the letters D and C and the numbers 4 and 1 
were used. The sentence in bold was also replaced with the following 
sentence: 

On the front of  990 of  every 1000 cards there is an " D "  and on the 
front of  the remaining 10 cards there is a "C." 

The statements in italics were replaced with the following: 

On the back of the 990 "D"s there is a "4," and; 

On the back of the 10 "C"s, 1 has a "4" and 9 have a "1." 

The rule used was 

If a card has a "D" on the front, then it has a "4" on the back. 

The HH condition was the same as HL, but the letters A and K and the 
numbers 2 and 7 were used, and the statements in italics were replaced with 
the following: 

On the back of  the 990 "A"s there is a "2," and; 

On the back of  the 10 "K"s, 9 have a "2" and 1 has a "7." 

The rule used was 

If a card has a "A" on the front, then it has a "2" on the back. 

On each of the following pages, participants had to rate the acceptability of  
a conclusion to one of  the eight inference types using a rating scale as in 
Cummins et al. (1991). The MP inference for the LL rule is used as an 
example: 

If  a card has an S on the front, then it has a 5 on the hack. 

This card has an S on the front. 

Therefore this card has a 5 on the back. 

Given this rule and this fact, place a mark on the scale below that best 
reflects your evaluation of the conclusion. 

The rating scale used is shown in Figure 2. Four booklets used explicit 
negations as in the standard task, and four booklets used implicit negations 
in the categorical premise and in the conclusion. 

When participants finished the last booklet they were thanked for their 
participation and were fully debriefed about the purpose of  the experiment. 

R e s u l t s  

The  m e a n  accep tance  ra t ings  for  the  s tandard  in fe rences  are  

s h o w n  in  Tab le  3, and  the  s a m e  ra t ings  for  the  conve r se  in fe rences  

are s h o w n  in Table  4. B e c a u s e  the  midpo in t  o f  uncer ta in ty  b isec ted  

one  interval  on  the  scale,  we  treated this  as zero and  treated the  

scale  as r ang ing  f r o m  - 5  to + 5 .  W e  used  s imi lar  ana lyses  as in 

Expe r imen t  1. 

Conclus ion  and  p remi se  effects. W e  fLrst checked  for  a h igh-  

probabi l i ty  conc lus ion  effect  by  col laps ing  over  the  nega t ions  

f I i • 

Very Sure Somewhat Somewhat Sure Very 
S~ Sure I Sure Sure 

Thatlcannotdraw~sco~l~ I That lcandraw~is~|mkm 

If a card has an "J" on the front, then it has a "9" on the back. Figure 2. Rating scale used in Experiments 2 and 3. 
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Table 3 
Mean Acceptance Ratings and Standard Deviations for the Standard Inferences With Explicit and Implicit Negations 
for  Each Rule in Experiment 2 (N = 25) 

Explicit Implicit 

MP DA AC MT MP DA AC MT 

Rule M SD M SD M SD M SD M SD M SD M SD M SD 

LL 3.76 2.98 1.88 3.17 0.28 3.75 3.64 2.29 3.92 2.61 0.12 3.80 0.36 3.28 4.12 2.35 
LH 3.92 2.71 -0.44 3.63 -0.52 3.62 2.40 3.65 4.24 1.96 -0.64 4.05 -0.68 3.61 3.36 3.01 
I-B., 4.76 0.60 0.56 3.36 2.08 3.35 2.76 3.38 4.72 0.54 1.52 3.31 2.16 3.21 4.12 1.88 
HH 4,40 1.16 -0.72 3.65 1.60 3.50 2.56 3.81 4.76 0.52 -1.36 3.26 0.88 3.62 3.96 2.15 

Total 4.21 2.12 0.32 3.55 0.86 3.65 2.84 3.32 4.41 1.69 -0.09 3.72 0.68 3.54 3.89 2.37 

Note. Numbers in boldface indicate a high-probability conclusion. MP = modus ponens; DA = denying the antecedent; AC = affirming the consequent; 
MT = modus tollens; LL = low P(p), low P(q); LH = low P(p), high P(q); HL = high P(p), low P(q); HH = high P(p), high P(q). Acceptance ratings 
range from - 5  to 5. 

factor. The acceptance ratings were significantly higher for the 
inferences with high-probability conclusions than for those with 
low-probability conclusions, F(1, 72) = 28.91, MSE = 5.92, p < 
.0001 (HC: M = 2.60, SD = 3.23; LC: M = 1.68, SD = 3.79). 
According to our probabilistic model, the absence of exceptions 
should remove the high-probability conclusion effect for MT but 
not for DA or AC. As predicted, the acceptance ratings were 
significantly higher for the rules with high-probability conclusions 
than for those with low-probability conclusions for DA, F(1, 
72) = 27.67, MSE = 5.92, p < .0001 (HC: M = 1.02, SD = 3.44; 
LC: M = 0.79, SD = 3.62), and for AC, F(1, 72) = 27.98, 
MSE = 5.92, p < .0001 (HC: M = 1.68, SD = 3.41; LC: M = 
-0 .14 ,  SD = 3.55), but not for MP, F(1, 72) < 1, or for MT, F(1, 
72) < 1. We also looked at the results on a rule-by-rule basis 
because of the HL rule used in this experiment. As predicted, 
despite their similarity, HH and HL were treated differently for the 
DA inference. Participants endorsed DA for the HL rule signifi- 
cantly more often than for the HH rule, F(I ,  72) = 18.27, 
MSE = 5.92, p < .0001 (HC: M = 1.04, SD = 3.33; LC: M = 
-1 .04 ,  SD = 3.44). The DA inference was also endorsed signif- 
icantly more often for the LL rule than for the LH and HH rules, 
F(1, 72) = 18.04, MSE = 5.92, p < .0025 (HC: M = 1.00, 

SD = 3.57; LC: M = -0 .79 ,  SD = 3.62). A similar analysis for 
AC revealed that the high-probability conclusion effect for this 
inference was also independent of the HL rule. The HH rule was 
endorsed significantly more often than the LL and LH rules, F(1, 
72) = 10.72, MSE = 5.92, p < .0025 (HC: M = 1.04, SD = 3.33; 
LC: M = -0 .14 ,  SD = 3.55). These results further confirm 
Prediction 1 and are consistent with the view that negative con- 
clusion bias is really a high-probability conclusion effect. Note that 
in this experiment the standard framing of the task was used and 
the standard i f . . .  then rules were used throughout. 

For the low-probability premise effect, the overall planned con- 
trast was not significant, F(1, 72) < 1. Nonetheless, there was a 
low-probabil i ty premise effect  for the AC inference,  F(1, 
72) = 6.84, MSE = 5.92,p < .025 (HP: M = 0.32, SD = 3.66; LP: 
M = 1.22, SD = 3.47), but not for any other inference. However, 
this was not independent of the HL rule used in this experiment: 
There was no significant difference between the LL and the LH 
and HH rules, F(1, 72) < 1. Therefore, the best fit parameter 
values from Experiment 1 showing that b > a for the HL rule, and 
the results of this experiment, are consistent with the low- 
probability premise effect being an artifact of the IlL rule being 
interpreted as an HH rule. This interpretation may also explain the 

Table 4 

Mean Acceptance Ratings and Standard Deviations for the Converse Inferences With Explicit and Implicit Negations 
for  Each Rule in Experiment 2 (N = 25) 

Explicit Implicit 

MP' DA' AC' MT' MP' DA' AC' MT' 

Rule M SD M SD M SD M SD M SD M SD M SD M SD 

LL -4.16 2.21 -2.60 2.12 -1.72 2.65 -4.04 2.23 -3.96 2.21 -2.16 2.53 -2.72 2.53 -3.68 2.85 
LH -4.00 2.57 0.48 3.37 0.16 3.73 -3.16 3.16 -4.36 2.04 -0.16 3.20 -1.64 3.33 -3.64 2.94 
IlL -3.92 2.43 -1.52 2.99 -2.28 2.35 -4.32 1.68 -4.36 1.32 -2.68 2.43 -3.04 1.93 -3.32 2.95 
HI-I -4.56 1.26 -0 .36  3.17 -1.40 2.66 -4 .08  2.29 -4.16 2.21 -0 .64  3.24 -2.64 2.56 -3 .56  3.02 

Total -4.16 2.16 -1.00 3.13 -1.31 2.99 -3.90 2.40 -4.21 1.96 -1.41 3.02 -2.51 2.65 -3.55 2.90 

Note. Numbers in boldface indicate a high-probability conclusion. MP = modus ponens; DA = denying the antecedent; AC = affirming the consequent; 
MT = modus tollens; LL = low P(p), low P(q); LH = low P(p), high P(q); HL = high P(p), low P(q); HH = high P(p), high P(q). Acceptance ratings 
range from - 5  to 5. 
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affirmative premise bias observed in our meta-analysis of the 
negations paradigm conditional inference task, which was also 
specific to the AC inference. 

In Experiment 2, there was also some evidence, albeit not 
significant, for a high-probability premise effect for the MT infer- 
ence, F(1, 72) = 2.94, MSE = 5.92, p = .091 (HP: M = 3.66, 
SD = 2.56; LP: M = 3.07, SD = 3.24). 

Converse inferences. We turn to the converse inferences. Rep- 
licating Experiment 1, we found the reverse order to the standard 
inferences such that DA'  > AC'  > MT'  > MP'.  Collapsing across 
the implicit and explicit negations conditions, in planned contrasts 
all palrwise comparisons between inferences were significant at 
least at the .05 level. There was also a highly significant high- 
probability conclusion effect, F(1, 72) = 23.68, MSE = 4.47, p < 
.0001 (HC: M = -2 .39,  SD = 3.24; M = -3 .12,  SD = 2,61). 
According to our probabilistic model, the absence of exceptions 
should remove this effect for MP'  and MT'  but not for DA'  and 
AC' .  As predicted, the acceptance ratings were significantly higher 
for the rules with high-probability conclusions than for those with 
low-probability conclusions for DA' ,  F(1, 72) = 47.93, MSE = 
4.47,p < .0001 (HC: M = - .17 ,  SD = 3.22; M = -2 .24,  SD = 
2.54), and for AC' ,  F(1, 72) = 8.27, MSE = 4.47, p < .01 (HC: 
M = - 1.48, SD = 3.22; M = -2 .34 ,  SD = 2.43), but not for MP' ,  
F(1, 72) < 1, or for MT' ,  F(1, 72) < 1. These results were again 
consistent with Prediction 2. Replicating Experiment 1, and con- 
sistent with Prediction 3, the mean acceptance ratings for both sets 
of inferences, were anti-correlated, r(30) = - .90 ,  p < .0001. 

Model fits. We tested how well our model fit these data in the 
same way as in Experiment 1. One participant's data was excluded 
because the fitting procedure did not converge on a stable set of 
parameters for one rule. The mean fit to the data was good, R 2 = 
.93 (SD = .  11). All participants had R2s greater than .6, and 87.5% 
had R2s greater than .8. As for Experiment 1, we tested whether the 
parameters of  the model were interpretable in the way we have 
proposed. In this experiment, because there was no significant 
effect for the MP inference, varation in the number of exceptions 
could not explain our results. Consequently, all the variation 
observed must be located in the a and b parameters. The best fit 
value means of  a and b are shown in Table A1 in the Appendix. 
When a or b were predicted to be high, they were higher than when 
they were predicted to be low, F(1, 23) = 61.00, MSE = .02, p < 
.0001 (high: M = .63, SD = .32; low: M = .48, SD = .31). This 
also held for a, which was significantly lower for the LL and LH 
rules (M = .30, SD = .24) than for the HL and HH rules (M = .53, 
SD = .33), F(1, 23) = 72.04, MSE = .02, p < .0001. Because of  
the HL rule used in this experiment, b was only expected to be low 
for the LL rule, and it was significantly lower for this rule (M = 
.58, SD = .27) than for the LH, HL, and HH rules (M = .73, SD = 
.27), F(1, 23) = 24.54, MSE = .02, p < .0001. The b parameter 
was also significantly lower for the LL n~e (M = .58, SD = .27) 
than for the LH rule (M = .65, SD = .32), F(1, 23) = 4.48, MSE = 
.02, p < .05. These results showed that the model parameters could 
be interpreted in the way we have suggested. 

In Experiment 2, the split half procedure revealed an almost 
identical fit to that observed in Experiment 1. Across the 20 
random splits, the mean R 2 was .96 (SD = .02), with a range of  .92 
to .98. That is, the model seemed to be as predictively reliable in 
this experiment as in Experiment 1. 

The experimental values of  the probability of  the antecedent 
[P(p)] and the consequent [P(q)], and the best fit values of  a and 
b were correlated, r(6) = .73, p < .05, and the rank orders were in 
close agreement, o(N = 8) = .88, p < .025. The regression 
equation relating best fit model parameters (M) to empirical values 
(IS) was M = .39 + .27E, which was similar to Experiment 1. 

Implicit and explicit negation. We also predicted that MT 
should be endorsed more in the implicit negation condition than in 
the explicit negation condition, but no such difference should be 
observed for DA. Using planned contrasts, we confLrmed these 
predictions for the MT inference, F(1, 72) = 7.81, MSE --- 7.06, 
p < .01 (implicit: M = 3.89, SD = 2.37; explicit: M = 2.84, 
SD = 3.32), and for the DA inference, F(1, 72) -- 1.19, 
MSE = 7.06, p = .28 (implicit: M = -0 .09,  SD = 3.72, explicit: 
M = 0.32, SD = 3.55). We also predicted that the MT inference 
should be treated equivalently to the MP inference when the 
additional complexity of  processing negations is removed by the 
use of  implicit negations and binary materials. The overall order of  
acceptance of  the four inferences was MP > MT > AC > D A  for 
both the explicit and implicit negations conditions. However, 
although MP was endorsed more than MT in the explicit negation 
condition, F(1, 72) = 13.30, MSE = 7.06, p < .001 (MP: 
M = 4.21, SD = 2.12; MT: M = 2.84, SD = 3.32), as predicted 
there was no significant difference between MP and MT in the 
implicit negation condition, F(1, 72) = 1.92, MSE = 7.06, p = .17 
(MP: M = 4.41, SD = 1.69; MT: M = 3.89, SD = 2.37). 

Discuss ion 

Experiment 2 replicated the results of  Experiment 1 but used the 
standard framing of the task and the s tandard / f . . ,  then rule form. 
Moreover, this experiment confirmed the prediction that reducing 
the possibility of exceptions would lead to reduced negative con- 
clusion bias for MT but not for DA or AC. It also confirmed that 
these effects occur even when the HL rule must be interpreted as 
an HH rule. This finding was consistent with the best fit parameter 
values in Experiment 1, which revealed that participants may 
interpret this pragmatically infelicitous rule in this way. Experi- 
ment 2 also confm-ned our predictions based on two manipulations 
aimed at making contrast set construction easier thereby removing 
the need to process negations for MT. 

However, these probabilistic effects may be observed only be- 
cause we cued participants to use probabilistic information. Al- 
though normal rules may vary probabilistically in the way we have 
proposed, in normal inferential contexts participants may ignore 
this information and attempt to perform logically by using a mental 
logic or by using mental models. In Experiment 3, we avoided this 
problem by introducing probability information implicitly rather 
than explicitly, as in Experiments 1 and 2, by using pretested 
thematic materials similar to those used in Cummins et al. (1991). 

Exper imen t  3 

In this experiment, following Cummins et al. (1991), we intro- 
duced probability information implicitly by using contents that had 
been pretested for the probabilities of  the antecedent [P(p)] and 
consequent [P(q)]. We used 481 different predicates that were used 
to construct 91 rules from which we selected 8 to be used in the 
experiment. These predicates were selected on the basis of  the 
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probabilities and have also been used by Oaksford et al. (1999) in 
Wason ' s  selection task. The specific criteria used in the selection 
process are irrelevant because in this experiment we also included 
a probability rating task (PRT) to check that the probabilities 
conform to the relevant h igh- low patterns. The PRT was con- 
ducted after the main experiment to avoid cuing participants to the 
relevance of  probabilistic information. 

Polarity biases have primarily been observed with abstract ma- 
terial. This is why in Experiments 1 and 2 we concentrated on such 
materials, showing that an appropriate manipulation of probabili- 
ties produced related effects. According to Oaksford and Sten- 
n ing ' s  (1992) account, the identification of contrast sets is one 
important function of negations that had been ignored in the 
reasoning literature. However, negations have many other impor- 
tant functions in normal discourse (see, e.g., Horn, 1989), some of  
which have also been appealed to in the explanation of the effects 
of  negation in reasoning experiments (Evans, 1998). The introduc- 
tion of  contentful material in this experiment could therefore 
introduce effects that may override the role of negations in iden- 
tifying contrast sets for the DA and MT inference. Indeed Evans 
has argued that polarity biases are related to matching biases that 
are not typically seen when contentful materials are used in rea- 
soning tasks. Consequently, the use of such material may make it 
more difficult to observe a high-probability conclusion effect. On 
the other hand, observation of  such effects by using contentful 
materials would act as strong confirmation that identification of  
contrast sets does occur when interpreting negated claims as Oaks- 
ford and Stenning (1992) have argued. 

Method 

Participants. Twenty undergraduate psychology students from the 
University of Warwick took part in this experiment. Each participant was 
paid £4.00 ($6.50) per hour to participate. None of the participants had any 
prior knowledge of the conditional inference task. 

Design. The experiment was a 4 × 2 x 2 × 2 Inference (MP vs. DA 
vs. AC vs. MT) x Conclusion (standard vs. converse) X P(p) × P(q) 
completely within-subject design. All participants received the probability 
rating task after the conditional inference task because we did not want to 
explicitly cue participants to attend to probability information. 

Materials. The eight rules used in this experiment were as follows 
(from Oaksford et al., 1999, Experiment 1); two rules were used in each 
condition. 

1. If a game is played on a rink then it is bowling. (LL) 
2. If a person is a politician then they are privately educated. (LL) 
3. If a drink is whisky then it is drunk from a cup. (LH) 
4. If an animal is a chipmunk then it has fur. (LH) 
5. If an item of food is savory then it is mousse. (HL) 
6. If a vegetable is eaten cooked then it is a parsnip. (HL) 
7. If a flower is under 1 foot tall then it is domestic. (HH) 
8. If an item of furniture is heavy then it is big. (HH) 

The materials consisted of a 65-page booklet. The fwst page of each 
booklet was an instruction page. Each of the following pages contained one 
of the 64 possible conditional inference problems. For each participant, 
these problems appeared in different random orders. 

Procedure. Participants were tested individually. The booklet was 
placed face down on a desk in an experimental cubicle. Participants were 
sat at the desk and told not to turn over the booklet until they were 
instructed. On turning over the booklet, the first page revealed the follow- 
ing instructions: 

Your task is to solve the following problems on these pages. There 
are 64 problems and each one is made up of a rule and a fact, followed 

by a conclusion. You must determine whether the conclusion can be 
drawn from the rule and the fact. 

Participants had to rate the acceptability of the conclusion by using a rating 
scale, which was also used in Experiment 2 (see also Cummins et al., 
1991). On the instruction page, an example was presented with materials 
not used in the experiments: 

For example: 

If the car is a Mercedes then it is black. 

This car is not black. 

Therefore this car is not a Mereedes. 

Given this rule and this fact, place a mark on the scale below that best 
reflects your evaluation of the conclusion. 

Participants were then presented with the same rating scale as that used in 
Experiment 2. The instructions then proceeded as follows: 

If you are sure that you can make this conclusion given the rule and 
the fact above then you would tick the scale as shown. 

Please answer the questions in the order that they appear and do not 
go back and change your answer once you have turned over the page. 
Thank you. 

After completing the conditional inference task, participants were given the 
PRT as used by Oaksford et al. (1999). For each of the eight rules, the PRT 
consisted of the following three questions, which we illustrate by using one 
of the LL rules as an example: 

(Question la) Of every 100 people, bow many would you expect to be 
politicians? 

(Question lb) Of every 100 people, how many would you expect to be 
privately educated? 

Please estimate on a scale from 0% (must be false)-100% (must be 
true) the likelihood that the following statement is true: 

(Question lc) If a person is a politician then they are privately 
educated. 

Although participants were asked about the likelihood of the truth or falsity 
of the rules, this information failed to reveal any interesting effects. 
Therefore, we do not report the results here. When all participants had 
finished the booklet, they were thanked for their participation and were 
fully debriefed concerning the purpose of the experiment. 

Results 

Probability rating task. The results of the PRT (see Table 5) 
reflected the pretest classification of the rules: When the proba- 
bility of  the antecedent [P(p)]  or consequent [P(q)] was predicted 
to be low, these values were well below .5 (range: .0558-.1005); 
when they were predicted to be high, they were all above .5 (range: 
.5305-.5894). All differences between high and low values of  P(p) 
and P(q) were highly significant. 

Conclusion and premise effects. The mean acceptance ratings 
are shown in Table 6. We analyzed these data in the same way as 
in Experiments 1 and 2. For the standard inferences, the accep- 
tance ratings were significantly higher for the inferences with 
high-probability conclusions than for those with low-probability 
conclusions, F(1, 57) = 15.88, MSE = 4.96, p < .0005 (HC: 
M = 2.30, SD = 3.39; LC: M = 1.59, SD = 3.46). Moreover, this 
finding was replicated in the individual inferences for AC, F(1, 
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Table 5 
Mean P(p), P(q) Values (in Percentages) for Each Rule in the 
Probability Rating Task in Experiment 3 (N = 20) 

P(p) P(q) 

Rule M SD M SD 

LL 6.78 8.44 10.05 12.28 
/.2-I 5.58 6.43 53.05 25.72 
HL 58.94 17.53 6.51 9.29 
HH 58.63 19.94 55.93 20.35 

Note. I2, = low-low; LH = low-high; HL = high-low; HH = high- 
high. 

57) = 4.62, MSE = 4.96,p < .05 (HC: M = 2.18, SD = 3.51; LC: 
M = 1.43, SD = 3.58), and for MT, F(1, 57) = 4.54, MSE = 4.96, 
p < .05 (HC: M = 2.28, SD = 3.28; LC: M = 1.53, SD = 3.29), 
but not for DA, F(1, 57) = 1.29, MSE = 4.96, p = .26 (HC: 
M = 1.03, SD = 3.87; LC: M = 0.50, SD = 3.70). The result for 
DA can be explained by the low rating for one of the LL rules 
(Rule 2), which was rated significantly lower than the other LL 
rule (Rule 1). 2 When Rule 2 was excluded, there was a highly 
significant high-probability conclusion effect for DA, F(1, 
57) = 11.59, MSE = 6.36, p < .005 (HC: M = 1.97, SD = 3.62; 
LC: M = 0.50, SD = 3.70). There was also a high-probability 
conclusion effect for MP, F(1, 57) = 4.84, MSE = 4.96, p < .05 
(HC: M = 3.70, SD = 2.18, LC: M = 2.93, SD = 2.84). As we 
argued in Experiment 1, the MP effect seems to be the result of 
P(p) and P(q) influencing participants' assessment of the excep- 
tions parameter, although we cannot dismiss the possibility that 
P(q) is influencing MP directly. Overall, these results were again 
consistent with Prediction 1 of our probabilistic model. 

The overall acceptance ratings were significantly higher for the 
rules with low-probability premises than for those with high- 
probability premises, F(1, 57) = 39.15, MSE = 4.96, p < .0001 
(LP: M = 2.30, SD = 3.32; HP: M = 1.62, SD = 3.63). Moreover, 
this finding was replicated in the individual inferences for DA, 
F(1, 57) = 43.60, MSE = 4.96, p < .0001 (LP: M = 1.93, 
SD = 3.51; HP: M = -0 .40 ,  SD = 3.70), and for MT, F(1, 
57) = 18.15, MSE = 4.96,p < .0001 (LP: M = 2.65, SD = 3.08; 
liP: M = 1.15, SD = 3.35), but not for MP, F(1, 57) < 1, or for 
AC, F(1, 57) = 1.68, MSE = 4.96, p = .20. The low-probability 
premise effect occurred primarily for the inferences involving 
negations DA and MT. This effect seemed to be attributable to the 
HI-I rules in this experiment. The probabilities of the antecedent 
[P(p)] and consequent [P(q)] for the HH rules revealed by the PRT 
were much lower than the experimental values used in Experi- 
ments 1 and 2. This was dictated by the pretest in which few 
high-probability categories were found. If in Experiment 3, the 
PRT values for the HH rule were used directly, then we would 
expect behavior similar to other rules with similar best fit param- 
eter estimates. The PRT-rated values and the best fit parameter 
values for the HH rule in this experiment revealed a close corre- 
spondence (see Tables 5 and A1) indicating that the PRT values 
were used quite directly. Moreover, the best fit values for this rule 
in Experiment 3 were similar to the best fit values for LL and HL 
rules in this experiment and in Experiments 1 and 2. This is 
consistent with the high endorsements of DA and MT for the I-IH 

rule in Experiment 3 not seen in the other experiments: These 
inferences were highly endorsed for other rules revealing similar 
best fit values for P(p) and P(q). Consequently, this effect would 
appear to be an artifact of the particular HH rules that we were 
constrained to use in this experiment by our pretest. 

It is important to note that this interpretation does not affect our 
account of  the high-probability conclusion effect. A high- 
probability conclusion effect predicts the opposite effects; that is, 
it predicts that the probabilities of drawing the DA inference 
[P(not-qlnot-p)], and the MT inference [P(not-plnot-q) ] should be 
low, not high, for the HH rule. Nonetheless, a significant high- 
probability conclusion effect was still observed for each inference. 

Converse inferences. We turn to the converse inferences. Pair- 
wise comparisons between DA'  and the remaining inferences were 
all significant at least at the .05 level. There were close to signif- 
icant differences between MT'  and MP',  p = .052, and between 
AC'  and MP',  p = .081, but not between AC'  and MT' .  Logical 
approaches cannot predict these differences. There was also a 
significant high-probability conclusion effect, F(1, 57) = 6.94, 
MSE = 2.21, p < .025 (HC: M = -3 .27,  SD = 1.92; LC: M = 
-3 .58,  SD = 1.77). In the individual inferences, although the 
trends were in the right direction for DA and AC, there was a 
significant effect only for MT' ,  F(1, 57) = 7.66, MSE = 2.21, p < 
.01 (HC: M = -3 .10 ,  SD = 1.74; LC: M = -3 .75,  SD = 1.44). 
These results were consistent with Prediction 2 of our probabilistic 
model. Replicating Experiments 1 and 2, and consistent with 
Prediction 3, the mean acceptance ratings for both sets of infer- 
ences were highly significantly anticorrelated, r(14) = - .82 ,  p < 
.0001. 

Modelfits. We tested how well our model fit these data in the 
same way as in Experiments 1 and 2. The mean fit to the data was 
good, R 2 = .92 (SD = .  14). Ninety percent of participants had R2s 
greater than .8. The best fit value means for a and b are shown in 
Table A1 in the Appendix. Two participants' data were excluded 
because the fitting procedure did not converge on a stable set of 
parameters for one rule for each participant. When a or b were 
predicted to be high, they were higher than when they were 
predicted to be low, F(1, 17) = 15.83, MSE = .007, p < .001 
(high: M = .64, SD = .29; low: M = .58, SD = .25). This also held 
for a, which was significantly lower for the LL and LH rules (M = 
.51, SD = .25) than for the HL and HH rules (M = .56, SD = .32), 
F(1, 17) = 6.05, MSE = .007, p < .025, and for b, which was 
significantly lower for the LL and HL rules (M = .62, SD = .24) 
than for the LH and HH rules (M = .69, SD = .25), F(1, 
17) = 10.03, MSE = .007, p < .01. These results showed that the 
parameters of the model could be interpreted in the way we have 
suggested. 

In Experiment 3, the split half procedure revealed comparable 
fits to those observed in Experiments 1 and 2. Across the 20 
random splits, the mean R 2 was .84 (SD = .08), with a range of .70 
to .95. Although there was more variation than in Experiments 1 
and 2, the model was still quite predictively reliable. 

2 For the 16 inferences/rules combinations, there were similar differ- 
ences between rule pairs for only two other rule types. For the AC 
inference, there were differences between rule pairs for HH and LL. 
However, these differences were small compared with the LL rule for DA. 
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Table 6 
Mean Acceptance Ratings and Standard Deviations for  the Standard and Converse Inferences for  Each Rule 
in Experiment 3 (N = 20) 

Standard Converse 

MP DA AC MT MP' DA' AC' MT' 

Rule M SD M SD M SD M SD M SD M SD M SD M SD 

LL 2.90 2.90 0.10 3.92 1.85 3.56 1.70 3.31 -3.$5 1.87 -2.95 1.95 -3.25 1.77 -3.50 1.49 
LH 3.85 1.97 -0.90 3.45 1.00 3.60 2.85 3.18 -4.10 1.34 -2.65 2.48 -3.45 2.00 -4.00 1.36 
HL 2.95 2.81 1.95 3.62 2.21 3.53 0.60 3.33 -4.00 1.20 -3.15 2.41 -3.75 1.74 -3.10 1.63 
HH 3.55 2.40 1.90 3.45 2.15 3.53 2.45 3.00 -3.73 1.40 -3.03 2.18 -3.43 1.99 -3.10 1.87 

Total 3.45 2.44 1.35 3.76 2.21 3.42 1.70 3.37 -3.84 1.47 -2.94 2.25 -3.47 1.87 -3.43 1.62 

Note. Numbers in boldface indicate a high-probability conclusion. MP = modus ponens; DA = denying the antecedent; AC = affirming the consequent; 
MT = modus tollens; LL = low P(p), low P(q); LH = low P(p), high P(q); HL = high P(p), low P(q); HH = high P(p), high P(q). Acceptance ratings 
range from - 5  to 5. 

We also looked at the relationship between individual partici- 
pant's PRT-rated values for the probability of the antecedent 
[P(p)] and consequent [P(q)] and their best fit values for a and b. 
There were three cases to consider. First, for 9 participants, there 
was a positive relationship between these values similar to that 
found in Experiments 1 and 2. Aggregating across these partici- 
pants revealed the following regression equation M = .49 + .50E 
and a mean correlation of r(6) = .63 (SD = .31). Second, 7 
participants showed no relationship between the best fit parameter 
values and the PRT-rated probabilities, mean correlation, r(6) = 
.02 (SD -- .13). Third, for 4 participants there was a negative 
relationship between the best fit parameter values and the PRT- 
rated probabilities. Aggregating across these participants revealed 
the following regression equation M = .74 - .47E and a mean 
correlation of  r(6) = - . 4 3  (SD = .30). In the General Discussion 
section, we outline some reasons why we could not always expect 
the values participants used in inference, reflected in the best fit 
parameter values, to mirror directly the PRT ratings that reflect 
participants' prior knowledge. 

Discuss ion  

Experiment 3 replicated most of the effects observed in Exper- 
iments 1 and 2. However, contentful materials were used to pre- 
vent cuing participants to the relevance of probabilistic informa- 
tion. The effects were weaker than observed in Experiments 1 
and 2, especially for the converse inferences. However, the anti- 
correlation between the standard and converse inferences was 
strongly replicated in this experiment--an effect not predicted by 
any other inference theory. Moreover, given that no cue to use 
probabilistic information was given and that a range of other 
possible pragmatic functions might be cued by these materials, this 
replication is impressive. 

Genera l  Discuss ion  

The results of these experiments support an account of negative 
conclusion bias as a rational high-probability conclusion effect. In 
Experiment 1, the predicted high-probability conclusion effects 
were observed, but no low-probability premises effects and the HL 
rule appeared to be reinterpreted as an HH rule. In Experiment 1, 

we used the all form of a rule and framed the task as a prediction 
problem. In Experiment 2, we therefore used the standard if- 
. . .  then rule form and the standard conditional inference format. 

We also tested whether the predicted conclusion and premise 
effects were observed when HL was replaced with a rule where 
P(q) > P(p). Manipulations were also introduced to ease contrast 
class construction and to eliminate negations for the MT and DA 
inferences. A high-probability conclusion effect was observed for 
DA and AC but not for MT, as predicted. We also found a specific 
low-probability premise effect for the AC inference, but this was 
due to the HL rule and not to participants attending to premise 
information. As predicted, the removal of exceptions and the need 
to process negations also allowed MT to be drawn as easily as MP. 
In Experiment 3, we avoided cuing participants to use probability 
information by using pretested contentful material. The predicted 
high-probability conclusion effects were again observed. We also 
found low-probability premise effects for DA and for MT, but they 
were an artifact of the HH rules used. In all these experiments, we 
found effects for the converse inferences predicted by our proba- 
bilistic model only. There were consistent differences in the fre- 
quencies with which these inferences were made: high-probability 
conclusion effects were observed, and across all experiments the 
standard and converse inferences were highly significantly 
anticorrelated. 

Although we consistently found high-probability conclusion 
effects, low-probability premise effects either could not be inter- 
preted as caused by the low-probability of the premise (Experi- 
ment 2) or were artifactual (Experiment 3). Thus, it would appear 
that the algorithms or heuristics that approximate our probabilistic 
model weight conclusion information heavily but give little weight 
to premise information. As we suggested in the introduction, this 
may be because although a high-probability conclusion is invari- 
ably a good cue to draw an inference, a low-probability premise is 
only an unambiguous cue for one inference (AC). 

Our probabilistic model provided good fits to the results for 
individual participants in all three experiments. Of importance, 
when the best fit parameter values were analyzed, they followed 
the high-low pattern we predicted. However, it was clear from 
Experiment 1 that the best fit values for a and b, although posi- 
tively related to the experimentally given values of the probabili- 
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ties of the antecedent [P(p)] and the consequent [P(q)], were quite 
dissimilar. This was also found in Experiment 3 in which partic- 
ipants were asked to provide estimates of these probabilities in the 
PRT. We suspect that the reason for this apparent mismatch is that 
the experimentally given values (Experiments 1 and 2) or prior 
knowledge (Experiment 3) of these probabilities must interact with 
further assumptions that are specific to when inferences need to be 
made. 

For example, suppose someone is in his or her kitchen at home. 
It is unlikely that within this context this person's knowledge that 
donkeys are stubborn is primed ready to infer that a particular 
animal is stubborn given that he or she has identified it as a 
donkey. However, if this person were on a farm, then this knowl- 
edge may well be primed ready to make this inference if required. 
Being "primed" here means something to the effect that there is a 
highly probability of encountering a donkey (i.e., this knowledge 
is primed in contexts in which you are likely to encounter don- 
keys). That is, inferences are only relevant when the properties or 
events to which they apply are more likely than normal to occur. 
Consequently, although the base rate of donkeys may be low, in a 
context in which it would be appropriate to draw inferences about 
donkeys, P(donkey) may be considered to be much higher. In 
summary, there is every reason to expect divergences between 
individual best fit parameter values and either the experimentally 
given values or even participants' own assessments of the base 
rates of the properties or events in the rules. Although Experi- 
ments 1 and 2 showed that these values are related, Experiment 3 
showed considerable variation in the relationship between partic- 
ipants' prior beliefs and the probability values used in inference. 
Although almost half of the participants followed a similar pattern 
to Experiments 1 and 2, others seemed to show no systematic 
relationship between their prior knowledge revealed in the PRT 
and their best fit parameter values. This may reflect different 
strategies that emerge in responding to the task demands and in 
dealing with unfamiliar material. The examination of different 
strategies for using prior knowledge in the context of an unfamiliar 
inferential task is an area for further research. 

Evans et al. (1995) argued that their results show that negative 
conclusion bias is restricted to DA and MT and hence can be 
explained as a double negation effect; that is, to infer the conclu- 
sion for both inferences, participants must realize that not-not-p is 
equivalent to p. According to the contrast set account of negation, 
our probabilistic model also predicts a negative conclusion bias for 
AC. Therefore, Evans et al.'s experiments seem to contradict our 
model. However, our meta-analysis of the negations paradigm 
studies (see introduction) showed a significant negative conclusion 
bias for the AC inference, which is not consistent with the double 
negation hypothesis. Consequently, it would appear that Evans et 
al.'s findings represent the anomalous result and not our experi- 
ments in which we consistently found an analogous high- 
probability conclusion effect for AC. 

Recently, Evans and Handley (1999) found that when implicit 
negations are used in the categorical premise (see our Experiment 
2), a strong affirmative premise bias is observed but not a negative 
conclusion bias. Participants withheld endorsing inferences from 
implicitly negated categorical premises. 3 Evans (1998) has rein- 
terpreted this effect as continuous with matching effects in other 
reasoning tasks (e.g., Evans, 1972; Evans & Lynch, 1973). These 
results seem inconsistent with our explanation of conditional in- 

ference biases. However, the contrast set account of negations may 
explain Evans and Handley's results. 

On a probabilistic interpretation, it can be consistent to beheve 
that a conclusion should be drawn when a negated categorical 
premise is presented in explicit form and that it should not be 
drawn when that same premise is presented in implicit form. 
Consider the two contingency tables in Table 7. Table 7A repre- 
sents a dependency between two classes p and a (i.e., i f  p, then a). 
The p class can be thought of as the set of ravens, and a as the set 
of black birds. Table 7A also represents the dependency that /f 
not-p, then not-a. Table 7B represents this same information but 
uses contrast set members to encode the negatives. The sets P = 
{p, q, r} and A = {a, b, c} are exhaustive. P can be thought of as 
the set of birds, and A as the set of colors. So now i fx  is not a, then 
it is either b or c (e.g., if a bird is not a raven, then its either a crow 
or a robin). Suppose that someone were asked to assess the DA 
inference if  p then a, not-p, therefore not-a. Whether the proba- 
bilities are calculated over Table 7A or Table 7B, the same answer 
is produced: P(not-alnot-p) = .833. Therefore, according to our 
model, participants should strongly endorse not-a as the conclu- 
sion. Suppose now that someone is asked to assess the same 
inference by using a contrast set member as the categorical 
premise; that is, if  not-p then not-a, q (C not-p), therefore not-a. 
According to Table 7B, P(not-alq ) = .333, and therefore partici- 
pants should endorse not-a as the conclusion quite weakly. This 
example suggests that participants may be unlikely to endorse 
inferences with implicitly negated categorical premises. Conse- 
quently, the affmnative premise bias observed by Evans and 
Handley (1999) could be predicted from a rational probabilistic 
perspective, Moreover, such a bias would suppress a negative 
conclusion bias because each bias works against the other: they 
disagree on two rules for each inference (e.g., for DA they disagree 
on AA and NN). Evans and Handley (1999) may have found little 
evidence for negative conclusion bias because it has been overrid- 
den by the effects of implicit negations. 

Probabilistic effects such as those we present here seem incon- 
sistent with either mental logic accounts (e.g., Rips, 1994) in 
which people are held to draw inferences by using syntactic rules 
as in formal logic or mental models theory (e.g., Johnson-Laird & 
Byrne, 1991), in which people are held to reason by manipulating 
arbitrary mental tokens representing the meanings of sentences. 
First, there are no current proposals in the mental logic approach 
to account for probabilistic effects. However, the mental logician 
may argue that they do not need to account for such effects 
because the tasks we have used do not solely engage logical 
reasoning. This argument may make sense for Experiments 1 
and 2, in which probabilistic information was explicitly introduced 
but cannot apply to Experiment 3, in which this information was 
left implicit. Mental models theorists on the other hand have 
directly confronted the issue of probabilistic effects. Johnson-Laird 
et al. (1999) have argued that in realistic settings in which prior 
knowledge is available, individual mental models may be anno- 
tated with probabilities, as proposed by Stevenson and Over 
(1995). Johnson-Laird et al. (1999) proposed that, perhaps elemen- 
tary, probabilistic calculations over these numbers can explain 

3 Some caution is required in this interpretation because with implicit 
negations every categorical premise is now, in a sense, affirmative. 
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Table 7 
Illustrative Examples of  Contingency Tables for  a 
Conditional Rule 

A B A 

a no~a a b c 

p .3 .1 p .3 .05 .05 
not-p .1 .5 P q .1 .025 .025 

r 0 .225 .225 

Note. Examples use explicit negations (A) and implicit negations (B) in 
which, for example, not-a = {b, c}. 

probabilistic effects in reasoning. However, these processes are 
clearly dissimilar in kind to the manipulation of mental models, 
and so there is no theory of these effects that intrinsically relies on 
the notion of a mental model. 

In this article, we have argued that polarity biases in condi- 
tional inference can be explained within a simple rational 
probabilistic framework. Our experiments are consistent with 
the view that negative conclusion bias is really a rational 
high-probability conclusion effect as predicted by the contrast 
set account of negations (Oaksford & Chater, 1994, 1998b; 
Oaksford & Stenning, 1992). In the discussion, we outlined how 
the effects of  implicit negations may also be incorporated in a 
probabilistic account. Together with our probabilistic accounts 
of  the selection task (Oaksford & Chater, 1994) and syllogistic 
reasoning (Chater & Oaksford, 1999b), we have now offered 
probabilistic interpretations in the three main areas of  human 
reasoning. It therefore seems that to explain participants' rea- 
soning in laboratory tasks, we must take account of the fact that 
everyday inferential strategies must deal with the uncertainty of  
the everyday world. It is these everyday uncertain reasoning 
strategies that people use in the laboratory and that create the 
semblance of  biased and irrational reasoning when compared 
with the standard provided by formal logic. 
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Appendix 

Table A1 
The Means and Standard Deviations of  the Best Fit Parameter Values in Experiments 1-3 

Experiment 1 Experiment 2 Experiment 3 

a b a b a b 

M SD M SD M SD M SD M SD M SD 

LL .43 .28 .56 .27 .32 .22 .58 .27 .54 .23 .64 .17 
LH .49 .31 .68 .29 .27 .27 .66 .33 .48 .27 .74 .22 
I'lL .52 .25 .62 .25 .55 .33 .74 .24 .58 .34 .61 .29 
HH .67 .26 .75 .24 .51 .34 .79 .23 .54 .32 .63 .28 

Note. LL -- low-low; LH -- low-high; HL = high-low; HH = high-high. 
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